from os import environ #BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ADMIN_USERNAME = 'TG' # for security, best to set admin password in an environment variable ADMIN_PASSWORD = 'complex' # don't share this with anybody. SECRET_KEY = 'a3)$ve0jmud6wq=jxm@&oad47bzni%%+uo-!p8m*6%9*^9-5li' DEBUG=False MIGRATION_MODULES = {'otree': 'otree_core_migrations'} # AUTH_LEVEL: # If you are launching a study and want visitors to only be able to # play your app if you provided them with a start link, set the # environment variable OTREE_AUTH_LEVEL to STUDY. # If you would like to put your site online in public demo mode where # anybody can play a demo version of your game, set OTREE_AUTH_LEVEL # to DEMO. This will allow people to play in demo mode, but not access # the full admin interface. AUTH_LEVEL = 'STUDY' # setting for integration with AWS Mturk AWS_ACCESS_KEY_ID = 'AKIAIKNHJEPZYRVNR7WQ' AWS_SECRET_ACCESS_KEY = 'a62RVz6r7jZxI0e7gW2XSmO575/Z2zOkcbklfTxx' # e.g. EUR, CAD, GBP, CHF, CNY, JPY REAL_WORLD_CURRENCY_CODE = 'USD' USE_POINTS = False REAL_WORLD_CURRENCY_DECIMAL_PLACES = 2 # e.g. en, de, fr, it, ja, zh-hans # see: https://docs.djangoproject.com/en/1.9/topics/i18n/#term-language-code LANGUAGE_CODE = 'en' # if an app is included in SESSION_CONFIGS, you don't need to list it here INSTALLED_APPS = ['otree', 'scipy'] # SENTRY_DSN = '' DEMO_PAGE_INTRO_TEXT = """ CU Intertemporal MEL """ # from here on are qualifications requirements for workers # see description for requirements on Amazon Mechanical Turk website: # http://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_QualificationRequirementDataStructureArticle.html # and also in docs for boto: # https://boto.readthedocs.org/en/latest/ref/mturk.html?highlight=mturk#module-boto.mturk.qualification mturk_hit_settings = { 'keywords': ['easy', 'bonus', 'choice', 'study'], # 'title': '15-Minute Research Study: Earn $1 Reward Plus Up To $6 Bonus', 'title': '$0.5 Reward + $2.40 Bonus for Completing 20 min Survey', # 'description': 'Play decision-making game in 15-minute research study. Earn $1 reward and bonus of of up to $6.', 'description': 'Please no mobile phones! Survey crashes. Please refrain from using Firefox browser – Chrome, Safari, Edge, and Internet Explorer work best.', 'frame_height': 500, 'template': 'global/mturk_template.html', 'minutes_allotted_per_assignment': 60, 'expiration_hours': 3, 'qualification_requirements': [ # { # # self-generate qualification to prevent retakes # 'QualificationTypeId': "362T4FXEB3ZUVP158HA6NWXSGLMSD4", # 'Comparator': "DoesNotExist", # 'RequiredToPreview': True, # }, # { # # self-generate qualification to prevent retakes # 'QualificationTypeId': "38CFB6RWNRW5Q8LFJPLCK89WHZIVK2", # 'Comparator': "DoesNotExist", # 'RequiredToPreview': True, # }, { 'QualificationTypeId': "00000000000000000071", 'Comparator': "EqualTo", 'LocaleValues': [{'Country': "US"}], 'RequiredToPreview': True, }, # { # # Sandbox # # 'QualificationTypeId': "2ARFPLSP75KLA8M8DH1HTEQVJT3SY6", # # Production: # # 'QualificationTypeId': "3E7Z4QJ76W5ZQK2E8RMCJTY4Q2BIQ9", # # 'Comparator': "Exists", # # 'RequiredToPreview': True, # }, # percent assignments approved { 'QualificationTypeId': "000000000000000000L0", 'Comparator': "GreaterThanOrEqualTo", 'IntegerValues': [95], 'RequiredToPreview': True, }, # # worker is adult # { # 'QualificationTypeId': "00000000000000000060", # 'Comparator': "EqualTo", # 'IntegerValues': [1], # 'RequiredToPreview': True, # }, # # number of hits approved { 'QualificationTypeId': "00000000000000000040", 'Comparator': "GreaterThanOrEqualTo", 'IntegerValues': [500], 'RequiredToPreview': True, }, ] } # if you set a property in SESSION_CONFIG_DEFAULTS, it will be inherited by all configs # in SESSION_CONFIGS, except those that explicitly override it. # the session config can be accessed from methods in your apps as self.session.config, # e.g. self.session.config['participation_fee'] SESSION_CONFIG_DEFAULTS = { 'real_world_currency_per_point': 0.000, 'participation_fee': 1.5, 'doc': "", 'mturk_hit_settings': mturk_hit_settings, } SESSION_CONFIGS = [ { 'name': 'belief_formation', 'type': 'beliefs', 'pilot': 0, 'display_name': "Belief Formation", 'num_demo_participants': 20, 'prize': 5, 'survey_prize': 2, 'endowment': 3, 'machine_probability': 10, # 'every_xth_person_paid': 3, 'prob_belief_paid_out': 0.9, 'total_belief_rounds': 12, 'raven_incentive': 0.5, 'max_duration': 45, 'fixed_round_bonus': 0, 'exp_duration': 25, 'app_sequence': [ 'beliefs_main_exp', 'beliefs_treatment', 'survey_beliefs', 'risk_uncertainty_goodbye' ] }, { 'name': 'belief_default_manip', 'type': 'beliefs', 'pilot': 0, 'display_name': "Belief Default Manipulation", 'num_demo_participants': 20, 'prize': 5, 'survey_prize': 2, 'endowment': 3, 'machine_probability': 10, # 'every_xth_person_paid': 3, 'prob_belief_paid_out': 0.9, 'total_belief_rounds': 12, 'raven_incentive': 0.5, 'max_duration': 45, 'fixed_round_bonus': 0, 'exp_duration': 25, 'app_sequence': [ 'beliefs_default_manip', 'risk_uncertainty_goodbye' ] }, { 'name': 'belief_beta', 'display_name': "Belief Beta", 'type': 'beliefs', 'num_demo_participants': 20, 'pilot': 0, 'prize': 5, 'survey_prize': 2, 'endowment': 3, 'machine_probability': 10, 'use_browser_bots': True, # 'every_xth_person_paid': 3, 'prob_belief_paid_out': 0.9, 'raven_incentive': 0.5, 'total_belief_rounds': 12, 'max_duration': 45, 'fixed_round_bonus': 0.2, 'exp_duration': 25, 'app_sequence': [ 'beliefs_main_exp', 'beliefs_treatment', 'survey_beliefs', 'risk_uncertainty_goodbye' ] }, { 'name': 'risk_treatment_beta', 'display_name': "Risk Treatment Beta", 'type': 'beta', 'pilot': 1, 'intro_only': True, 'num_demo_participants': 20, # 'every_xth_person_paid': 3, 'raven_incentive': 0.5, 'max_duration': 45, 'total_lott': 14, 'exp_duration': 25, 'fixed_payment_per_question': 0.2, 'survey_prize': 2, 'fixed_round_bonus': 0.2, 'app_sequence': [ 'risk_baseline', 'ambiguity', 'risk_uncertainty_goodbye' ], }, { 'name': 'complex_treatment', 'display_name': "Complex Treatment", 'type': 'risk', 'intro_only': False, 'treatment': False, 'pilot': 0, 'num_demo_participants': 20, # 'every_xth_person_paid': 3, 'raven_incentive': 0.5, 'max_duration': 45, 'exp_duration': 25, 'total_lott': 14, 'use_browser_bots': True, 'fixed_payment_per_question': 0.2, 'survey_prize': 2, 'fixed_round_bonus': 0.2, 'app_sequence': [ 'risk_baseline', 'within_subject_risk_lists', 'survey_beliefs', 'risk_uncertainty_goodbye', ], }, # { # 'name': 'risk_baseline', # 'display_name': "Risk Baseline", # 'type': 'risk', # 'pilot': 1, # 'treatment': False, # 'num_demo_participants': 20, # # 'every_xth_person_paid': 3, # 'raven_incentive': 0.2, # 'max_duration': 45, # 'exp_duration': 25, # 'total_lott': 12, # 'fixed_payment_per_question': 0.2, # 'survey_prize': 2, # 'fixed_round_bonus': 0.2, # 'app_sequence': [ # 'risk_baseline', # 'ambiguity', # 'direct_elicitation_v3', # 'survey_beliefs', # 'risk_uncertainty_goodbye', # ], # }, { 'name': 'risk_treatment', 'display_name': "Risk Treatment", 'type': 'risk', 'pilot': 0, 'intro_only': False, 'treatment': False, 'num_demo_participants': 20, # 'every_xth_person_paid': 3, 'raven_incentive': 0.5, 'max_duration': 45, 'exp_duration': 25, 'total_lott': 14, 'fixed_payment_per_question': 0.2, 'survey_prize': 2, 'fixed_round_bonus': 0.2, 'app_sequence': [ 'risk_baseline', 'within_subject_risk_lists', 'survey_beliefs', 'risk_uncertainty_goodbye', ], }, { 'name': 'risk_default_manipulation', 'display_name': "Risk Default Manipulation", 'type': 'risk', 'pilot': 0, 'intro_only': False, 'treatment': False, 'num_demo_participants': 20, # 'every_xth_person_paid': 3, 'raven_incentive': 0.5, 'max_duration': 45, 'exp_duration': 25, 'total_lott': 14, 'fixed_payment_per_question': 0.2, 'survey_prize': 2, 'fixed_round_bonus': 0.2, 'app_sequence': [ 'risk_default_manip', 'risk_uncertainty_goodbye', ], }, { 'name': 'amb_treatment', 'display_name': "Ambiguity Treatment", 'type': 'risk', 'pilot': 1, 'intro_only': True, 'treatment': False, 'num_demo_participants': 20, # 'every_xth_person_paid': 3, 'raven_incentive': 0.5, 'max_duration': 45, 'exp_duration': 25, 'total_lott': 14, 'fixed_payment_per_question': 0.2, 'survey_prize': 2, 'fixed_round_bonus': 0.2, 'app_sequence': [ 'risk_baseline', 'ambiguity', 'survey_beliefs', 'risk_uncertainty_goodbye', ], }, ] ROOM_DEFAULTS = {} ROOMS = [ { 'name': 'HamburgLab', 'display_name': 'HamburgLab', 'participant_label_file': 'Labor_HH.txt', }, ] # anything you put after the below line will override # oTree's default settings. Use with caution.