RECLAIM NURSING:
HEAL, EMPOWER, AND INSPIRE

2018 KNA Annual Conference
November 1-2, 2018
Holiday Inn Louisville East
Rekindle Your Passion and Vitality for Life: Create Your Optimal Health of Body, Mind and Spirit.

Pam McDonald WHCNP, PNP, FNP
Mary Ann Osborne DNP, FNP
Kim Evans APRN, CNS-BC, AHN-BC, CNAT
Nurses are the backbone of healthcare. We must be healthy in order to heal others.
Quantum Physics

- Everything is energy
- Everything has its own vibrational frequency.
Dr. Ginger Bowler’s Energy Model
Diet, Disease Prevention & Reversal Solution.

Pamela McDonald, FNP

APO E Gene, Health and Healing
Leading Causes of Death in the U.S

1. Heart Disease *(Heart disease is the #1 killer of both men and women in USA)*
2. Cancer
3. Chronic lower respiratory diseases
4. Stroke
5. Accidents
6. Alzheimer's
7. Diabetes
Estimated - **30 million Americans have CHD.** With **15.4 million Americans** having a history of myocardial infarction (MI) or angina pectoris or both.

**FACT:**

Coronary heart disease (CHD), still the leading cause of death in Americans. **50% of men and 64% of women** who die suddenly from CHD **have no prior symptoms.**

National Heart, Lung and Blood Institute.
Disease Epidemic

Obesity Epidemic
Leads to
Metabolic Disease
Diabetes
Leads to
CAD and CVD
Leads to
Dementia and Alzheimer’s
Obesity and Diabetes

Age-Adjusted Prevalence of Obesity and Diagnosed Diabetes Among U.S. Adults Aged 18 years or older

Obesity (BMI ≥30 kg/m²)

1994

2000

2010

Diabetes

1994

2000

2010

Obesity Trends* Among U.S. Adults
BRFSS, 1985
(*BMI ≥30, or ~ 30 lbs. overweight for 5’ 4” person)

No Data           <10%          10%–14%
Obesity Trends* Among U.S. Adults
BRFSS, 1990

(*BMI ≥30, or ~ 30 lbs. overweight for 5’ 4” person)
Obesity Trends* Among U.S. Adults
BRFSS, 1995
(*BMI ≥30, or ~ 30 lbs. overweight for 5’ 4” person)
Obesity Trends* Among U.S. Adults
BRFSS, 2000
(*BMI ≥30, or ~ 30 lbs. overweight for 5’ 4” person)
Obesity Trends* Among U.S. Adults
BRFSS, 2001
(*BMI ≥30, or ~ 30 lbs. overweight for 5’ 4” person)
Obesity Trends* Among U.S. Adults
BRFSS, 2009
(*BMI ≥30, or ~ 30 lbs. overweight for 5’ 4” person)
Obesity Trends* Among U.S. Adults
BRFSS, 2010
(*BMI ≥30, or ~ 30 lbs. overweight for 5’ 4” person)
Prevalence of Self-Reported Obesity Among U.S. Adults by State and Territory, BRFSS, 2015
Prevalence of Self-Reported Obesity Among U.S. Adults by State and Territory, BRFSS, 2016

[Map showing obesity prevalence by state, with color-coded states indicating different obesity prevalence ranges.]
Without major changes, as many as 1 in 3 US adults could have diabetes by 2050.
Alzheimer's Disease Increase

Between 2000 and 2013 Deaths attributable to Alzheimer's Disease increased 71%. *Alzheimer’s Dement. 2015*
Between 2000 and 2015 Deaths attributable to Alzheimer's Disease increased 123%.  

*Alzheimer's Dement. 17*
Out of a Diabetes Epidemic Comes a Dementia Epidemic
This disease now touches everyone.
1 in 3 seniors who die in a given year has been diagnosed with Alzheimer’s or another dementia.
The Cause

- Multiple system failures at multiple levels
  From Washington - to the Corporate boardroom - to the field - to the table - to the human cells. EASE OR DISEASE.

- Farm Bill Changed - increase in food and calories - from 3200 Kcal - to 3900 kcal for every man women & child.

- Corporate response - created current food supply.
  - Standard American Diet (SAD)
  - Stock Market Changed - Early 1980’s
    Changed the way corporations did business.
#1 Problem CONFUSION

FAT IS BAD, BUT GOOD FAT IS GOOD. WHAT ABOUT FISH? WINE? NUTS? A NEW APPETITE FOR ANSWERS HAS PUT SCIENCE ON A COLLISION COURSE WITH THE MEDIA.

FOOD NEWS BLUES

BY BARBARA KANTROWITZ AND CLAUDIA KALB

BY SYDNEY BROWN


When the results of a massive, federally funded study were released last month, NY, newspaper and, yes, magazines around the country reported what seemed to confirm conventional wisdom and standard medical advice. For, these articles seemed to say, wasn’t so bad for

Marian Nestle
ADA Survey Diet & Confusion
WHAT IS THE ANSWER?

THE DIET WORLD?
Is this the answer?

How can we change this?
FAD DIETS ANSWER?

What is the Ketogenic Diet?
Ketogenic Diet

- A high fat, low carbohydrate, moderate protein diet
- Developed in the 1920’s for the treatment of epilepsy
- Results in the body using fat instead of carbohydrates as the primary source of energy, including the brain
- “Ketogenic” = production of ketone bodies from fat
- 3 types of ketone bodies: Beta-hydroxybutyrate, Acetoacetate, and Acetone
- These ketone bodies are measurable in blood, breath, and urine, so clinicians and individuals can objectively test for compliance with the diet
- Mimics the fasting state
- Most adults lose weight, but people can maintain weight, or even gain weight on this diet (e.g. children)
Ketogenic Diet: Variations

1. Classic Ketogenic Diet
   4:1 or 3:1 ratio of fat grams: protein + carb grams
2. Fasting and Intermittent Fasting
3. MCT Ketogenic Diet
4. Atkins Diet/ LCHF
5. Modified Atkins Diet
6. Ketogenic Diet- Calorie Restricted
7. Low-Glycemic Index Treatment
8. Ketone supplements
9. Websites, Books, and Self-Proclaimed Experts
   1. Weight loss
   2. Athletes and body builders
   3. Everything else under the sun!
KETO DIET - CASE STUDY

55 year old male
Physical with his MD

KETO NOW A KILLER??

Elevated Cholesterol
Elevated Glucose PRE-DIABETIC
Positive Heart Scan
findings on a full
SCIENCE and GENETICS

SCIENTIFIC and GENETIC BASED NUTRITION EDUCATION IS VITAL FOR Prevention of Chronic Disease

NUTRITION IS INDIVIDUAL
The Gene that transports Fat and Cholesterol In the Human Body.

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>
• Genetic Code Completed 2003
• Genetic testing is more available and affordable.
• Key genetic research is providing strong connection to specific diseases.
  Diet - Exercise - Meds
• Heart and Alzheimer’s disease, Parkinson’s and other neurological disease.
• Nutrition is emphasized in “The New Medicine” Integrative Medicine
What is Integrative Medicine?

Integrative Medicine - Is the intelligent combination of alternative and conventional medicine.
ApoE Gene – Connected to our current Disease and Health problems

- Cholesterol Disorders
- Diet and Cholesterol Transport
- Heart Disease
- Diabetes
- Alzheimer’s Disease
- Parkinson’s Disease

Arteriosclerosis, Thrombosis, and Vascular Biology. 1997; 17: 38-44 doi: 10.1161/01.ATV.17.1.38


APO E Gene

Apogee Gene
Official name apolipoprotein E.

ApoE plays a key role in transporting lipids.

Three common isoforms of apoE, apoE2, apoE3, and apoE4 differ in structure producing very different metabolic properties with a dramatic impact on disease expression.
The Apo E gene was discovered in 1973
Lawrence Berkeley National Lab
Researched at the Gladstone Institute

Discovered for:
Type 111 hyperlipidemia
APO E 2/2

David Gladstone  Born
J. David Gladstone
Born London, England
1992 - 1995 Allen D. Roses, MD & his colleagues connected the Apo E Gene to Alzheimer’s Disease at Duke University.
Alzheimer's and Cardiovascular disease are both inflammatory diseases connected by the same markers.

*Markers connected to dietary research.

Critical markers to evaluate heart disease risk.

- ApoE Gene*
- ApoB particle
- LDL-S3GGE*
- HDL-S10GGE*
- (7 different LDL*) (5 different HDL *)
- Homocysteine*
- Lp-PLA2
- Fibrinogen
- hsCRP
- LPA
- Lp(a)* LPA Gene
- KIF6
The Gene that transports Fat and Cholesterol In the Human Body. *#1 Researched Gene.*

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/3 (64%)</td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>

---

**Genotype**

**#1 Researched Gene**

**Genotype**

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/3 (64%)</td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>

---

**Genotype**

**#1 Researched Gene**

**Genotype**

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/3 (64%)</td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>

---

**Genotype**

**#1 Researched Gene**

**Genotype**

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/3 (64%)</td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>

---

**Genotype**

**#1 Researched Gene**

**Genotype**

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/3 (64%)</td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>

---

**Genotype**

**#1 Researched Gene**

**Genotype**

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/3 (64%)</td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>

---

**Genotype**

**#1 Researched Gene**

**Genotype**

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/3 (64%)</td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>

---

**Genotype**

**#1 Researched Gene**

**Genotype**

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/3 (64%)</td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>

---

**Genotype**

**#1 Researched Gene**

**Genotype**

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/3 (64%)</td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>

---

**Genotype**

**#1 Researched Gene**

**Genotype**

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/3 (64%)</td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>

---

**Genotype**

**#1 Researched Gene**

**Genotype**

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/3 (64%)</td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>

---

**Genotype**

**#1 Researched Gene**

**Genotype**

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/3 (64%)</td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>

---

**Genotype**

**#1 Researched Gene**

**Genotype**

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/3 (64%)</td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>

---

**Genotype**

**#1 Researched Gene**

**Genotype**

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/3 (64%)</td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>

---

**Genotype**

**#1 Researched Gene**

**Genotype**

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/3 (64%)</td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>

---

**Genotype**

**#1 Researched Gene**

**Genotype**

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/3 (64%)</td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>

---

**Genotype**

**#1 Researched Gene**

**Genotype**

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/2 (1%)</td>
<td>3/3 (64%)</td>
<td>4/2 (2%)</td>
</tr>
<tr>
<td></td>
<td>2/3 (10%)</td>
<td></td>
<td>4/3 (18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/3 (64%)</td>
<td>4/4 (5%)</td>
</tr>
</tbody>
</table>
Distinguishing characteristics of Type 111 Hyperlipidemia is a triglyceride (TG) level $\geq 150$ mg/dl as well as an Apo E2/2 allelic.

Evidence:

- An elevated triglyceride level is an independent risk factor for cardiovascular disease.
- Patients with high percent body fat and increased weight show higher triglycerides and higher risk for disease.

Nursing Care Plan:

- Reduced percent body fat. Increase or decrease scale weight as needed to optimize percent body fat.
- Target triglyceride level $< \text{level } \geq 150$ mg/dl - Moderate fat diet 35%. Avoid ALL simple carbohydrate. – Whole food carbohydrate ONLY
- Lipoprotein lipase to help reduce triglyceride and raising HDL reverse cholesterol transport.
Risk factors of dementia in North India: a case-control study.

Abstract - OBJECTIVE:
The prevalence of dementia in northern India is among the lowest in the world but reasons are unclear. The aim of the study was to evaluate the risk and protective factors for dementia in North India.

METHODS:
In a case-control study, we investigated demographic, medical, genetic, dietary, lifestyle, and sociocultural protective and risk factors associated with...
RESULTS:
150 patients of dementia (118 males and 32 females) and 150 healthy controls (112 males and 38 females) were included in the study.

CONCLUSIONS:
Dietary, lifestyle, and sociocultural interventions may be protective against dementia.

Enhanced risk for Alzheimer disease in persons with type 2 diabetes and APOE epsilon4: the Cardiovascular Health Study Cognition Study

BACKGROUND:
Diabetes and the apolipoprotein E epsilon4 allele (APOE epsilon4) increase the risk for Alzheimer disease (AD). We hypothesize that APOE epsilon4 may modify the risk for AD in individuals with diabetes.

CONCLUSION:
These data suggest that having both diabetes and APOE epsilon4 increases the risk of dementia, especially for AD and mixed AD.
Insulin metabolism and the risk of Alzheimer disease: the Rotterdam Study.

OBJECTIVE:
Diabetes mellitus has been associated with an increased risk of Alzheimer disease (AD), but how it exerts its effect remains controversial.

METHODS:
The study was based on 3,139 participants of the Rotterdam Study, a population-based cohort study. All subjects were free from dementia, did not have a history of diabetes, and had fasting levels of glucose and insulin measured at baseline.

CONCLUSIONS:
Our findings suggest that insulin metabolism influences the clinical manifestation of AD within 3 years.

Apolipoprotein E gene polymorphism: effects on plasma lipids and risk of type 2 diabetes and coronary artery disease.

BACKGROUND:
The most common apolipoprotein E (apoE) gene polymorphism has been found to influence plasma lipid concentration and its correlation with coronary artery disease (CAD) has been extensively investigated in the last decade.

METHODS:
The case-control study was carried out on a total of 451 samples including 149 normal control subjects, 155 subjects with T2DM, and 147 subjects with T2DM complicated with CAD.
APOE Gene Linked to Parkinson’s Disease

The study analyzed all of the research on this topic, including a total of 22 studies with a total of 2,157 people with Parkinson’s disease and 7,831 control subjects who did not have Parkinson’s disease.

People with APOE-2 were more likely to develop Parkinson’s disease than people who had the other forms of the gene.
Conclusions.

Apolipoprotein E alleles are important genetic markers for dyslipidemia and CHD. The estimated CHD odds associated with the 4 allele appears to be greater than that for any other known genetic lipid abnormality,
Heart Disease, Dyslipidemia and APO E Gene

Apolipoprotein E polymorphism and the characteristics of diseased vessels in male Chinese patients with angiographic coronary artery disease: a case-case study.

HYPOTHESES:

CONCLUSION:
The apo E4 allele may serve as an independent genetic marker predicting severity of CAD. Other CAD risk factors may accelerate the process of pathogenesis. The apo E2 allele may play a protective role.

PMID: 20552590 [PubMed - indexed for MEDLINE]
Alcohol drinking determines the effect of the APOE locus on LDL cholesterol concentrations in men: the Framingham Offspring

CONCLUSION: In men, the effects of alcohol intake on LDL cholesterol are modulated in part by variability at the APOE locus.

APO E 2 vs APO E 4.

PMID 11273848 [PubMed - indexed for MEDLINE]
In conclusion, a Mediterranean diet, high in MUFA-fat increases LDL particle size compared with a CHO diet, and this effect is dependent of APO E genotypes.

**CONCLUSIONS:** There are approximately linear relationships of apoE genotypes with both LDL-C levels and coronary risk. Compared with individuals with the epsilon3/epsilon3 genotype, epsilon2 carriers have a 20% lower risk of coronary heart disease and epsilon4 carriers have a slightly higher risk.

**CONCLUSIONS:** The APOE epsilon4 allele represents a major risk factor for AD in all ethnic groups studied, across all ages between 40 and 90 years, and in both men and women.
<table>
<thead>
<tr>
<th>Genotype</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype Variant</td>
<td>2/2   2/3</td>
<td>3/3</td>
<td>4/2   4/3  4/4</td>
</tr>
<tr>
<td></td>
<td>(1%) (10%)</td>
<td>(64%)</td>
<td>(2%) (18%) (5%)</td>
</tr>
</tbody>
</table>
What’s in the Pot?
Subclasses of Lipoprotein
Dora - 75 year old female strong family history CAD, proactive about lifestyle and cholesterol mgt 16 years

PMH - Hyperlipidemia x 20 years, HTN, Mild central obesity.

Family History - Mother, father and 3 brothers died of CAD

Lab Test 1 - January 4, 2005 - 16 year with her PCP
Total cholesterol 489   Wt 143 lbs
LDL level of 381
HDL was 67

Labs - APO E Abnormal 4/4 result
    Advanced Lipid Panel (Segmented gradient gels)
    7 types of LDL and 5 types of HDL Normal levels
    Homocysteine, CRP, Insulin, Lp(a) Normal levels

Unable to take any medications. Side effects to all lipid lowering medications. Diet and exercise the only option.
Dora’s Case Study - Continue

Variation APO E results found. APO E 4/4 - Optimal diet prescribed for her APO E

1600 based on body comp - Diet - Fat 20% Protein 25% Carbohydrate 55%

Results January 4, 05 Wt 143 Lbs

• Total cholesterol: 489 mg/dL
• LDL cholesterol: 381 mg/dL
• HDL cholesterol: 67 mg/dL (Low: 40. High: 60)

After 1 month of an ApoE 4/4 genotype diet and exercise protocol with no medications:
Dora’s Case Study - Continue

February 8, 05  Wt 136 Lbs
• Total cholesterol: 243 mg/dL
• LDL cholesterol: 160 mg/dL
• HDL cholesterol: 57 mg/dL

After 2 month of an ApoE 4/4 genotype diet and exercise protocol with no medications:

March 11, 05  Wt 131 Lbs
• Total cholesterol: 214 mg/dL
• LDL cholesterol: 142 mg/dL
• HDL cholesterol: 65 mg/dL
The Gene that transports Fat and Cholesterol In the Human Body. \#1 Researched Gene.

<table>
<thead>
<tr>
<th>Genotype Variant</th>
<th>APO E 2</th>
<th>APO E 3</th>
<th>APO E 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/2</td>
<td>2/3</td>
<td>3/3</td>
<td>4/2</td>
</tr>
<tr>
<td>(1%) (10%)</td>
<td>(2%)</td>
<td>(64%)</td>
<td>(2%)</td>
</tr>
<tr>
<td></td>
<td>(10%)</td>
<td></td>
<td>(18%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5%)</td>
</tr>
</tbody>
</table>
Case Study - Triathlete

46 year old male patient married, 3 children, college educated, working full time - with strong family history of:

- Heart Disease
- Diabetes
- Colon Cancer

- Triathlete – runner most of the time
- Followed a low fat diet. - Heavily read that low fat diet is protective.
- Screening lipid panel yearly showed better than normal
- Cholesterol levels. TC -140mg/dL, LDL 56, HDL 46, TG 78.
- Slightly HTN 140/86, Insulin 11, glucose 102, higher than average percent body fat – unusual for regular exerciser - daily.
### Normal Screening Lipid Panel

**NCEP ATP III Lipid Tests**

<table>
<thead>
<tr>
<th>Test</th>
<th>Normal</th>
<th>Intermediate</th>
<th>At Risk</th>
<th>Last Visit</th>
<th>Alert Value</th>
<th>ATP III Goal</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cholesterol (mg/dl)</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td>&gt;=200</td>
<td>&lt;200</td>
<td>147-249</td>
</tr>
<tr>
<td>LDL-C (mg/dl)</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>&gt;=100</td>
<td>&lt;100</td>
<td>66-147</td>
</tr>
<tr>
<td>HDL-C (mg/dl)</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td>&lt;40</td>
<td>&gt;=40</td>
<td>37-79</td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td>&gt;=150</td>
<td>&lt;150</td>
<td>72-262</td>
</tr>
</tbody>
</table>
Heart Scan - Positive Coronary Calcium
Labs: Total Screening cholesterol; 140 LDL 89 HDL 46 Trig 88
Additional labs tests: APO E Gene 3/3, Homocysteine 11.3
Fibrinogen 373 Insulin 11 Glucose level 109, Elevated CRP 3
Size of LDL : small Ivb 3.8 LDL111a+b 30.4

Pattern Intermediate. HDL2b-12 - subfraction of HDL low.
- Normal screening cholesterol. * Low reverse cholesterol transport.
- Glucose intolerance * Borderline insulin resistance
- Small dense LDL pattern Intermediate. *
- Pos - homocysteinemia.
- Mildly hypertensive.
Cardiovascular Disease Valuable Markers.
Critical markers to evaluate heart disease risk.

<table>
<thead>
<tr>
<th>ApoE Gene*</th>
<th>ApoB particle</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-S3GGE*</td>
<td>HDL-S10GGE*</td>
</tr>
<tr>
<td>(7 different LDL*)</td>
<td>(5 different HDL*)</td>
</tr>
<tr>
<td>Homocysteine*</td>
<td>Lp-PLA2</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>hsCRP</td>
</tr>
<tr>
<td>LPA</td>
<td>Lp(a)* LPA Gene</td>
</tr>
<tr>
<td>KIF6</td>
<td></td>
</tr>
</tbody>
</table>

*Markers connected to diet.
What’s in the Pot?
Subclasses of Lipoprotein
Artery Penetration of LDL-C

- Gene unsupportive Environment
  - LDL ApoE gene unsupportive environment (GUE)
    - Small LDL
    - Pattern B
    - High Insulin
  - Oxidation
  - Rapid LDL Entry
  - Poor Artery Relaxation

- Gene Supportive Environment
  - LDL ApoE gene supportive environment (GSE)
    - Large LDL
    - Pattern A
Heart Disease Progression

Artery Wall Disease Progression

Artery Disease Develops From A Gene Unsupportive Environmental (GUE)

Healthy Artery
Beginning Fat Deposit
Fatty Streaks
Small Lipid Deposits
Moderate Calcium
Unstable Calcium
White Blood Cells
Platelets & Fibrin
Blood Clot
Heart Attack
Artery 90% Blocked

Artery Wall Disease Progression – Over Exposure to LDL. – With Poor Artery Cleaning From Low HDL
Results:

After 12 weeks on a higher fat diet 25% of calories coming from good anti-inflammatory fats for APO E genotype.
### Case Study Cont:

**Lab Results 12 week.**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>12 week Value</th>
<th>16 week Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-C</td>
<td>140</td>
<td>173</td>
</tr>
<tr>
<td>LDL-C</td>
<td>89</td>
<td>98</td>
</tr>
<tr>
<td>HDL-C</td>
<td>46</td>
<td>56</td>
</tr>
<tr>
<td>HDL2b</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>111a+b</td>
<td>30.4</td>
<td>18.6</td>
</tr>
<tr>
<td>Pattern</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Insulin</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>% body fat</td>
<td>24%</td>
<td>7 %</td>
</tr>
<tr>
<td>Weight</td>
<td>190lbs</td>
<td>165lbs</td>
</tr>
</tbody>
</table>
Case Study

43 year old engineer presents with – family history of CAD, diabetes, and stroke.

Current Medical History:

- Worsening Type 2 diabetes progressed over a few years. Very SICK control – over 40 units of insulin. Average blood sugar > 240mg/dL
- HA1c – 7+ (not accurate CBC grossly abnormal)
- Severe depression due to worsening health and work stress.
- Hypertension - uncontrolled - on 3 antihypertensive medication.
- Fatigue / SOB - Anemia Hgb 6.2 (Further evaluation – hemolytic anemia secondary to 9 course antibiotics no break). Central line in place.
- Gangrene foot and toes - severe foot ulcers and infected leg.
- Very poor kidney function – glomerular filtration rate below 21 mL/min.
Case Study

Surgery
Infected leg
Case Study #2

Diabetic Foot Ulcer

Amputation recommended dialysis discussed and strongly recommended.

Patient did not want either of these recommendation
Patient referred – 2 ½ hour Integrative Medicine Evaluation.

Diet recall completed x 1 week. Positive inflammatory diet – Standard American Diet – low calorie high high dairy help regulate his blood sugars - easy to eat. Extensive medical review of all risk factors and goals set with the patient.


Initial labs – CBC, Anemia Comprehensive chem panel, Advanced lipids, ApoE gene, B12, folate, Homocysteine, Vitamins D, Omega 3 level. Inflammatory markers. **TEMPERATURE CONTROL.** All results grossly abnormal.
Diabetic Foot Ulcer

Amputation recommended

Dialysis discussed and strongly recommended.

Patient did not want either of these recommendations.
Case Study # 2 - Healing
Case # 2
Healing
Raise Your Psychological / Emotional Energy
Environment

External: Includes everything that surrounds you
Internal space: physical, emotional, social, and spiritual

Do you live/work in healing environments?
Unintentionally we fall prey to satisfying everyone else’s needs

- Family
- Work
- Neighbors
- Spiritual Needs
- Leisure
- Friends

At our own expense!!!
Impact of Stress

**Physical:** increased heart rate, headache, indigestion, constipation, fatigue, insomnia

**Emotional:** irritability, depression, poor concentration, increased sarcasm

**Intellectual:** forgetfulness, reduced creativity

**Work Habits:** increased lateness, low morale, impatience, negative attitude, poor quality
14 Common physical symptoms responsible for ½ of all primary care visits

Only 10-15% of these found to be caused by organic illness

Imagine your energy as water in a pitcher....

Can’t give from an empty well
Epigenetics

Physically: Epi refers to the sheath of proteins and chemicals that cushion and modify each strand of DNA.

Malleable and fluid
Entire amount of epigenetic modification of the DNA in your body is called the epigenome

Exciting! It’s Here Genes get turned “on or off”
We can control the switch with Balance of Mind Body Spirit
Healing Environment

Internal: What supports your Genes and what “feeds” your Soul?

Create a supportive environment to support your Epigenome
Tools of Stress Management

Guided Imagery

Mindfulness

Brain Breaks

Progressive Muscle Relaxation

Gratitude
Benefits of Meditation

- Improved decision making
- Impulse Control
- Resistance to Anxiety/Fear
- Increased Resiliency
Prefrontal Cortex

- Frontal Cortex - All images and thoughts formed here
- Hypothalamus
- Pituitary Gland
RECLAIM NURSING:
Your attitude is a Biochemical Event
Be the Victor
Not the Victim

• GIVE UP YOUR PERSONAL HISTORY
• Your Past is nothing more than a trail you’ve left behind
• The past is meant to be cherished... not lived in
What Are You Focusing ON?

- Identify and eliminate 5 energy drains
- Is there a phone call or conversation you are avoiding?
- Have you said “Yes” to something you now regret?
- Are you holding on to things that represent difficult times in your life?
- Is there clutter in your home or work environment?
Raise Your Psychological / Emotional Energy Vibration

Change your Thoughts about Circumstances
– Chinese Symbol for Crisis is Same as symbol for opportunity
– Turn Obstacles into Opportunities
– Learn to Look at the Big PICTURE
Creating Optimal Spiritual Energy

We are Spiritual Beings having a Human Experience
The Ultimate Meaning and Experience of Life is Spiritual
Spirituality is not the same as Religion
Convergence of Science and Spirituality

- Mind of Divine
- Holy Spirit
- Universal Energy
- The Field
- Quantum Hologram

Everything is connected in the Unseen World

Butterfly Effect
Gregg Braden
Divine Matrix

2 Important Experiments

- 1990’s – U.S. Army Scientists’ Experiments
  - Cheek swab of Volunteers separated from person
  - Exposed to different emotions
  - DNA was measured electrically to note response

- 1992-1995 HeartMath
  - Electromagnetic Field of the Heart
  - 6-8 Feet
  - Beaker tests – Intended emotions
  - had effect on DNA in the beakers.
ERAs of Medicine
Dr. Larry Dossey

- Era 1 – Began in the 1860’s
  - Health and Illness are completely physical in nature
  - Reductionist View

- Era 2 – Began in the 1950’s
  - Recognized the mind/body connection
  - Consciousness is local

- Era 3 – Newest – Still emerging
  - Consciousness is non-local
  - Not limited by time and space
  - Nursing therapies expand using states of consciousness (presence, intention, imagery, prayer)
Near Death Experience

Anita Moorjani
Dying to be Me

Dr. Eben Alexander
Proof of Heaven

Dannion Brinkley
Saved by the Light
Commonalities of Near Death Experiences

• Unconditional Love
• Peace that surpasses all understanding
• Unitary Connection
• We are all ONE
Consciousness
Not limited by our Bodies or Minds
Manifesting Miracles

- Intention
- Attention
- No tension
Raising your Spiritual Energy

• Prayer
• Meditation
• Breathing
• Inner Engineering
  – Combination of yoga, breathing and meditation
Breathing Technique

- Helps promote parasympathetic dominance (Calm relaxed part of your nervous system)

- INHALE THROUGH NOSE TO 4

- HOLD FOR 7

- SLOWLY EXHALE TO A COUNT OF 8 THROUGH PURSED LIPS
Pay attention to Divine Synchronicities

- Coincidence?
- Divine Intervention?
- What are the Chances?
- Good moments / Good winks
On the human level, there is much we don’t understand.

Ultimately we are here to love and help each other – to be expressions of the Divine.

To be love Manifest

Learn to accept and appreciate ALL!

It’s ALL GOOD
“There are only two ways to live your life. One is as though nothing is a miracle. The other is as though everything is a miracle.”

— Albert Einstein