from otree.api import ( models, widgets, BaseConstants, BaseSubsession, BaseGroup, BasePlayer, Currency as c, currency_range, ) import random import itertools import numpy as np from django import forms from django.forms import widgets as django_widgets import math author = 'Zheng Li' doc = """ Intertemporal Choice """ class Constants(BaseConstants): name_in_url = 'inter_main_v4' players_per_group = None # desired number of subjects for sociodemographic representativeness # 1000000 to relax restriction num_subjects = 1000000 # stop at 95% for a category cap = 0.95 # pairs of tau2 and tau1# decisions = [ # [0:6] choose 2 and repeat 1 from the chosen 2 ['In 1 week', 'Today'], ['In 1 month', 'Today'], ['In 3 months', 'Today'], ['In 3 years', 'Today'], ['In 4 years', 'Today'], ['In 7 years', 'Today'], # [6:13] choose 2 ['In 1 month and 1 week', 'In 1 month'], ['In 2 months', 'In 1 month'], ['In 6 months', 'In 1 month'], ['In 1 year', 'In 1 month'], ['In 2 years', 'In 1 month'], ['In 4 years', 'In 1 month'], ['In 7 years', 'In 1 month'], # [13:16] sub-additivity set 1 ['In 6 months', 'Today'], ['In 1 year', 'In 6 months'], ['In 1 year', 'Today'], # [16:19] sub-additivity set 2 ['In 2 years', 'In 1 year'], ['In 3 years', 'In 2 years'], ['In 3 years', 'In 1 year'], # [19:22] sub-additivity set 3 ['In 1 year', 'Today'], ['In 2 years', 'In 1 year'], ['In 2 years', 'Today'], ] # possible payment amounts amounts = range(50, 62, 2) # step for price list steps = 2 num_rounds = 12 # generate the certainty-uncertainty spectrum bar list1 = np.arange(1 * 20, - 1, -1) list2 = [] list2.append(0) for x in range(20): list2.append((x+1)*5) # example choice list example_set = [('In 30 days', 'Today', 20)] example_steps = 2 class Subsession(BaseSubsession): def creating_session(self): # set sociodemographic counters for representative filter # counters: age self.session.vars['age_1'] = 0 self.session.vars['age_2'] = 0 self.session.vars['age_3'] = 0 self.session.vars['age_4'] = 0 self.session.vars['age_5'] = 0 self.session.vars['age_6'] = 0 # counters: gender self.session.vars['gender_1'] = 0 self.session.vars['gender_2'] = 0 # counters: education self.session.vars['education_1'] = 0 self.session.vars['education_2'] = 0 self.session.vars['education_3'] = 0 self.session.vars['education_4'] = 0 # counters: income self.session.vars['income_1'] = 0 self.session.vars['income_2'] = 0 self.session.vars['income_3'] = 0 self.session.vars['income_4'] = 0 self.session.vars['income_5'] = 0 self.session.vars['income_6'] = 0 self.session.vars['income_7'] = 0 self.session.vars['income_8'] = 0 self.session.vars['income_9'] = 0 # counters: race self.session.vars['race_1'] = 0 self.session.vars['race_2'] = 0 self.session.vars['race_3'] = 0 self.session.vars['race_4'] = 0 self.session.vars['race_5'] = 0 if self.round_number == 1: for p in self.get_players(): # set default participant-level variables p.participant.vars['tests_passed'] = True p.participant.vars['failed_attention'] = False p.participant.vars['failed_demographics'] = False p.participant.vars['failed_comprehension'] = False # define participant-level sociodemo indicators p.participant.vars['counter_age'] = p.counter_age p.participant.vars['counter_gender'] = p.counter_gender p.participant.vars['counter_education'] = p.counter_education p.participant.vars['counter_income'] = p.counter_income p.participant.vars['counter_race'] = p.counter_race # randomly assign ((tau2, tau1),pay_amount)'s # determine which 2 sub-additivity sets to use p.participant.vars['sub_'] = random.sample([1, 2, 3], 2) # generate decisions from sub-additivity set 1 datessub1 = Constants.decisions[13:16] dates_sub1 = list() amount_tmp = random.choice(Constants.amounts) for date in datessub1: date = (date, amount_tmp, 1) dates_sub1.append(date) # generate decisions from sub-additivity set 2 datessub2 = Constants.decisions[16:19] dates_sub2 = list() amount_tmp = random.choice(Constants.amounts) for date in datessub2: date = (date, amount_tmp, 2) dates_sub2.append(date) # generate decisions from sub-additivity set 3 datessub3 = Constants.decisions[19:22] dates_sub3 = list() amount_tmp = random.choice(Constants.amounts) for date in datessub3: date = (date, amount_tmp, 3) dates_sub3.append(date) # keep decisions from the 2 selected sub-additivity sets if 1 not in p.participant.vars['sub_']: dates_sub = dates_sub2 + dates_sub3 p.participant.vars['set_identifier'] = '(2,3)' elif 2 not in p.participant.vars['sub_']: dates_sub = dates_sub1 + dates_sub3 p.participant.vars['set_identifier'] = '(1,3)' elif 3 not in p.participant.vars['sub_']: dates_sub = dates_sub1 + dates_sub2 p.participant.vars['set_identifier'] = '(1,2)' # repeat 1 sub-additivity decision dates_sub_extra = random.choice(dates_sub) dates_sub.append(dates_sub_extra) # generate 2 decisions with earlier date = 'Today' dates_1 = list() dates1 = random.sample(Constants.decisions[0:6], 2) for date in dates1: amount_tmp = random.choice(Constants.amounts) date = (date, amount_tmp, 0) dates_1.append(date) # repeat 1 decision with earlier date = 'Today' dates_1_extra = random.choice(dates_1) dates_1.append(dates_1_extra) # generate 2 decisions with earlier date = 'In 1 month' dates_2 = list() dates2 = random.sample(Constants.decisions[6:13], 2) for date in dates2: amount_tmp = random.choice(Constants.amounts) date = (date, amount_tmp, 0) dates_2.append(date) # randomly order all decisions and make a decision list p.participant.vars['dates'] = random.sample(dates_sub + dates_1 + dates_2, 12) for p in self.get_players(): # assign decisions from the decision list to each round p.set_current_task_number() # pass set_identifier from participant level to player level p.set_identifier = p.participant.vars['set_identifier'] class Group(BaseGroup): pass class Player(BasePlayer): psid = models.StringField(blank=True) # whether the participant has been passing all tests so far tests_passed = models.BooleanField(initial=True) # whether this participant should receive base payment completed = models.IntegerField(initial=0) # indicators for attention, sociodemographic, voucher, and comprehension checks failed_attention = models.BooleanField(initial=False) failed_sociodemo = models.BooleanField(initial=False) failed_voucher = models.BooleanField(initial=False) failed_comprehension = models.BooleanField(initial=False) # attention check: daylight saving question attention_check = models.StringField(label="") attention_check_num = models.IntegerField(initial=0) # sociodemographic information age = models.IntegerField( max=100, min=18, label="Your age:", blank=False, ) gender = models.IntegerField(label="Your sex:") def gender_choices(self): choices=[ [1, 'Male'], [2, 'Female'] ] random.shuffle(choices) return choices education = models.IntegerField( choices=[ [1, 'No high school graduation'], [2, 'Currently in High school or high school graduate'], [3, 'Some college, but no degree'], [4, "Bachelor's degree"], [5, "Graduate or professional degree"], ], label="Your highest educational attainment:", blank=False ) income = models.IntegerField( choices=[ [1, 'Below $15,000'], [2, '$15,000 - $24,999'], [3, '$25,000 - $34,999'], [4, '$35,000 - $49,999'], [5, '$50,000 - $74,999'], [6, '$75,000 - $99,999'], [7, '$100,000 - $149,999'], [8, '$150,000 - $199,999'], [9, '$200,000 or more'], ], label="Your approximate annual household income:", blank=False ) race = models.IntegerField(label="Your race:") def race_choices(self): choices = [ [1, 'White'], [2, 'Black'], [3, 'Hispanic'], [4, 'Asian'], [5, 'Other'] ] random.shuffle(choices) return choices # indicators for types under each sociodemographic category counter_age = models.IntegerField(initial=0) counter_gender = models.IntegerField(initial=0) counter_education = models.IntegerField(initial=0) counter_income = models.IntegerField(initial=0) counter_race = models.IntegerField(initial=0) # which 2 of the 3 sub-additivity sets set_identifier = models.StringField() # current set: 0=non-SA, 1,2,3 correspond to SA sub_identifier = models.IntegerField() # parameters of decisions # later payment amount at tau2 pay_amount = models.IntegerField() # later date tau2 time_date_lhs = models.StringField() # earlier date tau1 time_date_rhs = models.StringField() # whether player switched or not indicator_never_always_switcher = models.IntegerField() # indifferent payment amount switching_point = models.FloatField() # 0:0% -> 20: 100% confident confidence = models.FloatField() # indicators of whether correctly answered each question #1 qn_hypo_got_wrong = models.BooleanField(initial=False) #2 qn_confidence_got_wrong = models.BooleanField(initial=False) #3 qn_uncertain_got_wrong = models.BooleanField(initial=False) # comprehension questions qn_hypo = models.IntegerField( choices=[ [1, 'In making my decisions, I am asked to assume that I will actually receive all payments indicated, regardless of whether they take place now or in the future.'], [0, 'In making my decisions, I am asked to assume that it is less likely that I will actually receive payments that are meant to take place in the future.'], [0, 'In making my decisions, I am asked to assume that it is less likely that I will actually receive payments that are meant to take place now.'], ], widget=widgets.RadioSelect, blank=False, label="" ) qn_confidence = models.FloatField( blank=False, label="" ) qn_uncertain = models.IntegerField( choices=[ [0, 'Uncertainty about whether I would actually receive the payments.'], [1, 'Uncertainty about how much I value the payments, assuming that I know I would receive them with certainty.'], ], widget=widgets.RadioSelect, blank=False, label="" ) # determine parameters in the current task def set_current_task_number(self): setattr(self, 'time_date_lhs', self.participant.vars['dates'][self.round_number - 1][0][0]) setattr(self, 'time_date_rhs', self.participant.vars['dates'][self.round_number - 1][0][1]) setattr(self, 'pay_amount', self.participant.vars['dates'][self.round_number - 1][1]) setattr(self, 'sub_identifier', self.participant.vars['dates'][self.round_number - 1][2]) # set player.current_choice def current_choice(self): iet_choice = [(self.time_date_lhs, self.time_date_rhs, self.pay_amount)] return iet_choice # determine number of table rows in price list page def table_length1(self): return abs(self.pay_amount) / Constants.steps + 1 # generate the list of earlier payments for option B in price list page def frange(self, start, stop, step): i = start + step while i < stop: if isinstance(i, int): yield i else: yield round(i, 2) i += step # display the list of earlier payments for option B in price list page def right_side_amounts1(self): if self.pay_amount > 0: lst = self.frange(0, self.pay_amount + 1, Constants.steps) # creating a list of tuples from looping "lst" with the starting index = 1 return list(enumerate(lst, 1)) # display the list of earlier payments for option B in example list page def right_side_amounts2(self): lst = self.frange(0, Constants.example_set[0][2] + 1, Constants.example_steps) return list(enumerate(lst, 1)) # determine if and how player switches def set_switching_point_and_indicator(self): if self.switching_point == 9999: # the template sets it to be 9999 when the player always chooses option A self.switching_point = self.pay_amount + Constants.steps self.indicator_never_always_switcher = 2 elif self.switching_point == Constants.steps: # the template sets it to be 0 when the player always chooses option B self.indicator_never_always_switcher = 0 else: # when a middle point is chosen (what is desired) self.indicator_never_always_switcher = 1