

Dialysis Access Options

Donna C. Syracuse, RN

Merit Medical

Global Clinical Education and Program Manager

ANNA Keystone Chapter

June 9, 2016

- Dialysis Access Overview
- Order of Preference for Dialysis Access
- Types of Dialysis Access

Course Objectives

- Participants will be able to identify the types of access for dialysis
- Participants will be able to understand the differences in each access type
- Participants will be able to manage the care and cannulation of each vascular access type
- Participants will be able to identify potential candidates for peritoneal dialysis

- Nearly 400,000 individuals in the United States rely on a vascular access to receive hemodialysis treatment¹
- Vascular access is a leading cause for hospitalization and morbidity in patients with CKD stage 5¹

Trends

Trends in adjusted all-cause, cause specific hospitalization rates, hemodialysis

• Data Source: Reference tables: G.3 and special analyses, USRDS ESRD Database. Period prevalent ESRD patients; adjusted for age, sex, race, & primary diagnosis; ref: ESRD patients, 2010. Percent changes from 1993 for the year 2012 are shown in parentheses. Abbreviations: ESRD, end-stage renal disease.

Treatment Guidelines Review

Order of Preference for Vascular Access

Hemodialysis (KDOQI)

- 1. Primary autologous arteriovenous fistula (AVF)
- 2. Arteriovenous graft (AVG)
- 3. Hemodialysis catheter (HDC)

Outcome Goals (KDOQI)

- Functional AVF placement rate of > 65% of patients¹
- Cuffed catheter for permanent dialysis access in < 10% of patients¹
- Current AVF placement rate is 60.6%²
- Use of CVC is 20%²
- Usage of CVC ≥ 90 days is 7.3%²

International VA Data - DOPPS 4

- Arteriovenous Fistula (AVF)
- Arteriovenous Graft (AVG)
- Hemodialysis Catheter (HDC)
- Peritoneal Dialysis Catheter

 The joining of an autologous artery and a vein for use as a hemodialysis site

Types / Locations of AVF

- Order of preference for placement of fistulae¹
 - 1. Wrist (radiocephalic)
 - 2. Elbow (brachiocephalic)
 - 3. Transposed brachial basilic vein fistula
- Alternative locations include¹:
 - Thigh
 - Chest

"Location of graft placement is determined by each patient's unique anatomical restrictions, the surgeons' skill, and anticipated duration of dialysis." 1

^{*}Image shown is not meant to be inclusive of all possible locations

1 to 4 months before cannulation is possible for dialysis¹

- Rule of 6's (KDOQI):
 - Flow > 600 mL/min
 - Diameter ≥ 6mm
 - No more than 6mm deep
 - Evaluated for nonmaturation if after 6 weeks from creation it does not meet the aforementioned criteria

Cannulation of AVFs - Assessment

Examine AVF or AVG Prior to HD Treatment		
LOOK FOR:	Signs of infection	
	Steal syndrome	
	Stenosis	
	Cannulation site problems	
LISTEN FOR:	Bruit	
	Outflow vein	
	Direction of blood flow	
FEEL FOR:	Skin temperature	
	Thrill	
	Stenosis	
	Vein diameter	
	Cannulation sites	
	Steal syndrome	

- Best long term results such as:
 - Patency
 - Low stenosis rate
 - Low infection rate
 - Low morbidity

 If done pre-ESRD, no other temporary access is needed for immediate use

Disadvantages of AVFs

- At least 1-4 months to mature/heal¹
 - Most patients need immediate access
- 38% of patients are not able to have an autogenous AVF²
- Infection:
 - **-** 1% 4%³
- Persistent swelling of the hand or arm, inadequate flow, venous stenosis, aneurysm formation, ischemia in access arm, thrombosis

²Scott E, et al. Conduits for hemodialysis access. J Sem Vasc Surg 2007; 158-63.

³Lew, ASAIO 2000;46:S6-S12, and Albers, Advances in Renal Replacement Therapy 1996;3:208-17

AV Grafts (AVGs)

- Synthetic Graft
- Cryopreserved Human Allograft
- Xenograft
- HeRO® Graft

Configurations of AVGs

- Forearm loop graft
- Upper-arm graft
- Lower-extremity graft*
- Chest wall or "necklace" prosthetic graft*

*All upper-arm sites should be exhausted

AVG Complications

- Extremity edema
- Graft rupture
- Stenosis
- Thrombosis
- Pseudoaneurysm
- Infection

When to Consider Synthetic AVG

- An autologous fistula does not mature
- Rationale:
 - "The sum of the available data, until recently, supported PTFE over other biological and other synthetic materials, based on:
 - Lower risk for disintegration with infection
 - Longer patency
 - Better availability
 - Improved surgical handling."1

- Different Materials
 - PTFE, ePTFE, Polyurethane, Carbon impregnated PTFE
- Early Cannulation
- Hybrid graft

- At least 2 weeks after placement
- Not until swelling has subsided
- Rotation of cannulation sites

Cannulation of Early Access AVGs

Graft	Time to Cannulation
Vectra® Vascular Access Graft	24 hours ¹
FLIXENE® Vascular Graft	72 hours ²
GORE® ACUSEAL Vascular Graft	24 hours ³

¹Vectra Vascular Access Graft Instructions for Use, document number: 14160.Q. 11/2002.

²Flixene Product Brochure, Atrium Medical, document number: 0321A. 07/2010.

³GORE ACUSEAL Vascular Graft Instructions for Use, March 2011, downloaded from www.goremedical.com on 06/17/2013.

Clinical Data for Synthetic AVGs

AVG Literature ¹		
Bacteremia Rates (Infections/1,000 days)	0.11	
Adequacy of Dialysis (mean Kt/V) $^{\beta}$	1.37 - 1.62	
Cumulative Patency at 1 Year	65%	
Intervention Rate (per year)	1.6 - 2.4	

^βNote: Every 0.1 decrease in Kt/V increases the mortality rate by 7%³ and is significantly (P<0.05) associated with 11% more hospitalizations, 12% more hospital days, and a \$940 increase in Medicare inpatient expenditures.⁴

Advantages of Synthetic AVGs

- 2nd choice of vascular access^{1,2}
- Time to maturation for cannulation: 2 weeks²
- Cost effective
- No upfront hospital investment
- Off-the-shelf ready

²Cronerwett and Johnson, Rutherford's Vascular Surgery, Elsevier, 2011, online edition.

Disadvantages of Synthetic AVGs

- Prone to infection: up to 35%¹
- High re-infections for "Jump Grafts"
 - -6% to $10\%^{2,3}$
- Needle hole bleeding
- Stiff: not compliant, not pulsatile
- Venous outflow track stenosis⁴

²Schwab et al. Ann Vasc Surg 2000; 14:63-6.

Cryopreserved Human Allografts

When to Consider Cryopreserved Human Allografts

- Infected synthetic AVGs
 - Up to 35% get infected¹
- AVF is not possible
 - Lack of suitable native vein
 - Failed AVF
 - 38% of autologous sites fail to mature²
- At risk of infection
- Limited number of sites

Cannulation of Cryopreserved Human Allografts

- Access is possible 10 to 14 days after implantation^{1,2}
- Hybrid cannulation techniques
- Buttonhole technique

¹Matsuura J, et al. Ann Vasc Surg 2000;12:50-5.

²Matsuura J, et al. Cardiovasc Surg 2002. 10;6:561-65.

³NKF KDOQI 2006 Guidelines, CPG 3.4. Online edition, downloaded on 05/10/2011.

⁴Gallachio MH et al. Gallachio MH et al. Successful utilization of cryopreserved human femoral vein or bovine carotid artery in establishment of button-holes for hemodialysis. Presented at the VASA Meeting, May 2012, Orlando, FL.

• KDOQI: "Management of an AVG infection is a balance between achieving resolution of the infection while preserving the vascular access." 1

Disadvantages of Cryopreserved Human Allografts

- Sensitization
- Pseudoaneurysm & aneurysm formation
 - Matsuura¹: 2% (3/43)
 - Matsuura²: 0% (0/44)
 - Lin³: 4% (2/45)
 - Bolton⁴: 40% (8/20)
 - Takamoto⁵: 0%
 - Baraldi⁶: 0%

¹Matsuura J, et al. Cardiovasc Surg 2002. 10;6:561-65.

²Matsuura J, et al. Ann Vasc Surg 2000;12:50-5.

³Lin P, et al. Am J Surg 2002;184:31-6.

⁴Bolton et al. J Vasc Surg 2002;36:464-8.

⁵Takamoto S, et al. Trans Proceed 1998;30:3917-19.

⁶Baraldi A, et al. Trans Am Soc Artif Intern Organs 1989:196-9.

Xenograft

- Bovine carotid artery
- Bovine mesenteric vein

Cannulation of Xenograft

- At least two weeks¹
- The physician will determine when the bioprosthesis may be accessed

- Cannulation: indicated 10 days after implant¹
- No hospital upfront investment
- 5 minute prep time¹
- Shelf life: 3 years¹
- No special storage¹
- Sterile¹
- Biologic tissue¹

Disadvantages of Xenograft

- Primary infections (9% to 20%)¹
- Pseudoaneurysms (1% to 8%)^{2,3}
- True aneurysms $(1\% \text{ to } 7\%)^1$
- KDOQI: "higher complication rates than PTFE"⁴
- No data for treating infected fields
- Irradiated
- Gluteraldehyde fixed

¹Scott et al. Semin Vasc Surg 2007; 20:158-63.

²Haimov M et al. Ann Surg. 1974 Sep;180(3):291-5.

³Farber A. Rutherford's Vascular Surgery 7th Ed. Biological Grafts. Online edition downloaded on 06/29/2010.

⁴NKF KDOQI 2006 Guidelines, CPG 2.1, 4,G. Online edition downloaded on 5/6/2011.

⁵Gouk et al. J Biomed Mater Res Part B: App Biomater 84B:205-217, 2008.

HeRO® Graft

When to Consider HeRO Graft

HeRO (<u>He</u>modialysis <u>Reliable Outflow</u>) Graft is the **ONLY** fully subcutaneous AV access solution clinically proven to maintain long-term access for hemodialysis patients with **central venous stenosis**.

Above: Venogram of bilateral central venous stenosis

Above: Patient with distended central veins due to stenosis/occlusion

When to Consider HeRO Graft

HeRO Graft Candidates

- Failing fistulas or grafts due to central venous stenosis
- Catheter-dependent or approaching catheter-dependency

Product Overview

ePTFE Graft

- Beading (3-4cm) for kink resistance
- Orientation line on graft to guide placement during tunneling
- Titanium Connector

Silicone-Coated Nitinol Component

- No venous anastomosis
- Reinforced 48 braid nitinol: kink and crush resistant
- Removable and replaceable
- Radiopaque band (at distal tip)

More Graft Options

- * See Instructions for Use (IFU) for more details.
- **Graft is not included with the Adapter. See Instructions for Use (IPU) for more details on the grafts permitted for use with the HeRO Graft Adapter.

- Conventional synthetic AVG cannulation
- 3 Incision Sites
- NEVER cannulate the Venous Outflow Component
- 3" from Titanium Connector incision site
- Avoid fistula clamps

Advantages of HeRO Graft

Fewer Infections:

69% reduced infection rate compared with catheters¹

Superior Dialysis Adequacy:

1.7 Kt/V, a 16% to 32% improvement compared with catheters¹

High Patency Rates:

Up to 87% cumulative patency at 2 years^{1,2}

Cost Savings:

A 23% average savings per year compared with catheters³

¹Katzman et al., J Vasc Surg 2009; IFU: Comparisons to catheters and AVGs are from literature review on file.

²Gage et al., EJVES 2012.

³Dageforde et al., JSR 2012.

HeRO Graft Cost Benefits: Hospital

- 23% average savings per year with the HeRO Graft compared with catheters¹
- Reduces catheter-related infections and hospital admissions projected at \$23k to \$56k per stay^{2,3}
- Lowers interventions and associated costs by more than 50% compared to catheters^{4,5}

¹Dageforde et al., JSR 2012.

²Ramanathan et al., Infect Control Hosp Epidemiol 2007.

³O'Grady et al., The Centers for Disease Control 2002.

⁴Katzman et al., J Vasc Surg 2009; IFU: Comparisons to catheters and AVGs are from literature review on file.

⁵Gage et al., EJVES 2012.

HeRO Graft Cost Benefits: Dialysis Center

Impact of HeRO Graft in the Era of Dialysis Provider Bundling

Cost savings of over \$3,100 (per patient/year) to the dialysis center when converting catheter-dependent patients to the HeRO Graft¹

Disadvantages of HeRO Graft

- Thrombosis¹
- Graft kinking
 - If Titanium Connector is NOT implanted in an appropriate anatomical region.
- Infection
 - If the patient is NOT prophylactically treated in the peri-operative period with antibiotics based upon the patient's bacteremia history.¹

Hemodialysis Catheter (HDC)

Hemodialysis Catheter (HDC)

• What:

 A HDC is a double-lumen flexible tube which is connected to the dialysis machine.

• When:

 Need for immediate dialysis with no time for access maturation (of fistula or graft).

Location of HDC (KDOQI)

- Preferred: Right internal jugular vein
- Other options:
 - Right external jugular vein
 - Left internal and external jugular veins
 - Subclavian veins
 - Only when no other upper-extremity or chest wall options are available
 - Femoral veins
 - Translumbar and transhepatic access to the IVC

- Universal applicability
- Ability to be placed in multiple sites
- Avoidance of repeated skin punctures

Disadvantages of HDCs

- Infection: 20%, 2.3 infections per 1,000 patient days
- Failure to attain and maintain extracoporeal blood flow of 300 mL/min
- More than half have to be removed due to infection, malfunction
- Contributes to central venous stenosis/occlusion
- Discomfort of external device
- Lower blood-flow rates
 - Leading to longer dialysis times or less effective dialysis

Peritoneal Dialysis (PD)

- Approximately 7% of dialysis patients use PD
 - ~27,733 patients
- Uses patient's peritoneum and peritoneal catheter to pull waste and extra fluid from patient's blood into the peritoneal cavity
 - Fluid drained and replaced with fresh fluid
- Continuous or manual exchanges

- Peritoneal access is for:
 - Patients who cannot tolerate hemodialysis (HD) due to:
 - Ischemic heart disease
 - Extensive vascular disease
 - Vascular access is problematic
 - Majority of young children
 - Patients who prefer home dialysis, but have no assistant for HD, or whose assistant cannot be trained for home HD.

- Good solution if the patient can't tolerate the rapid changes of fluid balance associated with hemodialysis – PD produces fewer swings in symptoms due to its continuous nature
- Minimizes the disruption of daily activities
- Allows patient to have more mobility

- Infection
- Weight Gain
- Weakening of the abdominal muscles hernia
- Not everyone is a candidate for PD
 - Contraindications
- Daily exchanges necessary

In Summary