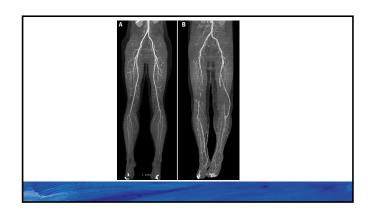
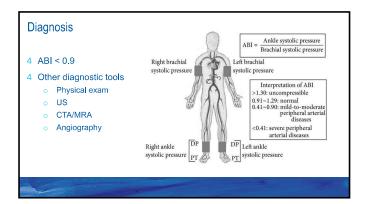

Objectives


- 1. Outline risk factors for limb amputation with diagnosis of PAD.
- Understand goals of perioperative care for patients after major amputation.


Peripheral Artery Disease

- 4 Atherosclerotic disease of non-coronary and non-cerebral arteries
- 4 Arterial stenosis/occlusion caused by intimal thickening, fibroatheroma, calcified plaques, and/or thrombus
- 4 More common in lower extremities than upper extremities
- 4 Prevalence
 - o 5% of patients over 40 years old
 - o 15-20% of patients over 70 years old

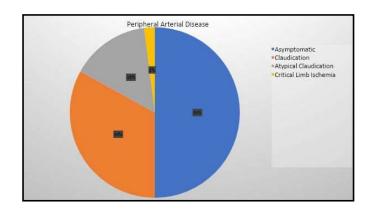
PAD Risk Factors

- 4 Smoking
- 4 Diabetes
- 4 Hypertension
- 4 Hyperlipidemia
- 4 Chronic kidney disease
- 4 Advanced age
- 4 Genetics

Smoking and PAD

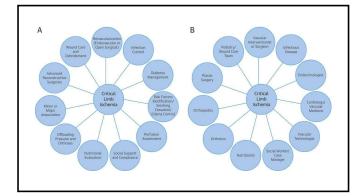
- 4 4x more likely to be symptomatic
- 4 3x more likely to have failure of stent/bypass
- 4 Smoking causes vasomotor dysfunction, inflammation, and lipid dysfunction leading to plaque formation
- 4 Commonly affects proximal vessels

Diabetes and PAD


- 4 1/3 of PAD patients have diabetes
- 4 Inflammation, coagulation, vasoconstriction and endothelial dysfunction associated with diabetes
- 4 10x more likely to require major amputation
- 4 Commonly affects tibial arteries and causes small vessel disease

Patients with PAD without T2DM	Patients with PAD with T2DM
Proximal arteries, focal pattern, collateralization	Distal arteries, bilateral disease, multifocal disease, impaired collateralization
Intermittent claudication, slower progression	Asymptomatic, wounds, increased risk of infection, faster progression
ABIs are predictable	ABIs may be falsely elevated
Treatment is predictable	Less responsive to some intervention, aggressive medical management
	without T2DM Proximal arteries, focal pattern, collateralization Intermittent claudication, slower progression ABIs are predictable

PAD Signs and Symptoms

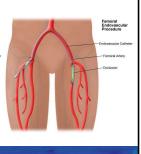

- 4 Asymptomatic
- 4 Intermittent claudication
- 4 Rest pain
- 4 Ulceration or gangrene

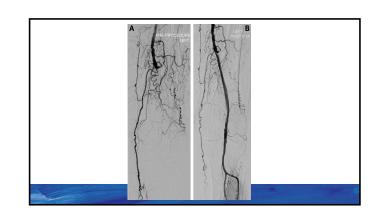
Critical Limb Ischemia

- 4 Ischemic rest pain x 2 weeks
- 4 Ulcers or gangrene that is attributable to objectively proven arterial occlusive disease
- 4 12% of patients with CLI will require major amputation in 3 months

Acute Limb Ischemia

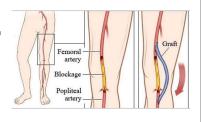
- 4 Acute arterial thromboembolism
- 4 Trauma
- 4 Failure of bypass graft or stent
- 4 Common cause: new onset a fib, hypercoagulable state, stopping medicaitons
- 4 Signs & symptoms: pain, pulslessness, pallor, poilikothermia, paresthesia, paralysis


Rutherford Class	Sensory Impairment	Motor Impairment	Doppler Signals
Class 1 (No immediate threat)	None	None	Arterial: audible Venous: audible
Class 2a (Marginally threatened)	Minimal	None	Arterial: audible Venous: audible
Class 2b (Immediately threatened)	Involves forefoot with possible rest pain	Mild to moderate	Arterial: absent Venous: present
Class 3 (Irreversible ischemia)	Insensate	Severe, rigorous	Arterial: absent Venous: absent


PAD Non-Surgical Treatment

- 4 Lifestyle and risk factor modification
 - Smoking cessation
 - o Glycemic control
 - o Initiate antiplatelet and statin
- 4 Exercise program
- 4 Vasoactive medications

Endovascular Treatment

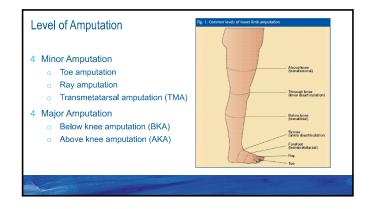

- 4 Peripheral angiogram
- 4 Intervention including stenting, balloon angioplasty, atherectomy, and intravascular lithotripsy
- 4 Usually common femoral arterial access
- 4 Will likely need to be on antiplatelet medications postoperatively

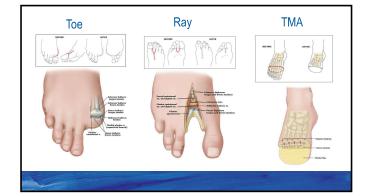
Open Surgical Treatment

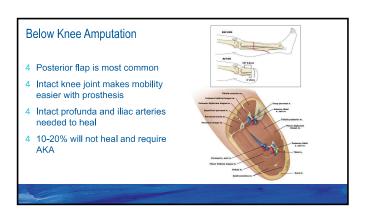
- 4 Endarterectomy
 - Manually cleaning out plaque and closing with a patch
- 4 Surgical bypass
 - Rerouting blood flow to bypass blockages
 - Use patient's leg vein, donor vein, or artificial graft

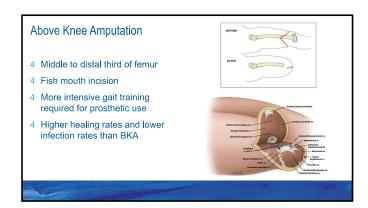
Acute Limb Ischemia Treatment

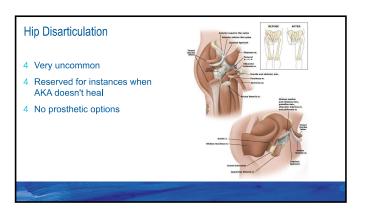
- ☐ Thrombolysis vs Thrombectomy
 - Thrombolysis:
 - Breakdown of the clot
 - Indicated if clot present <14 days and patient has neurologic function of leg as well as no bleeding history within last 6 weeks.
 - Thrombectomy
 - · Actual removal of the clot
 - Indicated for paralysis and concern for compartment syndrome


When is Amputation Necessary?


- 4 Unsalvagable limb
 - No anatomic possibility of revascularization
 - Medical comorbidities
- 4 Infection/osteomyelitis
- 4 Trauma
- 4 Malignancy
- 4 Frostbite gangrene
- 4 Compartment syndrome
- 4 Non-functional limb/deformity


Compartment Syndrome


- 4 Can occur after vascular interventions due to increased blood flow to the tissues, altering arteriovenous pressure gradient, causing increased compartment pressure, restricting local tissue perfusion, and causing cellular anoxia
- 4 Signs and Symptoms
 - Ø Pain with passive stretch of muscles in the affected compartment (early finding)
 - Ø Tense compartment with a firm "wood-like" feeling
 - Ø Pallor from vascular insufficiency (uncommon)
 - Ø Diminished sensation
 - ${\it \varnothing}$ Muscle weakness (onset within approximately two to four hours of ACS)
 - Ø Paralysis (late finding)
- 4 Require urgent surgical intervention to prevent permanent damage


Level of Amputation 4 What level amputation? • Perfusion • Mobility • Skin integrity and level of tissue destruction

Staged Amputation

- 4 Necessary for infection control
- 4 Techniques: Guillotine vs disarticulation
- 4 Pros: lower postoperative infection risk, high primary healing rates
- 4 Cons: need for second procedure, prolonged hospitalization, pain with dressing changes

Amputation Surgical Techniques

- 4 Maintain sterility and use of effective draping
- 4 Tourniquet
- 4 Dissecting and properly ligating vessles
- 4 Sharp ligation of nerves
- 4 Irrigation of wound
- 4 Beveling bone
- 4 Closure of multiple layers without tension

Complications

- 4 Hematoma
- 4 Infection
- 4 Need for reamputation
- 4 Phantom limb pain
- 4 Contracture

Postop Amputation Pain Control

- 4 Perioperative Nerve Block
- 4 Surgical pain vs phantom pain
- 4 Multimodal pain regimen
 - Tylenol and NSAIDs (if applicable)
 - Neuropathic agents
 - Muscle relaxants
 - Narcotics

Postop Amputation Wound Care

- 4 Typically dressing change POD 2 and then daily for any drainage
- 4 Some serous/bloody drainage common first few days postoperatively
- 4 Staples/sutures remain in place longer than usual, typically 3-6 weeks
- 4 Limb protectors to be worn when transferring/working with therapies

Postop Amputation Mobility

- 4 Physical therapy
 - Single leg stand
 - Sit-to-stand
- 4 Limb protector recommended
- 4 Gait training after obtaining prosthesis
- 4 Limiting factors
 - Pain
 - Dementia
 - Baseline mobility and strength
 - Wound vac, IV antibiotics, assistive devices

Prosthesis

- 4 Wound needs to be fully healed prior to fitting
- 4 Use residual limb shrinker for 2-4 weeks for edema control
- 4 Custom prosthesis for each patient
 - Socket
 - o Knee
 - o Pylon
 - o Foot

Long Term Prognosis After Major Amputation

- 4 25% of PVD patients use prosthesis outside of home after amputation
- 4 Non-ambulatory status prior to amputation, age > 70, dementia, other medical comorbidities contributed to non-ambulatory status post amputation
- 4 One year survival
 - o 50-60% after AKA
 - o 65-80% after BKA

Review

- 4 Poorly controlled diabetes can lead to small vessel disease and increase risk of major limb loss.
- 4 Main goals of postoperative care for amputees includes wound care, pain control, and mobility.

References

- 4 BMJ 2012; 345 doi: https://doi.org/10.1136/bmj.e5208
- 4 J Vasc Surg. 2005 Aug;42(2):227-35.doi: 10.1016/j.jvs.2005.04.015.
- 4 Vasc Med. 2012 Mar 8;17(2):85–93. doi: 10.1177/1358863X11436195
- 4 Cardiovasc Diabetol. 2024 Jun 26;23:220. doi: 10.1186/s12933-024-02325-9
- 4 Front Surg. 2022 Nov 8;9:1003339. doi: 10.3389//surg.2022.1003339
- 4 Cardiovasc Diabetol. 2023 Sep 21;22:257. doi: 10.1185/s12933-023-01990-6
- Kalapatapu, Venkat, MD. (2025, Jan 3). Techniques for lower extremity amputation. UpToDate https://www.uptoriate.com/contents/facciniques-for-lower-extremity-amputation.
- 4 Kalapatapu, Venkat, MD, (2024, Nov 26). Lower extremity amputation. UpToDate. https://www.uptodate.com/contents/lower-extremity-amputation