
Exponential Growth and Doubling Time  
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How often do we hear the adage, 
“Growth is good?” An econo-
my that grows is good. Growth 

in income is certainly good. In general, 
growth is seen as a good thing. A glob-
al pandemic challenges this notion. 
Let’s be careful of what we wish for—
especially if growth is exponential.  

Exponential growth
When a quantity such as money in the 
bank, population, or the consumption 
rate of a resource grows steadily, at a 
fixed percentage per year, we say the 
growth is exponential. For example, in-
vestment accounts may grow at 2% per 
year; the population of a region may 
grow at 3% per year, and electric power 
generating capacity in the United States 
may grow at about 7% per year (as oc-
curred during the first three-quarters of 
the twentieth century). 

Much of the growth in the world 
around us is exponential. The curve in 
Figure 1 depicts exponential growth 
for any of the above examples. Notice 
that each of the successive equal time 
intervals on the horizontal scale cor-

responds to a doubling of the quantity 
on the vertical scale. This doubling of 
quantity becomes startling when you 
find the car you financed to purchase 
costs nearly twice as much as if you 
paid cash. When the growth of a quan-
tity is exponential, the amount doubles 
in a certain interval of time. We speak 
of doubling time.

Doubling time
The importance of the exponential 
curve of Figure 1 is that the time re-
quired for the growing quantity to 
double in size, a 100% increase, is a 
constant. For example, if the popula-
tion of a growing city takes 10 years 
to double from 100,000 to 200,000 in-
habitants and its growth remains ex-
ponential, then in the next 10 years the 
population will double to 400,000 and 
10 years after that to 800,000 and so on.

There is an important relationship 
between the percent growth rate and 
its doubling time known as “the rule of 
70”: to estimate the doubling time for 
a steadily growing quantity, simply di-
vide the number 70 by the percentage 

growth rate. For example, if Bozeman, 
Montana, maintains an annual growth 
rate of 4%, its population will double 
every 17.5 years (70/4 = 17.5 years). 
Space for any growing population must 
be planned. A city planning commis-
sion that accepts what seems like a mod-
est 3.5% annual growth rate may not 
realize that this means that doubling 
will occur in 20 years; that’s a need for 
double capacity for such things as water 
supply, sewage-treatment plants, and 
other municipal services every 20 years. 

If you wait until your money in the 
bank doubles due to an interest rate of 
2% per year, get ready for a 35-year wait.

Exponentially growing bacteria
Steady growth in a finite environment 
gets interesting. Consider bacterial 
growth by cell division, in which one 
bacterium becomes two, the two di-
vide to become four, the four divide 
to become eight, and so on. Suppose 
the division time for a certain strain 
of bacteria is 1 minute. In this steady 
growth the number of bacteria grows 
exponentially with a doubling time of 
1 minute. Further, suppose that one 
bacterium is put in a bottle at 11:00 
a.m. along with adequate food, and 
that growth continues steadily until 
the bottle becomes full of bacteria at 
noon. 

Consider this question seriously: 
When was the bottle half full? What’s 
your answer? Can you see the bottle 
was half full at 11:59 a.m., 1 minute 
before noon? The bacteria indeed 
double in number every minute! It’s 
startling to note that at 2 minutes be-
fore noon the bottle was only 1/4 full. 
Table 1 shows the last few minutes be-
fore noon in the bottle. 

Figure 1. An exponential curve.
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Table 1
The Last Minutes in the Bottle

Time Part Full (%)
Part 
Empty

11:54 a.m. 1/64 (1.5%) 63/64
11:55 a.m. 1/32 (3%) 31/32
11:56 a.m. 1/16 (6%) 15/16
11:57 a.m. 1/8 (12%) 7/8
11:58 a.m. 1/4 (25%) 3/4
11:59 a.m. 1/2 (50%) 1/2
Noon full (100%) none

Here’s a more important question: If 
you were an average bacterium in the 
bottle, at what time would you first 
realize that you were running out of 
space? For example, would you sense 
a serious problem at 11:55 a.m., when 
the bottle was only 3% filled (1/32) 
with 97% of open space (just yearning 
for development)? The point here is 
that there isn’t always much time be-
tween the moment that the effects of 
exponential growth become noticeable 
and the time when they become over-
whelming.

Good news! More space has 
been found!
Suppose that at 11:58 a.m. some far-
sighted bacteria see that they are run-
ning out of space and launch a full-scale 
search for new bottles. Luckily, at 11:59 
a.m. they discover three new empty 
bottles, three times as much space as 
they had ever known (Figure 2). Four 
bottles quadru-
ples the total re-
source space. If 
they are able to 
migrate to their 
new habitats, 
will their prob-
lem be solved? 

Figure 2. Hooray 
for the discovery 
of three times as 
much space!

If their growth continues at an un-
changing rate, at what time would the 
three new bottles fill to capacity? Can 
you see it would be 12:02 p.m.! Just two 
minutes later!

Table 2
Effects of the Discovery of Three New 
Bottles

Time Effect
11:58 a.m. Bottle 1 is 1/4 full
11:59 a.m. Bottle 1 is 1/2 full
 Noon Bottle 1 is full
12:01 p.m. Bottles 1 and 2 are 

both full
12:02 p.m. Bottles 1, 2, 3, and 4 

are all full

Table 2 shows the effects of migration 
to the three new bottles. Only two dou-
bling times fills all bottles. At noon the 
original bottle is full. One minute later 
bottles 1 and 2 are filled. And two min-
utes later all four bottles are filled. In 
our example the resource is space—but 
it could as well be coal, oil, uranium, or 
any nonrenewable resource.

Water lilies and the 29th day
Picture a pond with a single lily pad. 
Suppose that each day the number of 
leaves doubles, until the pond is com-
pletely covered by leaves on the thir-
tieth day. First question: On what day 
was the pond half-covered? Second 
question: One-quarter covered? Third 
question, this one with no strict an-
swer: On what day did people who love 
the pond realize there was a growth 
problem? 

The game of chess
Doubling time is intriguingly illus-
trated by the story of the court math-
ematician in India who years ago 
invented the game of chess for his 
king. The king was so pleased with 
the game that he offered to repay 

the mathematician, whose request 
seemed modest enough. The math-
ematician requested a single grain 
of wheat on the first square of the 
chessboard, two grains on the second 
square, four on the third square, and 
so on (Figure 3), presumably for all 64 
squares. At this rate there would be 
263 grains of wheat on the sixty-fourth 
square. The king soon saw that he 
could not fill this “modest” request, 
which amounted to more wheat than 
had been harvested in the entire his-
tory of Planet Earth! 

Figure 3. Doubling grains of wheat on a 
chessboard.

It is interesting and important to 
note that each square contains one 
more grain than all the preceding 
squares combined. This is true any-
where on the board. Note that when 
eight grains are placed on the fourth 
square, the eight is one more than all 
previous grains of wheat, the total of 
seven grains that were already on the 
board. Or the 32 grains placed on the 
sixth square is one more than all previ-
ous grains of wheat, a total of 31 grains 
that were already on the board. We see 
that in one doubling time we add more 
than all that had been added in all the 
preceding growth! To repeat for em-
phasis: In one doubling time more 
growth occurs than in all preceding 
growth combined! 
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Table 3
Filling the Squares on the Chessboard

Square 
Number

Grains on 
Square

Total Grains 
Thus Far

1 1 1
2 2 3
3 4 7
4 8 15
5 16 31
6 32 63
7 64 127

Almost universally, people (and me-
dia) use the word “exponential” to mean 
“fast.” If growth is speedy, they call it 
exponential. But exponential growth 
isn’t always fast, as evidenced by money 
growing exponentially in your savings 
account with annual interest 0.5% that 
takes 140 years to double. 

The essential characteristic of expo-
nential change is not that it is fast but 
that it is relentless. We’re familiar with 
cases of COVID-19 that grow exponen-
tially and where small numbers of cases 
grow to be overwhelming—for a while. 

Where the doubling time of virus 
cases in some cities can be three or four 
days, continued exponential growth 
would multiply the cases more than 250-
fold in one month! The smaller the dou-
bling time, the sooner other factors come 
into play to end the exponential phase. 
What feeds the growth eventually sub-
sides, as with the 1918 flu epidemic.

Fortunately, unrestrained growth 
does not usually continue indefinitely. 
When personal growth is unrestrained, 
we have obesity—or worse, cancer. 
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Figure 4. Albert Bartlett. 
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