Context Aware Ontologies

Context aware ontologies for information and system integration

Jan 30, 2018

Copyright © 2018 Model Driven Solutions, Inc.
Introduction

- Cory Casanave
 - Company: Model Driven Solutions, Inc.
 - Object Management Group (OMG) Board of Directors
 - Focus: Actionable architecture - federation, integration, interoperability and automating software solutions
 - Background: Enterprise, information and system modeling more than formal logic
 - Trying to bridge the gap between them and leverage the best aspects of both
 - Working on: “Semantic Modeling for Information Federation“ (SMIF) in OMG
 - Conceptual modeling (reference ontologies) as a foundation for integration and federation
 - Intent: Application of conceptual modeling and actionable architecture to enterprise and government needs
Problem Statement

- Focus: Integration, Interoperability and Federation Leveraging Reference Ontologies*
 - Every major enterprise needs to integrate and federate information and systems, internally and externally
 - Current manual methods are costly, time consuming and error prone. They tend to tie the enterprise system of systems into a complex, anti-agile Gordian knot
 - These many systems are independently conceived, each containing multiple separate definitions of the same or overlapping concepts. These definitions are technology, organization and application specific
 - **Semantic mediation** as been a primary value proposition for Ontologies, but has proved difficult, particularly for systems without a formal underpinning – which is 99.9% of the systems
 - Our proposition is that successful semantic mediation requires context. Ontologies to solve these problems must be context aware.
 - Being *Context aware* requires a level of granularity beyond contextualizing ontologies

Reference Ontology: A set of concepts intended to be referenced by multiple designs, ontologies and schema in support of integration and interoperability among them.

Different from: *Application Ontology*, intended to support reasoning in support of a particular application.
What is context?

- **Context** is anything that impacts the interpretation or truth value of something else.
- There are different kinds of context, **contextual dimensions**. Kinds of context include:
 - **Time** – fundamental to our understanding of the world is that things change. Most relationships and other assertions are only meaningful in the context of a timeframe.
 - Sue’s weight was 50kg on July 1st, 2017.
 - Barack Obama was president of the United States 2/20/2009 until 1/20/2017.
 - **Occurrences** (perdurants) – things that are only true while something is happening.
 - The radar’s range will be reduced while it is raining.
 - **States** - things that are only true when something is in a particular condition.
 - Food services will be reduced when the power is off.
 - The computer is vulnerable when it is connected to the internet.
 - **Authority** - things that are only true within the jurisdiction of some authority (including geopolitical).
 - Radar detectors may not be used within Virginia.
 - “Fairfax” is the name of a City in Virginia.
 - **Interaction** - things that are only true when communicating for a purpose.
 - Mortgage loan applications must include name, address, SSN and current income.
More Contextual Dimensions

- **Social Group** – things that are true for a set of people
 - In French, Germany is called “Allemagne”

- **Location** – things that are true in a particular place
 - The acceleration of gravity is 9.8 m/s² on the surface of the earth

- **Type** – things that are true for kinds of things
 - Mammals have hair

- **System** – things that are true within a specific system
 - Reactor 5, pump A6 is failing

- **Design** – things that are true for a design
 - The victim database contains the victim’s current address and phone number

- **Source (Provenance)** – things that are true within a text, speech act or ontology
 - John’s report said “Reactor 5, pump A6 is failing”

- **Others** – there are many contextual dimensions
 - Things may be in multiple context at the same time

“An Ontology” or theory as a course grain context
A theory of contextualization

- Contextual dimensions are types of context
 - E.g. U.S.A. is a kind of Geopolitical Organization
 - Geopolitical Organization is a kind of context

- Contexts *contextualize* things that have that context
 - `<Thing>` has context `<Context>`, or `<Context>` contextualizes `<Thing>`
 - E.g. U.S.A. *contextualizes* Alaska
 - But, that isn’t specific enough

- Relationships define contextualization for a contextual dimension
 - (`<Geopolitical Entity>` governing `<Region>`) specializes (`<Context>` contextualizes `<Thing>`)
 - E.g. (U.S.A. *governs* Alaska) implies (U.S.A. *contextualizes* Alaska)
Higher Order Context

- Context, such as time, can apply to other statements
 - <Actual Situation> exists for <Time Interval>
 - (U.S.A. governs Alaska) exists for March 30, 1867 to Unknown
 - (U.S.A. governs Massachusetts) exists for March 4th, 1789 to Unknown

- Rights and Obligations are frequently contextual
 - Citizens of the U.S.A. have right Protessions from Unreasonable Searches and Seizures
 - exists for March 4th, 1789 to Unknown
 - (Workers in the U.S.A. must pay Income Tax) exists for Feb. 3rd, 1913 to Unknown

- Implies
 - Since March 30, 1867 Citizens of Alaska have rights and as of Feb. 3rd, 1913 must pay taxes
Ignoring context is **dangerous**!

- Issues with ignoring context when integrating or federating information or processes
 - Improper integration of information from different timeframes
 - That prescription was for last year!
 - Failure of trust – what information is to be trusted and why
 - We listen to their feed, but it is all lies
 - Violation of compliance, rules are contextual
 - You stored that information in the EU?
 - Consider: “Launch Missile” Vs. Test: “Launch Missile”
 - Sorry Korea!
Humans share a concept of “mass/weight” – all physical things have a mass.

Mass/weight in data elements
- May have different labels
- Use different units
- May be required, optional or excluded
- May be past, current, expected, recommended or allowed
- May be represented using various data types (int, real, string, etc)

But it’s the same mass of the same individual!
Why would two mappings of the same data on the same day be different? Why would the fields not be the same?

Bethesda Hospital Records

Sue's Physical Report
- Name: Sue Plankton
- DOB: January 15th, 1968
- SSN: 390-55-8967
- Weight: 134 lbs
- BP: 122/78
- Physical Date: June 3, 2017

Sue's Home Scale
- Weight: 131 lbs
- Taken: Dec 3, 2017

Army Reserve Fitness Report
- LegalNameString: Sue Plankton
- Birth: January 15th, 1968
- PersonMassKG: Unknown
- PersonBloodPressure: Unknown
- Report Date: Jan 10th, 2018

Job Application for Fun Fitness Centers
- PNAME: Sue Plankton
- PBD: January 15th, 1968
- Social: 390-55-8967
- CWeight: 134 lbs
- AppDT: Jan 10th, 2018
Context determines terms & representation (of data) for concepts

Ontological libraries of reference concepts, can serve as a pivot-point between different data representations, or different ontologies. This can power automation of interoperability, integration and federation. However, mappings can be complex and pattern based (the above is a simplification).
Context of time and data determine data interoperability

- Weight measurement is in the context of the physical’s date
- Example data rules (data context)
 - Army Reserve Fitness Report must include Name, DOB, May include Weight and BP if known.
 - Job Application for Fun Fitness Centers must include name, DOB, SSN & Weight
- Example business rules (mapping context)
 - Army Reserve: Recording of a soldier’s weight must be based on a measurement within the last 60 days.
 - Fun Fitness Centers: Recording of weight must be reported from last physical

Ontologically, all living humans have a weight. The concept of weight may be used to ground data in multiple repositories – great!

- Rules for business and data context impact data mappings and therefor interoperability.
- Understanding context and their implications is crucial.
Location Context

- On the surface of the earth, weight and mass are convertible
- The surface of the earth provides a location context for the rule:
 - One Kilogram is equal to approx. 2.20 Pounds

Rule: 1KG = 2.204±0.015 lbs
Holds within 13
Concept of Context

Definition

A *context* is anything that impacts the interpretation or truth value of something else.

“Propositions” are the interpretations/truth values. “Things” are the something else.

Propositions that hold within a context hold for all things the context contextualizes.
Context as predicates

- A context be false
 - E.g. It is not 2017 or we are not on the surface of the earth.
- If a context is false, propositions do not hold for what the context contextualizes

Context(x) implies propositions that hold within x hold for all things x contextualizes
Candidate Context Model*

- Semantic Modeling for Information Federation (SMIF) conceptual model
History Happened

- Many DBMS (and many ontologies!) only consider the “current state”
 - the past is just as important
- It will always be true that:
 - Barack Obama was president of the United States Jan 20, 2009 - Jan 20, 2013.
 - Donald Trump is/was president of the United States Jan 20, 2013 - Unknown.
 - Sue weighted 134 lbs on June 3rd, 2017
- Historical statements can be just as important as current statements
- Time is a context for when any assertion is made and the timeframe for which it is applicable
- Different data context will have different assumptions about time and history
- Multiplicity and time
 - Consider the impact on multiplicity: A person only has one weight (at a time) but will have many weights that include time context.
 - But, a person only has one brain, for all time
 - Multiplicity constraints should differentiate: at a time Vs. for all time
Situations as Context

Sue’s Stolen key-card vulnerability situation

Sue’s permission situation
Sue has permission to enter building-5

Key-card a5-347 situation
Key-card a5-347 is a credential for Sue’s permission

Key-card stolen situation
Sue’s key-card a5-347 was stolen

Actual situations (& relationships*) are temporal

Timeframe
Jan-1 2005 to Jan 1 2007

Timeframe
Feb-1 2005 to Feb 15th 2005

Timeframe
Feb-1 2005 to Unknown

Timeframe
June-1 2005 to Feb 15th 2005

Situations can be aggregates – assert other situations

Atomic situations are Material or Descriptive relationships*

Situations involve (contextualize) other, related things.

* “Material relations & relators”, see: https://inf.ufes.br/~gguizzardi/AI_IA2016.pdf
Candidate Situation Model (simplified)*

Semantic Modeling for Information Federation (SMIF) conceptual model

- Situations, as context, can assert other situations and involve (contextualize) other entities as properties (e.g. roles, variables)
Type as Context

- Types categorize things of that type
 - Categorizes is a sub-property of contextualizes
- A set of propositions hold for a type
- This set of propositions hold for all things categorized by a type
- “Type” can be modeled as a subtype of “Context”

All living persons have a living brain

Note: Not all rules about living persons are in the context of the type, consider hospital rules.
Candidate Type as Context Model
Perspectives and Context

- A perspective selects which context are true, for that perspective
 - E.g. a perspective can establish timeframe and the set of applicable (asserted) ontologies

- A perspective can order context by precedence, to resolve conflict
 - E.g. a perspective can order ontologies of preferred terms, perhaps French first and English second.

- A perspective is, its self, a context
 - Context hold within a perspective
Perspectives may include time

Sue’s permission situation
Sue has permission to enter building-5

Timeframe
Jan-1 2005 to Jan 1 2006

Sue’s Historical Perspective

Timeframe
Jan-12 2005

True

implies

holds within

Exists for

True

implies

23
Sue's permission
Sue has permission to enter building 5

Sue is an authorized actor in the context of the permission to enter building 5

Authorized Actor
Property type

Permitted Action
property type

Enter building 5 is a permitted action in context of Sue’s permission

Relationship Type

Property Binding

Enter building 5 activity
Context, Perspective & “Higher Order” Logics

- Context and perspectives introduce higher order relations.
- As our goal is to capture (model) and formalize how we conceive the world, such higher order relations are a reality we can’t ignore.
- Many reasoning systems are FOL only, how can we reason about context?
 - Option 1 Use a rules approach
 - Option 2 Use a higher order logic
 - Option 3 Pre-compute the context
 1. Asset perspective
 2. Derive “true” context, recursively
 3. Export context-free (FOL) ontology
 4. Infer exported ontology using FOL
- Our focus is reference ontologies, application ontologies have different (and usually more complex) reasoning requirements – a rules approach seems most applicable.

We can build a model and implement this program, can we formalize the semantics?
References

- Relationships and Events: Towards a General Theory of Reification and Truthmaking
 - Nicola Guarino, Giancarlo Guizzardi

- Situation Semantics
 - See references in John Sowa’s presentation

- Semantic Modeling for Information Federation (SMIF)
 - Needs an update, latest complete document: