''' A place to store not used session configs ''' SESSION_CONFIGS =[ dict( name='automl', display_name="AutoML", app_sequence=['automl'], # fragebogen ml, ], num_demo_participants=5, ), dict( name='automl_additional_treatment', display_name="AutoML (Zusatztreatment)", app_sequence=['automl_treatment2'], # fragebogen ml, ], num_demo_participants=5, ), dict( name='hrd', display_name="Human Robot Dishonesty", app_sequence=['hrd'], # fragebogen ml, ], num_demo_participants=5, ), dict( name='btae', display_name="Better-than-average", app_sequence=['btae'], # fragebogen ml, ], num_demo_participants=5, ), dict( name="sliders", display_name="Slider", num_demo_participants=2, app_sequence=["sliders"], ), dict( name="matrices", display_name="7er Zählen neu", num_demo_participants=10, app_sequence=["count_numbers_group"], attempts_per_puzzle=1, width=10, height=20, text_size=15, counted_char='7', ignored_chars='012345689', amount_of_counted_chars=2, second_time_counting=False, ), dict( name="tax", display_name="Taxevasion", num_demo_participants=1, app_sequence=["taxevasion"], ), dict( name="dohme", display_name="Dohme Lotterie", num_demo_participants=1, app_sequence=[#"sliders", "dohme_lotterie"], ), dict( name="wb", display_name="Whistleblowing", num_demo_participants=4, app_sequence=["baerlab_intro", "count_numbers_group", "whistleblowing", "count_numbers_group_symbolic"], treatment='wb', wb_treatment = 'Control', intro_for_experiment='wb', show_partner_page=True, doc=''' Treatment can be 0 (Control) , 1 (Treatment 1) or 2(Treatment 2) ''' ), dict( name='realeffort_corruption', display_name='real effort Korruption', num_demo_participants=1, app_sequence=[ #'baerlab_intro', 'corruption', #'dohme_lotterie' ], show_partner_page=False, ## kann weggelassen werden intro_for_experiment='corruption', treatment='real_effort',## 'endowment', real_world_currency_per_point=0.01 ), dict( name='endowment_corruption', display_name='Endowment Korruption', num_demo_participants=1, app_sequence=[ #'baerlab_intro', 'corruption', #'dohme_lotterie' ], show_partner_page=False, ## kann weggelassen werden intro_for_experiment='corruption', treatment='endowment', real_world_currency_per_point=0.01 ), dict( name="tax", display_name="Taxevasion", num_demo_participants=1, app_sequence=["taxevasion"], ), dict( name='nps', display_name='NPS', num_demo_participants=1, app_sequence=['nps'] ), dict( name='sp', display_name='socialproximity', num_demo_participants=36, app_sequence=['social_proximity_part2'], ), dict( name='dates', display_name='Termine', num_demo_participants=1, app_sequence=['termine_harris'] ), dict( name='baerlab', display_name='BaerLab Intro', num_demo_participants=1, app_sequence=["baerlab_intro"], treatment='corruption' #welche welcome page ), dict( name="matrices", display_name="7er Zählen neu", num_demo_participants=10, app_sequence=["count_numbers_group"], attempts_per_puzzle=1, width=10, height=20, text_size=15, counted_char='←', ignored_chars='↔↑↓→', amount_of_counted_chars=2, second_time_counting=False, ), dict( name='payment', display_name='Bankdaten', num_demo_participants = 1, app_sequence=['payment'] ), dict( name='sp', display_name='socialproximity', num_demo_participants=36, app_sequence=['social_proximity_part2','social_questionare'], treatment='sp', sp_treatment = 'Similar', intro_for_experiment='sp', show_partner_page=True, mode ='Test', doc=''' Treatment can be (Similar) for Similarity, (Base) for the Baseline. (Test) for showing Answers ,(Normal) for hiding asnwers ''' ), dict( name="wb", display_name="Whistleblowing", num_demo_participants=4, app_sequence=["baerlab_intro", "count_numbers_group", "whistleblowing","count_numbers_group_symbolic", "wb_total_results", "questionnaire"], treatment='wb', wb_treatment = 'T1', # 'Control', T1' oder 'T2' eingeben für die drei Treatments intro_for_experiment='wb', show_partner_page=True, doc=''' Treatment can be Control (Control) , T1 (Treatment 1) or T2(Treatment 2) ''' ), dict( name='Fragebogen', display_name='Fragebogen WB social norms', num_demo_participants=1, app_sequence=['questionnaire'], ), dict( name='First_Game', app_sequence=['First_Game', 'Task', 'multi_select_complex'], num_demo_participants=2, treatment='FristSession', fs_treatment='Debug', # 'Control' intro_for_experiment='fs', show_partner_page=True, min_range=100, max_range=200, doc=''' Treatment can be (Debug) for showing solution , (Normal) solution wont be shown ''' ), dict( name='automl', display_name='AutoML', num_demo_participants=5, app_sequence=['automl'], ), dict( name='automl2', display_name='AutoML Zusatztreatment', num_demo_participants=5, app_sequence=['automl_treatment2'], ), dict( name='hrd', display_name='Human-Robot Dishonesty', num_demo_participants=5, app_sequence=['hrd'], ), dict( name='btae', display_name='Better-than-the-Average', num_demo_participants=5, app_sequence=['btae'], ), ]