from collections import defaultdict from datetime import ( datetime, timedelta, ) from io import StringIO import math import re import numpy as np import pytest from pandas.compat import ( IS64, np_datetime64_compat, ) from pandas.util._test_decorators import async_mark import pandas as pd from pandas import ( CategoricalIndex, DataFrame, DatetimeIndex, Float64Index, Int64Index, IntervalIndex, PeriodIndex, RangeIndex, Series, TimedeltaIndex, Timestamp, UInt64Index, date_range, isna, period_range, ) import pandas._testing as tm from pandas.core.indexes.api import ( Index, MultiIndex, _get_combined_index, ensure_index, ensure_index_from_sequences, ) from pandas.tests.indexes.common import Base class TestIndex(Base): _index_cls = Index @pytest.fixture def simple_index(self) -> Index: return self._index_cls(list("abcde")) def test_can_hold_identifiers(self, simple_index): index = simple_index key = index[0] assert index._can_hold_identifiers_and_holds_name(key) is True @pytest.mark.parametrize("index", ["datetime"], indirect=True) def test_new_axis(self, index): with tm.assert_produces_warning(FutureWarning): # GH#30588 multi-dimensional indexing deprecated new_index = index[None, :] assert new_index.ndim == 2 assert isinstance(new_index, np.ndarray) def test_constructor_regular(self, index): tm.assert_contains_all(index, index) @pytest.mark.parametrize("index", ["string"], indirect=True) def test_constructor_casting(self, index): # casting arr = np.array(index) new_index = Index(arr) tm.assert_contains_all(arr, new_index) tm.assert_index_equal(index, new_index) @pytest.mark.parametrize("index", ["string"], indirect=True) def test_constructor_copy(self, index): arr = np.array(index) new_index = Index(arr, copy=True, name="name") assert isinstance(new_index, Index) assert new_index.name == "name" tm.assert_numpy_array_equal(arr, new_index.values) arr[0] = "SOMEBIGLONGSTRING" assert new_index[0] != "SOMEBIGLONGSTRING" # FIXME: dont leave commented-out # what to do here? # arr = np.array(5.) # pytest.raises(Exception, arr.view, Index) @pytest.mark.parametrize("cast_as_obj", [True, False]) @pytest.mark.parametrize( "index", [ date_range( "2015-01-01 10:00", freq="D", periods=3, tz="US/Eastern", name="Green Eggs & Ham", ), # DTI with tz date_range("2015-01-01 10:00", freq="D", periods=3), # DTI no tz pd.timedelta_range("1 days", freq="D", periods=3), # td period_range("2015-01-01", freq="D", periods=3), # period ], ) def test_constructor_from_index_dtlike(self, cast_as_obj, index): if cast_as_obj: result = Index(index.astype(object)) else: result = Index(index) tm.assert_index_equal(result, index) if isinstance(index, DatetimeIndex): assert result.tz == index.tz if cast_as_obj: # GH#23524 check that Index(dti, dtype=object) does not # incorrectly raise ValueError, and that nanoseconds are not # dropped index += pd.Timedelta(nanoseconds=50) result = Index(index, dtype=object) assert result.dtype == np.object_ assert list(result) == list(index) @pytest.mark.parametrize( "index,has_tz", [ ( date_range("2015-01-01 10:00", freq="D", periods=3, tz="US/Eastern"), True, ), # datetimetz (pd.timedelta_range("1 days", freq="D", periods=3), False), # td (period_range("2015-01-01", freq="D", periods=3), False), # period ], ) def test_constructor_from_series_dtlike(self, index, has_tz): result = Index(Series(index)) tm.assert_index_equal(result, index) if has_tz: assert result.tz == index.tz def test_constructor_from_series_freq(self): # GH 6273 # create from a series, passing a freq dts = ["1-1-1990", "2-1-1990", "3-1-1990", "4-1-1990", "5-1-1990"] expected = DatetimeIndex(dts, freq="MS") s = Series(pd.to_datetime(dts)) result = DatetimeIndex(s, freq="MS") tm.assert_index_equal(result, expected) def test_constructor_from_frame_series_freq(self): # GH 6273 # create from a series, passing a freq dts = ["1-1-1990", "2-1-1990", "3-1-1990", "4-1-1990", "5-1-1990"] expected = DatetimeIndex(dts, freq="MS") df = DataFrame(np.random.rand(5, 3)) df["date"] = dts result = DatetimeIndex(df["date"], freq="MS") assert df["date"].dtype == object expected.name = "date" tm.assert_index_equal(result, expected) expected = Series(dts, name="date") tm.assert_series_equal(df["date"], expected) # GH 6274 # infer freq of same freq = pd.infer_freq(df["date"]) assert freq == "MS" @pytest.mark.parametrize( "array", [ np.arange(5), np.array(["a", "b", "c"]), date_range("2000-01-01", periods=3).values, ], ) def test_constructor_ndarray_like(self, array): # GH 5460#issuecomment-44474502 # it should be possible to convert any object that satisfies the numpy # ndarray interface directly into an Index class ArrayLike: def __init__(self, array): self.array = array def __array__(self, dtype=None) -> np.ndarray: return self.array expected = Index(array) result = Index(ArrayLike(array)) tm.assert_index_equal(result, expected) def test_constructor_int_dtype_nan(self): # see gh-15187 data = [np.nan] expected = Float64Index(data) result = Index(data, dtype="float") tm.assert_index_equal(result, expected) @pytest.mark.parametrize("dtype", ["int64", "uint64"]) def test_constructor_int_dtype_nan_raises(self, dtype): # see gh-15187 data = [np.nan] msg = "cannot convert" with pytest.raises(ValueError, match=msg): Index(data, dtype=dtype) def test_constructor_no_pandas_array(self): ser = Series([1, 2, 3]) result = Index(ser.array) expected = Index([1, 2, 3]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "klass,dtype,na_val", [ (Float64Index, np.float64, np.nan), (DatetimeIndex, "datetime64[ns]", pd.NaT), ], ) def test_index_ctor_infer_nan_nat(self, klass, dtype, na_val): # GH 13467 na_list = [na_val, na_val] expected = klass(na_list) assert expected.dtype == dtype result = Index(na_list) tm.assert_index_equal(result, expected) result = Index(np.array(na_list)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "vals,dtype", [ ([1, 2, 3, 4, 5], "int"), ([1.1, np.nan, 2.2, 3.0], "float"), (["A", "B", "C", np.nan], "obj"), ], ) def test_constructor_simple_new(self, vals, dtype): index = Index(vals, name=dtype) result = index._simple_new(index.values, dtype) tm.assert_index_equal(result, index) @pytest.mark.parametrize( "vals", [ [1, 2, 3], np.array([1, 2, 3]), np.array([1, 2, 3], dtype=int), # below should coerce [1.0, 2.0, 3.0], np.array([1.0, 2.0, 3.0], dtype=float), ], ) def test_constructor_dtypes_to_int64(self, vals): index = Index(vals, dtype=int) assert isinstance(index, Int64Index) @pytest.mark.parametrize( "vals", [ [1, 2, 3], [1.0, 2.0, 3.0], np.array([1.0, 2.0, 3.0]), np.array([1, 2, 3], dtype=int), np.array([1.0, 2.0, 3.0], dtype=float), ], ) def test_constructor_dtypes_to_float64(self, vals): index = Index(vals, dtype=float) assert isinstance(index, Float64Index) @pytest.mark.parametrize( "vals", [ [1, 2, 3], np.array([1, 2, 3], dtype=int), np.array( [np_datetime64_compat("2011-01-01"), np_datetime64_compat("2011-01-02")] ), [datetime(2011, 1, 1), datetime(2011, 1, 2)], ], ) def test_constructor_dtypes_to_categorical(self, vals): index = Index(vals, dtype="category") assert isinstance(index, CategoricalIndex) @pytest.mark.parametrize("cast_index", [True, False]) @pytest.mark.parametrize( "vals", [ Index( np.array( [ np_datetime64_compat("2011-01-01"), np_datetime64_compat("2011-01-02"), ] ) ), Index([datetime(2011, 1, 1), datetime(2011, 1, 2)]), ], ) def test_constructor_dtypes_to_datetime(self, cast_index, vals): if cast_index: index = Index(vals, dtype=object) assert isinstance(index, Index) assert index.dtype == object else: index = Index(vals) assert isinstance(index, DatetimeIndex) @pytest.mark.parametrize("cast_index", [True, False]) @pytest.mark.parametrize( "vals", [ np.array([np.timedelta64(1, "D"), np.timedelta64(1, "D")]), [timedelta(1), timedelta(1)], ], ) def test_constructor_dtypes_to_timedelta(self, cast_index, vals): if cast_index: index = Index(vals, dtype=object) assert isinstance(index, Index) assert index.dtype == object else: index = Index(vals) assert isinstance(index, TimedeltaIndex) @pytest.mark.filterwarnings("ignore:Passing keywords other:FutureWarning") @pytest.mark.parametrize("attr", ["values", "asi8"]) @pytest.mark.parametrize("klass", [Index, DatetimeIndex]) def test_constructor_dtypes_datetime(self, tz_naive_fixture, attr, klass): # Test constructing with a datetimetz dtype # .values produces numpy datetimes, so these are considered naive # .asi8 produces integers, so these are considered epoch timestamps # ^the above will be true in a later version. Right now we `.view` # the i8 values as NS_DTYPE, effectively treating them as wall times. index = date_range("2011-01-01", periods=5) arg = getattr(index, attr) index = index.tz_localize(tz_naive_fixture) dtype = index.dtype warn = None if tz_naive_fixture is None else FutureWarning # astype dt64 -> dt64tz deprecated if attr == "asi8": result = DatetimeIndex(arg).tz_localize(tz_naive_fixture) else: result = klass(arg, tz=tz_naive_fixture) tm.assert_index_equal(result, index) if attr == "asi8": with tm.assert_produces_warning(warn): result = DatetimeIndex(arg).astype(dtype) else: result = klass(arg, dtype=dtype) tm.assert_index_equal(result, index) if attr == "asi8": result = DatetimeIndex(list(arg)).tz_localize(tz_naive_fixture) else: result = klass(list(arg), tz=tz_naive_fixture) tm.assert_index_equal(result, index) if attr == "asi8": with tm.assert_produces_warning(warn): result = DatetimeIndex(list(arg)).astype(dtype) else: result = klass(list(arg), dtype=dtype) tm.assert_index_equal(result, index) @pytest.mark.parametrize("attr", ["values", "asi8"]) @pytest.mark.parametrize("klass", [Index, TimedeltaIndex]) def test_constructor_dtypes_timedelta(self, attr, klass): index = pd.timedelta_range("1 days", periods=5) index = index._with_freq(None) # won't be preserved by constructors dtype = index.dtype values = getattr(index, attr) result = klass(values, dtype=dtype) tm.assert_index_equal(result, index) result = klass(list(values), dtype=dtype) tm.assert_index_equal(result, index) @pytest.mark.parametrize("value", [[], iter([]), (_ for _ in [])]) @pytest.mark.parametrize( "klass", [ Index, Float64Index, Int64Index, UInt64Index, CategoricalIndex, DatetimeIndex, TimedeltaIndex, ], ) def test_constructor_empty(self, value, klass): empty = klass(value) assert isinstance(empty, klass) assert not len(empty) @pytest.mark.parametrize( "empty,klass", [ (PeriodIndex([], freq="B"), PeriodIndex), (PeriodIndex(iter([]), freq="B"), PeriodIndex), (PeriodIndex((_ for _ in []), freq="B"), PeriodIndex), (RangeIndex(step=1), RangeIndex), (MultiIndex(levels=[[1, 2], ["blue", "red"]], codes=[[], []]), MultiIndex), ], ) def test_constructor_empty_special(self, empty, klass): assert isinstance(empty, klass) assert not len(empty) def test_constructor_overflow_int64(self): # see gh-15832 msg = ( "The elements provided in the data cannot " "all be casted to the dtype int64" ) with pytest.raises(OverflowError, match=msg): Index([np.iinfo(np.uint64).max - 1], dtype="int64") @pytest.mark.parametrize( "index", [ "datetime", "float", "int", "period", "range", "repeats", "timedelta", "tuples", "uint", ], indirect=True, ) def test_view_with_args(self, index): index.view("i8") @pytest.mark.parametrize( "index", [ "unicode", "string", pytest.param("categorical", marks=pytest.mark.xfail(reason="gh-25464")), "bool", "empty", ], indirect=True, ) def test_view_with_args_object_array_raises(self, index): msg = "Cannot change data-type for object array" with pytest.raises(TypeError, match=msg): index.view("i8") @pytest.mark.parametrize("index", ["int", "range"], indirect=True) def test_astype(self, index): casted = index.astype("i8") # it works! casted.get_loc(5) # pass on name index.name = "foobar" casted = index.astype("i8") assert casted.name == "foobar" def test_equals_object(self): # same assert Index(["a", "b", "c"]).equals(Index(["a", "b", "c"])) @pytest.mark.parametrize( "comp", [Index(["a", "b"]), Index(["a", "b", "d"]), ["a", "b", "c"]] ) def test_not_equals_object(self, comp): assert not Index(["a", "b", "c"]).equals(comp) def test_insert_missing(self, nulls_fixture): # GH 22295 # test there is no mangling of NA values expected = Index(["a", nulls_fixture, "b", "c"]) result = Index(list("abc")).insert(1, nulls_fixture) tm.assert_index_equal(result, expected) def test_delete_raises(self): index = Index(["a", "b", "c", "d"], name="index") msg = "index 5 is out of bounds for axis 0 with size 4" with pytest.raises(IndexError, match=msg): index.delete(5) def test_identical(self): # index i1 = Index(["a", "b", "c"]) i2 = Index(["a", "b", "c"]) assert i1.identical(i2) i1 = i1.rename("foo") assert i1.equals(i2) assert not i1.identical(i2) i2 = i2.rename("foo") assert i1.identical(i2) i3 = Index([("a", "a"), ("a", "b"), ("b", "a")]) i4 = Index([("a", "a"), ("a", "b"), ("b", "a")], tupleize_cols=False) assert not i3.identical(i4) def test_is_(self): ind = Index(range(10)) assert ind.is_(ind) assert ind.is_(ind.view().view().view().view()) assert not ind.is_(Index(range(10))) assert not ind.is_(ind.copy()) assert not ind.is_(ind.copy(deep=False)) assert not ind.is_(ind[:]) assert not ind.is_(np.array(range(10))) # quasi-implementation dependent assert ind.is_(ind.view()) ind2 = ind.view() ind2.name = "bob" assert ind.is_(ind2) assert ind2.is_(ind) # doesn't matter if Indices are *actually* views of underlying data, assert not ind.is_(Index(ind.values)) arr = np.array(range(1, 11)) ind1 = Index(arr, copy=False) ind2 = Index(arr, copy=False) assert not ind1.is_(ind2) @pytest.mark.parametrize("index", ["datetime"], indirect=True) def test_asof(self, index): d = index[0] assert index.asof(d) == d assert isna(index.asof(d - timedelta(1))) d = index[-1] assert index.asof(d + timedelta(1)) == d d = index[0].to_pydatetime() assert isinstance(index.asof(d), Timestamp) def test_asof_numeric_vs_bool_raises(self): left = Index([1, 2, 3]) right = Index([True, False]) msg = "'<' not supported between instances" with pytest.raises(TypeError, match=msg): left.asof(right) with pytest.raises(TypeError, match=msg): right.asof(left) # TODO: this tests Series.asof def test_asof_nanosecond_index_access(self): s = Timestamp("20130101").value r = DatetimeIndex([s + 50 + i for i in range(100)]) ser = Series(np.random.randn(100), index=r) first_value = ser.asof(ser.index[0]) # this does not yet work, as parsing strings is done via dateutil # assert first_value == x['2013-01-01 00:00:00.000000050+0000'] expected_ts = np_datetime64_compat("2013-01-01 00:00:00.000000050+0000", "ns") assert first_value == ser[Timestamp(expected_ts)] @pytest.mark.parametrize("index", ["string"], indirect=True) def test_booleanindex(self, index): bool_index = np.ones(len(index), dtype=bool) bool_index[5:30:2] = False sub_index = index[bool_index] for i, val in enumerate(sub_index): assert sub_index.get_loc(val) == i sub_index = index[list(bool_index)] for i, val in enumerate(sub_index): assert sub_index.get_loc(val) == i def test_fancy(self, simple_index): index = simple_index sl = index[[1, 2, 3]] for i in sl: assert i == sl[sl.get_loc(i)] @pytest.mark.parametrize("index", ["string", "int", "float"], indirect=True) @pytest.mark.parametrize("dtype", [np.int_, np.bool_]) def test_empty_fancy(self, index, dtype): empty_arr = np.array([], dtype=dtype) empty_index = type(index)([]) assert index[[]].identical(empty_index) assert index[empty_arr].identical(empty_index) @pytest.mark.parametrize("index", ["string", "int", "float"], indirect=True) def test_empty_fancy_raises(self, index): # DatetimeIndex is excluded, because it overrides getitem and should # be tested separately. empty_farr = np.array([], dtype=np.float_) empty_index = type(index)([]) assert index[[]].identical(empty_index) # np.ndarray only accepts ndarray of int & bool dtypes, so should Index msg = r"arrays used as indices must be of integer \(or boolean\) type" with pytest.raises(IndexError, match=msg): index[empty_farr] def test_union_dt_as_obj(self, sort, simple_index): # TODO: Replace with fixturesult index = simple_index date_index = date_range("2019-01-01", periods=10) first_cat = index.union(date_index) second_cat = index.union(index) appended = np.append(index, date_index.astype("O")) assert tm.equalContents(first_cat, appended) assert tm.equalContents(second_cat, index) tm.assert_contains_all(index, first_cat) tm.assert_contains_all(index, second_cat) tm.assert_contains_all(date_index, first_cat) def test_map_with_tuples(self): # GH 12766 # Test that returning a single tuple from an Index # returns an Index. index = tm.makeIntIndex(3) result = tm.makeIntIndex(3).map(lambda x: (x,)) expected = Index([(i,) for i in index]) tm.assert_index_equal(result, expected) # Test that returning a tuple from a map of a single index # returns a MultiIndex object. result = index.map(lambda x: (x, x == 1)) expected = MultiIndex.from_tuples([(i, i == 1) for i in index]) tm.assert_index_equal(result, expected) def test_map_with_tuples_mi(self): # Test that returning a single object from a MultiIndex # returns an Index. first_level = ["foo", "bar", "baz"] multi_index = MultiIndex.from_tuples(zip(first_level, [1, 2, 3])) reduced_index = multi_index.map(lambda x: x[0]) tm.assert_index_equal(reduced_index, Index(first_level)) @pytest.mark.parametrize( "attr", ["makeDateIndex", "makePeriodIndex", "makeTimedeltaIndex"] ) def test_map_tseries_indices_return_index(self, attr): index = getattr(tm, attr)(10) expected = Index([1] * 10) result = index.map(lambda x: 1) tm.assert_index_equal(expected, result) def test_map_tseries_indices_accsr_return_index(self): date_index = tm.makeDateIndex(24, freq="h", name="hourly") expected = Index(range(24), name="hourly") tm.assert_index_equal(expected, date_index.map(lambda x: x.hour)) @pytest.mark.parametrize( "mapper", [ lambda values, index: {i: e for e, i in zip(values, index)}, lambda values, index: Series(values, index), ], ) def test_map_dictlike_simple(self, mapper): # GH 12756 expected = Index(["foo", "bar", "baz"]) index = tm.makeIntIndex(3) result = index.map(mapper(expected.values, index)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "mapper", [ lambda values, index: {i: e for e, i in zip(values, index)}, lambda values, index: Series(values, index), ], ) def test_map_dictlike(self, index, mapper): # GH 12756 if isinstance(index, CategoricalIndex): # Tested in test_categorical return elif not index.is_unique: # Cannot map duplicated index return if index.empty: # to match proper result coercion for uints expected = Index([]) else: expected = Index(np.arange(len(index), 0, -1)) result = index.map(mapper(expected, index)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "mapper", [Series(["foo", 2.0, "baz"], index=[0, 2, -1]), {0: "foo", 2: 2.0, -1: "baz"}], ) def test_map_with_non_function_missing_values(self, mapper): # GH 12756 expected = Index([2.0, np.nan, "foo"]) result = Index([2, 1, 0]).map(mapper) tm.assert_index_equal(expected, result) def test_map_na_exclusion(self): index = Index([1.5, np.nan, 3, np.nan, 5]) result = index.map(lambda x: x * 2, na_action="ignore") expected = index * 2 tm.assert_index_equal(result, expected) def test_map_defaultdict(self): index = Index([1, 2, 3]) default_dict = defaultdict(lambda: "blank") default_dict[1] = "stuff" result = index.map(default_dict) expected = Index(["stuff", "blank", "blank"]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("name,expected", [("foo", "foo"), ("bar", None)]) def test_append_empty_preserve_name(self, name, expected): left = Index([], name="foo") right = Index([1, 2, 3], name=name) result = left.append(right) assert result.name == expected def test_is_mixed_deprecated(self, simple_index): # GH#32922 index = simple_index with tm.assert_produces_warning(FutureWarning): index.is_mixed() @pytest.mark.parametrize( "index, expected", [ ("string", False), ("bool", False), ("categorical", False), ("int", True), ("datetime", False), ("float", True), ], indirect=["index"], ) def test_is_numeric(self, index, expected): assert index.is_numeric() is expected @pytest.mark.parametrize( "index, expected", [ ("string", True), ("bool", True), ("categorical", False), ("int", False), ("datetime", False), ("float", False), ], indirect=["index"], ) def test_is_object(self, index, expected): assert index.is_object() is expected @pytest.mark.parametrize( "index, expected", [ ("string", False), ("bool", False), ("categorical", False), ("int", False), ("datetime", True), ("float", False), ], indirect=["index"], ) def test_is_all_dates(self, index, expected): with tm.assert_produces_warning(FutureWarning): assert index.is_all_dates is expected def test_summary(self, index): index._summary() def test_summary_bug(self): # GH3869` ind = Index(["{other}%s", "~:{range}:0"], name="A") result = ind._summary() # shouldn't be formatted accidentally. assert "~:{range}:0" in result assert "{other}%s" in result def test_format_different_scalar_lengths(self): # GH35439 idx = Index(["aaaaaaaaa", "b"]) expected = ["aaaaaaaaa", "b"] assert idx.format() == expected def test_format_bug(self): # GH 14626 # windows has different precision on datetime.datetime.now (it doesn't # include us since the default for Timestamp shows these but Index # formatting does not we are skipping) now = datetime.now() if not str(now).endswith("000"): index = Index([now]) formatted = index.format() expected = [str(index[0])] assert formatted == expected Index([]).format() @pytest.mark.parametrize("vals", [[1, 2.0 + 3.0j, 4.0], ["a", "b", "c"]]) def test_format_missing(self, vals, nulls_fixture): # 2845 vals = list(vals) # Copy for each iteration vals.append(nulls_fixture) index = Index(vals) formatted = index.format() expected = [str(index[0]), str(index[1]), str(index[2]), "NaN"] assert formatted == expected assert index[3] is nulls_fixture def test_format_with_name_time_info(self): # bug I fixed 12/20/2011 dates = date_range("2011-01-01 04:00:00", periods=10, name="something") formatted = dates.format(name=True) assert formatted[0] == "something" def test_format_datetime_with_time(self): t = Index([datetime(2012, 2, 7), datetime(2012, 2, 7, 23)]) result = t.format() expected = ["2012-02-07 00:00:00", "2012-02-07 23:00:00"] assert len(result) == 2 assert result == expected @pytest.mark.parametrize("op", ["any", "all"]) def test_logical_compat(self, op, simple_index): index = simple_index assert getattr(index, op)() == getattr(index.values, op)() @pytest.mark.parametrize("index", ["string", "int", "float"], indirect=True) def test_drop_by_str_label(self, index): n = len(index) drop = index[list(range(5, 10))] dropped = index.drop(drop) expected = index[list(range(5)) + list(range(10, n))] tm.assert_index_equal(dropped, expected) dropped = index.drop(index[0]) expected = index[1:] tm.assert_index_equal(dropped, expected) @pytest.mark.parametrize("index", ["string", "int", "float"], indirect=True) @pytest.mark.parametrize("keys", [["foo", "bar"], ["1", "bar"]]) def test_drop_by_str_label_raises_missing_keys(self, index, keys): with pytest.raises(KeyError, match=""): index.drop(keys) @pytest.mark.parametrize("index", ["string", "int", "float"], indirect=True) def test_drop_by_str_label_errors_ignore(self, index): n = len(index) drop = index[list(range(5, 10))] mixed = drop.tolist() + ["foo"] dropped = index.drop(mixed, errors="ignore") expected = index[list(range(5)) + list(range(10, n))] tm.assert_index_equal(dropped, expected) dropped = index.drop(["foo", "bar"], errors="ignore") expected = index[list(range(n))] tm.assert_index_equal(dropped, expected) def test_drop_by_numeric_label_loc(self): # TODO: Parametrize numeric and str tests after self.strIndex fixture index = Index([1, 2, 3]) dropped = index.drop(1) expected = Index([2, 3]) tm.assert_index_equal(dropped, expected) def test_drop_by_numeric_label_raises_missing_keys(self): index = Index([1, 2, 3]) with pytest.raises(KeyError, match=""): index.drop([3, 4]) @pytest.mark.parametrize( "key,expected", [(4, Index([1, 2, 3])), ([3, 4, 5], Index([1, 2]))] ) def test_drop_by_numeric_label_errors_ignore(self, key, expected): index = Index([1, 2, 3]) dropped = index.drop(key, errors="ignore") tm.assert_index_equal(dropped, expected) @pytest.mark.parametrize( "values", [["a", "b", ("c", "d")], ["a", ("c", "d"), "b"], [("c", "d"), "a", "b"]], ) @pytest.mark.parametrize("to_drop", [[("c", "d"), "a"], ["a", ("c", "d")]]) def test_drop_tuple(self, values, to_drop): # GH 18304 index = Index(values) expected = Index(["b"]) result = index.drop(to_drop) tm.assert_index_equal(result, expected) removed = index.drop(to_drop[0]) for drop_me in to_drop[1], [to_drop[1]]: result = removed.drop(drop_me) tm.assert_index_equal(result, expected) removed = index.drop(to_drop[1]) msg = fr"\"\[{re.escape(to_drop[1].__repr__())}\] not found in axis\"" for drop_me in to_drop[1], [to_drop[1]]: with pytest.raises(KeyError, match=msg): removed.drop(drop_me) def test_drop_with_duplicates_in_index(self, index): # GH38051 if len(index) == 0 or isinstance(index, MultiIndex): return if isinstance(index, IntervalIndex) and not IS64: pytest.skip("Cannot test IntervalIndex with int64 dtype on 32 bit platform") index = index.unique().repeat(2) expected = index[2:] result = index.drop(index[0]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "attr", [ "is_monotonic_increasing", "is_monotonic_decreasing", "_is_strictly_monotonic_increasing", "_is_strictly_monotonic_decreasing", ], ) def test_is_monotonic_incomparable(self, attr): index = Index([5, datetime.now(), 7]) assert not getattr(index, attr) def test_set_value_deprecated(self, simple_index): # GH 28621 idx = simple_index arr = np.array([1, 2, 3]) with tm.assert_produces_warning(FutureWarning): idx.set_value(arr, idx[1], 80) assert arr[1] == 80 @pytest.mark.parametrize("values", [["foo", "bar", "quux"], {"foo", "bar", "quux"}]) @pytest.mark.parametrize( "index,expected", [ (Index(["qux", "baz", "foo", "bar"]), np.array([False, False, True, True])), (Index([]), np.array([], dtype=bool)), # empty ], ) def test_isin(self, values, index, expected): result = index.isin(values) tm.assert_numpy_array_equal(result, expected) def test_isin_nan_common_object(self, request, nulls_fixture, nulls_fixture2): # Test cartesian product of null fixtures and ensure that we don't # mangle the various types (save a corner case with PyPy) # all nans are the same if ( isinstance(nulls_fixture, float) and isinstance(nulls_fixture2, float) and math.isnan(nulls_fixture) and math.isnan(nulls_fixture2) ): tm.assert_numpy_array_equal( Index(["a", nulls_fixture]).isin([nulls_fixture2]), np.array([False, True]), ) elif nulls_fixture is nulls_fixture2: # should preserve NA type tm.assert_numpy_array_equal( Index(["a", nulls_fixture]).isin([nulls_fixture2]), np.array([False, True]), ) else: tm.assert_numpy_array_equal( Index(["a", nulls_fixture]).isin([nulls_fixture2]), np.array([False, False]), ) def test_isin_nan_common_float64(self, request, nulls_fixture): if nulls_fixture is pd.NaT: pytest.skip("pd.NaT not compatible with Float64Index") # Float64Index overrides isin, so must be checked separately if nulls_fixture is pd.NA: request.node.add_marker( pytest.mark.xfail(reason="Float64Index cannot contain pd.NA") ) tm.assert_numpy_array_equal( Float64Index([1.0, nulls_fixture]).isin([np.nan]), np.array([False, True]) ) # we cannot compare NaT with NaN tm.assert_numpy_array_equal( Float64Index([1.0, nulls_fixture]).isin([pd.NaT]), np.array([False, False]) ) @pytest.mark.parametrize("level", [0, -1]) @pytest.mark.parametrize( "index", [ Index(["qux", "baz", "foo", "bar"]), # Float64Index overrides isin, so must be checked separately Float64Index([1.0, 2.0, 3.0, 4.0]), ], ) def test_isin_level_kwarg(self, level, index): values = index.tolist()[-2:] + ["nonexisting"] expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(expected, index.isin(values, level=level)) index.name = "foobar" tm.assert_numpy_array_equal(expected, index.isin(values, level="foobar")) def test_isin_level_kwarg_bad_level_raises(self, index): for level in [10, index.nlevels, -(index.nlevels + 1)]: with pytest.raises(IndexError, match="Too many levels"): index.isin([], level=level) @pytest.mark.parametrize("label", [1.0, "foobar", "xyzzy", np.nan]) def test_isin_level_kwarg_bad_label_raises(self, label, index): if isinstance(index, MultiIndex): index = index.rename(["foo", "bar"] + index.names[2:]) msg = f"'Level {label} not found'" else: index = index.rename("foo") msg = fr"Requested level \({label}\) does not match index name \(foo\)" with pytest.raises(KeyError, match=msg): index.isin([], level=label) @pytest.mark.parametrize("empty", [[], Series(dtype=object), np.array([])]) def test_isin_empty(self, empty): # see gh-16991 index = Index(["a", "b"]) expected = np.array([False, False]) result = index.isin(empty) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize( "values", [ [1, 2, 3, 4], [1.0, 2.0, 3.0, 4.0], [True, True, True, True], ["foo", "bar", "baz", "qux"], date_range("2018-01-01", freq="D", periods=4), ], ) def test_boolean_cmp(self, values): index = Index(values) result = index == values expected = np.array([True, True, True, True], dtype=bool) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("index", ["string"], indirect=True) @pytest.mark.parametrize("name,level", [(None, 0), ("a", "a")]) def test_get_level_values(self, index, name, level): expected = index.copy() if name: expected.name = name result = expected.get_level_values(level) tm.assert_index_equal(result, expected) def test_slice_keep_name(self): index = Index(["a", "b"], name="asdf") assert index.name == index[1:].name @pytest.mark.parametrize( "index", ["unicode", "string", "datetime", "int", "uint", "float"], indirect=True, ) def test_join_self(self, index, join_type): joined = index.join(index, how=join_type) assert index is joined @pytest.mark.parametrize("method", ["strip", "rstrip", "lstrip"]) def test_str_attribute(self, method): # GH9068 index = Index([" jack", "jill ", " jesse ", "frank"]) expected = Index([getattr(str, method)(x) for x in index.values]) result = getattr(index.str, method)() tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "index", [ Index(range(5)), tm.makeDateIndex(10), MultiIndex.from_tuples([("foo", "1"), ("bar", "3")]), period_range(start="2000", end="2010", freq="A"), ], ) def test_str_attribute_raises(self, index): with pytest.raises(AttributeError, match="only use .str accessor"): index.str.repeat(2) @pytest.mark.parametrize( "expand,expected", [ (None, Index([["a", "b", "c"], ["d", "e"], ["f"]])), (False, Index([["a", "b", "c"], ["d", "e"], ["f"]])), ( True, MultiIndex.from_tuples( [("a", "b", "c"), ("d", "e", np.nan), ("f", np.nan, np.nan)] ), ), ], ) def test_str_split(self, expand, expected): index = Index(["a b c", "d e", "f"]) if expand is not None: result = index.str.split(expand=expand) else: result = index.str.split() tm.assert_index_equal(result, expected) def test_str_bool_return(self): # test boolean case, should return np.array instead of boolean Index index = Index(["a1", "a2", "b1", "b2"]) result = index.str.startswith("a") expected = np.array([True, True, False, False]) tm.assert_numpy_array_equal(result, expected) assert isinstance(result, np.ndarray) def test_str_bool_series_indexing(self): index = Index(["a1", "a2", "b1", "b2"]) s = Series(range(4), index=index) result = s[s.index.str.startswith("a")] expected = Series(range(2), index=["a1", "a2"]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "index,expected", [(Index(list("abcd")), True), (Index(range(4)), False)] ) def test_tab_completion(self, index, expected): # GH 9910 result = "str" in dir(index) assert result == expected def test_indexing_doesnt_change_class(self): index = Index([1, 2, 3, "a", "b", "c"]) assert index[1:3].identical(Index([2, 3], dtype=np.object_)) assert index[[0, 1]].identical(Index([1, 2], dtype=np.object_)) def test_outer_join_sort(self): left_index = Index(np.random.permutation(15)) right_index = tm.makeDateIndex(10) with tm.assert_produces_warning(RuntimeWarning): result = left_index.join(right_index, how="outer") # right_index in this case because DatetimeIndex has join precedence # over Int64Index with tm.assert_produces_warning(RuntimeWarning): expected = right_index.astype(object).union(left_index.astype(object)) tm.assert_index_equal(result, expected) def test_nan_first_take_datetime(self): index = Index([pd.NaT, Timestamp("20130101"), Timestamp("20130102")]) result = index.take([-1, 0, 1]) expected = Index([index[-1], index[0], index[1]]) tm.assert_index_equal(result, expected) def test_take_fill_value(self): # GH 12631 index = Index(list("ABC"), name="xxx") result = index.take(np.array([1, 0, -1])) expected = Index(list("BAC"), name="xxx") tm.assert_index_equal(result, expected) # fill_value result = index.take(np.array([1, 0, -1]), fill_value=True) expected = Index(["B", "A", np.nan], name="xxx") tm.assert_index_equal(result, expected) # allow_fill=False result = index.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = Index(["B", "A", "C"], name="xxx") tm.assert_index_equal(result, expected) def test_take_fill_value_none_raises(self): index = Index(list("ABC"), name="xxx") msg = ( "When allow_fill=True and fill_value is not None, " "all indices must be >= -1" ) with pytest.raises(ValueError, match=msg): index.take(np.array([1, 0, -2]), fill_value=True) with pytest.raises(ValueError, match=msg): index.take(np.array([1, 0, -5]), fill_value=True) def test_take_bad_bounds_raises(self): index = Index(list("ABC"), name="xxx") with pytest.raises(IndexError, match="out of bounds"): index.take(np.array([1, -5])) @pytest.mark.parametrize("name", [None, "foobar"]) @pytest.mark.parametrize( "labels", [ [], np.array([]), ["A", "B", "C"], ["C", "B", "A"], np.array(["A", "B", "C"]), np.array(["C", "B", "A"]), # Must preserve name even if dtype changes date_range("20130101", periods=3).values, date_range("20130101", periods=3).tolist(), ], ) def test_reindex_preserves_name_if_target_is_list_or_ndarray(self, name, labels): # GH6552 index = Index([0, 1, 2]) index.name = name assert index.reindex(labels)[0].name == name @pytest.mark.parametrize("labels", [[], np.array([]), np.array([], dtype=np.int64)]) def test_reindex_preserves_type_if_target_is_empty_list_or_array(self, labels): # GH7774 index = Index(list("abc")) assert index.reindex(labels)[0].dtype.type == np.object_ @pytest.mark.parametrize( "labels,dtype", [ (Int64Index([]), np.int64), (Float64Index([]), np.float64), (DatetimeIndex([]), np.datetime64), ], ) def test_reindex_doesnt_preserve_type_if_target_is_empty_index(self, labels, dtype): # GH7774 index = Index(list("abc")) assert index.reindex(labels)[0].dtype.type == dtype def test_reindex_no_type_preserve_target_empty_mi(self): index = Index(list("abc")) result = index.reindex( MultiIndex([Int64Index([]), Float64Index([])], [[], []]) )[0] assert result.levels[0].dtype.type == np.int64 assert result.levels[1].dtype.type == np.float64 def test_groupby(self): index = Index(range(5)) result = index.groupby(np.array([1, 1, 2, 2, 2])) expected = {1: Index([0, 1]), 2: Index([2, 3, 4])} tm.assert_dict_equal(result, expected) @pytest.mark.parametrize( "mi,expected", [ (MultiIndex.from_tuples([(1, 2), (4, 5)]), np.array([True, True])), (MultiIndex.from_tuples([(1, 2), (4, 6)]), np.array([True, False])), ], ) def test_equals_op_multiindex(self, mi, expected): # GH9785 # test comparisons of multiindex df = pd.read_csv(StringIO("a,b,c\n1,2,3\n4,5,6"), index_col=[0, 1]) result = df.index == mi tm.assert_numpy_array_equal(result, expected) def test_equals_op_multiindex_identify(self): df = pd.read_csv(StringIO("a,b,c\n1,2,3\n4,5,6"), index_col=[0, 1]) result = df.index == df.index expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "index", [ MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)]), Index(["foo", "bar", "baz"]), ], ) def test_equals_op_mismatched_multiindex_raises(self, index): df = pd.read_csv(StringIO("a,b,c\n1,2,3\n4,5,6"), index_col=[0, 1]) with pytest.raises(ValueError, match="Lengths must match"): df.index == index def test_equals_op_index_vs_mi_same_length(self): mi = MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)]) index = Index(["foo", "bar", "baz"]) result = mi == index expected = np.array([False, False, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dt_conv", [pd.to_datetime, pd.to_timedelta]) def test_dt_conversion_preserves_name(self, dt_conv): # GH 10875 index = Index(["01:02:03", "01:02:04"], name="label") assert index.name == dt_conv(index).name def test_cached_properties_not_settable(self): index = Index([1, 2, 3]) with pytest.raises(AttributeError, match="Can't set attribute"): index.is_unique = False @async_mark() async def test_tab_complete_warning(self, ip): # https://github.com/pandas-dev/pandas/issues/16409 pytest.importorskip("IPython", minversion="6.0.0") from IPython.core.completer import provisionalcompleter code = "import pandas as pd; idx = pd.Index([1, 2])" await ip.run_code(code) # GH 31324 newer jedi version raises Deprecation warning; # appears resolved 2021-02-02 with tm.assert_produces_warning(None): with provisionalcompleter("ignore"): list(ip.Completer.completions("idx.", 4)) def test_contains_method_removed(self, index): # GH#30103 method removed for all types except IntervalIndex if isinstance(index, IntervalIndex): index.contains(1) else: msg = f"'{type(index).__name__}' object has no attribute 'contains'" with pytest.raises(AttributeError, match=msg): index.contains(1) def test_sortlevel(self): index = Index([5, 4, 3, 2, 1]) with pytest.raises(Exception, match="ascending must be a single bool value or"): index.sortlevel(ascending="True") with pytest.raises( Exception, match="ascending must be a list of bool values of length 1" ): index.sortlevel(ascending=[True, True]) with pytest.raises(Exception, match="ascending must be a bool value"): index.sortlevel(ascending=["True"]) expected = Index([1, 2, 3, 4, 5]) result = index.sortlevel(ascending=[True]) tm.assert_index_equal(result[0], expected) expected = Index([1, 2, 3, 4, 5]) result = index.sortlevel(ascending=True) tm.assert_index_equal(result[0], expected) expected = Index([5, 4, 3, 2, 1]) result = index.sortlevel(ascending=False) tm.assert_index_equal(result[0], expected) class TestMixedIntIndex(Base): # Mostly the tests from common.py for which the results differ # in py2 and py3 because ints and strings are uncomparable in py3 # (GH 13514) _index_cls = Index @pytest.fixture def simple_index(self) -> Index: return self._index_cls([0, "a", 1, "b", 2, "c"]) @pytest.fixture(params=[[0, "a", 1, "b", 2, "c"]], ids=["mixedIndex"]) def index(self, request): return Index(request.param) def test_argsort(self, simple_index): index = simple_index with pytest.raises(TypeError, match="'>|<' not supported"): index.argsort() def test_numpy_argsort(self, simple_index): index = simple_index with pytest.raises(TypeError, match="'>|<' not supported"): np.argsort(index) def test_copy_name(self, simple_index): # Check that "name" argument passed at initialization is honoured # GH12309 index = simple_index first = type(index)(index, copy=True, name="mario") second = type(first)(first, copy=False) # Even though "copy=False", we want a new object. assert first is not second tm.assert_index_equal(first, second) assert first.name == "mario" assert second.name == "mario" s1 = Series(2, index=first) s2 = Series(3, index=second[:-1]) s3 = s1 * s2 assert s3.index.name == "mario" def test_copy_name2(self): # Check that adding a "name" parameter to the copy is honored # GH14302 index = Index([1, 2], name="MyName") index1 = index.copy() tm.assert_index_equal(index, index1) index2 = index.copy(name="NewName") tm.assert_index_equal(index, index2, check_names=False) assert index.name == "MyName" assert index2.name == "NewName" index3 = index.copy(names=["NewName"]) tm.assert_index_equal(index, index3, check_names=False) assert index.name == "MyName" assert index.names == ["MyName"] assert index3.name == "NewName" assert index3.names == ["NewName"] def test_unique_na(self): idx = Index([2, np.nan, 2, 1], name="my_index") expected = Index([2, np.nan, 1], name="my_index") result = idx.unique() tm.assert_index_equal(result, expected) def test_logical_compat(self, simple_index): index = simple_index assert index.all() == index.values.all() assert index.any() == index.values.any() @pytest.mark.parametrize("how", ["any", "all"]) @pytest.mark.parametrize("dtype", [None, object, "category"]) @pytest.mark.parametrize( "vals,expected", [ ([1, 2, 3], [1, 2, 3]), ([1.0, 2.0, 3.0], [1.0, 2.0, 3.0]), ([1.0, 2.0, np.nan, 3.0], [1.0, 2.0, 3.0]), (["A", "B", "C"], ["A", "B", "C"]), (["A", np.nan, "B", "C"], ["A", "B", "C"]), ], ) def test_dropna(self, how, dtype, vals, expected): # GH 6194 index = Index(vals, dtype=dtype) result = index.dropna(how=how) expected = Index(expected, dtype=dtype) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("how", ["any", "all"]) @pytest.mark.parametrize( "index,expected", [ ( DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]), DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]), ), ( DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03", pd.NaT]), DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]), ), ( TimedeltaIndex(["1 days", "2 days", "3 days"]), TimedeltaIndex(["1 days", "2 days", "3 days"]), ), ( TimedeltaIndex([pd.NaT, "1 days", "2 days", "3 days", pd.NaT]), TimedeltaIndex(["1 days", "2 days", "3 days"]), ), ( PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"), PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"), ), ( PeriodIndex(["2012-02", "2012-04", "NaT", "2012-05"], freq="M"), PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"), ), ], ) def test_dropna_dt_like(self, how, index, expected): result = index.dropna(how=how) tm.assert_index_equal(result, expected) def test_dropna_invalid_how_raises(self): msg = "invalid how option: xxx" with pytest.raises(ValueError, match=msg): Index([1, 2, 3]).dropna(how="xxx") @pytest.mark.parametrize( "index", [ Index([np.nan]), Index([np.nan, 1]), Index([1, 2, np.nan]), Index(["a", "b", np.nan]), pd.to_datetime(["NaT"]), pd.to_datetime(["NaT", "2000-01-01"]), pd.to_datetime(["2000-01-01", "NaT", "2000-01-02"]), pd.to_timedelta(["1 day", "NaT"]), ], ) def test_is_monotonic_na(self, index): assert index.is_monotonic_increasing is False assert index.is_monotonic_decreasing is False assert index._is_strictly_monotonic_increasing is False assert index._is_strictly_monotonic_decreasing is False @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_int_name_format(self, klass): index = Index(["a", "b", "c"], name=0) result = klass(list(range(3)), index=index) assert "0" in repr(result) def test_str_to_bytes_raises(self): # GH 26447 index = Index([str(x) for x in range(10)]) msg = "^'str' object cannot be interpreted as an integer$" with pytest.raises(TypeError, match=msg): bytes(index) @pytest.mark.filterwarnings("ignore:elementwise comparison failed:FutureWarning") def test_index_with_tuple_bool(self): # GH34123 # TODO: remove tupleize_cols=False once correct behaviour is restored # TODO: also this op right now produces FutureWarning from numpy idx = Index([("a", "b"), ("b", "c"), ("c", "a")], tupleize_cols=False) result = idx == ("c", "a") expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) class TestIndexUtils: @pytest.mark.parametrize( "data, names, expected", [ ([[1, 2, 3]], None, Index([1, 2, 3])), ([[1, 2, 3]], ["name"], Index([1, 2, 3], name="name")), ( [["a", "a"], ["c", "d"]], None, MultiIndex([["a"], ["c", "d"]], [[0, 0], [0, 1]]), ), ( [["a", "a"], ["c", "d"]], ["L1", "L2"], MultiIndex([["a"], ["c", "d"]], [[0, 0], [0, 1]], names=["L1", "L2"]), ), ], ) def test_ensure_index_from_sequences(self, data, names, expected): result = ensure_index_from_sequences(data, names) tm.assert_index_equal(result, expected) def test_ensure_index_mixed_closed_intervals(self): # GH27172 intervals = [ pd.Interval(0, 1, closed="left"), pd.Interval(1, 2, closed="right"), pd.Interval(2, 3, closed="neither"), pd.Interval(3, 4, closed="both"), ] result = ensure_index(intervals) expected = Index(intervals, dtype=object) tm.assert_index_equal(result, expected) def test_ensure_index_uint64(self): # with both 0 and a large-uint64, np.array will infer to float64 # https://github.com/numpy/numpy/issues/19146 # but a more accurate choice would be uint64 values = [0, np.iinfo(np.uint64).max] result = ensure_index(values) assert list(result) == values expected = Index(values, dtype="uint64") tm.assert_index_equal(result, expected) def test_get_combined_index(self): result = _get_combined_index([]) expected = Index([]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "opname", [ "eq", "ne", "le", "lt", "ge", "gt", "add", "radd", "sub", "rsub", "mul", "rmul", "truediv", "rtruediv", "floordiv", "rfloordiv", "pow", "rpow", "mod", "divmod", ], ) def test_generated_op_names(opname, index): opname = f"__{opname}__" method = getattr(index, opname) assert method.__name__ == opname @pytest.mark.parametrize("index_maker", tm.index_subclass_makers_generator()) def test_index_subclass_constructor_wrong_kwargs(index_maker): # GH #19348 with pytest.raises(TypeError, match="unexpected keyword argument"): index_maker(foo="bar") @pytest.mark.filterwarnings("ignore:Passing keywords other:FutureWarning") def test_deprecated_fastpath(): msg = "[Uu]nexpected keyword argument" with pytest.raises(TypeError, match=msg): Index(np.array(["a", "b"], dtype=object), name="test", fastpath=True) with pytest.raises(TypeError, match=msg): Int64Index(np.array([1, 2, 3], dtype="int64"), name="test", fastpath=True) with pytest.raises(TypeError, match=msg): RangeIndex(0, 5, 2, name="test", fastpath=True) with pytest.raises(TypeError, match=msg): CategoricalIndex(["a", "b", "c"], name="test", fastpath=True) def test_shape_of_invalid_index(): # Currently, it is possible to create "invalid" index objects backed by # a multi-dimensional array (see https://github.com/pandas-dev/pandas/issues/27125 # about this). However, as long as this is not solved in general,this test ensures # that the returned shape is consistent with this underlying array for # compat with matplotlib (see https://github.com/pandas-dev/pandas/issues/27775) idx = Index([0, 1, 2, 3]) with tm.assert_produces_warning(FutureWarning): # GH#30588 multi-dimensional indexing deprecated assert idx[:, None].shape == (4, 1) def test_validate_1d_input(): # GH#27125 check that we do not have >1-dimensional input msg = "Index data must be 1-dimensional" arr = np.arange(8).reshape(2, 2, 2) with pytest.raises(ValueError, match=msg): Index(arr) with pytest.raises(ValueError, match=msg): Float64Index(arr.astype(np.float64)) with pytest.raises(ValueError, match=msg): Int64Index(arr.astype(np.int64)) with pytest.raises(ValueError, match=msg): UInt64Index(arr.astype(np.uint64)) df = DataFrame(arr.reshape(4, 2)) with pytest.raises(ValueError, match=msg): Index(df) # GH#13601 trying to assign a multi-dimensional array to an index is not # allowed ser = Series(0, range(4)) with pytest.raises(ValueError, match=msg): ser.index = np.array([[2, 3]] * 4) @pytest.mark.parametrize( "klass, extra_kwargs", [ [Index, {}], [Int64Index, {}], [Float64Index, {}], [DatetimeIndex, {}], [TimedeltaIndex, {}], [PeriodIndex, {"freq": "Y"}], ], ) def test_construct_from_memoryview(klass, extra_kwargs): # GH 13120 result = klass(memoryview(np.arange(2000, 2005)), **extra_kwargs) expected = klass(range(2000, 2005), **extra_kwargs) tm.assert_index_equal(result, expected) def test_index_set_names_pos_args_deprecation(): # GH#41485 idx = Index([1, 2, 3, 4]) msg = ( "In a future version of pandas all arguments of Index.set_names " "except for the argument 'names' will be keyword-only" ) with tm.assert_produces_warning(FutureWarning, match=msg): result = idx.set_names("quarter", None) expected = Index([1, 2, 3, 4], name="quarter") tm.assert_index_equal(result, expected) def test_drop_duplicates_pos_args_deprecation(): # GH#41485 idx = Index([1, 2, 3, 1]) msg = ( "In a future version of pandas all arguments of " "Index.drop_duplicates will be keyword-only" ) with tm.assert_produces_warning(FutureWarning, match=msg): idx.drop_duplicates("last") result = idx.drop_duplicates("last") expected = Index([2, 3, 1]) tm.assert_index_equal(expected, result)