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Abstract. In this paper, we discuss the mathematical modeling and numerical implementation of reaction-diffusion
processes inside a cell nucleus where the diffusion of nuclear materials is restricted by its membrane. Viewing the two-specie
interaction between the chemical composition of the cell and its membrane as an enzyme-substrate process we modeled the
reaction-diffusion in the cell membrane under quasi-steady state equilibrium assumption. The pure diffusion process inside
the three-dimensional cell depends on the solution of a two-dimensional reaction-diffusion process on the interface on its cell
membrane. Through adaptive finite element discretization, we solve the three-dimensional pure diffusion problem using the
solution of the two-dimensional problem on the membrane as a Dirichlet data. The paper is complemented with numerical
results.
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1. Background and problem statement. This work has evolved through the need to understand
the various biological processes continually taking place in living organisms as well as problems in various
field of science involving transport of materials and interactions of chemical compounds. The underlying
physical processes involved are reaction and diffusion. A reaction process involves inter-conversion of
chemical substances as a result of random motion of molecules and the forming and breaking of chemical
bonds resulting into formation of one or more new products. In some cases, the intermediate product
formed simultaneously breaks down into new chemical compounds and are transported within the cell by
the process of diffusion. This is the case of the first enzymatic reactions proposed by Michaelis and Menten
[12] in 1913 involving the conversion of substrate via reaction with enzyme to form a product. Diffusion
process on the other hand results in mixing of chemical substances as it moves materials from one point to
another within regions of different concentration gradients. Aside been vital biological processes, reaction-
diffusion process have also found applications, to mention but a few, in the production of semiconductors,
catalyst design in chemical industry, transportation of air and ground water pollutant e.t.c. In living
cells, the exchange of chemical materials and subsequent formation of complex are carried out through
the cell membranes. In this work, we are concerned with the modeling of reaction-diffusion processes in
cell membrane as well as finding a numerical solution to the resulting model problem in the stationary
case.

Our motivation for this work lies in the various works of several authors ranging from the study
of protein-protein interaction in cells [15], through analysis of reaction-diffusion of compounds in cells.
Notable among these works are [14] which focused on the numerical simulations of reaction-diffusion
systems in cells. [3] specifically studied the reaction-diffusion of carcinogenic compounds in cells, and
model for determining the concentrations of these chemical substances in cells was obtained. Analysis of
reaction-diffusion processes in cell tissues is extensively discussed in [6]. It is worth mentioning that the
works cited above have either considered reaction-diffusion processes solely within cells or have tailored
their models to special problems which makes extension to different problems like the one considered in
this article impossible. In this article, we develop a general model that describes reaction-diffusion in
an arbitrary living cell. Our reaction-diffusion model comprises a coupled model of three-dimensional
diffusion process within the cell and a two-dimensional reaction-diffusion model on the cell membrane.
Through adaptive discretization of the coupled model, we obtain numerical solution of the model problem.

We shall denote the cell by a bounded domain Ω ⊆ R3. Let us assume that the cell is made up of a
chemical specie B with concentration uB . This chemical specie B reacts with an external chemical species
at some parts Γ of its membrane denoted by ∂Ω, which results in the formation of chemical complexes on
Γ. The formed complexes are continually formed and accumulated on Γ but do not diffuse into the cell
by assumption. Within the cell, we assume a pure diffusion process. Let α,D, n denote respectively the
permeability constant of the cell, the diffusion coefficient of the cell and an outward pointing unit normal
on the domain Ω. Thus, in this case of pure diffusion in the cell, the three dimensional model describing
the pure diffusion process in Ω is given by

−∇ · (D∇uB) = 0 in Ω, (1.1)

uB = g on Γ,

−D∂uB
∂n

= αuB on ∂Ω\Γ.
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Here the Dirichlet data g has to be computed as a solution of a two-dimensional problem on the interface
Γ, see (2.26).

Let us comment briefly on the creation of geometries describing the cell. A living cell is a tiny
structure with the size of about 3× 10−6m. Hence for the purpose of modeling and computation, scaling
and non-dimensionalization have to be carried out. The non-dimensionalization analysis is treated in
Section 2.2 of this paper. The representation of the cell on a computer is shown in Figure 1.1 below. The

Fig. 1.1. The geometry for the cell.

interface Γ, a part of the cell membrane is a modeled as an intersection of a ball with a rectangular plane.

We emphasize that the Dirichlet data g obtained from solving the two-dimensional model on Γ cannot
be used directly in (1.1), we shall therefore employ the multi-physics capability of Comsol[1] to couple
the 3D pure diffusion model (1.1) within the cell and the 2D reaction-diffusion model on the interface Γ.

The paper is organized as follows; we describe in detail the mathematical modeling of reaction-
diffusion equation in Section 2 where the model problems are derived. In Section 3, we discuss numerical
discretization of the model problem. In the fourth section, numerical implementation of the reaction-
diffusion problem is discussed. There, the computation of the numerical solutions to the two-dimensional
problem, the three-dimensional problem as well as the coupled model is carried out in detail. The paper
concludes with discussion of our numerical results.

2. Model description of reaction and diffusion processes. In this section, the set of equations
governing the reaction and diffusion processes in the cell and its membrane will be established. We
will start by considering reaction process between different chemical species interacting at the contact
point Γ on the cell membrane, and then give a description of the diffusion process within the cell under
consideration. Finally we derive the reaction-diffusion model that remains the backbone for the rest of
the analysis in this paper.

2.1. Reaction Process. Let us consider a two-specie reaction between two chemical species A and
B represented by a reversible reaction equation given by

A+B
k1


k2
AB. (2.1)

Here, A denotes an external chemical specie and B the chemical composition of the cell under consid-
eration (Figure 2.1) respectively. The above interaction between A and B results in the formation of a
chemical complex AB on the interface Γ. We assume that the chemical specie A and the complex AB do
not diffuse into the cell after the reaction, but however have great influence on the concentration of B in
the cell through further possible decomposition.

To be consistent with previously introduced notation, let us denote concentrations of chemical species
A,B and the complex AB by uA, uB , and uAB respectively. Now applying the law of mass action (the
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Fig. 2.1. Illustration of the reaction between chemical specie A and the composition of the cell.

rate of a reaction is proportional to the product of the concentrations of the reactants) to (2.1) gives

duA
dt

= −k1uAuB + k2uAB , (2.2)

duB
dt

= −k1uAuB + k2uAB , (2.3)

duAB
dt

= k1uAuB − k2uAB (2.4)

where k1, k2 are constants of proportionality. If we impose initial conditions uA(0) = uA0
, uB(0) =

uB0
, uAB(0) = 0, solving the above equations gives evolution of the concentrations of the reactants

uA, uB and the product uAB .

2.2. Multi-reaction processes on Γ. Here we will extend the model derived in Section 2.1 to
include a more common cases of multiple chemical species interactions on cell membrane. We follow the
previous notation and Γ remains a part of the cell membrane. Suppose that the interface Γ comprises
two sub-domains ΓR and ΓS and are arranged alternately as in the Table 2.1 below. Now let us consider

ΓR ΓS ΓR ΓS
ΓS ΓR ΓS ΓR
ΓR ΓS ΓR ΓS
ΓS ΓR ΓS ΓR

Table 2.1
Distribution of the two sub-domains on Γ.

two chemical species R and S interacting with chemical specie B according as the following reversible
reaction equations

R+B
k2


k3
RB on ΓR, (2.5)

S +B
k4


k5
SB on ΓS (2.6)

where ΓR,ΓS are subsets of Γ.
Applying the law of mass action as in Section 2.1 gives

duB
dt

= −k2uRuB + k3uRB on ΓR (2.7)

and

duB
dt

= −k4uSuB + k5uSB on ΓS (2.8)

which with initial condition uB(0) = uB0 gives the evolution of the chemical specie B on ΓR,ΓS respec-
tively.
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2.3. Reaction-diffusion process. In this part of the paper, we will derive the reaction-diffusion
equation describing the entire process happening within the cell as well as on its membrane.

Let us start by deriving a general reaction-diffusion model before applying the model to the present
problem. Since the volume of diffusing materials usually depends on the concentration gradients across the
medium, it is quite reasonable to assume that the diffusion of materials within the cell follows the classical
diffusion process so that the Fick’s law of diffusion applies. Fick’s law describes the relationship between
the concentration of the material uB and the flux J. The Fick’s law states that the steady state diffusion

flux J is proportional to the concentration gradient expressed mathematically as J = −D ∂

∂x
uB(x, t),

where D is the diffusion coefficient which measures how efficiently chemical specie B moves from a region
of higher concentration of the chemical material to regions of lower concentrations. The value of D
depends on the size of uB , as well as the medium in which it is diffusing. In three dimensions, the flux
is of the form

J = −D∇uB (2.9)

with ∇ denoting the vector differential operator.
Now we will use the conservation equation to derive the general reaction-diffusion equation. Let τ be

a small time period and denote the cell as an open, bounded and smooth domain Ω ⊆ R3 and regard ∂Ω
as the cell membrane. In general, let S be an arbitrary surface enclosing a volume V ⊂ Ω. The general
conservation equation holds i.e.∫

V

[uB(x, t+ τ)− uB(x, t)] dV =

∫ t+τ

t

[
−
∫
S

J · ndS +

∫
V

f(uB , x, t
′)dV

]
dt′, (2.10)

where J is the flux of material (e.g. equation (2.9) above ) and f represents the source of material
which may be functions of uB , x and t. Dividing through (2.10) by τ and subsequently taking the limit
as τ → 0, we obtain

lim
τ→0

∫
V

[
uB(x, t+ τ)− uB(x, t)

τ

]
dV = lim

τ→0

1

τ

∫ t+τ

t

[
−
∫
S

J · ndS +

∫
V

f(uB , x, t
′)dV

]
dt′.

This gives ∫
V

∂uB(x, t)

∂t
dV = −

∫
S

J · ndS +

∫
V

f(uB , x, t)dV. (2.11)

Applying divergence theorem ∫
Ω

∇ · udx =

∫
S

u · ndS (2.12)

to the flux integral in (2.11) we have ∫
S

J · ndS =

∫
V

∇ · JdV. (2.13)

Altogether from (2.11) we arrive at∫
V

[
∂uB
dt

+∇ · J − f(uB , x, t)

]
dV = 0. (2.14)

As the volume V is arbitrary, the integrand must be zero and we have

∂uB
dt

+∇ · J − f(uB , x, t) = 0. (2.15)

Here, ∇ · J is the diffusion term which describes the movement of the chemical specie B within the cell,
and f(uB , x, t) is the reaction term which describes the reaction occurring on the cell membrane. Now,
inserting the flux J given by (2.9) into (2.15) we obtain the reaction-diffusion equation

∂uB
∂t

= ∇ · (D∇uB) + f(uB , x, t). (2.16)
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Equation (2.16) holds for a general flux transport J , irrespective of a diffusion process or other transport
processes. For the problem described in Section 1, the reaction term f will be determined from the
reactions on the cell membrane and this is discussed below.

Our model will be based on the quasi steady state equilibrium assumption [5] (a reasonable assump-
tion as (2.1) is viewed as an enzyme-substrate reaction, a very common form of reaction processes in
living cell) where we assume that the concentration of the enzyme catalyst uR, uS << uB and therefore
the concentration uB effectively remains constant (see [13]) and (2.16) becomes

∇ · (D∇uB) + f(uB , x) = 0. (2.17)

To apply (2.17) to our problem, let us distinguish different choices of the source term f(uB , x) based
on the problem description in Section 1.

1. If there is no reaction as in the case inside the cell, f := f(uB , x) = 0 and we obtain the pure
diffusion equation

−∇ · (D∇uB) = 0 (2.18)

inside Ω.
2. On the interface Γ ⊂ ∂Ω; the point of contact between the chemical species R,S and B, the

reaction term is given by (2.7) and (2.8) i.e.

f = −αuB + β (2.19)

where

γ =

{
k2uR on ΓR
k4uS on ΓS

, (2.20)

and

β =

{
k3uRB on ΓR
k5uSB on ΓS

. (2.21)

Finally, substituting (2.19) in the reaction-diffusion equation (2.17) gives

−∇ · (D∇uB) + γuB = β, (2.22)

the reaction-diffusion equation on Γ.

Choice of boundary conditions. The pure diffusion equation (2.18) and the reaction-diffusion
equation (2.22) only make sense, in terms of solvability, if appropriate boundary conditions are specified.
These conditions are specified by the appropriate balance equations at each of the boundary surfaces.
Let the boundary of the cell be divided into two non-intersecting partial surfaces: Γ and ∂Ω\Γ. We can
fix the concentration of the cell component B at the interface Γ. That is, we specify a Dirichlet boundary
condition

uB = g on Γ. (2.23)

Furthermore, cell membranes are considered a barrier (but permeable), so Robin boundary condition can
also be specified at the other part of the cell membrane i.e.

−D∂uB
∂n

= αuB on ∂Ω\Γ, (2.24)

where
∂uB
∂n

= ∇·n is the co-variant normal derivative, α the permeability constant of the cell membrane

and n is the outward normal at the boundary.

With the boundary conditions specified, we now have all the necessary ingredients for a complete
description of the model problem.
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2.4. The model problem. Our model problem is given by the pure diffusion equation (2.18) in
the cell with appropriate boundary conditions described above:

−∇ · (D∇uB) = 0 in Ω, (2.25)

uB = g on Γ,

−D∂uB
∂n

= αuB on ∂Ω\Γ,

where the Dirichlet data g has to be computed by solving the reaction-diffusion process on Γ given by

−∇ · (D∇g) + γg = β in Γ, (2.26)

g = 0 on ∂Γ

with γ, β given by (2.20) and (2.21) respectively. Note that the model parameters γ, β and α are non-
negative due to the fact that concentrations as well as rates of reaction are non-negative.

Unless specified otherwise, the partial differential equations (2.25)-(2.26) shall be the model problem
for the rest of this article. Numerical solution of this problem is sought in Section 4.

3. Discretization of the reaction-diffusion equation. In general it is not possible to solve
(2.25) or (2.26) analytically. The closest we can get to the analytical solution is an approximate solution
which is obtained by discretizing the original problem. One of the most efficient method for finding the
approximate solution of (3.1) is the finite element method, see [2, 4, 9, 7]. Therefore in this part of
the paper, we will discuss the finite element discretization of the model problem (2.25) and (2.26). For
completeness, let us illustrate the finite-element discretization method with a general problem (3.1)

−∇ · (D∇uB) + γuB = β in Ω, (3.1)

uB = g on Γ,

−D∂uB
∂n

= αuB on ∂Ω\Γ,

that covers both (2.25) and (2.26).
One would normally approach finite element approximation of (3.1) by first obtaining a computable

form of the problem, the so called weak form. For example, the weak form of the general problem (3.1)
reads: find u in the space H1

Γ(Ω) = {v ∈ H1(Ω) | v = g on Γ} such that

a(uB , v) = f(v), (3.2)

for all v ∈ H1
0 (Ω) where

a(uB , v) =

∫
Ω

D∇uB · ∇v dx+ α

∫
∂Ω\Γ

uBv dx+

∫
Ω

γuBv dx, γ ≥ 0, (3.3)

and

f(v) =

∫
Ω

βv dx, β ≥ 0.

The space H1
Γ(Ω) above is a closed subspace of the space of H1

0 (Ω), the space of square integrable
functions whose trace vanishes on the boundary Γ, defined by

H1
0 (Ω) = {v ∈ H1(Ω) | v = 0 on Γ}.

The functional a(·, ·) is called a bi-linear form on the space V := H1
Γ(Ω).

In the next step of finite element approximation of (3.1) we will construct a finite dimensional space
Vh which approximates the infinite dimensional space V . To do this, the computation domain Ω has to
be discretized. Let the conforming triangulation Th of the computational domain Ω consist of tetrahedral
elements T ∈ Th for the three dimensional problem (2.25), and triangular elements for the two dimensional
problem (2.26). Here h is called the diameter of Th and is defined by h = maxT∈Th(diameter(T )). The
space Vh is then chosen to be the space of functions consisting of continuous piecewise-polynomials i.e.
for each T ∈ Th the space Vh is defined for k ≥ 1 as

Vh = Vh,k(Ω) :=
{
u ∈ C0(Ω) such that u|T ∈ Pk(T ), T ∈ Th

}
6



where C0 denotes the space of continuous functions, u|T the restriction of function u to element T and
the space Pk consisting of algebraic polynomials of total degree at most k.

Now let φj , j = 1, 2, ..., N be the set of basis for the finite-dimensional space Vh. The typical choice
for φj are the shape functions defined by

φj(ai) = δij ≡

{
1 if i = j

0 if i 6= j
(3.4)

where ai, i = 1, 2, ..., N denotes the global set of nodes in Th. Then for a fixed polynomial degree k, any
function u ∈ Vh has a unique representation

u(x) =

N∑
j=1

cjφj(x), x ∈ Ω. (3.5)

Now using the above representation and setting v = φi in the weak form (3.2), an easy computation
shows that (3.2) can be written as a linear system

A c = b

where matrix A is large and sparse, and the non-zero entries have a regular pattern. This favors the use
of iterative methods (e.g. Gauss-Seidel, Jacobi) for solving the resulting linear system. However, since
the spectral radius of matrix A, ρ(A) ≈ O(h−2), many iterative procedures will exhibit a slow rate of
convergence. In the next section, Comsol Multiphysics solves the resulting linear system using multi-grid
methods (see e.g. [10]) whose convergence speed is independent of the discretization mesh size h.

4. Numerical implementation of the reaction-diffusion model problem. Here we will report
on numerical solution of the model problem (2.25)-(2.26) obtained with Comsol Multiphysics 3.5a [1].
Recall that in finding the numerical solution to model problem re-stated here for convenience

−∇ · (D∇uB) = 0 in Ω,

uB = g on Γ,

−D∂uB
∂n

= αuB on ∂Ω\Γ,

we will need to compute the Dirichlet data g as a solution of the 2D problem (2.26)

−∇ · (D∇g) + γg = β in Γ,

g = 0 on ∂Γ

on the interface Γ, with piece-wise constant coefficients γ, β given by (2.20), (2.21) respectively. In what
follows, for the purpose of comparison, we will build up the solution to the problem accordingly by first
solving the pure diffusion problem with a constant-valued Dirichlet data chosen as g = 10, and then solve
the 2D reaction-diffusion problem on the part Γ of the cell membrane to obtain the non-constant and
the desired Dirichlet data g. Ultimately, we couple the two models using the non-constant data g as a
Dirichlet data for the pure diffusion model (2.25).

A few comments is in order here about the linear system solver in Comsol Multiphysics. The linear
system solver is a V−cycle multi-grid method. It used the Successive Over-relaxation method (SOR) as
a pre-smoother with relaxation factor ω = 1.0. As a post-smoother, it used SORU (the version of SOR
which uses the upper triangle of the matrix [1]) with relaxation factor 1.0.

4.1. Solution of the 3D model in the cell with constant Dirichlet data g. The 3D diffusion
problem in the cell is a very simple elliptic problem, but the Comsol Multiphysics provides all the major
ingredients needed to solve not only problem of this type but a general stationary problems. Figures
4.1 show the solution to the pure diffusion problem (2.25) with Dirichlet data g = 10 mol/m2, D =
0.5× 10−13m2/s, α = 4× 10−5m/s. The plot shows the diffusion pattern of the chemical specie B from
the cell interface Γ into the cell.

4.2. Numerical solution of the 2D model on the cell membrane. Imposing homogeneous
Dirichlet boundary condition, we solve the reaction-diffusion model (2.26) with Comsol Multiphysics using
tetrahedral elements for discretizing the computation domain and solving the resulting linear system with

7



(a) (b)

Fig. 4.1. Numerical solution of the pure diffusion model with a constant Dirichlet data g = 10 mol/m2

(a) (b)

Fig. 4.2. Numerical solution of the 2D reaction-diffusion on the interface Γ.

multi-grid method. The model parameters were chosen as D = 0.5×10−13 m2/s, α = 4×10−5 m/s, k2 =
2π m2/(s ·mol), k3 = 1 s−1, k4 = k5 = 0. The numerical solution obtained is shown in Figure 4.2

The plot shows the concentration distribution of the chemical specie B on the interface Γ. The
concentration on the sub-domains sharing the homogeneous Dirichlet boundary are greatly influenced
by the boundary condition; the obtained results are roughly the average of the concentrations in such
sub-domains. Therefore, it is expected that the concentration of chemical specie B be concentrated or
have a maximum value at the center of the domain. This is exactly depicted with the two peaks in Figure
4.2.

4.3. Numerical solution of the coupled model. So far, we have obtained numerical solutions
of two different models describing the pure diffusion process within the cell and the reaction-diffusion
process on the part of the cell membrane. In this section, we will find numerical solution of the coupled
model.

Due to the structure of the model for the cell, there are some singularities at the sharp edges between
the plane interface Γ and the cell geometry. Hence, there is a need for adaptive procedure to cater for this
observation in our numerical implementation. The coupled model is therefore solved using an adaptive
finite element method with a rough global minimum as an element selection method. Due to a high
degree of freedom of the mesh, we restrict the refinement levels to two, since more levels of refinement
makes the mesh too complicated to handle. Comsol returned 6 as the maximum number of levels for the
multi-grid method. Figures 4.3 show the initial mesh and the level-two refined mesh.

Let us now comment on the numerical solution of the coupled model. Figure 4.4 shows the result of
our Comsol implementation of the coupled model. The plots show the diffusion pattern of the chemical
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(a) The initial mesh for the coupled model consisting of
71, 540 elements.

(b) The level-two refined mesh consisting of 304, 053 el-
ements.

Fig. 4.3. The mesh structure of the coupled model.

specie B within the cell as influenced by the reaction-diffusion processes on the cell membrane interface Γ.
In contrast with the result obtained in Section 4.1 where we have used a constant Dirichlet data g = 10,
here the symmetry pattern shown by the solution in Figure 4.1 is no longer visible here. This is a direct
consequence of the non-constant Dirichlet value g.

(a) (b)

Fig. 4.4. Numerical solution of the coupled reaction-diffusion model.
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