Hemodynamic Management

Hemodynamic Management

This pocket reference includes information for nurses on:

- Hemodynamic response
- Factors affecting:
 - HR

Afterload

Preload

Contractility

- Oxygenation
- Functional Hemodynamic Measurements

NOTE: This pocket card is for quick reference only. Please review and follow your institutional policies and procedures before clinical use.

AMERICAN
ASSOCIATION
GCRITICAL-CARE
NURSES

To order more cards, call 1 (800) 899-AACN or visit www.aacn.org.

Prod #400751 REV 10/20

Hemodynamic Response

Normal Values: Cardiac Output 4-8 L/min

Cardiac Index 2.5-4 L/min/m²

Calculation: Cardiac Index CO/BSA

Pulmonary Artery Occlusion Pressure (PAOP) Left Ventricular End-Diastolic Pressure (LVEDP)

Hemodynamic Response

Stroke Volume (SV): 50-100 mL/beat Stroke Volume Index (SVI): 35-60 mL/beat/m²

Ejection Fraction (EF): > 60%

Stroke Volume • Cardiac Output

Heart Rate

Normal Values:

- Adult/Adolescent
- School Age (6-12 y)
- Preschool (3-5 v)

60-100 beats/min 70-118 beats/min

• Toddler (1-2 y) • Infant (1-12 mo)

Mechanism/Effect

blood pressure

98-140 beats/min 100-180 beats/min

• Neonate (0-1 mo) Decreased

Increased

Mechanism/Effect

- Sympathetic nervous system stimulation in response to stressful stimuli
- · Compensatory mechanism for decreased CO and/or decreased SV
- Cardiac rhythm disorder from increased excitability of cardiac pacemaker cells

Causes

- Sympathetic stimulation (fear, pain, anxiety, stress, agitation)
- Exercise (physical activity)
- Decreased blood volume (preload)
- Increased vascular tone (afterload)
- Hypermetabolic states (fever, hyperthyroidism)
- Hypoxia and hypercarbia
- Conditions causing myocardial excitability. increased conduction (medications. cardiac cellular damage/edema)
- · Medications and stimulants (caffeine. nicotine, cocaine, etc.)
- Accessory cardiac conduction pathways (re-entry phenomenon)

excitability of cardiac pacemaker cells Causes

· Cardiac conduction defect

• Parasympathetic nervous system

stimulation (vagal stimulation)

· Compensatory mechanism for increased

· Cardiac rhythm disorder from decreased

- Vagal stimulation (intubation, suctioning, nasogastric tube placement, vomiting, Valsalva maneuver, diver's reflex, carotid pressure)
- Relaxed state (sleep, sedation)
- Severe hypoxia
- · Conditions that cause decreased myocardial excitability
- Neurogenic (Cushing's triad, increased intracranial pressure, anoxic injury)
- Myocardial tissue damage
- Normal variation (physical fitness)
- · Medications that cause bradycardia (tricyclic antidepressant overdose, digoxin, beta and select calcium channel blockers).

Treatment

- Correct sympathetic stimulus (control pain/anxiety, decrease physiologic stressors)
- Optimize preload, afterload, and contractility
- · Optimize oxygenation/ventilation
- Decrease metabolic/oxygen demands (sedation, paralysis, fever management)
- Medications that slow conduction. decrease irritability (digoxin, calciumchannel blockers, beta-blockers. amiodarone, lidocaine, procainamide, adenosine, magnesium sulfate)

Treatment

- · Remove vagal stimulus
- Administer positive chronotropic medications (epinephrine, dopamine, atropine)
- · Pacemaker (transcutaneous, transvenous, permanent)
- Optimize oxygenation and ventilation

Preload

Normal Values (Adult):

• CVP • PAOP 2-8 mm Hg 8-12 mm Ha

Increased

Mechanism/Effect

- Increased myocardial muscle fiber stretch leads to increased ventricular blood volume, increased SV, increased CO, increased ventricular work
- Overstretched myocardial muscle fibers lead to decreased force of contraction, decreased SV, heart failure (Frank-Starling phenomenon)

Causes

- Decreased fluid excretion (kidney failure)
- Excess fluid administration (fluid overload)
- Ineffective cardiac pumping (right and left heart failure)
- · Aortic insufficiency
- Vasoconstriction (alpha stimulation)
- · Inotropic medication
- Pregnancy

Treatment

- Correct condition causing fluid volume retention/overload)
- Vasodilation (see increased afterload)
- Diuretics
 - Furosemide
 - Bumetanide
 - Mannitol
 - Spironolactone
 - Chlorothiazide
 - Hydrochlorothiazide
 - Metolazone
- Hemodialysis
- Continuous renal replacement therapy for fluid overload with kidney failure

Decreased

Mechanism/Effect

- Decreased myocardial muscle fiber stretch from decreased circulating blood volume, decreased SV, decreased CO, vascular volume depletion, hypotension, cardiovascular collapse
- Increased volume corresponds with increased CO to a point of optimal stretch of myocardial muscle fibers

Causes

- Vascular volume loss (hemorrhage, diarrhea, vomiting, burns, edema, decreased intake, diuretics, third spacing)
- Vasodilation (medications, septic shock)
- Pathological conditions (diastolic ventricular failure, mitral or tricuspid stenosis)
- · Loss of atrial kick

Treatment

- · Correct condition causing fluid volume loss
- Volume expansion
 - Crystalloid
 - Saline
 - Lactated Ringer's

Colloid

- Albumin
- Plasma
- RBCs
- Vasoconstrictors (norepinephrine, dopamine, phenylephrine, epinephrine) may be used to correct severe hypotension when given in conjunction with fluid resuscitation

Afterload

Normal Values (Adult):

- SVR 800-1,200 dynes sec/cm⁻⁵
- PVR 150-250 dynes sec/cm⁻⁵

Calculations:

- SVR = [(MAP- CVP) / CO] x 80
- PVR = [(MPAP PAOP) / CO1 x 80

Increased

Mechanism/Effect

- · Increased resistance to forward flow is related to increased arterial resistance. increased PVR and SVR, increased end-diastolic pressure, increased aortic or pulmonic impedance, increased blood viscosity, and increased aortic blood volume
- Increased resistance to forward flow leads to increased left ventricular stroke work. which leads to increased myocardial oxygen demands, which lead to increased left ventricular failure

Decreased

Mechanism/Effect

· Decreased resistance to forward flow is related to decreased arterial resistance. decreased PVR and SVR, decreased end-diastolic pressure, decreased aortic or pulmonic impedance, decreased blood viscosity, and decreased aortic blood volume

Causes

- Hypertension
- Sympathetic stimulation
- Peripheral vasoconstriction
- Vasopressors
- · Aortic stenosis, pulmonic stenosis
- · Polycythemia
- Medications/substances causing hypertensive effects (cocaine, amphetamines)
- Hypothermia
- High positive end-expiratory pressure
- Increased ventricular-wall tension (dilation)

Causes

- Vasogenic shock (vasodilatory shock)
- Septic shock (early), endotoxin release
- · Anaphylactic shock
- Neurogenic shock
- Vasodilators
- Medications causing hypotension (narcotics, antidepressants)
- Hyperthermia

Treatment

- Reduce sympathetic stimulation
- Normalize body temperature
- Vasodilators
 - Nitroglycerin
 - Nitroprusside
 - Labetalol
 - Milrinone
 - Hydralazine
 - Enalapril, captopril, lisinopril
- Isosorbide
- IABP increases pumping ratio (1:1)
- Diuretics (see increased preload)

Treatment

- Vasopressors
 - Epinephrine
 - Dopamine
 - Norepinephrine
 - Phenylephrine
 - Vasopressin
 - Angiotensin II
- Volume expansion (see decreased preload)
 - Crystalloids
 - Colloids

Contractility

Normal Values (Adult): Calculations:

- SVI = 35-60 mL/beat/m²
- RVSWI = 7-12 g/m²/beat
- LVSWI = 35-85 g/m²/beat
- SVI = CI/HR x 1000
- RVSWI = (MPAP CVP) x SVI x 0.0136
- LVSWI = (MAP PAOP) x SVI x 0.0136

Increased

ed Decreased

Mechanism/Effect

 Increased contractile state of myocardium leads to increased force of contraction, which leads to increased SV, which leads to increased CO and myocardial oxygen demand

Mechanism/Effect

 Decreased contractile state of myocardium leads to decreased force of contraction, which leads to decreased SV, which leads to decreased CO and myocardial oxygen demand

Causes

- Positive inotropic medications
- Increased HR
- Sympathetic stimulation (beta₁ receptor)
- Electrolyte imbalance (hypercalcemia)
- Toxic ingestion (digoxin)
- Systemic inflammation

Causes

- Negative inotropic medications
- Parasympathetic stimulation (vagus nerve)
- Hypoxia
- Hypercapnia
- Metabolic acidosis
- Electrolyte imbalance
- Cardiotoxic medications/substances
- (chemotherapy, salicylate overdose)
- Toxin release (septic shock)

Treatment

When positive inotropic effects are undesirable because of increased myocardial oxygen demand

- Correct positive inotropic effects (correct calcium level, decrease sympathetic stimuli, decrease HR)
- · Negative inotropic medications
 - Beta-blockers
 - Calcium-channel blockers
 - Barbiturates
- · Correct toxic effect

Treatment

Correct negative inotropic effects

(oxygen, ventilation, acid/base balance, electrolyte balance, remove vagal stimulus)

- Positive inotropic medications
 - Dobutamine
- Dopamine
- Digoxin
- Milrinone
- Calcium infusion
- Epinephrine
- Optimize preload
 - · Correct volume deficit
 - Correct volume excess

REFERENCES

Burns SM, Delgado SA, eds. Essentials of Critical Care Nursing. 4th ed. New York, NY: McGraw-Hill Education; 2019.

Good V, Kirkwood P, eds. *Advanced Critical Care Nursing*. 2nd ed. Philadelphia, PA: Elsevier; 2017. Hartjes T, ed. *Core Curriculum for High Acuity, Progressive, and Critical Care Nursing*. 7th ed. St Louis. MO: Elsevier: 2018.

Lough M. Hemodynamic Monitoring: Evolving Technologies and Clinical Practice. St Louis, MO: Elsevier; 2016.

Novak C. Peds Cases: Pediatric Vital Signs Reference Chart. Updated March 2020. Accessed October 5, 2020. https://www.pedscases.com/pediatric-vital-signs-reference-chart

Oxygenation

Normal Ranges:

• SvO₂ 60%-80% • ScvO₂ > 70%

 SvO_2 and $ScvO_2$ are measurements of the relationship between oxygen consumption and oxygen delivery in the body. They reflect the oxygen saturation returning from the body through the venous system. The 3 influencers of SvO_2 and $ScvO_2$ measurements are:

- Hemoglobin
- CO
- Metabolic demand/oxygen consumption

In general:

- An increase in SvO₂/ScvO₂ = decreased cellular oxygen extraction
- A decrease in SvO₂/ScvO₂ = increased cellular oxygen extraction

- A decrease in 3VO ₂ /3CVO ₂ - increased central oxygen extraction				
Conditions that decrease SVO ₂ (increase oxygen demand)	Medications that increase or decrease SVO ₂ * (increase oxygen demand)	Procedures that decrease SVO ₂ (increase oxygen demand)	Factors that increase SvO ₂ (decrease oxygen delivery)	
Seizures Fever Bone fracture Agitation Increased work of breathing Chest trauma Multiple organ failure Shivering Burns Sepsis Head injury	Norepinephrine Dopamine Dobutamine Epinephrine *Although these medications all increase oxygen demand, SvO ₂ may increase as CO improves.	Dressing change Nursing assessment 12-lead ECG Visitors Bath Chest x-ray Endotracheal suctioning Turning Getting out of bed Nasal intubation	Hypothermia Sedation/ analgesia Anesthesia Assist/control ventilation Oxygen administration Propranolol in head injury Neuromuscular blockade	

Hemodynamic Alterations in Shock					
Parameter	Hypovolemic	Cardiogenic	Distributive		
BP	\downarrow	V	Ψ		
Cl	\downarrow	V	$\uparrow \longleftrightarrow$		
CVP	\downarrow	$\uparrow \longleftrightarrow$	\downarrow		
PAOP	$\downarrow \downarrow$	$\uparrow \uparrow$	\downarrow		
SVR	^	^	$\downarrow \downarrow$		
SvO ₂	\downarrow	V	V		

Functional Hemodynamic Measurements

For patients receiving ventilatory support with a Vt > 6 mL/kg, using arterial pressure data from a bedside monitor during respiratory cycle, systolic pressure variation (SPV), pulse pressure variation (PPV), and stroke volume variation (SVV) can be calculated using the following equations:

Formulas				
Variable	Equation	Threshold for Responders		
SPV	SBPmax - SBPmin	> 10 mm Hg		
SPV %	[(SBPmax - SBPmin)/(SBPmax + SBPmin/2)] x 100	> 10%		
PPV %	[(PPmax - PPmin)/(PPmax + PPmin/2)] x 100	> 13-15%		
SVV %	[(SVmax - SVmin)/(SVmax + SVmin/2)] x 100	> 10-15%		
Pleth Variability Index (PVI)	Derived from oximeter perfusion index	12%-16%		
Δ SV (Delta SV)	% change in stroke volume compared before and after fluid challenge or PLR	> 10-15%		

Simplified treatment algorithm based on functional hemodynamic parameters

Legend: BP, blood pressure; BSA, body surface area; CI, cardiac index; CO, cardiac output; CR, classic reference; CVP, central venous pressure; HR, heart rate; IABP, intra-aortic balloon pump; LVSWI, left ventricular stroke work index; MAP, mean arterial pressure; MPAP, mean pulmonary artery occlusion pressure; PLR, passive leg raising; PVR, pulmonary vascular resistance; RVSWI, right ventricular stroke work index; SBP, systolic blood pressure; SV, stroke volume; ScvO₂, central venous oxygen saturation; SVI, stroke volume index; SvO₂, mixed venous oxygen saturation SVR, systemic vascular resistance; Vt, tidal volume