K–4 teachers, homeschoolers, camp leaders, and naturalists will find the standards-based lessons in this slim volume the perfect introduction to environmental science for young learners. Hop Into Action engages children in learning about amphibians through investigations that involve scientific inquiry and knowledge building. Developed in response to a global amphibian extinction crisis, this book will equip children with the necessary tools to protect amphibians and their environments.

Twenty hands-on learning lessons such as “Frog Pond Lifeguard” and “Camouflaged Critters” can be used individually or as part of a yearlong curriculum. Each lesson is accompanied by detailed objectives, materials lists, background information, step-by-step procedures, evaluation questions, assessment methods, and additional web resources. The activities can easily be integrated into other disciplines—such as language arts, physical education, art, and math—and are adaptable to informal learning environments.
The Amphibian Curriculum Guide for Grades K–4
CONTENTS

Preface ... vii
Acknowledgments .. ix
About the Author .. xi
Introduction ... xiii
How to Use This Book xv
Amphibian Curriculum Guide: Lesson
Correlations to National Science Education
Content Standards, Grades K–4 xvii
Educating With Amphibians in the
Classroom and Field xix
Safety Practices for Outdoors and
in the Classroom .. xxiii
Lessons for Prekindergarten Learners xxv
Resource List ... 111
Glossary .. 117
North American Association for
Environmental Education Guidelines
Alignment Chart ... 121
Index .. 127

Amphibian Education Lessons

1. How to Identify an Amphibian 1
2. Amphibian Encounter 7
3. Amphibian Metamorphosis 11
4. Lily Pad Venn Diagrams 19
5. Frog Hop Relay Race 27
6. Camouflaged Critters 31
7. Amazing Amphibian Migration 37
8. Frog Pond Soup 51
9. Frog Pond Web 55
10. Frog Pond Lifeguard 65
11. Audible Amphibian 73
12. Feeding Frenzy 77
13. Salamander Smell 79
14. Frog Pond Poetry 81
15. Ribbiting Discoveries in the Lily Pad Paper 85
16. Seasonal Discoveries Journal 89
17. Herp, Herp, Hooray 93
18. Frog Pond Choices 97
19. Frogville Town Meeting 101
20. Amphibian Art 107
Preface

Amphibian education and community involvement is critical at this time. We face a global amphibian extinction crisis. Of the more than 6,000 recognized species of amphibians, more than one third are suffering serious declines or have recently become extinct, despite having survived millions of years. If we do not educate our youth to appreciate, understand, and take action for amphibians and their environments, the amphibians are destined to go the way of the dinosaurs. The Hop Into Action curriculum guide was developed in response to this urgency in order to arm educators from a variety of settings with tools they can use to incorporate effective environmental education for learners in kindergarten through fourth grade.

As an educator, you are the audience for this guide, which offers 20 lessons that can be used individually or as a curriculum. In addition it

- includes interdisciplinary approaches to curriculum areas to meet national standards;
- is designed for classroom teachers, home school educators, naturalists, and camp leaders;
- provides lessons geared for grades K–4, with some appropriate content and extensions for younger and older grade levels; and
- was created from the firsthand experience of educators in both formal and informal learning environments.

Because amphibians form a link between aquatic and terrestrial environments, they offer exciting opportunities for education and also can be used to educate across multiple subject areas. Educating students about these species will be critical to foster awareness and social concern that may one day lead to stewardship and conservation. Lessons provide opportunities for students to build skills as environmental advocates and understand the vital need to protect our living world.

Through active, hands-on learning about the environment, children develop the knowledge and skills to address challenges in their communities while contributing to their own academic achievement.
Acknowledgments

Developed over five years of teaching outdoor environmental education, *Hop Into Action* is a collection of lessons for facilitating children’s activities in the natural world. All creative works depend on experiences that preceded them, and this curriculum guide is no exception. In that light, I’d like to offer my thanks to those teachers, professors, naturalists, and other environmental education facilitators who have captured my attention and imagination and made my learning experiences both fun and meaningful. Finally, I owe my first debt of gratitude to my parents, who encouraged me to run free in the natural world, even if it meant coming home covered in both mud and duckweed and leaving a trail of smelly boots and other equipment to greet visitors at the door.
About the Author

David Alexander is an experienced naturalist who uses the environment to educate a diverse group of students at all age levels. He earned his graduate degree in environmental science, conservation biology at Green Mountain College and his bachelor’s degree in natural resources at the University of Vermont. His enthusiasm and curiosity for the natural world is boundless.
Introduction

Hop Into Action is an amphibian education curriculum designed for grades kindergarten through fourth grade in a way that allows students to apply knowledge from one lesson to others in the field and classroom. This cross-disciplinary curriculum guide introduces children to the joy of amphibians through investigations that involve scientific inquiry and knowledge building, while treating science as a process and not as memorization. In turn, these lessons bridge the gap between knowledge and action by promoting critical thinking, problem-solving skills, and collaboration to help students become advocates for the environment.

Lessons are offered sequentially, but they may be used out of sequence if students are learning at the grade level listed and educators are familiar with students’ prior knowledge. Lessons are tailored to allow for extensions to multiple learning styles as needed for students who experience and process information differently. For example, kinesthetic learners will be provided the opportunity to have a concrete experience feeling a frog in the lesson about amphibian identification or using clay to demonstrate metamorphosis. Visual learners will benefit when participating in the creation of lily pad Venn diagrams or frog pond habitat webs that allow students to represent information spatially. Auditory learners will benefit from the discussion built into each lesson and specifically benefit from the lesson “Audible Amphibians,” which offers the opportunity to hear the calls of frogs and toads. Finally, learners who enjoy and benefit most from reading and writing will love the stories provided as resources and thrive when participating in the lessons “Ribbiting Discoveries in the Lily Pad Paper” and “Seasonal Discoveries Journal.”

Lessons also provide students with an understanding of career pathways as they act as biologists, herpetologists, ecologists, reporters, and park naturalists to investigate frog ponds.

The lessons included are designed to take advantage of and exercise children’s natural curiosity about the environment using observation, photographs, games, and direct instruction. The curriculum includes reference materials such as field guides, websites, and storybooks that complement lessons and allow for study of species found in your own region. I hope you and your students learn to love, appreciate, and protect amphibians as a result of the fun and educational ideas provided in this guide.
How to Use This Book

Each lesson plan includes basic information for the instructor to determine if the activity will meet his or her needs. The following information is provided: grade/ability level, subject area, skills used, class setting, time required, and group size. Lessons describe in detail the objectives or observable student outcomes of each lesson; method of meeting the objectives for each lesson; materials required to perform the lesson; background information that will help educate the instructor about the lesson topic; a procedure to follow for presenting each lesson; evaluation questions and methods to assess the knowledge of students after the lesson; extensions that provide additional study related to the lesson; and resource information that includes books, audiovisual references, and web resources.

The activities in this guide were designed to meet content standards outlined in the National Science Education Standards and the North American Association for Environmental Education’s Excellence in Environmental Education: Guidelines for Learning (PreK–12).

Educators should modify their use of lessons to meet the learning goals of their students’ ages and ability levels. Permission is granted in advance for reproduction for purpose of classroom or workshop instruction. To request permission for other uses, send specific requests to publisher.

The following table outlines the grade levels and subject areas covered for each lesson:

<table>
<thead>
<tr>
<th>Lesson Name</th>
<th>Grades</th>
<th>Subject Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>How to Identify an Amphibian</td>
<td>K–4</td>
<td>Science, Language Arts, Art</td>
</tr>
<tr>
<td>Amphibian Encounter</td>
<td>K–3</td>
<td>Science, Language Arts</td>
</tr>
<tr>
<td>Amphibian Metamorphosis</td>
<td>K–2</td>
<td>Science, Drama, Art</td>
</tr>
<tr>
<td>Lily Pad Venn Diagrams</td>
<td>3–4</td>
<td>Science, Language Arts, Math</td>
</tr>
<tr>
<td>Frog Hop Relay Race</td>
<td>K–2</td>
<td>Science, Physical Education</td>
</tr>
<tr>
<td>Camouflaged Critters</td>
<td>K–2</td>
<td>Science, Art</td>
</tr>
<tr>
<td>Amazing Amphibian Migration</td>
<td>2–4</td>
<td>Science, Language Arts, Physical Education</td>
</tr>
<tr>
<td>Frog Pond Soup</td>
<td>3–4</td>
<td>Science, Language Arts</td>
</tr>
<tr>
<td>Frog Pond Web</td>
<td>3–4</td>
<td>Science, Language Arts</td>
</tr>
</tbody>
</table>
Lesson Name | Grades | Subject Areas
--- | --- | ---
Frog Pond Lifeguard | 4 | Science, Language Arts
Audible Amphibian | 1–4 | Science
Feeding Frenzy | K–4 | Science, Physical Education, Math
Salamander Smell | 2–4 | Science
Frog Pond Poetry | 3–4 | Science, Language Arts
Ribbiting Discoveries in the Lily Pad Paper | 3–4 | Science, Language Arts, Media, Art
Seasonal Discoveries Journal | 3–4 | Science, Language Arts
Herp, Herp, Hooray | 4 | Science, Language Arts
Frog Pond Choices | 4 | Science, Language Arts
Frogville Town Meeting | 4 | Science, Language Arts, Civics
Amphibian Art | 2–4 | Science, Art, Language Arts, History

Resource Information

Amphibian Curriculum Guide

Lesson Correlations to National Science Education

Content Standards, Grades K–4

<table>
<thead>
<tr>
<th>Lesson</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Science as Inquiry</td>
<td></td>
</tr>
<tr>
<td>Abilities necessary to do scientific inquiry</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Understanding about scientific inquiry</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>B. Physical Science</td>
<td></td>
</tr>
<tr>
<td>Properties of objects and materials</td>
<td></td>
</tr>
<tr>
<td>Position and motion of objects</td>
<td></td>
</tr>
<tr>
<td>C. Life Science</td>
<td></td>
</tr>
<tr>
<td>The characteristics of organisms</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life cycles of organisms</td>
<td></td>
</tr>
<tr>
<td>Organisms and environments</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Earth and Space Science</td>
<td></td>
</tr>
<tr>
<td>Properties of Earth materials</td>
<td></td>
</tr>
<tr>
<td>Changes in the Earth and sky</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2010 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
Content Standard	Lesson	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20		
E. Science and Technology	Abilities of technological design	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
	Understanding about science and technology	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	Abilities to distinguish between natural objects and objects made by humans	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
F. Science in Personal and Social Perspectives	Characteristics and changes in populations	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	Changes in environments	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	Science and technology in local challenges	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
G. History and Nature of Science	Science as a human endeavor	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Amphibian Curriculum Guide

Lesson Correlations to National Science Education Content Standards, Grades K–4 (cont.)

Copyright © 2010 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
Educating With Amphibians in the Classroom and Field

Amphibians in the Classroom

Due to the care and commitment required, educators should always receive permission from administrators before moving forward with housing amphibians in a nature center, recreation center, or classroom. Teachers should check with their board of education, school administrators, and the school nurse before housing amphibians in a classroom or handling them in the outside environment. Educators should have a plan in writing that describes any necessary funding and a care schedule that takes into account weekends and school breaks.

In a classroom, it is important that amphibians act as “Animal Ambassadors” that help educate students about their respective species. If, as an educator, you choose to host an animal ambassador, you may want to consult your students before making all the decisions. Consider the following questions:

- How would you create a habitat for the amphibian that provides basic needs and closely resembles the natural habitat? What does the amphibian need to survive? How can we create a habitat in our classroom that includes all of these things? Consider moisture, light, temperature, and food.
- What do amphibians need to eat? Do they eat the same things at all life stages?
- Should we hold and handle the amphibian?
- How long should we keep the animal in this artificial or model habitat?

Giving children the chance to help with this planning process will allow them to think deeply about the ways habitats meet the needs of animals. Ultimately, an amphibian in the classroom should be treated as an ambassador of its species and cared for with the utmost respect through responsible handling, feeding, maintenance, and general care schedules. Only one species of amphibian should be maintained in a classroom at one time, and it should not come into contact with anything else shared with other animals unless sterilized for health and safety reasons.

There are many biological science suppliers that offer live amphibians for classroom use; however, they may only be available at certain life stages throughout the seasons and require planning ahead. After the completion of the curriculum,
amphibians purchased for use in the classroom should not be released into nearby habitats, but rather kept and cared for until the end of their lives. You may find your local herpetological society helpful at finding someone who can provide the care needed or at last resort a veterinarian can euthanize according to the American Veterinary Medical Association’s (AVMA) Guidelines on Euthanasia.

This is important because releasing captive amphibians can spread disease or organisms against which native wildlife may not have immunity. The released amphibians may also not be native to the habitat or not have time to adjust to the seasonal changes taking place and therefore not capable of survival.

If amphibians are collected outside for short-term classroom use (see permits on following page) they may be released at the capture site so long as proper sanitation procedures were followed (as outlined on the following page).

There are many opportunities to educate students about how to care for amphibians. Anne Mazer’s book *The Salamander Room* is a great place to start a discussion regarding the responsibilities involved for younger learners. It is also important to distinguish the fantasy from reality found in books and movies so students begin thinking about the basic needs of living things and how they are met.

Amphibians in the Field

The best place to learn about the environment is the natural environment. The proximity of a pond to a classroom allows a much more intimate relationship with nature in terms of students being able to observe it with relatively little time and effort involved. It also helps to use local natural and cultural surroundings as the context for instruction and learning. When this place-based education is implemented, students and community members can benefit from partnerships.

Many students will benefit from opportunities to move in and out of open and focused explorations in a natural setting. When students are asked to focus their attention toward work, reading, or tests, they can feel fatigued. When they have opportunities for open exploration, involuntary attention can take over, giving the brain time to relax, in turn leading to better behavior and concentration. In addition, offering students playful learning opportunities can lead to better academic success and both interest in and excitement about the subject area.

Students should be briefed about what they might see outside, as some may be timid or scared if they have not had experience exploring the natural world. You should also discuss general discipline with students, including school rules that apply while outside.

Amphibian habitats may be found with assistance from a local environmental center, parks and recreation department, or state fish and wildlife agency. If your organization does not have access to a pond or other suitable habitat, you should consider creating a backyard or schoolyard habitat. Excellent resources exist from both the National Wildlife Federation and Tree Walkers International that will
help you build a pond habitat suitable for amphibians. Remember that depending on the distance and weather conditions, field outings may require field essentials such as rain gear, rubber boots, waders, waterproof notebooks, and more (review Safety Practices for Outdoors and in the Classroom, p. xxiii). For younger students, you may even choose to consider life jackets as a safety precaution.

Handling Techniques

As with handling all life, we must show our students how to be respectful. It is important that all handlers wash their hands before and after holding or touching an amphibian. Improper handling of amphibians can be detrimental to their health, so an adult should always be present to assist. One technique that should be encouraged is to sit low while holding an animal so if it squirms or hops there won’t be an injuring fall. Gently touching with one finger should also be encouraged.

Things to remember:

- Return amphibians to the same location where they were found. If found under a log or rock, place the amphibian next to the cover item and return the cover item as it was found. Consider the cover item to be similar to the roof of a house. It maintains a microclimate that the amphibian requires.
- Avoid getting insect repellent, sunscreen, or other personal care products on hands, as it may absorb into the skin of the amphibian.
- If you are exploring outside environments, be careful not to disturb the habitat you wish to study. You may remind younger students of this by explaining that “plants grow by the inch but die by the foot.”

Disinfectant Techniques

Before and after placing amphibians in tanks or in contact with equipment—including nets, filters, and boots—a disinfectant should be applied to the equipment. First clean with a detergent and rinse clean prior to bleaching. A 1% solution of household bleach (usually a 4% solution of sodium hypochlorite) can be made using one part household bleach to three parts water; a minimum contact time with equipment of 15 minutes is necessary.

It is also important to age chlorinated water for 24 hours, or use a drop of Chlor Out to dechlorinate water before introducing the animal, or the chlorine can harm it.

Permits

Care should be taken to acquire all necessary information and permits before purchasing or collecting wildlife, as some species may be threatened or endangered. There may be national laws as well as state laws that restrict and regulate what
species are available for outside handling or inside education. Your state department of environmental protection or fish and game should be able to provide you with a list of protected species and permit applications.

Resource Information

American Veterinary Medical Association (AVMA). www.avma.org

National Science Teachers Association. Responsible use of live animals and dissection in the science classroom. NSTA. www.nsta.org/about/positions

Safety Practices for Outdoors and in the Classroom

Outdoors
1. Teachers should always visit outdoor areas to review potential safety hazards prior to students carrying out activities.
2. Keep clear of outdoor areas that may have been treated with pesticides, fungicides, or other hazardous chemicals.
3. When working outdoors, students should use appropriate protective equipment, including safety glasses or safety goggles (if working with hazardous chemicals), gloves, closed-toed shoes, long-sleeve shirts and pants.
4. Caution students of poisonous plants (e.g., poison ivy, sumac), insects (e.g., bees, ticks, mosquitoes), and hazardous debris (e.g., broken glass).
5. Teachers need to inform parents in writing of on-site field trips relative to potential hazards and safety precautions taken.
6. Teachers need to check with the school nurse relative to student medical issues (e.g., allergies, asthma). Be prepared for medical emergencies.
7. Teachers need to have a means of communication (cell phone, two-way radio) in case of emergencies.
8. Wash hands with soap and water after doing activities outdoors.
9. Contact the main office prior to taking classes out of the building.

In the Classroom
1. Always review Material Safety Data Sheets (MSDS) with students to go over safety precautions in working with hazardous chemicals.
2. Remind students only to observe animals. Do not touch or pick up animals unless instructed to do so by the teacher.
3. Use caution in working with sharp objects such as scissors or glass slides.
4. Wear protective gloves when handling animals.
5. Do not eat or drink anything in the science lab or when handling animals.
6. Wash hands with soap and water after doing activities with hazardous chemicals, soil, or biologicals (plants or animals).
7. To disinfect cages and other equipment used in animal care, first wash the items in hot water with detergent. Scrape off stuck material. Rinse with plain water. Apply a bleach solution (½ cup household bleach to 1 gallon of water). Let cage and equipment sit in the bleach solution for a minimum of 20 minutes. Rinse again with plain water.
8. Use caution when working with clay. Dry or powdered clay contains a hazardous substance called silica. Only work with and clean up clay when wet.
Lessons for Prekindergarten Learners

While this guide was designed to provide comprehensive lessons to educators in kindergarten through fourth grade, provided here are lesson ideas for prekindergarten educators looking to add live event learning and hands-on science for little explorers.

Slime: Have children experience an amphibian-like substance with their sense of touch. Place the following ingredients in a plastic bag: 1 cup cornstarch, ½ cup water, green food coloring. Remove the air and knead the bag slowly until the mixture is well blended. Allow children to touch and play with the slime, but remind them not to taste it!

Getting Dirty: Have children play and experiment with mud (know the source of the dirt and make sure it is free of pesticides). Wash hands with soap and water after the lesson.

Sink or Float: Have children experiment with a water table to determine what sinks or floats. Predictions followed by results can be recorded on a chart.

Follow the Frog: Place amphibian pictures along a trail for children to find on their walk to the pond.

Hop Around: Follow the leader and imitate the movements of amphibians or other pond life.

Matching Frogs: Create a matching game where children must find like colors of frogs and pair them together. Or pair baby and mommy animal pictures.

Feeding Frenzy: Have children search around a field for “frog food” or strips of felt that represent the different foods frogs would find. Discuss what colors were easiest to find and why.

Tools of the Trade: Have children practice using hand lenses to discover details and see more in nature.

Seasonal Discovery: Have children revisit a pond or natural area monthly so they have opportunities to notice as much seasonal change as possible. Scavenger hunts can be added to the nature walk.

Frog Puppets: Have children paste premade pieces onto a paper bag to create their own frog puppets.

Popsicle Puppets: Have children color animals and paste them on sticks. They can be raised and lowered when the animals appear in a story or cast onto a sheet as shadows.
Prekindergarten Books
Lesson 4:
Lily Pad
Venn Diagrams

Objectives
Students will be able to identify the similarities and differences between amphibians as they compare and contrast two different species.

Method
Students compare and contrast the similarities and differences between amphibians using Venn diagrams.

Materials
Lily Pad Venn Diagrams worksheets, pencil, visual reference to amphibians

Background Information
Amphibians come in many shapes, sizes, and colors and can be described and identified using language that appeals to our senses of sight, touch, and hearing. When students compare different amphibians, they are more likely to think deeply about the physical and behavioral characteristics that make each unique. Students may discover unique characteristics that showcase the differences between amphibians and also begin to recognize their similarities. An example of the physical differences students may observe is that adult salamanders and newts have a tail and adult frogs do not. Students may also visually notice the behavioral characteristics that are unique after watching frogs jump and salamanders walk, or they may listen and notice that frogs and toads can be told apart by their calls but salamanders and caecilians do not call. Students will also notice that most amphibians are cold-blooded, have moist skin, and undergo metamorphosis.

Grade Level: 3–4
Subject Area: science, language arts, math
Skills: analysis, description, identification
Setting: inside or outside
Lesson Duration: 30 minutes
Group Size: no minimum size
National Science Education Standards, Grades K–4
• Life Science: The characteristics of organisms
Lily Pad Venn Diagrams

Procedure

1. Read a story or show pictures to begin a discussion about the physical and behavioral characteristics of amphibians.
2. Engage students in a descriptive conversation about the similarities and differences between frogs, toads, salamanders, newts, or caecilians. You may first choose to create a T-chart to help graphically organize student answers, listing characteristics of one amphibian on one side of the chart and characteristics of another on the other side of the chart. This can be started by asking students an open-ended question, such as what they notice about each animal or what the book says about each animal.
3. Introduce students to Venn diagrams by inserting their answers from the T-chart into the circles on the Venn diagram. Ask them what the amphibians have in common and fill in the overlapping portion that includes shared characteristics.
4. Depending on the ability of students, you may choose to provide a list of key characteristics to be used in the Venn diagram or allow students to research these characteristics on their own or in groups.
5. If available, show students the species side by side, with animals in a tank or outside, so that they may compare and contrast while observing the living species. If living species are not available, prepare pictures for visual reference.

Reflect and Explain

- What are the similarities and differences between the amphibian species you compared and contrasted?
- Based on similarities between amphibians, how would you define an amphibian?
- Attach a picture of one frog and one toad on each side of a display board or in a T-chart. Create text cards with characteristics that can be attached to the board underneath the animal or in between if the characteristic is shared by both the frog and toad.
- Place amphibian pictures into a pond net. Ask students to pull cards out of the net and decide if they are a frog, toad, salamander, newt, or caecilian. They should explain why.
- Write a comparison essay using the Venn diagram or T-chart that was created.
Extensions

- Create a Venn diagram to compare and contrast amphibians and humans.
- Create a Venn diagram to compare reptiles and amphibians. Discuss the slimy skin of amphibians and the scaly skin of reptiles.
- Make up a story about an amphibian or other animal using vocabulary that describes their characteristics. See if the group can figure out what amphibian the student was discussing based on descriptive writing.

Resource Information

Lily Pad Venn Diagrams

Frogs
- Slimy, smooth skin
- Have teeth in top jaws
- Bulging eyes
- Lay eggs in clusters
- Jump
- Long hind legs

Salamanders
- Walk
- Strong sense of smell
- Fertilized internally

Both
- Are amphibians
- Have a brain
- Have a heart
- Have a backbone
- Hatch from eggs
- Young have gills
- Young live in water
- Adults have lungs
Reptiles
- Dry scaly skin or shell
- Leathery eggs laid on land (some have live young)
- Young same shape as adult
- Breathe with lungs at all times
- May have claws

Amphibians
- Jelly-like eggs laid in water
- Replace gills with lungs in adulthood
- Young different shape from adults
- Most young live in water
- Adults have lungs
 - No claws
 - Moist skin

Both
- Have a brain
- Have a backbone
- Have a heart
- Cold-blooded
- Breathe air

Copyright © 2010 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
Lily Pad Venn Diagrams

Write the descriptive characteristics into the frogs and toads Venn diagram.

- Are amphibians
- Jump
- Walk
- Hatch from eggs
- Young live in water
- Adults have lungs
- Have a backbone
- Have vocal sacs
- Go through complete metamorphosis
- Spend most time on land

- Bulging eyes
- Lay eggs in clusters
- Lay eggs in chains
- Young have gills
- Long hind legs
- Slimy, smooth skin
- Dry, watery skin
- Poison glands behind eyes
- Have no teeth
- Have teeth in top jaws

Copyright © 2010 NSTA. All rights reserved. For more information, go to www.nsta.org/permissions.
Lily Pad Venn Diagrams

Name(s): ___

Write the descriptive characteristics into the frogs and salamanders Venn diagram.

- Bulging eyes
- Jump
- Strong sense of smell
- Have a brain
- Have a heart
- Have a backbone
- Young live in water
- Adults have lungs

- Walk
- Fertilized internally
- Have vocal sacs
- Fertilized externally
- Are amphibians
- Hatch from eggs
- Young have gills
Lily Pad Venn Diagrams

Write the descriptive characteristics into the reptiles and amphibians Venn diagram.

- Dry scaly skin or shell
- Replace gills with lungs in adulthood
- Have a heart (some have live young)
- Breathe with lungs at all times
- Have a backbone
- Moist skin
- Most young live in water
- Have a brain
- Young same shape as adult
- Cold-blooded
- Eggs laid on land
- Eggs laid in water
- Young different shape from adults
- Adults have lungs
- No claws
Index

A
Abiotic organisms, 51, 55, 117
Acid rain, 56
Action pledge, conservation, 96
Adaptation, 1
Algae, 51
Allergies, xxiii
Amphibian Specialist Group, website, 114
Amplexus, 11, 117
Analysis skill development, 19, 27, 51, 55, 65, 73, 77, 79, 81, 85, 89, 93, 97, 101, 107
Anura, 117
Application skill development, 27, 55, 65, 73, 77, 79, 85, 101, 107
Aquatic organisms, 12, 28, 56, 63, 65–71, 113, 117, 119
Aquatic worms, 56, 63, 70
Arboreal, 117
Arboreal, 117
Army of frogs, 117
Arrowheads, 60
Asthma, xxiii
Audio aids, 112

B
Backbone, 21–23
Basho, Matsuo, 81
Basking, 117–118
Bees, cautioning students regarding, xxiii
Beetles, 51, 56
Behavior of amphibians, 10
Behaviors, 8, 10, 37, 117
Bio-indicators, 117
Biodiversity, 115, 117
Biotic organisms, 51, 55, 117
Biotic parts, 51
Blackfly larvae, 70
Bleach, use as disinfectant, xxi
Body parts, regeneration of, 32
Body temperatures, regulation of, 89
Brain, 22–23
Brightly colored organisms, camouflage, 31
Broken glass, cautioning students regarding, xxiii
Bullfrogs, 64

C
Caddis fly nymphs, 70
Caecilian, 2, 4, 20, 28, 117
structure of, 4
Camouflaged organisms, 31–35
Captivity, 94, 117
Carnivores, 57, 117
Cattails, 51, 60
Cell phone use, xxiii
Chains, laying eggs in, 21
Chamber of commerce, perspective of, 103
Characteristics of organisms, 1, 7, 11, 19, 27, 31, 55, 65, 73, 77, 79, 81, 85, 89, 101, 107
Chemicals, hazardous, outdoor areas treated with, xxiii
Children’s books, 111–112
Chlor Out, use as disinfectant, xxi
Chytrid fungi, 117
Citizen scientists, 38, 66, 117
Civic involvement, 94, 101–105
Clams, 51
Claws, 23
Closed-toed shoes, xxiii
Clusters, laying eggs in, 22
Cold-blooded organisms, 2, 19, 23, 26, 89, 117, 119
Coloration, 31–32
Communication issues, xxiii
Community stakeholders, 101–105
Conservation, 9, 66, 86, 93–96, 102, 104, 113–114, 117
perspective of coalition, 104
pledge of action, 96
programs for, 93
Construction workers union, perspective of, 104
Consumer organisms, 57, 117
Cordillera Central, Colombia, conservation
program, 93–94
Crane fly larvae, 70
Crayfish, 51
Cycles of life, 9, 11, 14–15, 51, 89–90, 111, 118–119

D
Dart frogs, 119
Debris, hazardous, cautioning students
regarding, xxiii
Decomposer organisms, 56–57, 117
Deformity, 12, 117
Democracy, 101, 117
perspective of, 101
Department of Transportation, 114
Description of amphibians, 1
Description skill development, 19, 27, 31, 37, 51, 55, 73, 77, 79, 81, 85, 89, 93
Deserts, adaptation for survival in, 1
Designs, technological, 37, 65, 97, 101
Disinfectant techniques, xxii
Disturbing habitat, avoiding, xxii
Diurnal patterns, 118
Diversity, 38, 66, 74–75, 114, 118
Dragonflies, 51, 60, 70
Drama, 11, 19–26
Drawing skills, 1, 31, 85, 89
Dry skin, 21
Ducks, 51, 60
Duckweed, 60

E
Eardrums, tympanic membrane, 74
Earth materials, properties of, 51
Ecology, 55–64, 113, 115, 118
Ecosystems, 51, 55–57, 67, 69, 117–118
living parts of, 51
Ecotourism, 94
Ectothermic organisms, 89, 117–118
Eggs, 10–14, 16, 21–22, 38, 60, 67, 90, 118
Elementary school environmental club,
perspective of, 104
Endangered species, 102, 107–109, 113, 118
Endoskeleton, 118
Energy, movement from sun to plants, 56
Environmental consultants, perspective of, 104
Environments, 7, 27, 31, 37, 51, 55, 65, 73, 77, 79, 81, 85, 89, 97, 101, 107
changes in, 37, 55, 101, 107
Equipment, protective, use of, xxiii
Evaluation skills, 97
Extinction, 86, 118–119
Eyes
bulging, 22
poison glands behind, 21

F
Fat within body, 90
Federal Highway Administration Critter
Crossing, website, 114
Feeding patterns, 77–78
Field guides, 112
Fields, adaptation for survival in, 1
Fish, 51
Food
chain, 118
web, 64, 66, 118
Forests, adaptation for survival in, 1
Found location, returning amphibians to, xxii
structure of, 4
Frost, Robert, 81
Fungi, chytrid, 117
Fungicides, outdoor areas treated with, xxiii

G
Gills, 11–13, 21–26, 29, 118
Gland, parotid, 118
Goggles, use of, xxiii
Grade levels
4, 65, 93, 97, 101
1-4, 73
2-4, 37, 79, 107
3-4, 19, 51, 55, 81, 85, 89
K-2, 11, 27, 31
K-3, 7
K-4, 1, 7, 11, 19, 27, 31, 37, 51, 55, 65, 73, 77, 79, 81, 85, 89, 93, 97, 101, 107

H
adaptation for survival in, 1
creating, 113
destruction of, 38, 57, 108, 118
disturbing, xxii
fragmentation of, 38, 118
livability of, 51
Hazardous chemicals, outdoor areas treated with, xxiii
Heart, 22–23
Herbivore organisms, 57, 77, 118
Heron, 60
Herpetologists, 8, 38, 118
Herpetology, 113, 118

Hibernation, 38, 90, 118–119
Hind legs, frogs, 22
History of science, 1, 107–109
Housing corporation, perspective of, 103
Human endeavor, science as, 31, 65, 73, 93, 97, 101, 107
Human-made objects, natural objects, distinguishing, 51

I
Identification of amphibians, 1–5
Identification skills, 19, 31, 37, 55, 65, 73, 77, 79, 89
Indicator species, 12, 56, 66, 118
Inferences, 37, 55, 77, 79, 85, 89, 101
Informing parents of field trips, xxiii
Insect repellent, avoiding hand contact, xxii
Insects, cautioning students regarding, xxii
Interconnectedness, 9, 118
Invertebrates, 65, 67, 69–70, 118

J
Jelly-like eggs, 23
Journal writing, 89–92

L
Lakes, 12, 40, 86, 91, 102–104, 112, 118–119
Larva, 11, 118
Leathery eggs, 23
Life cycles of organisms, 9, 11, 14–15, 51, 55, 89–90, 101, 111, 118–119
Lily pad Venn diagrams, 19–26
Liverworts, 51
Living parts of ecosystem, 51
Long-sleeve shirts, xxiii
Lungs, 21–23, 118

M
Macroinvertebrates, 28, 66, 118
Material Safety Data Sheets, xxiii
Mathematics, 19, 27–29, 77–78
Mayfly nymphs, 70
Index

Media, 85–87
Medical issues, xxiii
Metamorphosis, 11–17, 19, 21, 24, 38, 90, 118
parts, 11
Midge larvae, 70
Migration, 37–49, 118
cards, 42–49
worksheet, 41
Mosquito larvae, 70
Mosquitoes, 51
cautioning students regarding, xxiii
Mosses, 51
Motion of objects, 27

N
National Phenology Network, website, 114
National Science Education Standards, 1, 7, 11,
19, 27, 31, 37, 51, 55, 65, 73, 77, 79, 81,
85, 89, 93, 97, 101, 107
National Wildlife Federation, Frog Watch USA,
website, 114
Native habitats, camouflage blending into, 32
Natural objects, human-made objects,
distinguishing, 51, 55
Nature of science, 1, 7
Newspaper, composition of, 85–87
Nocturnal organisms, 78, 118
North American Association for
Environmental Education Guidelines
Alignment Chart, 121–125
North American Reporting Center for
Amphibian Malformations, website, 114

O
Obtaining permits, xxii–xxii
Omnivore organisms, 57, 118

P
Paper, composition of, 85–87
Parasites, 66
Parents, informing of field trips, xxiii
Parotid gland, 118
Partners in Amphibian and Reptile
Conservation, website, 114
Permeability, 2, 56, 66, 119
Permits, obtaining, xxii–xxii
Personal care products, avoiding hand contact,
xxi
Perspectives, varying, 101–105
Pesticides, 56
outdoor areas treated with, xxiii
Phenology, 89, 91, 114, 119
Physical education, 27–29, 37–49, 77–78
Pickerelweeds, 60
Planning board, perspective of, 103
Pledge of action, conservation, 96
Points of view, community stakeholders,
101–105
Poison dart frog, 119
Poison glands behind eyes, 21
Poison ivy, cautioning students regarding, xxiii
Poisonous plants, cautioning students
regarding, xxiii
Poisons, secretion by skin, 31
Pollutants, 12, 56, 66, 119
Pond ecology, 55–64
Populatin:, changes in, 37, 55, 101, 107
Position objects, 27
Posture, 32, 119
Prairies, adaptation for survival in, 1
Predators, 12, 28, 31–32, 56–57, 77, 119
aquatic, 12
Prekindergarten learners, xxv–xxvi
Preparation for medical emergencies, xxiii
Prey, 12, 28, 31–32, 38, 46, 56–58, 77–79, 119
Producer organisms, 57, 95, 112, 119
Properties of objects, materials, 51
Protective equipment, use of, xxiii
Public speaking, 93, 97, 101
Index

R
Ranita Dorado Amphibian Reserve, conservation program, 94
Regeneration of body parts, 32
Regulation of body temperatures, 89
Reptiles, 23, 114, 119
Returning amphibians to location, xxi

S
Safety glasses, use of, xxiii
metamorphosis, 13
sense of smell, 79–80
structure of, 4
Scavenger beetles, 56
Scientific equipment suppliers, 113
Scuds, 70
Seasonal discoveries journal, 89–92
Self-efficacy, 94
Senior citizens group, perspective of, 103
Sense of smell, 79–80
Shoes, closed-toed, xxiii
Situation statements, 102
Skin
dry, 21
dry scaly, 23
moist, 23
permeability, 56, 66
poisons secreted by, 31
slimy, smooth, 22
Sky, changes in, 65, 85, 89
Small-group work, 1, 7, 27, 37, 51, 55, 77, 79, 97, 101
Smell, sense of, 22
Snails, 70
Snakes, 60
Social skills, development of, 94
Society for Study of Amphibians and Reptiles, website, 114
Sodium hypochlorite, use as disinfectant, xxi
Sources of water, 7
Spawning, 119
Species, 12
Spermatophore, 12
“Spring Days,” 81
“Spring Pool,” 81
Stakeholders, 101–105, 119
Stored fat within body, 90
Stonefly larvae, 70
Structure of amphibians, 4
Student medical issues, xxiii
Sumac, cautioning students regarding, xxiii
Sunlight, 51–52
Sunscreen, avoiding hand contact, xxi
Swainson’s poison frog, 94
Swamps, 91, 112–113, 119
Synthesis skills, 65, 73, 93

T
Tadpoles, 11–13, 15–16, 86, 112, 118–119
Tail, regeneration of, 32
Technological designs, 37, 65, 97, 101
Technology, 65, 73, 93, 97, 101
Teeth, 21–22
Temperatures, regulation of, 89
Terrestrial organisms, 12, 56, 119
Terrestrial predators, 12
Tetrapods, 1, 119
Thousand Friends of Frogs, website, 113
Threatened species, 95, 107–108, 114, 119
Ticks, cautioning students regarding, xxiii
Toads, 14, 20–21, 73–75, 100, 112, 119
Torpor, 90, 119
Toxicity, 31, 119
Tree Walkers International, website, 114
Turtles, 51, 60
Two-way radio use, xxiii
Tympanic membrane, 74, 119
U
U.S. Department of Transportation: Federal Highway Administration Critter Crossing, website, 114
USA National Phenology Network, website, 114

V
Varying perspectives, 101–105
Venn diagrams, 19–26
Vernal Pool Association, website, 115
Vernal pools, 12, 115, 119
Vertebrae, 119
Vertebrates, 11, 119
Video aids, 112
Vocal sacs, 21
Vocalizations, 73–75, 119

W
Water, 22–23
life in, 21
as place to lay eggs, 8
pollutants in, 66
quality indicators, 66
sources of, 7
Web resources, 113–115
Webbed feet, 27
Wetlands, adaptation for survival in, 1
Working together, 101–105
Worms, 51, 56, 70
Writing of journal, 89–92