

Cardiogenic Shock: Follow the Clues

Clinical Recognition in 2025

Updated Signs, Symptoms, and Diagnostic Phenotypes RV failure and beyond!

Barbara McLean, MN, RN, CCRN, CCNS-BC, NP-BC, FCCM, MCCM

1

bmclean1@gmh.edu 404-626-2843 @criticalbarbara You tube: BarbaraMcLeanCriticalCare

Disclosures

- ✓ Barbara McLean is a paid speaker/consultant for BD
- ✓ The opinions expressed here are her own and do not represent anyone except her experience and subject matter expertise

2

What is Shock?

- ✓ Inadequate perfusion to meet tissue demands. A progressive process
- ✓ A systemic reduction in tissue perfusion → decreased tissue O2 delivery DaO2).
 - A Shift to less-efficient anaerobic metabolism, leading to lactic and metabolic acidosis
 Cardiogenic Shock

 - State of critical end-organ hypoperfusion due to primary cardiac dysfunction
 - Reduced cardiac output →inadequate tissue perfusion despite adequate volume (veno?)
 Usually due to acute MI, severe heart failure, arrhythmia, or mechanical complications/obstruction

✓ Eventually:

3

- Cellular edema, leakage of cells' contents
- Inadequate regulation of intracellular pH
- Cell death, organ failure, cardiac arrest, and death
- ✓ Initially, effects are reversible. RECOGNIZE and TREAT!

f above: nrhagic Shock: Hooper; Armstrong. NCBI Bookshelf September 26, 2002

Myocardial infarction Myocardial dysfunction Systemic
Inflammatory
response
syndrome
(IL-6, TNF-α, NO) Diastolic Systolic **↑LVEDP** Relief of ischemia Compensatory vasoconstriction Progressive myocardial dysfunction SURVIVAL with GOOD QUALITY of LIFE DEATH den Uil CA, Lagrand WK et al. Management of Cardiogenic Shock: Focus on Tissue Perfusion Curr Probl Cardiol 2009;34:330–349. 0146–2806

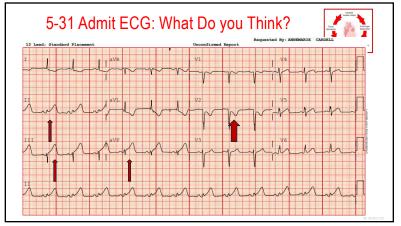
Stages of Shock A progressive process: Intervene early

- √1st. Compensated Shock: Cardiac output (HR xSV) and systemic vascular resistance (peripheral vasoconstriction) work to keep BP within normal.
 - On exam: Tachycardia; decreased pulses & cool extremities in cold shock; flushing and bounding pulses in warm shock; oliguria; labs may show mild lactic acidosis
- √2nd Hypotensive (Uncompensated) Shock: Compensatory mechanisms are overwhelmed.
 - On exam: As above, plus hypotension, altered mental status, increased lactic acidosis and metabolic
 - · Generally quick progression to cardiac arrest.
- ✓ 3rd Irreversible Shock: Irreversible organ damage, cardiac arrest

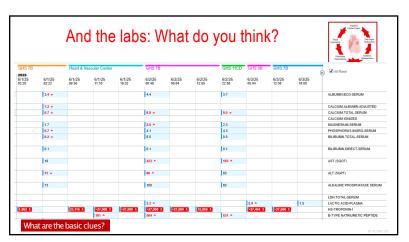
Classic Measurements Cardiac Shock

- ✓ Monitoring measurements
 - CVP and PaD
 - Index of preload
 - Cardiac Output/Stroke Volume
 Index of preload and contractility
 - Index of preload and contractility
 Mixed Venous O2 saturation (SvO2), Base deficit., AG
 - Index of tissue perfusion
 - Metabolic acidosis
 - Systemic Vascular Resistance
 - Index of LV afterload
 - ↑SVR, HR ↓SvO₂

Four questions must be answered at the bedside


- 1. Is there evidence of volume/venous load?
 - 1. Na+, Osmolarity, BNP, CVP, Weight
- Is volume in the right compartment? Systolic pressure, stroke volume, EF, Weight, GFR, UO
- 3. Are the tissues perfused? ScvO₂, PvO₂, base deficit, Lactate
- 4. What is the compensation? HR, RR, blood gas, PvC0₂

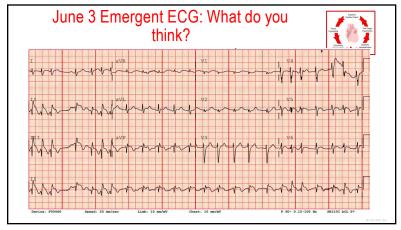
BD RESTRIC

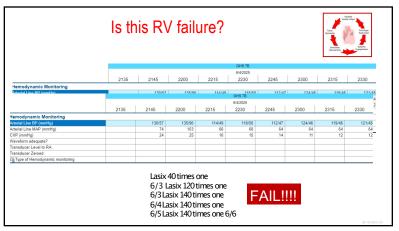

Our Patient

- ✓ Admitted on 5/31/2025
 - 59 y/o male w/ PMHx of CAD with prior STEMI w/ LAD stent x 1, HFrEF (35–40%--> now 25–30%), HTN and DM2 who presented via EMS following episode of severe CP while driving.
 - Found to have inferior STEMI, taken emergently to cath lab with finding of embolic occlusions of distal OM1/2/3.
 - Now s/p balloon only angioplasty of distal OM3 with TIMI 1-2. Unable to intervene on OM1 or OM2 due to small calliber, will medically manage.
- ✓ Admitted to CVICU for STEMI management.

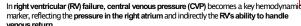
7

Cardiac Cath Report




CONCLUSIONS
Partially successful PTCA balloon only angioplasty of distal OM3 with TIMI
I initially and TIMI 1 to 2 of distal small caliber OM3 due to
embolization. There is also distal embolic occlusion of small caliber
terminal ends of OM1 and OM2 best suitled for tirofiban for 18 hours followed by anticoagulation plus plavix upon discharge

followed by anticoagulation plus plavix upon discharge 1; ½
Right radial approach
Dominance left
Left main: Large caliber . No significant angiographic disease
Left anterior descending LAD: Large caliber. Patent stent
First Diagonal D1: medium caliber. No significant angiographic disease.
Left circumflex LCX:Large caliber. No significant angiographic disease.
First Obtuse Marginal Off1:Large caliber. Distal embolic occlusion small
caliber for medical management
Second Obtuse Marginal OM2:Large to medium caliber. Distal embolic
occlusion small caliber for medical management
Third Obtuse Marginal OM3:Medium caliber. Distal embolic occlusion small
caliber partial success with balloon only angioplasty.


caliber partial success with balloon only angioplasty. Right Coronary Artery RCA:small caliber Non dominant LVEDP 42 mmHg

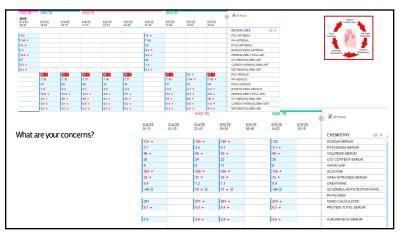
9 10

Clinical utility of CVP in RV failure

Prominent JVD, hepatojugular reflux, peripheral edema
Worsening renal function (venous congestion) Worsening Liver Function

13

Clinical Significance	Interpretation
CVP > 12-15 mmHg	Suggests significant RV dysfunction or volume overload
High CVP with Low MAP/CO	Indicates RV cannot generate forward flow despite volume
CVP Trending Up	May suggest worsening RV performance, fluid overload, or increased afterload (e.g., PE, PHTN)
CVP + Echo Together	More informative—check RV size/function, IVC dynamics


Bedside Clues: Is this CS? Is that all there is?

✓ Bedside Clues: All may suggest RV is under stress

- Rising JVP/CVP
- Drop in BP (systole most reliable)
- More inotropic support
- Failure to respond to diuretics

14

		1937	1945	1952	2000 🕶
	Cardiac				
	Heart Block Type				
	Ectopy and Ectopy Frequency	PVC; Frequent			PVC; Frequent
	Heart Sounds				S1; S2
	Remote Telemetry Patient				Telemetry M
	Telemetry Box Number				BSM
	Cardiac Device				
	Hemodynamic Monitoring				Yes
	Hemodynamic Monitoring				
	Arterial Line BP (mmHg)	108/51	93/50	95/57	100/55
	Arterial Line MAP (mmHg)	68	65	68	69
	CVP (mmHg)				262 🖫 🖺
	Waveform adequate?	Yes			Yes
	Transducer Level to RA	Yes			Yes
	Transducer Zeroed	Yes			Yes
	Type of Hemodynamic monitoring	PA Catheter/			PA Catheter/
	Pulmonary Artery Catheter/Swan Ganz				
	PA Insertion Site	Left Femoral			Left Femoral
	PA Placement in CM	84			84
	Transducer Level to RA	Yes			Yes
54	Transducer Zeroed	Yes			Yes
3	Waveform adequate?	No (Comment)			No (Comment)
31	PAP Systolic (mmHg)				
m	PAP Diastolic (mmHg)				
R -2969.23	PAP Mean (mmHg)				
_	PCWP (mmHg)				
	Continuous Cardiac Output (L/min) (Swan-Ganz)	5.1			5.2
nat was the problem	SV (Stroke Volume) (mL/beat) (Swan-Ganz)	58			54
re?	CI (Cardiac Index) (L/min/BSA) (Swan-Ganz)	2.9			3

Cath Report Pressures

- ✓ RIGHT HEART ASSESSMENT
- ✓ on Norepinephrine and Dobutamine infusion
- ✓ Thermal CO: 2.76 Thermal CI: 1.58
- ✓ Fick CO: 2.94 Fick CI: 1.68
- ✓ PVR: 272 SVR: 1305
- ✓ LVEDP 30 mm Hg
- ✓ PCWP 30 mm Hg ✓ PA 63/30 (mean 40) mmHg
- ✓ RV 60/20 mm Hg
- ✓ RA 22 mm Hg

Classic vs. Modern Recognition of Cardiogenic Shock

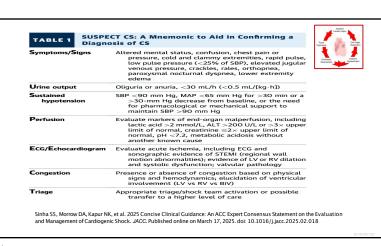
- ✓ Classic:
 - SBP <90 mmHg for >30 min,
 - cold/clammy skin
 - Oliguria
 - · altered mentation.

✓ Modern:

- SCAI shock stage classification
- lactate ≥2.0 mmol/L
- dynamic echo markers.
- ✓ New focus: early detection in pre-shock phase (SCAI B)!!!!

Peripheral Clues to Tissue Hypoxia

- ✓ Cool extremities, mottled skin, capillary refill >3 sec
- Low urine output (<0.5 mL/kg/hr), increasing creatinine (0.3 ml/kg/hr)
- ✓ Altered mentation, drowsiness, anxiety or restlessness
- ✓ Check SpO₂ waveform quality: low amplitude = low perfusion Add MORE!
- ✓ PvO2 <30 mmHg
- √CVP> 12
- ✓ PaD> 20


		Volume Status		
Wet		Dry		
Circulation	Cold	♣CI ♠SVRI ♠PCWP Classical Cardiogenic shock	CI ♠SVRI ➡ PCWP Euvolemic Cardiogenic shock	
Peripheral Ci	Warm	♥CI ♥/♦ SVRI ♠ PCWP Vasodilatory Cardiogenic shock or Mixed shock	CI SVRI PCWP Vasodilatory shock Not cardiogenic shock	

How to recognize early and Then what.....?

- ✓ Early warning signs before full collapse:
 - Narrowing pulse pressure
 - Rising lactate (even before hypotension)
 - Increased venous congestion (CVP, JVD, hepatic waveform)
- ✓ Hemodynamic Signatures and Right-Sided Findings
 - · Recognizing biventricular or right-sided shock variants:
 - Elevated central venous pressure with clear lungs (e.g., RV infarct, PE)
 - Signs: prominent JVD, pulsatile hepatomegaly, hypotension with low pulmonary congestion
 - Low cardiac index (<2.2 L/min/m²), elevated PCWP
 - Narrow pulse pressure, early fatigue

19

Key Testing Clues

- ✓ Non-invasive surrogates increasingly used: IVC dynamics, VExUS score
- ✓ Lactate ≥2.0 mmol/L: key marker of tissue hypoperfusion.
- ✓ Lactate clearance: dynamic target of therapy.
- √ Troponin +BNP/NT-proBNP: myocardial stress and volume status.
 - Emerging: sST2, Galectin-3 (fibrosis and myocardial stress)
- ✓ Early differentiation critical for mechanical support decisions (e.g., Impella vs RVÁD)
- ✓ Pv-a CO2 difference
- ✓ Advanced Bedside Echo:
 - · Focused Cardiac Ultrasound (FoCUS) is now central:
 - LVOT VTI (stroke volume estimate)
 - RV/LV size and function comparison
 - · Pericardial tamponade, valvular disruption

23 21

BNP or NT pro BNP/troponin

- ✓ Cardiac strain (stress on the heart), two key biomarkers, B-type natriuretic peptide (BNP) or its precursor N-terminal pro-B-type natriuretic peptide (NT-proBNP)
 - BNP and NT-proBNP 1 with increased pressure or volume overload within the heart chambers, indicating the heart is working harder to pump blood
 - · BNP has a shorter half-life compared to NT-proBNP
 - BNP is cleared by receptor-mediated mechanisms and enzymatic degradation,
 - NT-proBNP is primarily cleared by renal excretion

24

√ The combination of high BNP/NT-proBNP (reflecting strain) and elevated troponin (reflecting injury) signal a severe heart failure exacerbation

2025 Concise Clinical Guidance: An ACC Expert Consensus Statement on the Evaluation and Management of Cardiogenic Shock: A Report of the American College of Cardiology Solution Set Oversight Committee Publication; JACC Volume 83, Number 18 Garage (Apr. 10, A., Clinica, C. C., Lalley, Y., et al. 2017). SCAI definite depert consensus statement on the classification of cardiogenic shock. Catheterization and Search (Apr. 10, Apr. 10, A

25

Measuring lactate clearance: a clinical approach

- In clinical settings, measuring lactate clearance involves tracking the rate at which lactate levels decrease over time, which provides valuable insights into the effectiveness of resuscitation and tissue perfusion
 - 1. Obtain serial lactate measurements
- Collect blood samples at regular intervals, typically every 2-6 hours, to establish a trend of lactate levels.
 Arterial blood samples are considered the gold standard for lactate measurement, while venous samples are an alternative, albeit potentially less accurate.
- Point-of-care lactate testing devices offer rapid and convenient measurements at the
- ✓ 2. Calculate the lactate clearance rate
 - Use the formula: Lactate clearance =[(initial lactate –subsequent lactate) / initial lactate] x
 - · A positive value indicates a decrease in lactate, while a negative value signifies an increase

Efgan MG, Bora ES, et al. Prognostic Significance of Lactate Clearance in Cardiogenic Pulmonary Edema in the Emergency Department. *Medicina (Kaunas)*. 2024;60(9):1502. Published 2024 Sep 14. doi:10.3390/medicina60091502

Thevathasan T, Gregers E, et al. Lactate and lactate clearance as predictors of one-year survival in extracorporeal cardiopulmonary resuscitation – An international, multicentre cohort study, Resuscitation, Volume 198, 2024, 110149,ISSN 0300-9572,

Measuring lactate clearance: a clinical approach

- √ 3. Interpret the lactate clearance rate
 - Continuous lactate monitoring devices and lactate—guided resuscitation protocols hold promise for improving outcomes in critically ill patients.

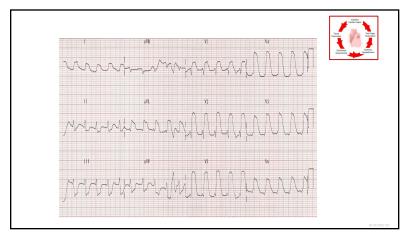
 - Adequate clearance: Generally, a lactate clearance rate of >20% over 6 hours indicates a positive response to treatment and restoration of tissue perfusion.

 Poor clearance: A lactate clearance rate of <10% over 6 hours is associated with poor outcomes and may necessitate adjustments in treatment strategies.

 Intermediate clearance: A rate between 10-20% may warrant further evaluation and careful monitoring.
- √ 4. Integrate lactate clearance with clinical data
 - Interpret lactate clearance in conjunction with other clinical indicators such as vital signs, hemodynamic parameters, and organ function assessments and base deficit
- ✓ Important considerations

26

- Lactate clearance should not be used as the sole determinant of patient management. Consider the patient's overall clinical picture and differentiate between causes of elevated lactate.
- In patients with liver disease, lactate clearance may be less reliable as a prognostic marker.


REF: Seong et al. Prognostic value of lactate levels and lactate clearance in sepsis and septic shock with initial Hyperlactatemia. Lee et al. Medicine(2021) 100:7

27

1 Clinical Case

- ✓ 68-year-old male presents to the emergency department with acute onset of severe chest pain, shortness of breath, and altered mental status
- ✓ Blood pressure is 80/40 mmhg, heart rate is 120 bpm, exhibits signs of cold, mottled extremities.
- ✓ Initial arterial analysis reveals a lactate level of 7.2 mmol/L.
- ✓ Based on these findings and other clinical signs diagnosed as cardiogenic shock secondary to acute myocardial infarction

More advanced congestion: Kerley B lines

√ Stage II - Interstitial edema

29

- ✓ Stage II of CHF is characterised by fluid leakage into the interlobular and peribronchial interstitium
- √ When fluid leaks into the peripheral interlobular septa it is seen as Kerley B or septal lines
- Kerley-B lines are seen as peripheral short
 1-2 cm horizontal lines near the costophrenic angles.
- ✓ These lines run perpendicular to the pleura

28

1 Clinical case

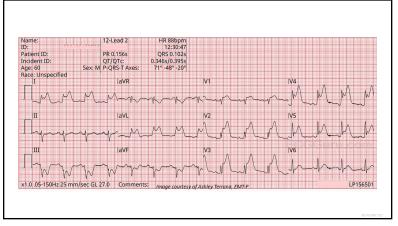
31

- ✓Immediate Interventions:
- ✓ Intubated with mechanical ventilation
- ✓ initiated on norepinephrine infusion to support blood pressure
- ✓An intra-aortic balloon pump (IABP) is inserted to augment coronary blood flow.
- ✓ Lactate Monitoring: Arterial lactate levels are serially monitored at 0, 6, 12, and 24 hours after the initiation of therapy.
 - 0 hours: Lactate 7.2 mmol/L

30

- 6 hours: Lactate 6.1 mmol/L -6-hour lactate clearance calculated at approx. 15%
- 12 hours: Lactate 4.8 mmol/L 12-hour lactate clearance calculated at approx. 33%
- 24 hours: Lactate 1.8 mmol/L 24-hour lactate clearance calculated at approx. 75%

Headed in right direction?


Almost there!

2 Clinical Case

- ✓ A 72-year-old female with a history of hypertension, type 2 diabetes mellitus, and chronic kidney disease (CKD) presents to the emergency department with acute onset of severe dyspnea, fatigue, and chest discomfort. Her vital signs are: BP 85/50 mmHg, HR 110 bpm, RR 28 breaths/min, and SpO2 88% on room air. Physical examination reveals cool and mottled extremities, elevated jugular venous pressure, and bilateral crackles on lung auscultation. An initial electrocardiogram (ECG) shows ST-segment elevations anterior-lateral wall
- ✓ Clinical Diagnosis: Based on the clinical presentation and ECG findings, cardiogenic shock (AMI) is suspected in the patient.

11/3/25

2 Clinical Case

35

- ✓ Initial assessment and biomarker evaluation
 - Biomarker Results: Initial blood tests reveal:
 - Cardiac Troponin I (cTnl): Significantly elevated at 10.5 ng/ml{ hs Tnt 10,500) (upper limit of normal <0.04 ng/ml{ hsTnT 20}), which confirms myocardial injury.
 - NT-proBNP: Significantly elevated at 8,500 pg/mL (normal <125 pg/mL for age <75), indicating significant myocardial stress and left ventricular dysfunction.
 - Lactate: 5.8 mmol/L, indicating tissue hypoperfusion.
- ✓ Renal Function: Creatinine 2.1 mg/dL, reflecting pre–existing CKD and potentially exacerbated by the shock state
- ✓ GFR 15 ml

2 Clinical Case

- ✓ Initial Resuscitation: The patient receives intravenous fluids, oxygen supplementation, and inotropic support with dobutamine.
- Revascularization: Given the ECG changes and high troponin levels, the patient undergoes emergent coronary angiography, which reveals a complete occlusion of the left main coronary artery. A percutaneous coronary intervention (PCI) is performed to restore blood flow.
- ✓ Lactate Clearance Monitoring: Serial lactate measurements are initiated.
 - 6 hours post-PCI: Lactate 4.2 mmol/L (28% clearance).
- 12 hours post-PCI: Lactate 2.5 mmol/L (57% clearance).
- ✓ Lactate Clearance: The improving lactate clearance demonstrated a positive response to the resuscitation and revascularization efforts, suggesting improved tissue perfusion and a better prognosis

34

2 Clinical Case

- ✓ Biomarker Monitoring: Troponin and NT-proBNP levels are also serially monitored.
 - Troponin: While remaining elevated for several days, the cTnI levels begin to trend downward after revascularization, signifying successful reperfusion and reduction in ongoing myocardial damage.
 NT-proBNP: NT-proBNP levels gradually decrease in parallel with clinical improvement and resolution of the shock state.

✓ Interpretation and outcome

36

- Troponin: The initial massive troponin elevation confirms the diagnosis of AMI as the cause of CS. The subsequent downward trend after successful revascularization provided evidence of reduced ongoing myocardial injury.
 NT-proBNP: The high NT-proBNP indicated significant cardiac dysfunction and hemodynamic stress. The subsequent decline mirrored the improvement in heart function and volume status following treatment.
- ✓ Overall Outcome: The patient's condition gradually stabilizes in the intensive care unit. She is eventually weaned off inotropic support and mechanical ventilation. Following an extended hospital stay, she is discharged with optimized medical therapy for heart failure and secondary prevention of cardiovascular events

Measuring Pv-aCO2

- Why measure Pv-aCO2? veno-arterial carbon dioxide difference (Pv-aCO2), or Pv aCO2 gap
- valuable parameter in critical care circulatory and cardiogenic
 offers additional insights into tissue perfusion beyond traditional markers like lactate and central venous oxygen saturation (ScvO2)
- ✓ 1. Indicator of tissue perfusion and adequacy of cardiac output
 - The Pv-aCO2 gap reflects the balance between carbon dioxide production in the tissues and its removal by blood flow
 - By niood flow

 An elevated Pv–aCO2 gap (generally > 6 mmHg) can indicate inadequate tissue perfusion, or "stagnant dysoxia," due to insufficient cardiac output, : inefficient blood flow to remove CO2

 inverse relationship between cardiac output and the Pv–aCO2 gap demonstrated in experimental and clinical settings.

37

- 2. Complementary to other markers
 Pv-aCO2 can be particularly useful when other global oxygenation parameters, such as ScvO2, appear normal but tissue hypopertusion persists (BD > -4)
 - provides more sensitive and rapid indicator of tissue perfusion changes compared to lactate
 a slower clearance kinetics dependent on liver function.
 - · elevated Pv-aCO2 indicates microcirculatory dysfunction and tissue hypoperfusion

Hørsdal OK. Can utilization of the venous-to-arterial carbon dioxide difference improve patient outcomes in cardiogenic shock? A narrative review. Am Heart JPlus. 2025;50:100504. Published 2025 Jan 30. doi:10.1016/j.ahjo.2025.100504

Measuring Pv-a CO2

- √ 3. Guiding resuscitation efforts
 - An elevated Pv-aCO2

38

- optimize hemodynamic management by increasing cardiac output or improving microcirculatory blood flow
- Monitoring the trend of the Pv-aCO2 gap
 - guide therapeutic interventions and predict patient prognosis
- √ 4. Assessment of microcirculatory dysfunction
 - macrocirculatory parameters may be normal
 - microcirculatory dysfunction and tissue hypoperfusion best predictors of adequate cardiac output

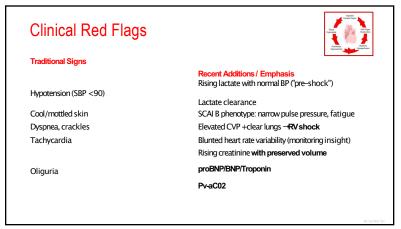
3 Clinical Case

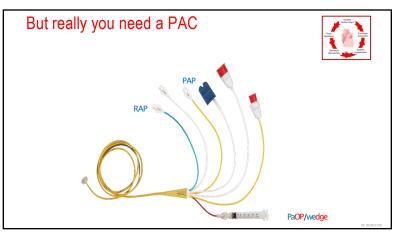
- ✓ A 68-year-old male presents to the emergency department with acute onset of severe dyspnea, hypotension (BP 80/50 mmHg), and signs of peripheral hypoperfusion, including cool and mottled extremities
- ✓ initial arterial blood gas

- significant metabolic acidosis BD -9, pH 7.21 with a lactate level of 6.5 mmol/l
- ✓ ECG shows widespread ST-segment elevations, confirming acute myocardial infarction (AMI) as the likely cause of the cardiogenic shock

3 Clinical Case

- ✓ Clinical Diagnosis: Cardiogenic shock secondary to AMI is diagnosed, and the patient is promptly resuscitated with fluids and initiated on vasopressors to maintain a mean arterial pressure (MAP) above 65 mmHg.
- ✓ Need for Further Assessment: Despite achieving the MAP target, the patient's lactate levels remain elevated at 5.0 mmol/L after 3 hours, suggesting ongoing tissue hypoperfusion.
- Py-aCO2 Measurement: Togain a more comprehensive understanding of tissue perfusion, a central venous catheter is inserted, and simultaneous arterial and central venous blood gas samples are obtained.


 - Arterial PCO2 (PaCO2): 40 mmHg
 Central Venous PCO2 (PcvCO2): 59 mmHg
 - Calculated Pv-aCO2: 59 mmHg -40 mmHg =19 mmHg
 - GAP>10 indicates shock


40

3 Clinical Case

- ✓ Interpretation and intervention
 Elevated PV-aCO2: The PV-aCO2 value of 19 mmHg is elevated, exceeding the normal range (typically 2-10 mmHg)
 - Suggests that despite maintaining a target MAP and potentially adequate global oxygen delivery
 - · mismatch between oxygen demand and supply at the tissue level
 - Impaired metabolism and anerobic production
- ✓ Adjusting Therapy: Based on the elevated Pv–aCO2, the medical team considers interventions aimed at improving cardiac output and tissue perfusion.
- ✓ Optimizing inotropic support to enhance myocardial contractility.
- ✓ Considering mechanical circulatory support (e.g., intra–aortic balloon pump, impella or extracorporeal membrane oxygenation) to augment CO if medical therapy proves insufficient.
- ✓ Further assessment of microcirculation → identify potential areas of impaired flow

Components of the PA waveform

Systole

- Measured at the peak of the waveShould be almost straight up

- Diastole

 Measured just prior to the upstroke of systole (end of ORS)

 Higher than RV diastolic pressure

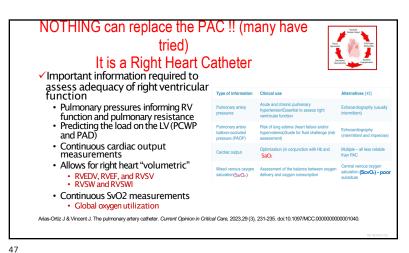
Dicrotic notch

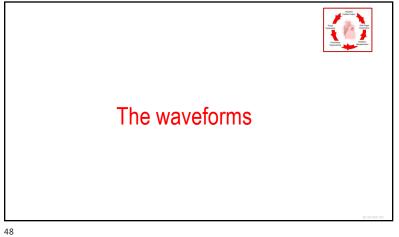
- · Indicates pulmonic valve closure
- Aids in differentiation from RV waveform

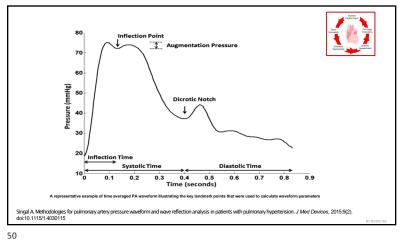
- RAP/CVP: right atrial pressure
 Estimated RV preload (right ventricular end diastolic volume)
 - RAP/CVP measures the pressure related to the compliance of RV when **filling** with volume

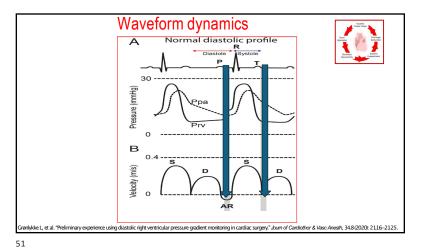
✓ PCWP: wedge pressure

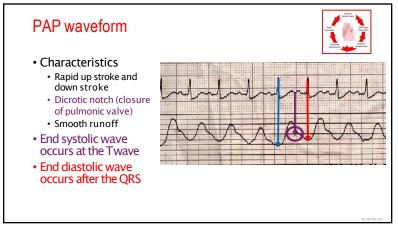
- Estimated LV preload (Left ventricular end diastolic volume)
- PAWP measures the pressure related to the RETROGRADE column of blood which fills the LV from the LA and PV

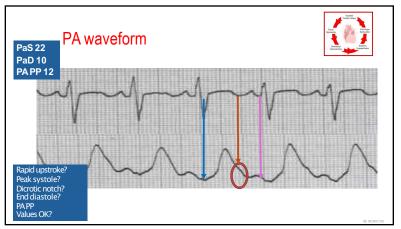


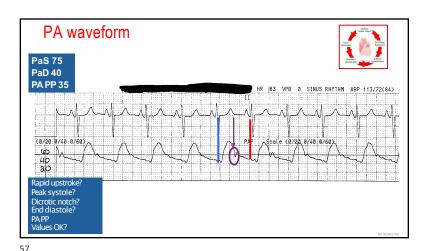

The right pressures

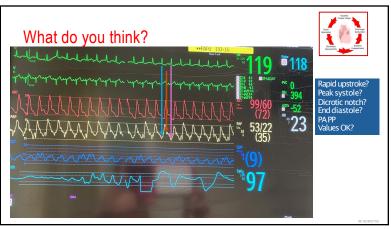

	Systolic	Diastolic	Filling
			pressures
Right ventricle	15-25	0-8	CVP 2-6
Pulmonary artery	15-25	8-15	PAD 8-15
Left ventricle	90-140	5-15	PAOP 6-10
Aorta	100-150	60-90	
Pulmonary vascular resistance			100-250
Systemic vascular resistance			800-1200
PA pulse pressure			8-15
Systemic pulse pres		30-40	

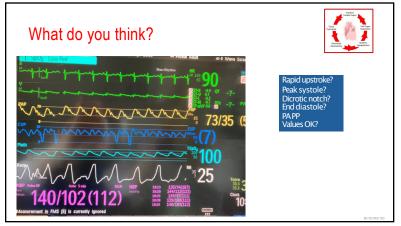

Did you also know....? RVfilling is different than LV filling RV ejection is different that LV ejection RAP/CVP **PAS** · RV systolic pressure rapidly exceeds the low · Significantly lower than pulmonaryresistance comparable left-sided Two characteristics of RV • RV isovolumetric contraction time is short · Distensibility of its freewall Filling of RV Compliance and the increase of volume without significant changes in the wall RV filling normally starts before and finishes after LV Therightventricle pumps into a high-compliance, low-resistance pulmonary · RV isovolumic relaxation time is shorter Compare EF Compare filling pressures RV 40-60% LV 50-75% RA/CVP should ALWAYS be <PAOP /PAD

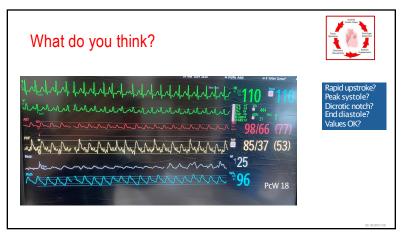


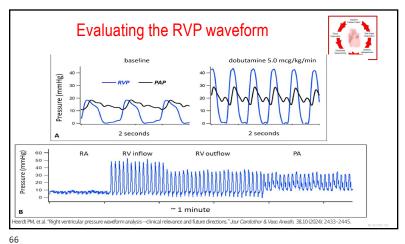


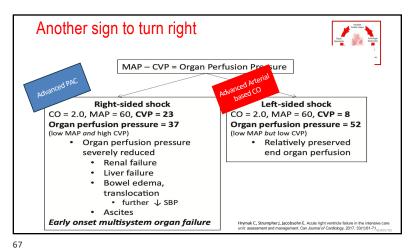









Evaluating the PA waveform



Wouldn't it be nice to have a direct RV pressure measure?

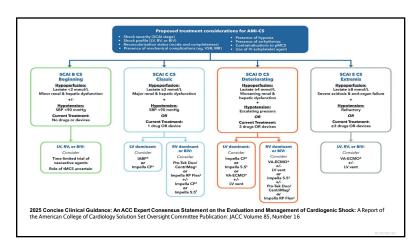
Even though PA and RA pressures may reflect an issue, indirect!

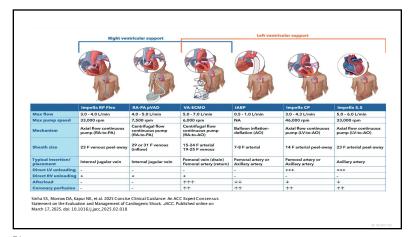
65

The right turn

Measure	Normal	RV dysfunction	Severe RV dysfunction	Consider?
RAP/CVP (mmHg) SP/MV*	<5SP / <8 MV	>10SP />13 MV	>15 mmHg	Method of ventilator management? Reduce MawP? Pulmonary dilation (NO,
PAS/PAD	15-25/8-15	† †	111	Flowlan)
RAP/PaOP	0.5 or less	>0.63	>0.86	RV inotropic (Dobutamine, Milrinone)
PAPI	>2	<2	<1.5	MCS

68


69


SCAI Shock Classification (Stages A–E)

- ✓ Stage A: at risk:large MI, no hypoperfusion.
- ✓ Stage B: beginning:
 - Hypotension or rising lactate, no clear hypoperfusion
- ✓ Stage C: classic shock:hypotension +hypoperfusion +elevated lactate.
- ✓ Stage D: deteriorating
 Escalating support, worsening acidosis/lactate
- ✓ Stage E: extremis
 - Refractory shock, impending arrest or ongoing CPR

Baran, D. A., Grines, C. L., Bailey, S., et al. (2019). SCAI clinical expert consensus statement on the classift Cardiovascular interventions, 94(1), 29-37. https://doi.org/10.1002/ccd.28329

Why Early Recognition Matters

- ✓ SCAI B-C patients can be rescued before full collapse.
- √Time to MCS (Impella, ECMO) matters—don't delay
- √ Helps guide vasopressor and inotrope choice (e.g., norepinephrine vs dobutamine)
- ✓ Multidisciplinary shock teams rely on accurate staging
- ✓ New biomarkers add to the classic clues
- ✓ Apply today! Save a heart and a life!
- ✓ Key Points
 - LV MCS focuses on forward flow augmentation and LV unloading
 - RV MCS focuses on unloading systemic venous congestion and restoring LV filling
 - VA-ECMO supports both ventricles but increases LV afterload; in RV failure it may increase RV stress unless unloading is provided.
 - Combination strategies (e.g., ECpella =ECMO +Impella) may be required in biventricular shock

Comparison of MCS in Right vs. Left Ventricular Failure LV failure: Systemic arterial measures RV contractility →systemic venous congestion, CVP, impaired LV filling (septal shift), ↓ forward \downarrow LV contractility $\rightarrow\downarrow$ CO/CI (<2.2 L/min/m²), † LVEDP/PCWP, pulmonary congestion Hemodynamic problem Augment systemic cardiac output, reduce LV filling Unload RV, reduce venous congestion, maintain LV pressures preload, restore RV-PA coupling Primary targets -Impelia RP (percutaneous RV axial pump, unloads RV -PA)
- ProtekDuo cannula • CentriMag (percutaneous RVAD via) (r, teturns to PA)
- Surgical RVAD (centrifuga) or axial flow, bridge to recovery (transplant)
- VA-E-M0 (biventricular support, but increases RV - IABP (afterload reduction, modest support)
- Impella C P/5.5 (direct LV unloading, † CO)
- VA-ECMO (full cardiopulmonary support, but † LV afterload unless vented) Durable LVAD for advanced HF; bridge to transplant Durable **BiVAD** or LVAD +temporary RVAD if RV RV Impella: limited to 14 days; not ideal with severe pulmonary HTN ProtekDuo: requires large-bore IJ access VA-ECMO: may worsen RV dilation unless LV IABP: limited efficacy in severe LV failure Impella: vascular complications, hemolysis VA-ECMO: † LV afterload unless vented (Impella/IABP combo) CVP (<12-15), improved RV stroke work index, normalization of RV-PA coupling (TAPSE/PASP > 0.31) \uparrow LV stroke volume, \downarrow PCWP, improved MAP without support Weaning signals

ESICM New Updates in 2025: How to diagnose Circulatory Shock

Skin Perfusion Index Fluid Responsiveness Arterial pressure targets New CO monitoring devices Echocardiography

How should we define shock? ungraded

Highlights from Jan Bakker

Shock is defined as a life-threatening circulatory failure characterized by decreased tissue perfusion, created by inadequate oxygen delivery and/or oxygen utilization failure to meet cellular metabolic demands.

Not hypotension

Not singular lactate elevation

Clinical Sign:

Monitoring skin perfusion using CRT and skin temperature and mottling

Clinical Measures:

ScVO2 or SvO2

P V-aCO2 Gap

Gap/C a-v O2 difference (Gap)

74 75

Fluid Therapy ungraded Highlights from Antonio Messina

Fluid responsiveness must be assessed after intial fluid resuscitation

Fluid overload is profoundly deleterious
Measure efficacy of fluid administration
PLR for patients on MV
300-500 mL given over 5-10 mins
evaluate with SV, PP, BPS, NOT MaP
Diagnostic methodologies

Responsiveness disappears quickly

PAC, PiCO, Dynamic variables (PPV, SVV)

Fluid Therapy ungraded Highlights from Xavier Monnet

Fluid responsiveness must be assessed after intial fluid resuscitation

Measure efficacy of fluid administration

End Occulsion test

Diagnostic methodologies

IVC compression is now of limited evaluation

76

77

Cardiac Output Monitoring ungraded Highlights from Xavier Monnet

Fluid responsiveness must be assessed after initial fluid resuscitation before more fluid is administered

Addition of low dose vasopressors AND if not responsive **CO should be monitored**

78

evaluated in conjunction with tissue oxygenation parameters

Transpulmonary thermal dilution: no suspected/measured RV failure

PA catheter: suspected/defined RV failure, ARDS measuring PA pressure

may be considered for any persistent shock

79

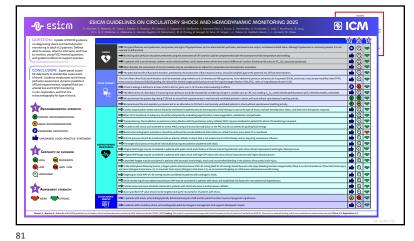
Arterial Pressure Monitoring ungraded Highlights from Xavier Monnet

Should always be monitored in patients with Shock when not responsive to initial therapy and have not responded to low dose vasopressor therapy

Arterial pressure should be adapted to patient's condition NO one target, always adjust to level of CVP and perfusion pressure Measure and monitor CVP if central catheter is present Consider MaP \uparrow and CVP \downarrow

BD RESTRICT

Echocardiography ungraded Highlights from Michelle Chew


First line imaging modality to assess type of shock and hemodynamic status

Perform as soon as possible in any patient in shock

Serialization should be performed even if utilizing methods to monitor CO

Diagnostic importance in definition and evaluation between RV and LV failure

leads to better intervention and therapeutic manipulation

80

Follow the Clues

Thank you! bmclean1@gmh.edu 404-626-2843

You tube: BarbaraMcLeanCriticalCare

CAUTION: Federal (United States) law restricts this device to sale by or on the order of a physician. See instructions for use for full prescribing information, including indications, contraindications, warnings, precautions and adverse events.

Any quotes used in this material are taken from independent third-party publications and are not intended to imply that such third party received or endorsed any of the products discussed.

Swan Ganz, or Swan Ganz IQ are trademarks of Becton Dickinson or its affiliates. All other trademarks are the property of their respective owners.

PP--US-157117 v1.0

83

82