A mathematical formula obtained by Evans triangle

Zhou Ya Nan
East China Institute Of Technology

Abstract: R.J Evans in 1977 in the American Mathematical Monthly ask such a question: Find all the integer side of the triangle, Make it a high and the bottom edge of the ratio is an integer, This triangle is only \(d = 3 \). At the same time, Evans has given such a triangle, The length of 3,8,53. In 2009 the side Hin constructs a kind of the triangle, And that such a triangle has infinite. In this paper, a formula are obtained by Evans, the definition of the triangle, By this formula obtained Evans triangle.

Key words: Integers, rational Numbers.

The Improved Method

As shown in figure: In the \(O \) circle with a \(R \), Triangle \(ABC \) for round \(O \) inscribed triangle lines, The \(BC = a \). At the edge of the \(BC \) high as \(n \cdot a \). \(O \) do \(OD \) is perpendicular to the \(BC \), duo to \(BC \) in \(D \). By the Pythagorean theorem \(OD = \sqrt{CE^2 + AE^2} \), Point \(A \) do \(BC \) of parallel lines \(BC \). Delay \(DO \) Hand in \(L \) in \(H \). The \(OH \) is perpendicular to the \(BC \). Point \(A \) do \(AE \) vertical \(BC \) due \(BC \) to \(E \). Then: \(AE = n \cdot a \).

So: \(DH = n \cdot a \), \(OH = n \cdot a - OD = n \cdot a - \sqrt{CE^2 + AE^2} \).
\[CE = |HA - \frac{a}{2}| \]
\[= \left| \sqrt{R^2 - (n \cdot a - \sqrt{R^2 - \left(\frac{a}{2}\right)^2})^2} - \frac{a}{2} \right| \]

then:
\[AC = \sqrt{CE^2 + AE^2} \]
\[= \sqrt{R^2 - (n \cdot a - \sqrt{R^2 - \left(\frac{a}{2}\right)^2})^2 - \left(\frac{a}{2}\right)^2} + (n \cdot a)^2 \]

The same available:
\[BA = \sqrt{R^2 - (n \cdot a - \sqrt{R^2 - \left(\frac{a}{2}\right)^2})^2 + \left(\frac{a}{2}\right)^2} + (n \cdot a)^2 \]

For the triangle, We only need to meet the trilateral is rational, And for the rational number can. That is when \(n = (3, 4, 5, 6, 7, 8, 9, \ldots) \). Side \(a, AC, BA \) is rational. Then the triangle line of nature, At the same time expand \(k \) times, Until meet the trilateral all rational Numbers for integer.

Lemma: If \(a, AC, BA \) are rational, Then \(\frac{AC}{a}, \frac{BA}{a} \) Also for the rational Numbers, If \(y = \frac{AC}{a} + \frac{BA}{a} \), \(y \) will be as rational Numbers.

Then:
\[\frac{AC}{a} = \sqrt{\left(\frac{R}{a}\right)^2 - (n - \sqrt{\left(\frac{R}{a}\right)^2 - \left(\frac{1}{2}\right)^2})^2} + (\frac{a}{2})^2 + n^2 \]
\[\frac{BA}{a} = \sqrt{\left(\frac{R}{a}\right)^2 - (n - \sqrt{\left(\frac{R}{a}\right)^2 - \left(\frac{1}{2}\right)^2})^2 + \left(\frac{1}{2}\right)^2} + n^2 \]

Make \(\frac{R}{a} = x \), Then
\[\frac{AC}{a} = \sqrt{x^2 - (n - \sqrt{x^2 - \left(\frac{1}{2}\right)^2})^2} + (\frac{1}{2})^2 + n^2 \]
Known \(R, a \) into \(x \), This is the key to the problem solving.

The following order:

\[
y = \frac{AC}{a} - \frac{BA}{a}
\]

Then, start to equation. After finishing:

\[
x = \frac{1}{2} \left[\frac{y^{2} - 1}{4} + \frac{n}{y^{2} - 1} \right], \quad x > \frac{n^{2} + \frac{1}{4}}{4n}, \quad y > \sqrt{4n^{2} + 1}
\]

Solution here. We will think of this problem has been solved. So we make \(n = 4 \). \(y \) assignment is given. Get the \(x \) value, then get the

value of the \(\frac{AC}{a}, \frac{BA}{a} \). Found that it is not rational. So we will thinking about \(x \) generation into the \(\frac{AC}{a}, \frac{BA}{a} \), the generations:

\[
\frac{AC}{a} = \frac{y}{2} - \frac{1}{2} \sqrt{1 - \frac{4n^{2}}{y^{2} - 1}}, \quad \frac{BA}{a} = \frac{y}{2} + \frac{1}{2} \sqrt{1 - \frac{4n^{2}}{y^{2} - 1}}
\]

We through the above formula, We can know that we need only ensure

\[
\sqrt{1 - \frac{4n^{2}}{y^{2} - 1}} \quad \text{for mileage. To make this type is equal to the number}
\]

\(k \).

The \(4n^{2} = (1 - k^{2})(y^{2} - 1) \)'s formula can be obtained. So through the \(4n^{2} = (1 - k^{2})(y^{2} - 1) \) formula, We just make sure \(k, y \)
to have the mileage, \(n \) as an integer.

References:

[3] 边欣，伊万斯三角形的一种充分必要条件，2009，中学数学月刊。
