import numpy as np import pandas as pd import matplotlib.pyplot as plt import random # df = pd.read_csv("C:\\Users\\eden2\\Desktop\\Thesis\\test_graphs\\Raw_data_EXP2-new-pilot_19(1)+60(2)+52(3)+54(4)+54(5)+56(6).csv") ## Import CSV df = pd.read_csv("C:\\Users\\eden2\\Desktop\\Thesis\\test8_Exp2_new\\final_project\\Raw_data_EXP2-new-pilot_19(1)+60(2)+52(3)+54(4)+54(5)+56(6).csv") ## Import CSV df = df.rename(columns={'choice_val': 'Risk_Rate'}) df = df.rename(columns={'player.condition_info': 'Condition'}) # df["Condition"] = df["Condition"].replace([1, 2, 3], ["High EV", "Low EV", "Control"]) df = df.rename(columns={'player.group_info': 'Group'}) df["Group"] = df["Group"].replace(["Feedback", "No_feedback"], ["Full feedback", "No feedback"]) df = df.rename(columns={"environment_info": "Task's_Type"}) df["Task's_Type"] = df["Task's_Type"].replace(["Surrounding"], ["Surroundings"]) df.sort_values(by=["participant.code", "player.current_round"], inplace=True) ## Sort based on Participants & Rounds df = df[df.Risk_Rate.notnull()] ## Filter out rows without input (choice) demo_df = df[["player.age", "player.gender", "player.connect_id"]] demo_df.fillna(method="ffill", inplace=True) ## Filling demographic info df[["player.age", "player.gender", "player.connect_id"]] = demo_df[["player.age", "player.gender", "player.connect_id"]] ## Combine df again df.fillna(method="bfill", inplace=True) ### Export completed Raw Data # df.to_csv("Raw_data_completed_fix_375_participants.csv") ### Getting the Data ordered (Up to here) attention_df = df[df["player.attention_result"] == 1] ##### ONLY WHO PASSED AC #### Filtering out all the experiment (POS/NEG) trials (FOR TTEST PURPOSES) >>> Need to fix back the attention_df_1 above to attention_df only # attention_df = attention_df_1[df["environment_info"] == "Balanced"] attention_df.to_csv("attention_df_604.csv") ############################################################################################################### ### 2 Conditions Gain = attention_df[attention_df["Condition"] == "Gain"] Loss = attention_df[attention_df["Condition"] == "Loss"] # Control = attention_df[attention_df["Condition"] == "Control"] ##### 2 Groups (2X2) Full_feedback_Gain = Gain[Gain["Group"] == "Full feedback"] No_feedback_Gain = Gain[Gain["Group"] == "No feedback"] Full_feedback_Loss = Loss[Loss["Group"] == "Full feedback"] No_feedback_Loss = Loss[Loss["Group"] == "No feedback"] # Full_feedback_Control = Control[Control["Group"] == "Full feedback"] # No_feedback_Control = Control[Control["Group"] == "No feedback"] ### Export # Full_feedback_High_EV.to_csv("Full_feedback_High_EV.csv") # No_feedback_High_EV.to_csv("No_feedback_High_EV.csv") # Full_feedback_Low_EV.to_csv("Full_feedback_Low_EV.csv") # No_feedback_Low_EV.to_csv("No_feedback_Low_EV.csv") # Full_feedback_Control.to_csv("Full_feedback_Control.csv") # No_feedback_Control.to_csv("No_feedback_Control.csv") #### 2 Task's Type (2X2X2) Full_feedback_Gain_Target = Full_feedback_Gain[Full_feedback_Gain["Task's_Type"] == "Target"] Full_feedback_Gain_Surroundings = Full_feedback_Gain[Full_feedback_Gain["Task's_Type"] == "Surroundings"] Full_feedback_Loss_Target = Full_feedback_Loss[Full_feedback_Loss["Task's_Type"] == "Target"] Full_feedback_Loss_Surroundings = Full_feedback_Loss[Full_feedback_Loss["Task's_Type"] == "Surroundings"] No_feedback_Gain_Target = No_feedback_Gain[No_feedback_Gain["Task's_Type"] == "Target"] No_feedback_Gain_Surroundings = No_feedback_Gain[No_feedback_Gain["Task's_Type"] == "Surroundings"] No_feedback_Loss_Target = No_feedback_Loss[No_feedback_Loss["Task's_Type"] == "Target"] No_feedback_Loss_Surroundings = No_feedback_Loss[No_feedback_Loss["Task's_Type"] == "Surroundings"] ### Export # Full_feedback_High_EV_Target.to_csv("Full_feedback_High_EV_Target.csv") # Full_feedback_High_EV_Surroundings.to_csv("Full_feedback_High_EV_Surroundings.csv") # # Full_feedback_Low_EV_Target.to_csv("Full_feedback_Low_EV_Target.csv") # Full_feedback_Low_EV_Surroundings.to_csv("Full_feedback_Low_EV_Surroundings.csv") # # No_feedback_High_EV_Target.to_csv("No_feedback_High_EV_Target.csv") # No_feedback_High_EV_Surroundings.to_csv("No_feedback_High_EV_Surroundings.csv") # # No_feedback_Low_EV_Target.to_csv("No_feedback_Low_EV_Target.csv") # No_feedback_Low_EV_Surroundings.to_csv("No_feedback_Low_EV_Surroundings.csv") ### LINE GRAPH X 4 ### ### LINE GRAPH X 4 ### ### LINE GRAPH X 4 ### ### LINE GRAPH X 4 ### FIGURE 4 ## Full-feedback - High_EV Full_feedback_Gain_Target_Round = Full_feedback_Gain_Target.groupby(["player.current_round"]).agg({"Risk_Rate": "mean"}) Full_feedback_Gain_Target_Round = Full_feedback_Gain_Target_Round.groupby([np.arange(48)//5]).agg({"Risk_Rate": "mean"}) Full_feedback_Gain_Target_Round["Block"] = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] Full_feedback_Gain_Target_Round["Condition"] = ["Feedback, Gain", "Feedback, Gain", "Feedback, Gain", "Feedback, Gain", "Feedback, Gain", "Feedback, Gain", "Feedback, Gain", "Feedback, Gain", "Feedback, Gain", "Feedback, Gain"] Full_feedback_Gain_Target_Round["Task_Type"] = ["Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target"] Full_feedback_Gain_Target_Round.fillna(method="ffill", inplace=True) Full_feedback_Gain_Surroundings_Round = Full_feedback_Gain_Surroundings.groupby(["player.current_round"]).agg({"Risk_Rate": "mean"}) Full_feedback_Gain_Surroundings_Round = Full_feedback_Gain_Surroundings_Round.groupby([np.arange(50)//5]).agg({"Risk_Rate": "mean"}) Full_feedback_Gain_Surroundings_Round["Block"] = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] Full_feedback_Gain_Surroundings_Round["Condition"] = ["Feedback, Gain", "Feedback, Gain", "Feedback, Gain", "Feedback, Gain", "Feedback, Gain", "Feedback, Gain", "Feedback, Gain", "Feedback, Gain", "Feedback, Gain", "Feedback, Gain"] Full_feedback_Gain_Surroundings_Round["Task_Type"] = ["Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings"] Full_feedback_Gain_Surroundings_Round.fillna(method="ffill", inplace=True) df = pd.DataFrame({ 'Targets': Full_feedback_Gain_Target_Round["Risk_Rate"], 'Surroundings': Full_feedback_Gain_Surroundings_Round["Risk_Rate"] }) df.plot(kind='line', title='Risk Rate across Blocks | Full-feedback - Gain', color=["darkorange", "blanchedalmond"]) plt.xlabel("Block") plt.ylabel("Risk Rate") x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] default_x_ticks = range(len(x)) plt.xticks(default_x_ticks, x) plt.ylim(0.0, 1) plt.show() ### Full-feedback - Low_EV Full_feedback_Loss_Target_Round = Full_feedback_Loss_Target.groupby(["player.current_round"]).agg({"Risk_Rate": "mean"}) Full_feedback_Loss_Target_Round = Full_feedback_Loss_Target_Round.groupby([np.arange(48)//5]).agg({"Risk_Rate": "mean"}) Full_feedback_Loss_Target_Round["Block"] = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] Full_feedback_Loss_Target_Round["Condition"] = ["Feedback, Loss", "Feedback, Loss", "Feedback, Loss", "Feedback, Loss", "Feedback, Loss", "Feedback, Loss", "Feedback, Loss", "Feedback, Loss", "Feedback, Loss", "Feedback, Loss"] Full_feedback_Loss_Target_Round["Task_Type"] = ["Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target"] Full_feedback_Loss_Target_Round.fillna(method="ffill", inplace=True) Full_feedback_Loss_Surroundings_Round = Full_feedback_Loss_Surroundings.groupby(["player.current_round"]).agg({"Risk_Rate": "mean"}) Full_feedback_Loss_Surroundings_Round = Full_feedback_Loss_Surroundings_Round.groupby([np.arange(50)//5]).agg({"Risk_Rate": "mean"}) Full_feedback_Loss_Surroundings_Round["Block"] = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] Full_feedback_Loss_Surroundings_Round["Condition"] = ["Feedback, Loss", "Feedback, Loss", "Feedback, Loss", "Feedback, Loss", "Feedback, Loss", "Feedback, Loss", "Feedback, Loss", "Feedback, Loss", "Feedback, Loss", "Feedback, Loss"] Full_feedback_Loss_Surroundings_Round["Task_Type"] = ["Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings"] Full_feedback_Loss_Surroundings_Round.fillna(method="ffill", inplace=True) df = pd.DataFrame({ 'Targets': Full_feedback_Loss_Target_Round["Risk_Rate"], 'Surroundings': Full_feedback_Loss_Surroundings_Round["Risk_Rate"] }) df.plot(kind='line', title='Risk Rate across Blocks | Full-feedback - Loss', color=["darkorange", "blanchedalmond"]) plt.xlabel("Block") plt.ylabel("Risk Rate") x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] default_x_ticks = range(len(x)) plt.xticks(default_x_ticks, x) plt.ylim(0.0, 1) plt.show() ## No-feedback - High_EV No_feedback_Gain_Target_Round = No_feedback_Gain_Target.groupby(["player.current_round"]).agg({"Risk_Rate": "mean"}) No_feedback_Gain_Target_Round = No_feedback_Gain_Target_Round.groupby([np.arange(48)//5]).agg({"Risk_Rate": "mean"}) No_feedback_Gain_Target_Round["Block"] = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] No_feedback_Gain_Target_Round["Condition"] = ["No_feedback, Gain", "No_feedback, Gain", "No_feedback, Gain", "No_feedback, Gain", "No_feedback, Gain", "No_feedback, Gain", "No_feedback, Gain", "No_feedback, Gain", "No_feedback, Gain", "No_feedback, Gain"] No_feedback_Gain_Target_Round["Task_Type"] = ["Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target"] No_feedback_Gain_Target_Round.fillna(method="ffill", inplace=True) No_feedback_Gain_Surroundings_Round = No_feedback_Gain_Surroundings.groupby(["player.current_round"]).agg({"Risk_Rate": "mean"}) No_feedback_Gain_Surroundings_Round = No_feedback_Gain_Surroundings_Round.groupby([np.arange(50)//5]).agg({"Risk_Rate": "mean"}) No_feedback_Gain_Surroundings_Round["Block"] = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] No_feedback_Gain_Surroundings_Round["Condition"] = ["No_feedback, Gain", "No_feedback, Gain", "No_feedback, Gain", "No_feedback, Gain", "No_feedback, Gain", "No_feedback, Gain", "No_feedback, Gain", "No_feedback, Gain", "No_feedback, Gain", "No_feedback, Gain"] No_feedback_Gain_Surroundings_Round["Task_Type"] = ["Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings"] No_feedback_Gain_Surroundings_Round.fillna(method="ffill", inplace=True) df = pd.DataFrame({ 'Targets': No_feedback_Gain_Target_Round["Risk_Rate"], 'Surroundings': No_feedback_Gain_Surroundings_Round["Risk_Rate"] }) df.plot(kind='line', title='Risk Rate across Blocks | No-feedback - Gain', color=["darkorange", "blanchedalmond"]) plt.xlabel("Block") plt.ylabel("Risk Rate") x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] default_x_ticks = range(len(x)) plt.xticks(default_x_ticks, x) plt.ylim(0.0, 1) plt.show() ### No-feedback - Low_EV No_feedback_Loss_Target_Round = No_feedback_Loss_Target.groupby(["player.current_round"]).agg({"Risk_Rate": "mean"}) No_feedback_Loss_Target_Round = No_feedback_Loss_Target_Round.groupby([np.arange(48)//5]).agg({"Risk_Rate": "mean"}) No_feedback_Loss_Target_Round["Block"] = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] No_feedback_Loss_Target_Round["Condition"] = ["No_feedback, Loss", "No_feedback, Loss", "No_feedback, Loss", "No_feedback, Loss", "No_feedback, Loss", "No_feedback, Loss", "No_feedback, Loss", "No_feedback, Loss", "No_feedback, Loss", "No_feedback, Loss"] No_feedback_Loss_Target_Round["Task_Type"] = ["Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target"] No_feedback_Loss_Target_Round.fillna(method="ffill", inplace=True) No_feedback_Loss_Surroundings_Round = No_feedback_Loss_Surroundings.groupby(["player.current_round"]).agg({"Risk_Rate": "mean"}) No_feedback_Loss_Surroundings_Round = No_feedback_Loss_Surroundings_Round.groupby([np.arange(50)//5]).agg({"Risk_Rate": "mean"}) No_feedback_Loss_Surroundings_Round["Block"] = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] No_feedback_Loss_Surroundings_Round["Condition"] = ["No_feedback, Loss", "No_feedback, Loss", "No_feedback, Loss", "No_feedback, Loss", "No_feedback, Loss", "No_feedback, Loss", "No_feedback, Loss", "No_feedback, Loss", "No_feedback, Loss", "No_feedback, Loss"] No_feedback_Loss_Surroundings_Round["Task_Type"] = ["Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings", "Surroundings"] No_feedback_Loss_Surroundings_Round.fillna(method="ffill", inplace=True) df = pd.DataFrame({ 'Targets': No_feedback_Loss_Target_Round["Risk_Rate"], 'Surroundings': No_feedback_Loss_Surroundings_Round["Risk_Rate"] }) df.plot(kind='line', title='Risk Rate across Blocks | No-feedback - Loss', color=["darkorange", "blanchedalmond"]) plt.xlabel("Block") plt.ylabel("Risk Rate") x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] default_x_ticks = range(len(x)) plt.xticks(default_x_ticks, x) plt.ylim(0.0, 1) plt.show() ### SCATTER GRAPH X 4 ### ### SCATTER GRAPH X 4 ### ### SCATTER GRAPH X 4 ### FIGURE 5 ### Full-feedback - TARGETS # Full_feedback_Gain_Target_par = Full_feedback_Gain_Target.groupby(["participant.code"]).agg({"Risk_Rate": "mean"}) Full_feedback_Loss_Target_par = Full_feedback_Loss_Target.groupby(["participant.code"]).agg({"Risk_Rate": "mean"}) ### Full-feedback - SURROUNDINGS Full_feedback_Gain_Surroundings_par = Full_feedback_Gain_Surroundings.groupby(["participant.code"]).agg({"Risk_Rate": "mean"}) Full_feedback_Loss_Surroundings_par = Full_feedback_Loss_Surroundings.groupby(["participant.code"]).agg({"Risk_Rate": "mean"}) ### Full-feedback - CONTROL # Full_feedback_Control_par = Full_feedback_Control.groupby(["participant.code"]).agg({"Risk_Rate": "mean"}) ### x_Gain = ((Full_feedback_Gain_Surroundings_par["Risk_Rate"])) y_Gain = (Full_feedback_Gain_Target_par["Risk_Rate"]) x_Loss = (Full_feedback_Loss_Surroundings_par["Risk_Rate"]) y_Loss = (Full_feedback_Loss_Target_par["Risk_Rate"]) # x_Con = (Full_feedback_Control_par["Risk_Rate"]) # y_Con = (Full_feedback_Control_par["Risk_Rate"]) ### ADD NOISE mu, sigma = -0.05, 0.05 x_noise_High = np.random.uniform(mu, sigma, [len(x_Gain)]) y_noise_High = np.random.uniform(mu, sigma, [len(x_Gain)]) x_noise_Low = np.random.uniform(mu, sigma, [len(x_Loss)]) y_noise_Low = np.random.uniform(mu, sigma, [len(x_Loss)]) x_Gain_noise = x_Gain + x_noise_High y_Gain_noise = y_Gain + y_noise_High x_Loss_noise = x_Loss + x_noise_Low y_Loss_noise = y_Loss + y_noise_Low ### plt.scatter(x_Gain_noise, y_Gain_noise, label="High-EV", color="green") plt.scatter(x_Loss_noise, y_Loss_noise, label="Low-EV", color="purple") # plt.scatter(x_Con, y_Con, label="Control", color="silver") plt.title("Full-feedback") plt.ylabel("Targets Risk Rate") plt.xlabel("Surroundings Risk Rate") plt.legend(bbox_to_anchor =(0.75, 1.000)) plt.show() ### No-feedback - TARGETS No_feedback_Gain_Target_par = No_feedback_Gain_Target.groupby(["participant.code"]).agg({"Risk_Rate": "mean"}) No_feedback_Loss_Target_par = No_feedback_Loss_Target.groupby(["participant.code"]).agg({"Risk_Rate": "mean"}) ### Full-feedback - SURROUNDINGS No_feedback_Gain_Surroundings_par = No_feedback_Gain_Surroundings.groupby(["participant.code"]).agg({"Risk_Rate": "mean"}) No_feedback_Loss_Surroundings_par = No_feedback_Loss_Surroundings.groupby(["participant.code"]).agg({"Risk_Rate": "mean"}) ### Full-feedback - CONTROL # No_feedback_Control_par = No_feedback_Control.groupby(["participant.code"]).agg({"Risk_Rate": "mean"}) ### x_Gain = ((No_feedback_Gain_Surroundings_par["Risk_Rate"])) y_Gain = (No_feedback_Gain_Target_par["Risk_Rate"]) x_Loss = (No_feedback_Loss_Surroundings_par["Risk_Rate"]) y_Loss = (No_feedback_Loss_Target_par["Risk_Rate"]) # x_Con = (No_feedback_Control_par["Risk_Rate"]) # y_Con = (No_feedback_Control_par["Risk_Rate"]) ### ADD NOISE mu, sigma = -0.05, 0.05 x_noise_High = np.random.uniform(mu, sigma, [len(x_Gain)]) y_noise_High = np.random.uniform(mu, sigma, [len(x_Gain)]) x_noise_Low = np.random.uniform(mu, sigma, [len(x_Loss)]) y_noise_Low = np.random.uniform(mu, sigma, [len(x_Loss)]) x_Gain_noise = x_Gain + x_noise_High y_Gain_noise = y_Gain + y_noise_High x_Loss_noise = x_Loss + x_noise_Low y_Loss_noise = y_Loss + y_noise_Low plt.scatter(x_Gain_noise, y_Gain_noise, label="High-EV", color="green") plt.scatter(x_Loss_noise, y_Loss_noise, label="Low-EV", color="purple") # plt.scatter(x_Con, y_Con, label="Control", color="silver") plt.title("No-feedback") plt.ylabel("Targets Risk Rate") plt.xlabel("Surroundings Risk Rate") plt.legend(bbox_to_anchor =(0.75, 1.000)) plt.show() #### SCATTER GRAPH FIGURE 6 #### #### SCATTER GRAPH FIGURE 6 #### #### SCATTER GRAPH FIGURE 6 #### ### Full-feedback & No-feedback- TARGETS Full_feedback_Gain_Target_EV = Full_feedback_Gain_Target.groupby(["player.pos_risk_val"]).agg({"Risk_Rate": "mean"}) Full_feedback_Loss_Target_EV = Full_feedback_Loss_Target.groupby(["player.pos_risk_val"]).agg({"Risk_Rate": "mean"}) # Full_feedback_Control_EV = Full_feedback_Control.groupby(["player.pos_risk_val"]).agg({"Risk_Rate": "mean"}) No_feedback_Gain_Target_EV = No_feedback_Gain_Target.groupby(["player.pos_risk_val"]).agg({"Risk_Rate": "mean"}) No_feedback_Loss_Target_EV = No_feedback_Loss_Target.groupby(["player.pos_risk_val"]).agg({"Risk_Rate": "mean"}) # No_feedback_Control_EV = No_feedback_Control.groupby(["player.pos_risk_val"]).agg({"Risk_Rate": "mean"}) #EXPORT Full_feedback_Gain_Target_EV.to_csv("Full_feedback_Gain_Target_EV1.csv") Full_feedback_Loss_Target_EV.to_csv("Full_feedback_Loss_Target_EV1.csv") # Full_feedback_Control_EV.to_csv("Full_feedback_Control_EV1.csv") No_feedback_Gain_Target_EV.to_csv("No_feedback_Gain_Target_EV1.csv") No_feedback_Loss_Target_EV.to_csv("No_feedback_Loss_Target_EV1.csv") # No_feedback_Control_EV.to_csv("No_feedback_Control_EV1.csv") Full_feedback_Gain_Target_EV1 = pd.read_csv("C:\\Users\\eden2\\Desktop\\Thesis\\test8_Exp2_new\\final_project\\Full_feedback_Gain_Target_EV1.csv") Full_feedback_Loss_Target_EV1 = pd.read_csv("C:\\Users\\eden2\\Desktop\\Thesis\\test8_Exp2_new\\final_project\\Full_feedback_Loss_Target_EV1.csv") # Full_feedback_Control_EV1 = pd.read_csv("C:\\Users\\eden2\\Desktop\\Thesis\\test_graphs\\Full_feedback_Control_EV1.csv") No_feedback_Gain_Target_EV1 = pd.read_csv("C:\\Users\\eden2\\Desktop\\Thesis\\test8_Exp2_new\\final_project\\No_feedback_Gain_Target_EV1.csv") No_feedback_Loss_Target_EV1 = pd.read_csv("C:\\Users\\eden2\\Desktop\\Thesis\\test8_Exp2_new\\final_project\\No_feedback_Loss_Target_EV1.csv") # No_feedback_Control_EV1 = pd.read_csv("C:\\Users\\eden2\\Desktop\\Thesis\\test_graphs\\No_feedback_Control_EV1.csv") ############## EITHER FULL FEEDBACK ~OR~ NO FEEDBACK ### FULL FEEDBACK x = (Full_feedback_Gain_Target_EV1["player.pos_risk_val"]) y_Gain = (Full_feedback_Gain_Target_EV1["Risk_Rate"]) y_Loss = (Full_feedback_Loss_Target_EV1["Risk_Rate"]) # y_Con = (Full_feedback_Control_EV1["Risk_Rate"]) plt.scatter(x, y_Gain, label="Gain", color="green") plt.scatter(x, y_Loss, label="Loss", color="purple") # plt.scatter(x, y_Con, label="Control", color="silver") plt.title("Risk Rate across different X values | Full-feedback") plt.ylabel("Risk Rate in Targets") plt.xlabel("X value") plt.ylim(0,1) plt.xticks(np.arange(5,16)) plt.legend(bbox_to_anchor =(1, 0.227)) plt.show() ### NO FEEDBACK x = (No_feedback_Gain_Target_EV1["player.pos_risk_val"]) y_Gain = (No_feedback_Gain_Target_EV1["Risk_Rate"]) y_Loss = (No_feedback_Loss_Target_EV1["Risk_Rate"]) # y_Con = (No_feedback_Control_EV1["Risk_Rate"]) plt.scatter(x, y_Gain, label="Gain", color="green") plt.scatter(x, y_Loss, label="Loss", color="purple") # plt.scatter(x, y_Con, label="Control", color="silver") plt.title("Risk Rate across different X values | No-feedback") plt.ylabel("Risk Rate in Targets") plt.xlabel("X value") plt.ylim(0,1) plt.xticks(np.arange(5,16)) plt.legend(bbox_to_anchor =(1, 0.227)) plt.show()