from __future__ import annotations from typing import ( TYPE_CHECKING, Any, Sequence, TypeVar, ) import numpy as np from pandas._libs import ( lib, missing as libmissing, ) from pandas._typing import ( ArrayLike, Dtype, NpDtype, PositionalIndexer, Scalar, type_t, ) from pandas.errors import AbstractMethodError from pandas.util._decorators import ( cache_readonly, doc, ) from pandas.util._validators import validate_fillna_kwargs from pandas.core.dtypes.base import ExtensionDtype from pandas.core.dtypes.common import ( is_dtype_equal, is_integer, is_object_dtype, is_scalar, is_string_dtype, pandas_dtype, ) from pandas.core.dtypes.inference import is_array_like from pandas.core.dtypes.missing import ( isna, notna, ) from pandas.core import ( missing, nanops, ) from pandas.core.algorithms import ( factorize_array, isin, take, ) from pandas.core.array_algos import masked_reductions from pandas.core.arraylike import OpsMixin from pandas.core.arrays import ExtensionArray from pandas.core.indexers import check_array_indexer if TYPE_CHECKING: from pandas import Series from pandas.core.arrays import BooleanArray BaseMaskedArrayT = TypeVar("BaseMaskedArrayT", bound="BaseMaskedArray") class BaseMaskedDtype(ExtensionDtype): """ Base class for dtypes for BasedMaskedArray subclasses. """ name: str base = None type: type na_value = libmissing.NA @cache_readonly def numpy_dtype(self) -> np.dtype: """Return an instance of our numpy dtype""" return np.dtype(self.type) @cache_readonly def kind(self) -> str: return self.numpy_dtype.kind @cache_readonly def itemsize(self) -> int: """Return the number of bytes in this dtype""" return self.numpy_dtype.itemsize @classmethod def construct_array_type(cls) -> type_t[BaseMaskedArray]: """ Return the array type associated with this dtype. Returns ------- type """ raise NotImplementedError class BaseMaskedArray(OpsMixin, ExtensionArray): """ Base class for masked arrays (which use _data and _mask to store the data). numpy based """ # The value used to fill '_data' to avoid upcasting _internal_fill_value: Scalar def __init__(self, values: np.ndarray, mask: np.ndarray, copy: bool = False): # values is supposed to already be validated in the subclass if not (isinstance(mask, np.ndarray) and mask.dtype == np.bool_): raise TypeError( "mask should be boolean numpy array. Use " "the 'pd.array' function instead" ) if values.ndim != 1: raise ValueError("values must be a 1D array") if mask.ndim != 1: raise ValueError("mask must be a 1D array") if copy: values = values.copy() mask = mask.copy() self._data = values self._mask = mask @property def dtype(self) -> BaseMaskedDtype: raise AbstractMethodError(self) def __getitem__(self, item: PositionalIndexer) -> BaseMaskedArray | Any: if is_integer(item): if self._mask[item]: return self.dtype.na_value return self._data[item] item = check_array_indexer(self, item) return type(self)(self._data[item], self._mask[item]) @doc(ExtensionArray.fillna) def fillna( self: BaseMaskedArrayT, value=None, method=None, limit=None ) -> BaseMaskedArrayT: value, method = validate_fillna_kwargs(value, method) mask = self._mask if is_array_like(value): if len(value) != len(self): raise ValueError( f"Length of 'value' does not match. Got ({len(value)}) " f" expected {len(self)}" ) value = value[mask] if mask.any(): if method is not None: func = missing.get_fill_func(method) new_values, new_mask = func( self._data.copy(), limit=limit, mask=mask.copy(), ) return type(self)(new_values, new_mask.view(np.bool_)) else: # fill with value new_values = self.copy() new_values[mask] = value else: new_values = self.copy() return new_values def _coerce_to_array(self, values) -> tuple[np.ndarray, np.ndarray]: raise AbstractMethodError(self) def __setitem__(self, key, value) -> None: _is_scalar = is_scalar(value) if _is_scalar: value = [value] value, mask = self._coerce_to_array(value) if _is_scalar: value = value[0] mask = mask[0] key = check_array_indexer(self, key) self._data[key] = value self._mask[key] = mask def __iter__(self): for i in range(len(self)): if self._mask[i]: yield self.dtype.na_value else: yield self._data[i] def __len__(self) -> int: return len(self._data) def __invert__(self: BaseMaskedArrayT) -> BaseMaskedArrayT: return type(self)(~self._data, self._mask.copy()) # error: Argument 1 of "to_numpy" is incompatible with supertype "ExtensionArray"; # supertype defines the argument type as "Union[ExtensionDtype, str, dtype[Any], # Type[str], Type[float], Type[int], Type[complex], Type[bool], Type[object], None]" def to_numpy( # type: ignore[override] self, dtype: NpDtype | None = None, copy: bool = False, na_value: Scalar = lib.no_default, ) -> np.ndarray: """ Convert to a NumPy Array. By default converts to an object-dtype NumPy array. Specify the `dtype` and `na_value` keywords to customize the conversion. Parameters ---------- dtype : dtype, default object The numpy dtype to convert to. copy : bool, default False Whether to ensure that the returned value is a not a view on the array. Note that ``copy=False`` does not *ensure* that ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that a copy is made, even if not strictly necessary. This is typically only possible when no missing values are present and `dtype` is the equivalent numpy dtype. na_value : scalar, optional Scalar missing value indicator to use in numpy array. Defaults to the native missing value indicator of this array (pd.NA). Returns ------- numpy.ndarray Examples -------- An object-dtype is the default result >>> a = pd.array([True, False, pd.NA], dtype="boolean") >>> a.to_numpy() array([True, False, ], dtype=object) When no missing values are present, an equivalent dtype can be used. >>> pd.array([True, False], dtype="boolean").to_numpy(dtype="bool") array([ True, False]) >>> pd.array([1, 2], dtype="Int64").to_numpy("int64") array([1, 2]) However, requesting such dtype will raise a ValueError if missing values are present and the default missing value :attr:`NA` is used. >>> a = pd.array([True, False, pd.NA], dtype="boolean") >>> a [True, False, ] Length: 3, dtype: boolean >>> a.to_numpy(dtype="bool") Traceback (most recent call last): ... ValueError: cannot convert to bool numpy array in presence of missing values Specify a valid `na_value` instead >>> a.to_numpy(dtype="bool", na_value=False) array([ True, False, False]) """ if na_value is lib.no_default: na_value = libmissing.NA if dtype is None: # error: Incompatible types in assignment (expression has type # "Type[object]", variable has type "Union[str, dtype[Any], None]") dtype = object # type: ignore[assignment] if self._hasna: if ( not is_object_dtype(dtype) and not is_string_dtype(dtype) and na_value is libmissing.NA ): raise ValueError( f"cannot convert to '{dtype}'-dtype NumPy array " "with missing values. Specify an appropriate 'na_value' " "for this dtype." ) # don't pass copy to astype -> always need a copy since we are mutating data = self._data.astype(dtype) data[self._mask] = na_value else: data = self._data.astype(dtype, copy=copy) return data def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: dtype = pandas_dtype(dtype) if is_dtype_equal(dtype, self.dtype): if copy: return self.copy() return self # if we are astyping to another nullable masked dtype, we can fastpath if isinstance(dtype, BaseMaskedDtype): # TODO deal with NaNs for FloatingArray case data = self._data.astype(dtype.numpy_dtype, copy=copy) # mask is copied depending on whether the data was copied, and # not directly depending on the `copy` keyword mask = self._mask if data is self._data else self._mask.copy() cls = dtype.construct_array_type() return cls(data, mask, copy=False) if isinstance(dtype, ExtensionDtype): eacls = dtype.construct_array_type() return eacls._from_sequence(self, dtype=dtype, copy=copy) raise NotImplementedError("subclass must implement astype to np.dtype") __array_priority__ = 1000 # higher than ndarray so ops dispatch to us def __array__(self, dtype: NpDtype | None = None) -> np.ndarray: """ the array interface, return my values We return an object array here to preserve our scalar values """ return self.to_numpy(dtype=dtype) def __arrow_array__(self, type=None): """ Convert myself into a pyarrow Array. """ import pyarrow as pa return pa.array(self._data, mask=self._mask, type=type) @property def _hasna(self) -> bool: # Note: this is expensive right now! The hope is that we can # make this faster by having an optional mask, but not have to change # source code using it.. # error: Incompatible return value type (got "bool_", expected "bool") return self._mask.any() # type: ignore[return-value] def isna(self) -> np.ndarray: return self._mask.copy() @property def _na_value(self): return self.dtype.na_value @property def nbytes(self) -> int: return self._data.nbytes + self._mask.nbytes @classmethod def _concat_same_type( cls: type[BaseMaskedArrayT], to_concat: Sequence[BaseMaskedArrayT] ) -> BaseMaskedArrayT: data = np.concatenate([x._data for x in to_concat]) mask = np.concatenate([x._mask for x in to_concat]) return cls(data, mask) def take( self: BaseMaskedArrayT, indexer, *, allow_fill: bool = False, fill_value: Scalar | None = None, ) -> BaseMaskedArrayT: # we always fill with 1 internally # to avoid upcasting data_fill_value = self._internal_fill_value if isna(fill_value) else fill_value result = take( self._data, indexer, fill_value=data_fill_value, allow_fill=allow_fill ) mask = take(self._mask, indexer, fill_value=True, allow_fill=allow_fill) # if we are filling # we only fill where the indexer is null # not existing missing values # TODO(jreback) what if we have a non-na float as a fill value? if allow_fill and notna(fill_value): fill_mask = np.asarray(indexer) == -1 result[fill_mask] = fill_value mask = mask ^ fill_mask return type(self)(result, mask, copy=False) # error: Return type "BooleanArray" of "isin" incompatible with return type # "ndarray" in supertype "ExtensionArray" def isin(self, values) -> BooleanArray: # type: ignore[override] from pandas.core.arrays import BooleanArray # algorithms.isin will eventually convert values to an ndarray, so no extra # cost to doing it here first values_arr = np.asarray(values) result = isin(self._data, values_arr) if self._hasna: values_have_NA = is_object_dtype(values_arr.dtype) and any( val is self.dtype.na_value for val in values_arr ) # For now, NA does not propagate so set result according to presence of NA, # see https://github.com/pandas-dev/pandas/pull/38379 for some discussion result[self._mask] = values_have_NA mask = np.zeros(self._data.shape, dtype=bool) return BooleanArray(result, mask, copy=False) def copy(self: BaseMaskedArrayT) -> BaseMaskedArrayT: data, mask = self._data, self._mask data = data.copy() mask = mask.copy() return type(self)(data, mask, copy=False) @doc(ExtensionArray.factorize) def factorize(self, na_sentinel: int = -1) -> tuple[np.ndarray, ExtensionArray]: arr = self._data mask = self._mask codes, uniques = factorize_array(arr, na_sentinel=na_sentinel, mask=mask) # the hashtables don't handle all different types of bits uniques = uniques.astype(self.dtype.numpy_dtype, copy=False) # error: Incompatible types in assignment (expression has type # "BaseMaskedArray", variable has type "ndarray") uniques = type(self)( # type: ignore[assignment] uniques, np.zeros(len(uniques), dtype=bool) ) # error: Incompatible return value type (got "Tuple[ndarray, ndarray]", # expected "Tuple[ndarray, ExtensionArray]") return codes, uniques # type: ignore[return-value] def value_counts(self, dropna: bool = True) -> Series: """ Returns a Series containing counts of each unique value. Parameters ---------- dropna : bool, default True Don't include counts of missing values. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import ( Index, Series, ) from pandas.arrays import IntegerArray # compute counts on the data with no nans data = self._data[~self._mask] value_counts = Index(data).value_counts() # TODO(extension) # if we have allow Index to hold an ExtensionArray # this is easier index = value_counts.index._values.astype(object) # if we want nans, count the mask if dropna: counts = value_counts._values else: counts = np.empty(len(value_counts) + 1, dtype="int64") counts[:-1] = value_counts counts[-1] = self._mask.sum() index = Index( np.concatenate([index, np.array([self.dtype.na_value], dtype=object)]), dtype=object, ) mask = np.zeros(len(counts), dtype="bool") counts = IntegerArray(counts, mask) return Series(counts, index=index) def _reduce(self, name: str, *, skipna: bool = True, **kwargs): data = self._data mask = self._mask if name in {"sum", "prod", "min", "max", "mean"}: op = getattr(masked_reductions, name) return op(data, mask, skipna=skipna, **kwargs) # coerce to a nan-aware float if needed # (we explicitly use NaN within reductions) if self._hasna: data = self.to_numpy("float64", na_value=np.nan) op = getattr(nanops, "nan" + name) result = op(data, axis=0, skipna=skipna, mask=mask, **kwargs) if np.isnan(result): return libmissing.NA return result