Chapter 5. Evaluation of Functions

5.0 Introduction

The purpose of this chapter is to acquaint you with a selection of the techniques
that are frequently used in evaluating functions. In Chapter 6, we will apply and
illustrate these techniques by giving routines for a variety of specific functions.
The purposes of this chapter and the next are thus mostly in harmony, but there
is nevertheless some tension between them: Routines that are clearest and most
illustrative of the general techniques of this chapter are not always the methods of
choice for a particular special function. By comparing this chapter to the next one,
you should get some idea of the balance between “general” and “special” methods
that occurs in practice.

Insofar as that balance favors general methods, this chapter should give you
ideas about how to write your own routine for the evaluation of a function which,
while “special” to you, is not so special as to be included in Chapter 6 or the
standard program libraries.

CITED REFERENCES AND FURTHER READING:

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall).

Lanczos, C. 1956, Applied Analysis; reprinted 1988 (New York: Dover), Chapter 7.

5.1 Series and Their Convergence

Everybody knows that an analytic function can be expanded in the neighborhood
of a point xp in a power series,

fl@) =) ar(x — o) (5.1.1)

k=0

Such series are straightforward to evaluate. You don’t, of course, evaluate the kth
power of © — x(ab initio for each term; rather you keep the k — 1st power and update
it with a multiply. Similarly, the form of the coefficients a is often such as to make
use of previous work: Terms like k! or (2k)! can be updated in a multiply or two.

165

166 Chapter 5. Evaluation of Functions

How do you know when you have summed enough terms? In practice, the
terms had better be getting small fast, otherwise the series is not a good technique
to use in the first place. While not mathematically rigorous in all cases, standard
practice is to quit when the term you have just added is smaller in magnitude than
some small € times the magnitude of the sum thus far accumulated. (But watch out
if isolated instances of ay = 0 are possible!).

A weakness of a power series representation is that it is guaranteed not to
converge farther than that distance from xg at which a singularity is encountered
in the complex plane. This catastrophe is not usually unexpected: When you find
a power series in a book (or when you work one out yourself), you will generally
also know the radius of convergence. An insidious problem occurs with series that
converge everywhere (in the mathematical sense), but almost nowhere fast enough
to be useful in a numerical method. Two familiar examples are the sine function
and the Bessel function of the first kind,

. o (=DF
SINTr =];) ﬁl‘ ket (512)
AT o (—%xQ)k
Jn(2) = (§> > (5.1.3)

Both of these series converge for all x. But both don’t even start to converge
until & > |z|; before this, their terms are increasing. This makes these series
useless for large x.

Accelerating the Convergence of Series

There are several tricks for accelerating the rate of convergence of a series (or,
equivalently, of a sequence of partial sums). These tricks will not generally help in
cases like (5.1.2) or (5.1.3) while the size of the terms is still increasing. For series
with terms of decreasing magnitude, however, some accelerating methods can be
startlingly good. Aitken’s §%-process is simply a formula for extrapolating the partial
sums of a series whose convergence is approximately geometric. If S;,_1, S, Sn41
are three successive partial sums, then an improved estimate is

. 2
S0 =51 - g (Snt1 = Sn) (5.1.4)

n+1 — 2Sn + Snfl

You can also use (5.1.4) with n + 1 and n» — 1 replaced by n +p and n — p
respectively, for any integer p. If you form the sequence of S.’s, you can apply
(5.1.4) a second time to that sequence, and so on. (In practice, this iteration will
only rarely do much for you after the first stage.) Note that equation (5.1.4) should
be computed as written; there exist algebraically equivalent forms that are much
more susceptible to roundoff error.

For alternating series (where the terms in the sum alternate in sign), Euler’s
transformation can be a powerful tool. Generally it is advisable to do a small

5.1 Series and Their Convergence 167

number of terms directly, through term n — 1 say, then apply the transformation to
the rest of the series beginning with term n. The formula (for n even) is

oo

oo _1)s
Z(fl)sus =ug— UL+ U ... — Up_1+ Z (25+)1 [A%u,) (5.1.5)
s=0

s=0

Here A is the forward difference operator, i.e.,
AUy = Upa1 — Up
AUy = U yo — g1 + Un (5.1.6)

Adu, Up4+3 — SUnt2 + FUpt1 — Uy etc.

Of course you don’t actually do the infinite sum on the right-hand side of (5.1.5),
but only the first, say, p terms, thus requiring the first p differences (5.1.6) obtained
from the terms starting at w,,.

Euler’s transformation can be applied not only to convergent series. In some
cases it will produce accurate answers from the first terms of a series that is formally
divergent. It is widely used in the summation of asymptotic series. In this case
it is generally wise not to sum farther than where the terms start increasing in
magnitude; and you should devise some independent numerical check that the results
are meaningful.

There is an elegant and subtle implementation of Euler’s transformation due
to van Wijngaarden [1]: It incorporates the terms of the original alternating series
one at a time, in order. For each incorporation it either increases p by 1, equivalent
to computing one further difference (5.1.6), or else retroactively increases n by 1,
without having to redo all the difference calculations based on the old n value! The
decision as to which to increase, n or p, is taken in such a way as to make the
convergence most rapid. Van Wijngaarden’s technique requires only one vector of
saved partial differences. Here is the algorithm:

#include <math.h>

void eulsum(float *sum, float term, int jterm, float wksp[])
Incorporates into sum the jterm'th term, with value term, of an alternating series. sum is
input as the previous partial sum, and is output as the new partial sum. The first call to this
routine, with the first term in the series, should be with jterm=1. On the second call, term
should be set to the second term of the series, with sign opposite to that of the first call, and
jterm should be 2. And so on. wksp is a workspace array provided by the calling program,
dimensioned at least as large as the maximum number of terms to be incorporated.
{

int j;

static int nterm;

float tmp,dum;

if (jterm == 1) { Initialize:
nterm=1; Number of saved differences in wksp.
*sum=0.5% (wksp[1]=term) ; Return first estimate.

} else {

tmp=wksp[1];

wksp[1]=term;

for (j=1;j<=nterm-1;j++) { Update saved quantities by van Wijn-
dum=wksp [j+1]; gaarden'’s algorithm.

168 Chapter 5. Evaluation of Functions

wksp [j+1]1=0.5% (wksp[j]+tmp) ;

tmp=dum;

}

wksp [nterm+1]=0.5% (wksp [nterm] +tmp) ;

if (fabs(wksp[nterm+1]) <= fabs(wksp[nterm])) Favorable to increase p,
*sum += (0.5%wksp[++nterm]); and the table becomes longer.

else Favorable to increase n,
*sum += wksp[nterm+1]; the table doesn’t become longer.

The powerful Euler technique is not directly applicable to a series of positive
terms. Occasionally it is useful to convert a series of positive terms into an alternating
series, just so that the Euler transformation can be used! Van Wijngaarden has given
a transformation for accomplishing this [1]:

=) (1) w, (5.1.7)

r=1 r=1
where

Wy = Uy + 209, + 404, + 8Ugp + -+ - (5.1.8)

Equations (5.1.7) and (5.1.8) replace a simple sum by a two-dimensional sum, each
term in (5.1.7) being itself an infinite sum (5.1.8). This may seem a strange way to
save on work! Since, however, the indices in (5.1.8) increase tremendously rapidly,
as powers of 2, it often requires only a few terms to converge (5.1.8) to extraordinary
accuracy. You do, however, need to be able to compute the v,.’s efficiently for
“random” values r. The standard “updating” tricks for sequential r’s, mentioned
above following equation (5.1.1), can’t be used.

Actually, Euler’s transformation is a special case of a more general transforma-
tion of power series. Suppose that some known function g(z) has the series

g(z) =) bpz" (5.1.9)
n=0
and that you want to sum the new, unknown, series
f(2) = cnbnz" (5.1.10)
n=0
Then it is not hard to show (see [2]) that equation (5.1.10) can be written as

which often converges much more rapidly. Here A(™¢ is the nth finite-difference
operator (equation 5.1.6), with A ¢y = o, and g™ is the nth derivative of 9(z).
The usual Euler transformation (equation 5.1.5 with n = 0) can be obtained, for
example, by substituting

1
g(z):1+zzl—z+22—z?’+--~ (5.1.12)

5.2 Evaluation of Continued Fractions 169

into equation (5.1.11), and then setting z = 1.

Sometimes you will want to compute a function from a series representation
even when the computation is not efficient. For example, you may be using the values
obtained to fit the function to an approximating form that you will use subsequently
(cf. §5.8). If you are summing very large numbers of slowly convergent terms, pay
attention to roundoff errors! In floating-point representation it is more accurate to
sum a list of numbers in the order starting with the smallest one, rather than starting
with the largest one. It is even better to group terms pairwise, then in pairs of pairs,
etc., so that all additions involve operands of comparable magnitude.

CITED REFERENCES AND FURTHER READING:

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), Chapter 13 [van Wijngaarden’s transformations]. [1]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Chapter 3.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §3.6.

Mathews, J., and Walker, R.L. 1970, Mathematical Methods of Physics, 2nd ed. (Reading, MA:
W.A. Benjamin/Addison-Wesley), §2.3. [2]

5.2 Evaluation of Continued Fractions

Continued fractions are often powerful ways of evaluating functions that occur
in scientific applications. A continued fraction looks like this:

a
f(a) =bo + — (5.2.1)
b1 + o
ba+ o
b3+ a
b4+1,5T5...
Printers prefer to write this as
a a a a a

fl@)=bp+ —— — — O (5.2.2)

bi+ by+ bs+ by+ by+

In either (5.2.1) or (5.2.2), the a’s and b’s can themselves be functions of x, usually
linear or quadratic monomials at worst (i.e., constants times z or times x2). For
example, the continued fraction representation of the tangent function is

x x? x? x?

t - =z =z = ...
M= T 3T 5T 7o

(5.2.3)

Continued fractions frequently converge much more rapidly than power series
expansions, and in a much larger domain in the complex plane (not necessarily
including the domain of convergence of the series, however). Sometimes the
continued fraction converges best where the series does worst, although this is not

170 Chapter 5. Evaluation of Functions

a general rule. Blanch [1] gives a good review of the most useful convergence tests
for continued fractions.

There are standard techniques, including the important quotient-difference algo-
rithm, for going back and forth between continued fraction approximations, power
series approximations, and rational function approximations. Consult Acton [2] for
an introduction to this subject, and Fike [3] for further details and references.

How do you tell how far to go when evaluating a continued fraction? Unlike
a series, you can’t just evaluate equation (5.2.1) from left to right, stopping when
the change is small. Written in the form of (5.2.1), the only way to evaluate the
continued fraction is from right to left, first (blindly!) guessing how far out to
start. This is not the right way.

The right way is to use a result that relates continued fractions to rational
approximations, and that gives a means of evaluating (5.2.1) or (5.2.2) from left
to right. Let f, denote the result of evaluating (5.2.2) with coefficients through
a, and b,. Then

An

fn= B, (5.2.4)

where A,, and B,, are given by the following recurrence:
A—l =1 B—l =0
AO = b() BO =1

Aj = bjAj—l + ajAj_g B] = bij—l + G,ij_Q j = 1, 27 oo, n
(5.2.5)

This method was invented by J. Wallis in 1655 (!), and is discussed in his Arithmetica
Infinitorum [4]. You can easily prove it by induction.

In practice, this algorithm has some unattractive features: The recurrence (5.2.5)
frequently generates very large or very small values for the partial numerators and
denominators A; and B;. There is thus the danger of overflow or underflow of the
floating-point representation. However, the recurrence (5.2.5) is linear in the A’s and
B’s. At any point you can rescale the currently saved two levels of the recurrence,
e.g., divide A;, B;, A;_1, and B;_; all by B;. This incidentally makes A; = f;
and is convenient for testing whether you have gone far enough: See if f; and f;_;
from the last iteration are as close as you would like them to be. (If B; happens to
be zero, which can happen, just skip the renormalization for this cycle. A fancier
level of optimization is to renormalize only when an overflow is imminent, saving
the unnecessary divides. All this complicates the program logic.)

Two newer algorithms have been proposed for evaluating continued fractions.
Steed’s method does not use A; and B; explicitly, but only the ratio D; = B;_1/B;.
One calculates D; and Af; = f; — f;_1 recursively using

Dj =1/(bj +a;D;j_1) (5.2.6)
Afj= ;D —1)Afj (5.2.7)

Steed’s method (see, e.g., [5]) avoids the need for rescaling of intermediate results.
However, for certain continued fractions you can occasionally run into a situation

5.2 Evaluation of Continued Fractions 171

where the denominator in (5.2.6) approaches zero, so that D; and Af; are very
large. The next Af;;1 will typically cancel this large change, but with loss of
accuracy in the numerical running sum of the f;’s. It is awkward to program around
this, so Steed’s method can be recommended only for cases where you know in
advance that no denominator can vanish. We will use it for a special purpose in
the routine bessik (§6.7).

The best general method for evaluating continued fractions seems to be the
modified Lentz’s method [6]. The need for rescaling intermediate results is avoided
by using both the ratios

and calculating f; by

fi = fi-1C;D; (529)
From equation (5.2.5), one easily shows that the ratios satisfy the recurrence relations
Dj = 1/(bj —i—aij,l), Cj :bj +aj/0j,1 (5.2.10)

In this algorithm there is the danger that the denominator in the expression for D,
or the quantity C itself, might approach zero. Either of these conditions invalidates
(5.2.10). However, Thompson and Barnett [5] show how to modify Lentz’s algorithm
to fix this: Just shift the offending term by a small amount, e.g., 1073, If you
work through a cycle of the algorithm with this prescription, you will see that f;;
is accurately calculated.

In detail, the modified Lentz’s algorithm is this:

e Set fo = byg; if bg = 0 set fo = tiny.

e Set Cy = fo.
e Set Dy = 0.
e For 7 = 1,2,...

Set Dj = bj + aij_1.

If D; =0, set D; = tiny.

Set Oj = bj + aj/C’j_l.

If Cj = 0 set Cj = tiny.

Set Dj =]./D]

Set A]‘ = Cij.

Set fj = fj_1Aj.

If |A; — 1| < eps then exit.
Here eps is your floating-point precision, say 10~7 or 10~!°. The parameter tiny
should be less than typical values of eps|b;|, say 10730,

The above algorithm assumes that you can terminate the evaluation of the
continued fraction when |f; — f;_1| is sufficiently small. This is usually the case,
but by no means guaranteed. Jones [7] gives a list of theorems that can be used to
justify this termination criterion for various kinds of continued fractions.

There is at present no rigorous analysis of error propagation in Lentz’s algorithm.
However, empirical tests suggest that it is at least as good as other methods.

172 Chapter 5. Evaluation of Functions

Manipulating Continued Fractions

Several important properties of continued fractions can be used to rewrite them
in forms that can speed up numerical computation. An equivalence transformation

Ay — Np, bp — Abp, Api1 — Aapg (5.2.11)

leaves the value of a continued fraction unchanged. By a suitable choice of the scale
factor A you can often simplify the form of the a’s and the b’s. Of course, you
can carry out successive equivalence transformations, possibly with different \’s, on
successive terms of the continued fraction.

The even and odd parts of a continued fraction are continued fractions whose
successive convergents are fy, and fs,11, respectively. Their main use is that they
converge twice as fast as the original continued fraction, and so if their terms are not
much more complicated than the terms in the original there can be a big savings in
computation. The formula for the even part of (5.2.2) is

C1 C2

ven — d 5.2.12
fc e 0 + dl + d2 + ()
where in terms of intermediate variables
« @
1=
b
' (5.2.13)
= n n>2
n bnbn_l bl -
we have
do=0by, cr=0a1, di=1+0w
(5.2.14)
Cp = —Qap_102n—2, dn =14 Qon_1 + Qon, n>2

You can find the similar formula for the odd part in the review by Blanch [1]. Often
a combination of the transformations (5.2.14) and (5.2.11) is used to get the best
form for numerical work.

We will make frequent use of continued fractions in the next chapter.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §3.10.

Blanch, G. 1964, SIAM Review, vol. 6, pp. 383—421. [1]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 11. [2]

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 1.

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall), §58.2, 10.4, and 10.5. [3]

Wallis, J. 1695, in Opera Mathematica, vol. 1, p. 355, Oxoniae e Theatro Shedoniano. Reprinted
by Georg Olms Verlag, Hildeshein, New York (1972). [4]

5.3 Polynomials and Rational Functions 173

Thompson, I.J., and Barnett, A.R. 1986, Journal of Computational Physics, vol. 64, pp. 490-509.
(5]
Lentz, W.J. 1976, Applied Optics, vol. 15, pp. 668—671. [6]

Jones, W.B. 1973, in Padé Approximants and Their Applications, P.R. Graves-Morris, ed. (Lon-
don: Academic Press), p. 125. [7]

5.3 Polynomials and Rational Functions

A polynomial of degree N is represented numerically as a stored array of
coefficients, c[j] with j=0,..., N. We will always take c[0] to be the constant
term in the polynomial, c [N] the coefficient of zV; but of course other conventions
are possible. There are two kinds of manipulations that you can do with a polynomial:
numerical manipulations (such as evaluation), where you are given the numerical
value of its argument, or algebraic manipulations, where you want to transform
the coefficient array in some way without choosing any particular argument. Let’s
start with the numerical.

We assume that you know enough never to evaluate a polynomial this way:

p=c[0]+c[1]*x+c[2] ¥x*x+c [3] *x*x*x+C [4] *x*¥X*X*X ;

or (even worse!),

p=c[0]+c[1]*x+c[2]*pow(x,2.0)+c [3]*pow(x,3.0)+c[4]*pow(x,4.0);

Come the (computer) revolution, all persons found guilty of such criminal
behavior will be summarily executed, and their programs won’t be! It is a matter
of taste, however, whether to write

p=c[0]+x* (c[1]+x*(c[2]+x*(c[3]+x*c[4])));

or

p=(((c[4]*x+c[3])*x+c[2]) *x+c[1])*x+c[0];

If the number of coefficients c[0..n] is large, one writes
p=clnl;

for(j=n-1;3j>=0;j--) p=p*x+c[jl;

or

p=clj=nl;
while (j>0) p=p*x+c[--jl;

Another useful trick is for evaluating a polynomial P(x) and its derivative
dP(z)/dz simultaneously:

p=clnl;
dp=0.0;
for(j=n-1;3j>=0;j--) {dp=dp*x+p; p=p*x+c[jl;}

174 Chapter 5. Evaluation of Functions

or
p=clj=nl;

dp=0.0;
while (j>0) {dp=dp*x+p; p=p*x+c[--jl;}

which yields the polynomial as p and its derivative as dp.
The above trick, which is basically synthetic division [1,2], generalizes to the
evaluation of the polynomial and nd of its derivatives simultaneously:

void ddpoly(float c[], int nc, float x, float pd[], int nd)
Given the nc+1 coefficients of a polynomial of degree nc as an array c[0..nc] with c[0]
being the constant term, and given a value x, and given a value nd>1, this routine returns the
polynomial evaluated at x as pd[0] and nd derivatives as pd[1. .nd].
{

int nnd,j,i;

float cnst=1.0;

pd[0l=c[ncl;
for (j=1;j<=nd;j++) pd[j]1=0.0;
for (i=nc-1;i>=0;i--) {
nnd=(nd < (nc-i) ? nd : nc-i);
for (j=nnd;j>=1;j--)
pd[jl=pd[jl*x+pd[j-1];
pd[0]=pd [0]*x+c[i];

for (i=2;i<=nd;i++) { After the first derivative, factorial constants come in.
cnst *= i;
pd[i] *= cnst;

As a curiosity, you might be interested to know that polynomials of degree
n > 3 can be evaluated in fewer than n multiplications, at least if you are willing
to precompute some auxiliary coefficients and, in some cases, do an extra addition.
For example, the polynomial
P(z) = ag + a12 + azx? + azz® + asa? (5.3.1)
where a4 > 0, can be evaluated with 3 multiplications and 5 additions as follows:

P(x) = [(Az+ B)* + Az + C][(Az + B)> + D| + E (5.3.2)

where A, B,C, D, and E are to be precomputed by

A= ((14)1/4
o as 7A3
B= 4A3
D =3B +8B% + % (533)
c=22 _9B_6B2-D

A2
E=ay—B*-B*C+D)-CD

5.3 Polynomials and Rational Functions 175

Fifth degree polynomials can be evaluated in 4 multiplies and 5 adds; sixth degree
polynomials can be evaluated in 4 multiplies and 7 adds; if any of this strikes
you as interesting, consult references [3-5]. The subject has something of the same
entertaining, if impractical, flavor as that of fast matrix multiplication, discussed
in §2.11.

Turn now to algebraic manipulations. You multiply a polynomial of degree
n — 1 (array of range [0..n-1]) by a monomial factor x — a by a bit of code
like the following,

c[nl=c[n-1];
for (j=n-1;j>=1;j--) cljl=clj-11-cl[jl*a;
c[0] *= (-a);

Likewise, you divide a polynomial of degree n by a monomial factor x — a
(synthetic division again) using

rem=c[n];

c[n]=0.0;

for(i=n-1;i>=0;i--) {
swap=c[i];
cl[i]l=rem;
rem=swap+rem*a;

which leaves you with a new polynomial array and a numerical remainder rem.

Multiplication of two general polynomials involves straightforward summing
of the products, each involving one coefficient from each polynomial. Division of
two general polynomials, while it can be done awkwardly in the fashion taught using
pencil and paper, is susceptible to a good deal of streamlining. Witness the following
routine based on the algorithm in [3].

void poldiv(float ul[], int n, float v[], int nv, float q[], float r[])

Given the n+1 coefficients of a polynomial of degree n in u[0. .n], and the nv+1 coefficients
of another polynomial of degree nv in v[0..nv], divide the polynomial u by the polynomial
v (“u"/"v") giving a quotient polynomial whose coefficients are returned in q[0..n], and a
remainder polynomial whose coefficients are returned in r[0..n]. The elements r[nv. .n]
and q[n-nv+1..n] are returned as zero.

{
int k,j;

for (j=0;j<=n;j++) {
r[jl=uljl;
ql[j1=0.0;

for (k=n-nv;k>=0;k--) {

qlkl=r [nv+k]/v[nv];

for (j=nv+k-1;j>=k;j--) rl[j] -= qlkI*v[j-k];
}
for (j=nv;j<=n;j++) r[j1=0.0;

176 Chapter 5. Evaluation of Functions

Rational Functions

You evaluate a rational function like

Pﬂ(x) _Po +prx+---+puat
Qu(r) q+qr+---+qar

R(x) = (5.3.4)

in the obvious way, namely as two separate polynomials followed by a divide. As
a matter of convention one usually chooses ¢y = 1, obtained by dividing numerator
and denominator by any other ¢o. It is often convenient to have both sets of
coefficients stored in a single array, and to have a standard function available for
doing the evaluation:

double ratval(double x, double cof[], int mm, int kk)
Given mm, kk, and cof [0..mm+kk], evaluate and return the rational function (cof [0] +

cof [11x + - -+ + cof [mm]x™)/(1 + cof [mm+1]1x + - - - + cof [mm+kk] xkk).
{
int j;
double sumd,sumn; Note precision! Change to float if desired.

for (sumn=cof [mm],j=mm-1;3j>=0;j--) sumn=sumn*x+cof[j];
for (sumd=0.0,j=mm+kk;j>=mm+1;j--) sumd=(sumd+cof [j])*x;
return sumn/(1.0+sumd);

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 183, 190. [1]

Mathews, J., and Walker, R.L. 1970, Mathematical Methods of Physics, 2nd ed. (Reading, MA:
W.A. Benjamin/Addison-Wesley), pp. 361-363. [2]

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), §4.6. [3]

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 4.

Winograd, S. 1970, Communications on Pure and Applied Mathematics, vol. 23, pp. 165—-179. [4]
Kronsjo, L. 1987, Algorithms: Their Complexity and Efficiency, 2nd ed. (New York: Wiley). [5]

5.4 Complex Arithmetic

As we mentioned in §1.2, the lack of built-in complex arithmetic in C is a
nuisance for numerical work. Even in languages like FORTRAN that have complex
data types, it is disconcertingly common to encounter complex operations that
produce overflows or underflows when both the complex operands and the complex
result are perfectly representable. This occurs, we think, because software companies
assign inexperienced programmers to what they believe to be the perfectly trivial
task of implementing complex arithmetic.

5.4 Complex Arithmetic 177

Actually, complex arithmetic is not gquite trivial. Addition and subtraction
are done in the obvious way, performing the operation separately on the real and
imaginary parts of the operands. Multiplication can also be done in the obvious way,
with 4 multiplications, one addition, and one subtraction,

(a+1ib)(c+id) = (ac — bd) + i(bc + ad) (5.4.1)

(the addition before the ¢ doesn’t count; it just separates the real and imaginary parts
notationally). But it is sometimes faster to multiply via

(a+ib)(c +id) = (ac — bd) + t[(a + b)(c + d) — ac — bd] (5.4.2)

which has only three multiplications (ac, bd, (a + b)(c+ d)), plus two additions and
three subtractions. The total operations count is higher by two, but multiplication
is a slow operation on some machines.

While it is true that intermediate results in equations (5.4.1) and (5.4.2) can
overflow even when the final result is representable, this happens only when the final
answer is on the edge of representability. Not so for the complex modulus, if you
are misguided enough to compute it as

la +ib| = Va2 + b2 (bad!) (5.4.3)

whose intermediate result will overflow if either a or b is as large as the square
root of the largest representable number (e.g., 1019 as compared to 103®). The right
way to do the calculation is

a+ib| = lal/1+ (b/a)? |a| > [b]
o {b|\/m la| < |b] (5:44)

Complex division should use a similar trick to prevent avoidable overflows,
underflow, or loss of precision,

[a+b(d/c)] +i[b— a(d/c)]

atib _ ¢+ d(d/c) =1 (5.4.5)
o1 id la(c/d) + b] + i[b(c/d) — a] o < |d]
c(e/d) +d

Of course you should calculate repeated subexpressions, like ¢/d or d/c, only once.

Complex square root is even more complicated, since we must both guard
intermediate results, and also enforce a chosen branch cut (here taken to be the
negative real axis). To take the square root of ¢ + ¢d, first compute

0 C:d:o

ﬂ\/1+ el

(5.4.6)

w =

\/ﬁ\/c/d|+\/21+(c/d)2 <1

178 Chapter 5. Evaluation of Functions

Then the answer is

0 w=20
S d
w—l—z(—) w#0,c>0
2w
Vi id = 5.4.7
et M+iw w#0,¢<0,d>0 ()
2w
Mfiw w#0,¢<0,d<0
2w

Routines implementing these algorithms are listed in Appendix C.

CITED REFERENCES AND FURTHER READING:
Midy, P., and Yakovlev, Y. 1991, Mathematics and Computers in Simulation, vol. 33, pp. 33—49.

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley) [see solutions to exercises 4.2.1.16 and 4.6.4.41].

5.5 Recurrence Relations and Clenshaw’s
Recurrence Formula

Many useful functions satisfy recurrence relations, e.g.,

(n+ 1)Pyy1(x) = (2n+ 1)aP,(x) — nP,—1(x) (5.5.1)
2

Jni1(z) = ;n,]n(x) — T (2) (5.5.2)

nE,i1(z) =e™* —zE,(x) (5.5.3)

cosnf = 2cosfcos(n — 1)0 — cos(n — 2)6 (5.5.4)

sinnf = 2cosfsin(n — 1)0 — sin(n — 2)0 (5.5.5)

where the first three functions are Legendre polynomials, Bessel functions of the first
kind, and exponential integrals, respectively. (For notation see [1].) These relations
are useful for extending computational methods from two successive values of n to
other values, either larger or smaller.

Equations (5.5.4) and (5.5.5) motivate us to say a few words about trigonometric
functions. If your program’s running time is dominated by evaluating trigonometric
functions, you are probably doing something wrong. Trig functions whose arguments
form a linear sequence 0 = 6y + nd, n = 0,1,2,..., are efficiently calculated by
the following recurrence,

cos(0 + d) = cos — [acos O + Bsin b

5.5.6
sin(@ + 6) = sinf — [asin @ — 5 cos 0] ()

5.5 Recurrence Relations and Clenshaw’s Recurrence Formula 179

where « and (8 are the precomputed coefficients

a = 2sin? <g> b =sind (5.5.7)

The reason for doing things this way, rather than with the standard (and equivalent)
identities for sums of angles, is that here o and 3 do not lose significance if the
incremental § is small. Likewise, the adds in equation (5.5.6) should be done in
the order indicated by square brackets. We will use (5.5.6) repeatedly in Chapter
12, when we deal with Fourier transforms.

Another trick, occasionally useful, is to note that both sin # and cos 6 can be
calculated via a single call to tan:

4 1— ¢ , 2t
t = tan <§> cosf = e sinf = T (5.5.8)

The cost of getting both sin and cos, if you need them, is thus the cost of tan plus
2 multiplies, 2 divides, and 2 adds. On machines with slow trig functions, this can
be a savings. However, note that special treatment is required if 6 — +7. And also
note that many modern machines have very fast trig functions; so you should not
assume that equation (5.5.8) is faster without testing.

Stability of Recurrences

You need to be aware that recurrence relations are not necessarily stable
against roundoff error in the direction that you propose to go (either increasing n or
decreasing n). A three-term linear recurrence relation

Yn+1 + AnYn + bpyn—1 =0, n=12,... (5.5.9)

has two linearly independent solutions, f,, and g,, say. Only one of these corresponds
to the sequence of functions f,, that you are trying to generate. The other one g,
may be exponentially growing in the direction that you want to go, or exponentially
damped, or exponentially neutral (growing or dying as some power law, for example).
If it is exponentially growing, then the recurrence relation is of little or no practical
use in that direction. This is the case, e.g., for (5.5.2) in the direction of increasing
n, when x < n. You cannot generate Bessel functions of high n by forward
recurrence on (5.5.2).
To state things a bit more formally, if

faf/gn —0 as n— o0 (5.5.10)

then f, is called the minimal solution of the recurrence relation (5.5.9). Nonminimal
solutions like g,, are called dominant solutions. The minimal solution is unique, if it
exists, but dominant solutions are not — you can add an arbitrary multiple of f,, to
a given ¢g,. You can evaluate any dominant solution by forward recurrence, but not
the minimal solution. (Unfortunately it is sometimes the one you want.)
Abramowitz and Stegun (in their Introduction) [1] give a list of recurrences that
are stable in the increasing or decreasing directions. That list does not contain all

180 Chapter 5. Evaluation of Functions

possible formulas, of course. Given a recurrence relation for some function f,,(x)
you can test it yourself with about five minutes of (human) labor: For a fixed z
in your range of interest, start the recurrence not with true values of f;(x) and
fj+1(x), but (first) with the values 1 and 0, respectively, and then (second) with
0 and 1, respectively. Generate 10 or 20 terms of the recursive sequences in the
direction that you want to go (increasing or decreasing from j), for each of the two
starting conditions. Look at the difference between the corresponding members of
the two sequences. If the differences stay of order unity (absolute value less than
10, say), then the recurrence is stable. If they increase slowly, then the recurrence
may be mildly unstable but quite tolerably so. If they increase catastrophically, then
there is an exponentially growing solution of the recurrence. If you know that the
function that you want actually corresponds to the growing solution, then you can
keep the recurrence formula anyway e.g., the case of the Bessel function Y;, () for
increasing n, see §6.5; if you don’t know which solution your function corresponds
to, you must at this point reject the recurrence formula. Notice that you can do this
test before you go to the trouble of finding a numerical method for computing the
two starting functions f;(x) and f;41(x): stability is a property of the recurrence,
not of the starting values.

An alternative heuristic procedure for testing stability is to replace the recur-
rence relation by a similar one that is linear with constant coefficients. For example,
the relation (5.5.2) becomes

Yn+1 = 27Yn +Yn-1 =10 (5.5.11)

where v = n/z is treated as a constant. You solve such recurrence relations
by trying solutions of the form y, = a™. Substituting into the above recur-
rence gives

a?—2va+1=0 or a=~++~2-1 (5.5.12)

The recurrence is stable if |a| < 1 for all solutions a. This holds (as you can verify)
if |y] < 1 orn < z. The recurrence (5.5.2) thus cannot be used, starting with Jo ()
and Ji(x), to compute J,,(x) for large n.

Possibly you would at this point like the security of some real theorems on
this subject (although we ourselves always follow one of the heuristic procedures).
Here are two theorems, due to Perron [2]:

Theorem A. Ifin (5.5.9) a,, ~ an®, b, ~ bn® as n — oo, and 3 < 2q, then

Gni1/gn ~ —an®, fog1/fo ~ —(b/a)n” " (5.5.13)

and f, is the minimal solution to (5.5.9).
Theorem B. Under the same conditions as Theorem A, but with 3 = 2q,
consider the characteristic polynomial

t? +at+b=0 (5.5.14)
If the roots ¢1 and t5 of (5.5.14) have distinct moduli, |t1| > |¢2] say, then

gn—i-l/gn ~ tln“, fn+1/fn ~ tgn“ (5515)

5.5 Recurrence Relations and Clenshaw’s Recurrence Formula 181

and f,, is again the minimal solution to (5.5.9). Cases other than those in these
two theorems are inconclusive for the existence of minimal solutions. (For more
on the stability of recurrences, see [3].)

How do you proceed if the solution that you desire is the minimal solution? The
answer lies in that old aphorism, that every cloud has a silver lining: If a recurrence
relation is catastrophically unstable in one direction, then that (undesired) solution
will decrease very rapidly in the reverse direction. This means that you can start
with any seed values for the consecutive f; and f;1 and (when you have gone
enough steps in the stable direction) you will converge to the sequence of functions
that you want, times an unknown normalization factor. If there is some other way
to normalize the sequence (e.g., by a formula for the sum of the f,’s), then this
can be a practical means of function evaluation. The method is called Miller’s
algorithm. An example often given [1,4] uses equation (5.5.2) in just this way, along
with the normalization formula

1= Jo(x) + 2J5(z) + 2J4(x) + 2J6(2) + - - - (5.5.16)

Incidentally, there is an important relation between three-term recurrence
relations and continued fractions. Rewrite the recurrence relation (5.5.9) as

Yn by,

=— 5.5.17
Yn—1 an + yn+1/yn ()
Iterating this equation, starting with n, gives
b b
Un __ On Onal (5.5.18)
Yn—1 ap — Gp41 —

Pincherle’s Theorem [2] tells us that (5.5.18) converges if and only if (5.5.9) has a
minimal solution f,,, in which case it converges to f,/f,—1. This result, usually for
the case n = 1 and combined with some way to determine fj, underlies many of the
practical methods for computing special functions that we give in the next chapter.

Clenshaw’s Recurrence Formula

Clenshaw’s recurrence formula [5] is an elegant and efficient way to evaluate a
sum of coefficients times functions that obey a recurrence formula, e.g.,

N N

f(0) = Z ck cos ko or flx) = Z ¢k Py ()

k=0 k=0

Here is how it works: Suppose that the desired sum is

N
f@) = cxFi(x) (5.5.19)
k=0

and that F}j obeys the recurrence relation

Foi1(z) = aln,z)F(z) + B(n,) F—1(x) (5.5.20)

182 Chapter 5. Evaluation of Functions

for some functions «(n,z) and (3(n,z). Now define the quantities y, (k =
N,N —1,...,1) by the following recurrence:

YNt2 =yYns+1 =0

5.5.21
yr = alk, 2)ypr1 + Bk + L, 2)ykqo + e (E=N,N—-1,...,1) ()

If you solve equation (5.5.21) for ¢ on the left, and then write out explicitly the
sum (5.5.19), it will look (in part) like this:

fla)=--
+ [ys — a(8, 2)yo — B(9, ¥)y10] F3(x)
+ lyr — a(7, 2)ys — B(8, x)yo] F7(z)
+ Y6 — (6, 2)yr — B(7, 2)ys| Fo(z)
+ [ys — a(5,7)ys — B(6, 2)y7| F5(x) (5.5.22)
4.
+ [y2 — (2, 2)ys — B3, 2)ya] Fa(x)
+ [y — a1, 2)y2 — B(2,2)ys] F1(2)
+ [co + B(1, 2)y2 — B(1, 2)y2] Fo(z)

Notice that we have added and subtracted 3(1, x)ys in the last line. If you examine
the terms containing a factor of yg in (5.5.22), you will find that they sum to zero as
a consequence of the recurrence relation (5.5.20); similarly all the other y;’s down
through y5. The only surviving terms in (5.5.22) are

f(x) = B(1,2)Fo(z)y2 + Fi(x)y1 + Fo(w)co (5.5.23)

Equations (5.5.21) and (5.5.23) are Clenshaw’s recurrence formula for doing the
sum (5.5.19): You make one pass down through the y;’s using (5.5.21); when you
have reached ys and y; you apply (5.5.23) to get the desired answer.

Clenshaw’s recurrence as written above incorporates the coefficients c; in a
downward order, with k decreasing. At each stage, the effect of all previous ci’s
is “remembered” as two coefficients which multiply the functions Fj; and Fj
(ultimately Fj and F}). If the functions Fj are small when k is large, and if the
coefficients cj, are small when k is small, then the sum can be dominated by small
F}.’s. In this case the remembered coefficients will involve a delicate cancellation
and there can be a catastrophic loss of significance. An example would be to sum
the trivial series

J15(1) =0 x J()(l) +0 x Jl(l) +...+0x J14(1) +1x J15(1) (5.5.24)

Here Ji5, which is tiny, ends up represented as a canceling linear combination of
Jo and Jj, which are of order unity.

5.6 Quadratic and Cubic Equations 183

The solution in such cases is to use an alternative Clenshaw recurrence that
incorporates ci’s in an upward direction. The relevant equations are

Y2 =Y-1= 0 (5.5.25)
1
Y = m[lyk—z - a(kvx)yk—l - Ck]7
(k:O,l,...,N— 1) (5.5.26)

f(x) =cenFn(z) — BN, 2) Fn_1(2)yn—1 — Fn(2)yn—2 (5.5.27)

The rare case where equations (5.5.25)—(5.5.27) should be used instead of
equations (5.5.21) and (5.5.23) can be detected automatically by testing whether
the operands in the first sum in (5.5.23) are opposite in sign and nearly equal in
magnitude. Other than in this special case, Clenshaw’s recurrence is always stable,
independent of whether the recurrence for the functions F}, is stable in the upward
or downward direction.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), pp. xiii, 697. [1]

Gautschi, W. 1967, SIAM Review, vol. 9, pp. 24-82. [2]

Lakshmikantham, V., and Trigiante, D. 1988, Theory of Difference Equations: Numerical Methods
and Applications (San Diego: Academic Press). [3]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 20ff. [4]

Clenshaw, C.W. 1962, Mathematical Tables, vol. 5, National Physical Laboratory (London: H.M.
Stationery Office). [5]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
84.4.3, p. 111.

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), p. 76.

5.6 Quadratic and Cubic Equations

The roots of simple algebraic equations can be viewed as being functions of the
equations’ coefficients. We are taught these functions in elementary algebra. Yet,
surprisingly many people don’t know the right way to solve a quadratic equation
with two real roots, or to obtain the roots of a cubic equation.

There are two ways to write the solution of the quadratic equation
ar® +br+c=0 (5.6.1)
with real coefficients a, b, c, namely

—b+ Vb2 — 4ac
r=—"""

o (5.6.2)

184 Chapter 5. Evaluation of Functions

and 5
c
r=—"" 5.6.3
—b+ Vb2 — 4ac ()

If you use either (5.6.2) or (5.6.3) to get the two roots, you are asking for trouble:
If either a or c (or both) are small, then one of the roots will involve the subtraction
of b from a very nearly equal quantity (the discriminant); you will get that root very
inaccurately. The correct way to compute the roots is

q= 1 [b + sgn(b)y/b? — 4ac] (5.6.4)

T2

Then the two roots are

and T = (5.6.5)

q
xrK = —
a

c
q

If the coefficients a, b, ¢, are complex rather than real, then the above formulas
still hold, except that in equation (5.6.4) the sign of the square root should be
chosen so as to make

Re(b*\/b? — 4ac) > 0 (5.6.6)
where Re denotes the real part and asterisk denotes complex conjugation.

Apropos of quadratic equations, this seems a convenient place to recall that
the inverse hyperbolic functions sinh™" and cosh™" are in fact just logarithms of
solutions to such equations,

sinh™'(z) = In(z+ Va2 +1) (5.6.7)
cosh™'(z) = £In(z + V22 — 1) (5.6.8)

Equation (5.6.7) is numerically robust for x > 0. For negative z, use the symmetry
sinh ™! (—xz) = —sinh ™! (). Equation (5.6.8) is of course valid only for 2 > 1.

For the cubic equation
2 4ar? +br+c=0 (5.6.9)
with real or complex coefficients a, b, ¢, first compute

a?—3b 2a3 — 9ab + 27¢
d R=————
9 an 54

Q= (5.6.10)

If Q and R are real (always true when a, b, ¢ are real) and R? < 3, then the cubic
equation has three real roots. Find them by computing

0 = arccos(R/\/Q3) (5.6.11)

5.6 Quadratic and Cubic Equations 185

in terms of which the three roots are

0 a
r1 = —2+/Q cos (§ -3

0+ 2w a
o = —24/Q cos (3 > ~3 (5.6.12)
r3 = —2 QCOS(9_27T>§

(This equation first appears in Chapter VI of Francois Viete’s treatise “De emen-
datione,” published in 1615!)
Otherwise, compute

1/3
A=— [R +/R% - QB} (5.6.13)
where the sign of the square root is chosen to make

Re(R*\/R2 — Q3) > 0 (5.6.14)

(asterisk again denoting complex conjugation). If @ and R are both real, equations
(5.6.13)—(5.6.14) are equivalent to

1/3
A= —sgn(R) [|R|+ VR = Q7] (5.6.15)
where the positive square root is assumed. Next compute
_jea (A#0)
B= {0 (4=0) (5.6.16)
in terms of which the three roots are
21 = (A+B) — g (5.6.17)
(the single real root when a, b, ¢ are real) and
1
g = —§(A+B)—%+i§(A—B)
(5.6.18)
_ Llasm -9 'Q(A—B)
BTy 32

(in that same case, a complex conjugate pair). Equations (5.6.13)—(5.6.16) are
arranged both to minimize roundoff error, and also (as pointed out by A.J. Glassman)
to ensure that no choice of branch for the complex cube root can result in the
spurious loss of a distinct root.

If you need to solve many cubic equations with only slightly different coeffi-
cients, it is more efficient to use Newton’s method (§9.4).

CITED REFERENCES AND FURTHER READING:

Weast, R.C. (ed.) 1967, Handbook of Tables for Mathematics, 3rd ed. (Cleveland: The Chemical
Rubber Co.), pp. 130-133.

Pachner, J. 1983, Handbook of Numerical Analysis Applications (New York: McGraw-Hill), §6.1.

McKelvey, J.P. 1984, American Journal of Physics, vol. 52, pp. 269-270; see also vol. 53, p. 775,
and vol. 55, pp. 374-375.

186 Chapter 5. Evaluation of Functions

5.7 Numerical Derivatives

Imagine that you have a procedure which computes a function f(z), and now
you want to compute its derivative f’(z). Easy, right? The definition of the
derivative, the limit as h — 0 of

)~ LEED) (5.7.1)

practically suggests the program: Pick a small value h; evaluate f(z + h); you
probably have f(x) already evaluated, but if not, do it too; finally apply equation
(5.7.1). What more needs to be said?

Quite a lot, actually. Applied uncritically, the above procedure is almost
guaranteed to produce inaccurate results. Applied properly, it can be the right way
to compute a derivative only when the function f is fiercely expensive to compute,
when you already have invested in computing f(x), and when, therefore, you want
to get the derivative in no more than a single additional function evaluation. In such
a situation, the remaining issue is to choose h properly, an issue we now discuss:

There are two sources of error in equation (5.7.1), truncation error and roundoff
error. The truncation error comes from higher terms in the Taylor series expansion,

Fla+h) = (@) hf @)+ SH2F@) + S @) e (572)

whence

flz+h) = f(x)

n =f+ %hf” + - (5.7.3)

The roundoff error has various contributions. First there is roundoff error in h:
Suppose, by way of an example, that you are at a point x = 10.3 and you blindly
choose h = 0.0001. Neither x = 10.3 nor = + h = 10.30001 is a number with
an exact representation in binary; each is therefore represented with some fractional
error characteristic of the machine’s floating-point format, €,,,, whose value in single
precision may be ~ 10~7. The error in the effective value of h, namely the difference
between x + h and x as represented in the machine, is therefore on the order of ¢, x,
which implies a fractional error in h of order ~ ¢,,z/h ~ 10~2! By equation (5.7.1)
this immediately implies at least the same large fractional error in the derivative.
We arrive at Lesson 1: Always choose h so that « 4+ h and z differ by an exactly
representable number. This can usually be accomplished by the program steps

temp =z +h

(5.7.4)
h =temp — z

Some optimizing compilers, and some computers whose floating-point chips have
higher internal accuracy than is stored externally, can foil this trick; if so, it is
usually enough to declare temp as volatile, or else to call a dummy function
donothing(temp) between the two equations (5.7.4). This forces temp into and
out of addressable memory.

5.7 Numerical Derivatives 187

With h an “exact” number, the roundoff error in equation (5.7.1) is e, ~
€¢|f(x)/h|. Here €y is the fractional accuracy with which f is computed; for a
simple function this may be comparable to the machine accuracy, €; = €,,, but for a
complicated calculation with additional sources of inaccuracy it may be larger. The
truncation error in equation (5.7.3) is on the order of e; ~ |hf”(x)|. Varying h to
minimize the sum e, + e; gives the optimal choice of h,

h~ /3{{ NG (5.7.5)

where z. = (f/f"”)'/? is the “curvature scale” of the function f, or “characteristic
scale” over which it changes. In the absence of any other information, one often
assumes . = x (except near x = 0 where some other estimate of the typical z
scale should be used).

With the choice of equation (5.7.5), the fractional accuracy of the computed
derivative is

(er + e /If'| ~ VT [FV? ~ o7 (5.7.6)

Here the last order-of-magnitude equality assumes that f, f’, and f” all share
the same characteristic length scale, usually the case. One sees that the simple
finite-difference equation (5.7.1) gives at best only the square root of the machine
accuracy €.

If you can afford two function evaluations for each derivative calculation, then
it is significantly better to use the symmetrized form

fle+h) = flx—h)
2h

fl(z) ~ (5.7.7)
In this case, by equation (5.7.2), the truncation error is e; ~ h?f"”’. The roundoff
error e, is about the same as before. The optimal choice of h, by a short calculation
analogous to the one above, is now

1/3
B~ (j{f) ~ ()32, (5.7.8)

and the fractional error is

(er + e 1| ~ () FI3"V2) o (eg)™® (5.79)

which will typically be an order of magnitude (single precision) or two orders of
magnitude (double precision) better than equation (5.7.6). We have arrived at Lesson
2: Choose h to be the correct power of €5 or €, times a characteristic scale x..

You can easily derive the correct powers for other cases [1]. For a function of
two dimensions, for example, and the mixed derivative formula

*f _[fa+hy+h)—flet+hy—h)]—[flx—hy+h)— flx—hy—h)
0xdy 4h?

(5.7.10)

188 Chapter 5. Evaluation of Functions

the correct scaling is h ~ e}”xc.

It is disappointing, certainly, that no simple finite-difference formula like
equation (5.7.1) or (5.7.7) gives an accuracy comparable to the machine accuracy
€m, Or even the lower accuracy to which f is evaluated, ef. Are there no better
methods?

Yes, there are. All, however, involve exploration of the function’s behavior over
scales comparable to x., plus some assumption of smoothness, or analyticity, so that
the high-order terms in a Taylor expansion like equation (5.7.2) have some meaning.
Such methods also involve multiple evaluations of the function f, so their increased
accuracy must be weighed against increased cost.

The general idea of “Richardson’s deferred approach to the limit” is particularly
attractive. For numerical integrals, that idea leads to so-called Romberg integration
(for review, see §4.3). For derivatives, one seeks to extrapolate, to h — 0, the result
of finite-difference calculations with smaller and smaller finite values of h. By the
use of Neville’s algorithm (§3.1), one uses each new finite-difference calculation to
produce both an extrapolation of higher order, and also extrapolations of previous,
lower, orders but with smaller scales h. Ridders [2] has given a nice implementation
of this idea; the following program, dfridr, is based on his algorithm, modified by
an improved termination criterion. Input to the routine is a function f (called func),
a position x, and a largest stepsize h (more analogous to what we have called z.
above than to what we have called h). Output is the returned value of the derivative,
and an estimate of its error, err.

#include <math.h>

#include "nrutil.h"

#define CON 1.4 Stepsize is decreased by CON at each iteration.
#define CON2 (CON*CON)

#define BIG 1.0e30

#define NTAB 10 Sets maximum size of tableau.
#define SAFE 2.0 Return when error is SAFE worse than the best so
far.

float dfridr(float (*func)(float), float x, float h, float *err)
Returns the derivative of a function func at a point x by Ridders’ method of polynomial
extrapolation. The value h is input as an estimated initial stepsize; it need not be small, but
rather should be an increment in x over which func changes substantially. An estimate of the
error in the derivative is returned as err.
{

int i,j;

float errt,fac,hh,**a,ans;

if (h == 0.0) nrerror("h must be nonzero in dfridr.");
a=matrix(1,NTAB,1,NTAB);

hh=h;

al[1] [1]=((*func) (x+hh)- (*func) (x-hh))/(2.0%*hh) ;

*err=BIG;

for (i=2;i<=NTAB;i++) {

Successive columns in the Neville tableau will go to smaller stepsizes and higher orders of
extrapolation.

hh /= CON;

a[1] [i]=((*func) (x+hh) - (*func) (x-hh))/(2.0%hh); Try new, smaller step-

fac=CON2; size.

for (j=2;j<=i;j++) { Compute extrapolations of various orders, requiring
aljl[il=(alj-1] [i]*fac-al[j-1]1[i-1])/(fac-1.0); no new function eval-
fac=CON2x*fac; uations.

errt=FMAX (fabs(al[j]l [i]l-a[j-11[i]),fabs(aljl[i]l-alj-11[i-11));

5.7 Numerical Derivatives 189

The error strategy is to compare each new extrapolation to one order lower, both
at the present stepsize and the previous one.

if (errt <= *err) { If error is decreased, save the improved answer.
*xerr=errt;
ans=a[j][i];

}

}
if (fabs(al[i]l [i]l-al[i-1][i-1]) >= SAFE*(*err)) break;
If higher order is worse by a significant factor SAFE, then quit early.

}
free_matrix(a,1,NTAB,1,NTAB);
return ans;

In dfridr, the number of evaluations of func is typically 6 to 12, but is allowed
to be as great as 2xXNTAB. As a function of input h, it is typical for the accuracy
to get better as h is made larger, until a sudden point is reached where nonsensical
extrapolation produces early return with a large error. You should therefore choose
a fairly large value for h, but monitor the returned value err, decreasing h if it is
not small. For functions whose characteristic « scale is of order unity, we typically
take h to be a few tenths.

Besides Ridders’ method, there are other possible techniques. If your function
is fairly smooth, and you know that you will want to evaluate its derivative many
times at arbitrary points in some interval, then it makes sense to construct a
Chebyshev polynomial approximation to the function in that interval, and to evaluate
the derivative directly from the resulting Chebyshev coefficients. This method is
described in §§5.8-5.9, following.

Another technique applies when the function consists of data that is tabulated
at equally spaced intervals, and perhaps also noisy. One might then want, at each
point, to least-squares fit a polynomial of some degree M, using an additional
number ny, of points to the left and some number np of points to the right of each
desired x value. The estimated derivative is then the derivative of the resulting
fitted polynomial. A very efficient way to do this construction is via Savitzky-Golay
smoothing filters, which will be discussed later, in §14.8. There we will give a
routine for getting filter coefficients that not only construct the fitting polynomial but,
in the accumulation of a single sum of data points times filter coefficients, evaluate
it as well. In fact, the routine given, savgol, has an argument 1d that determines
which derivative of the fitted polynomial is evaluated. For the first derivative, the
appropriate setting is 1d=1, and the value of the derivative is the accumulated sum
divided by the sampling interval h.

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall), §§5.4-5.6. [1]

Ridders, C.J.F. 1982, Advances in Engineering Software, vol. 4, no. 2, pp. 75-76. [2]

190 Chapter 5. Evaluation of Functions

5.8 Chebyshev Approximation

The Chebyshev polynomial of degree n is denoted T, (z), and is given by
the explicit formula

T, (z) = cos(n arccos x) (5.8.1)

This may look trigonometric at first glance (and there is in fact a close relation
between the Chebyshev polynomials and the discrete Fourier transform); however
(5.8.1) can be combined with trigonometric identities to yield explicit expressions
for T,,(x) (see Figure 5.8.1),

=4z -3z (5.8.2)
8

Thi1(x) = 22T, () — Tp—1(z) n>1.

(There also exist inverse formulas for the powers of x in terms of the 7},’s — see
equations 5.11.2-5.11.3.)

The Chebyshev polynomials are orthogonal in the interval [—1, 1] over a weight
(1 — 22)='/2. 1In particular,

' L@@ f°)
/_1 A dzx = {2/2 z;iig (5.8.3)

The polynomial T;,(z) has n zeros in the interval [—1, 1], and they are located
at the points

k-1
T = cos (Lﬁ) k=1,2,...,n (5.8.4)

In this same interval there are n 4+ 1 extrema (maxima and minima), located at

k
x = cos (”—) k=0,1,...,n (5.8.5)
n
At all of the maxima 7, (z) = 1, while at all of the minima T, (z) = —1;

it is precisely this property that makes the Chebyshev polynomials so useful in
polynomial approximation of functions.

5.8 Chebyshev Approximation 191

r ;. r r i _r r 1 r J_ v 1 T [T T T T . T T]

10} Ty
|
| |
T l
I
T,
|
R |
- T3
—Q:(;: I -
'§ i Ts i
S [i
—.50 Ts
! ‘ i
-1 | i I T I i R [I T I w L]
-1 -8 -6 -4 -2 00 2 4 .6 .8 1

Figure 5.8.1. Chebyshev polynomials T (x) through T(x). Note that T; has j roots in the interval
(—1,1) and that all the polynomials are bounded between +1.

The Chebyshev polynomials satisfy a discrete orthogonality relation as well as
the continuous one (5.8.3): If z; (k = 1,...,m) are the m zeros of T, (z) given
by (5.8.4), and if 7,7 < m, then

" 0 i#j
S D) (@) = {m/z i=j#0 (55.6)

k=1 m 1=3=0

It is not too difficult to combine equations (5.8.1), (5.8.4), and (5.8.6) to prove
the following theorem: If f(x) is an arbitrary function in the interval [—1, 1], and if
N coefficients ¢;,j = 0,..., N — 1, are defined by

9 N
G =N > f@n) Ty (k)
S 1 o (587)
= %;f [cos <LkN 5)” cos <_7T‘7(I?V §)>
then the approximation formula
N—-1 1
flx) = lz crTi(z) | = 5o (5.8.8)
k=0

192 Chapter 5. Evaluation of Functions

is exact for = equal to all of the N zeros of Ty (z).

For a fixed N, equation (5.8.8) is a polynomial in z which approximates the
function f(x) in the interval [—1, 1] (where all the zeros of Ty (z) are located). Why
is this particular approximating polynomial better than any other one, exact on some
other set of V points? The answer is not that (5.8.8) is necessarily more accurate
than some other approximating polynomial of the same order N (for some specified
definition of “accurate”), but rather that (5.8.8) can be truncated to a polynomial of
lower degree m < N in a very graceful way, one that does yield the “most accurate”
approximation of degree m (in a sense that can be made precise). Suppose N is
so large that (5.8.8) is virtually a perfect approximation of f(x). Now consider
the truncated approximation

flx) = [Z_: aTr(z) | — %Co (5.8.9)
k=0

with the same ¢;’s, computed from (5.8.7). Since the Tj(z)’s are all bounded
between *1, the difference between (5.8.9) and (5.8.8) can be no larger than the
sum of the neglected cx’s (k = m,..., N — 1). In fact, if the c;’s are rapidly
decreasing (which is the typical case), then the error is dominated by ¢, Tp, (),
an oscillatory function with m + 1 equal extrema distributed smoothly over the
interval [—1, 1]. This smooth spreading out of the error is a very important property:
The Chebyshev approximation (5.8.9) is very nearly the same polynomial as that
holy grail of approximating polynomials the minimax polynomial, which (among all
polynomials of the same degree) has the smallest maximum deviation from the true
function f(z). The minimax polynomial is very difficult to find; the Chebyshev
approximating polynomial is almost identical and is very easy to compute!

So, given some (perhaps difficult) means of computing the function f(z), we
now need algorithms for implementing (5.8.7) and (after inspection of the resulting
c’s and choice of a truncating value m) evaluating (5.8.9). The latter equation then
becomes an easy way of computing f(z) for all subsequent time.

The first of these tasks is straightforward. A generalization of equation (5.8.7)
that is here implemented is to allow the range of approximation to be between two
arbitrary limits a and b, instead of just —1 to 1. This is effected by a change of variable

z—1(0b+a)
%(b—a)

y (5.8.10)

and by the approximation of f(x) by a Chebyshev polynomial in y.

#include <math.h>
#include "nrutil.h"
#define PI 3.141592653589793

void chebft(float a, float b, float c[], int n, float (*func) (float))
Chebyshev fit: Given a function func, lower and upper limits of the interval [a,b], and a
maximum degree n, this routine computes the n coefficients c[0. .n-1] such that func(z) =~

[chl;(l) ¢k Tk (y)] — co/2, where y and z are related by (5.8.10). This routine is to be used with
moderately large n (e.g., 30 or 50), the array of c's subsequently to be truncated at the smaller
value m such that c,, and subsequent elements are negligible.
{

int k,j;

float fac,bpa,bma,*f;

5.8 Chebyshev Approximation 193

f=vector(0,n-1);
bma=0.5*(b-a) ;
bpa=0.5%(b+a) ;

for (k=0;k<n;k++) { We evaluate the function at the n points required
float y=cos(PI*(k+0.5)/n); by (5.8.7).
£ [k]=(*func) (y*bma+bpa) ;
}
fac=2.0/n;
for (j=0;j<n;j++) {
double sum=0.0; We will accumulate the sum in double precision,
for (k=0;k<n;k++) a nicety that you can ignore.
sum += f[k]*cos(PI*j*(k+0.5)/n);
c[jl=fac*sum;
}

free_vector(f,0,n-1);

(If you find that the execution time of chebft is dominated by the calculation of
N? cosines, rather than by the N evaluations of your function, then you should look
ahead to §12.3, especially equation 12.3.22, which shows how fast cosine transform
methods can be used to evaluate equation 5.8.7.)

Now that we have the Chebyshev coefficients, how do we evaluate the approxi-
mation? One could use the recurrence relation of equation (5.8.2) to generate values
for Ty (z) from Ty = 1,77 = z, while also accumulating the sum of (5.8.9). It
is better to use Clenshaw’s recurrence formula (§5.5), effecting the two processes
simultaneously. Applied to the Chebyshev series (5.8.9), the recurrence is

dm+1 Edm =0

dj = 2zdjir —djpat e j=m—lm=2...1 (55

1
f(x)5d0=$d1—d2+560

float chebev(float a, float b, float c[], int m, float x)

Chebyshev evaluation: All arguments are input. c[0..m-1] is an array of Chebyshev coeffi-
cients, the first m elements of ¢ output from chebft (which must have been called with the
same a and b). The Chebyshev polynomial leg;(l) ckTk(y) — co/2 is evaluated at a point
y =[x — (b+a)/2]/[(b—a)/2], and the result is returned as the function value.

{

void nrerror(char error_text[]);
float d=0.0,dd=0.0,sv,y,y2;

int j;

if ((x-a)*(x-b) > 0.0) nrerror("x not in range in routine chebev");

y2=2.0*(y=(2.0%x-a-b)/(b-a)); Change of variable.
for (j=m-1;j>=1;j--) { Clenshaw's recurrence.
sv=d;
d=y2*d-dd+c[j];
dd=sv;
}
return y*d-dd+0.5%c[0]; Last step is different.

194 Chapter 5. Evaluation of Functions

If we are approximating an even function on the interval [—1, 1], its expansion
will involve only even Chebyshev polynomials. It is wasteful to call chebev with
all the odd coefficients zero [1]. Instead, using the half-angle identity for the cosine
in equation (5.8.1), we get the relation

Ton(z) = T, (22% — 1) (5.8.12)

Thus we can evaluate a series of even Chebyshev polynomials by calling chebev
with the even coefficients stored consecutively in the array c, but with the argument
x replaced by 222 — 1.

An odd function will have an expansion involving only odd Chebyshev poly-
nomials. It is best to rewrite it as an expansion for the function f(z)/x, which
involves only even Chebyshev polynomials. This will give accurate values for
f(z)/x near x = 0. The coefficients ¢/, for f(x)/x can be found from those for
f(x) by recurrence:

g1 =0
(5.8.13)

/ /
Cp1 = 2Ch — Cpyq, n=N-1,N-3,...

Equation (5.8.13) follows from the recurrence relation in equation (5.8.2).

If you insist on evaluating an odd Chebyshev series, the efficient way is to once
again use chebev with z replaced by y = 222 — 1, and with the odd coefficients
stored consecutively in the array c. Now, however, you must also change the last
formula in equation (5.8.11) to be

f(x) = 2[(2y —1)dy — d2 + co (5.8.14)

and change the corresponding line in chebev.

CITED REFERENCES AND FURTHER READING:

Clenshaw, C.W. 1962, Mathematical Tables, vol. 5, National Physical Laboratory, (London: H.M.
Stationery Office). [1]

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), Chapter 8.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
84.4.1, p. 104.

Johnson, L.W.,, and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §6.5.2, p. 334.

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), §1.10, p. 39.

5.9 Derivatives or Integrals of a Chebyshev-approximated Function 195

5.9 Derivatives or Integrals of a
Chebyshev-approximated Function

If you have obtained the Chebyshev coefficients that approximate a function in
a certain range (e.g., from chebft in §5.8), then it is a simple matter to transform
them to Chebyshev coefficients corresponding to the derivative or integral of the
function. Having done this, you can evaluate the derivative or integral just as if it
were a function that you had Chebyshev-fitted ab initio.

The relevant formulas are these: If ¢;, ¢ = 0,...,m — 1 are the coefficients
that approximate a function f in equation (5.8.9), C; are the coefficients that
approximate the indefinite integral of f, and ¢ are the coefficients that approximate
the derivative of f, then

C, = “12& (i > 0) (5.9.1)
1

/

Gy = Cpyq + 2ic i=m—-1m-2,...,1) (5.9.2)

Equation (5.9.1) is augmented by an arbitrary choice of Cj, corresponding to an
arbitrary constant of integration. Equation (5.9.2), which is a recurrence, is started
with the values ¢, = ¢,,,_; = 0, corresponding to no information about the m + 1st
Chebyshev coefficient of the original function f.

Here are routines for implementing equations (5.9.1) and (5.9.2).

void chder(float a, float b, float c[], float cder[], int n)
Given a,b,c[0..n-1], as output from routine chebft §5.8, and given n, the desired degree
of approximation (length of ¢ to be used), this routine returns the array cder[0..n-1], the
Chebyshev coefficients of the derivative of the function whose coefficients are c.
{

int j;

float con;

cder[n-1]=0.0; n-1 and n-2 are special cases.

cder [n-2]=2%(n-1)*c[n-1];
for (j=n-3;j>=0;j--)

cder[jl=cder [j+2]+2* (j+1)*c[j+1]; Equation (5.9.2).
con=2.0/(b-a);
for (j=0;j<n;j++) Normalize to the interval b-a.

cder[j] *= con;

void chint(float a, float b, float c[], float cint[], int n)
Given a,b,c[0..n-1], as output from routine chebft §5.8, and given n, the desired degree
of approximation (length of ¢ to be used), this routine returns the array cint[0..n-1], the
Chebyshev coefficients of the integral of the function whose coefficients are c. The constant of
integration is set so that the integral vanishes at a.
{

int j;

float sum=0.0,fac=1.0,con;

con=0.25*(b-a); Factor that normalizes to the interval b-a.

196 Chapter 5. Evaluation of Functions

for (j=1;j<=n-2;j++) {

cint[jl=con*(c[j-11-c[j+11)/]; Equation (5.9.1).
sum += facxcint[j]; Accumulates the constant of integration.
fac = -fac; Will equal +1.

}

cint [n-1]=con*c[n-2]/(n-1); Special case of (5.9.1) for n-1.

sum += fac*cint[n-1];

cint [0]=2.0*sum; Set the constant of integration.

Clenshaw-Curtis Quadrature

Since a smooth function’s Chebyshev coefficients ¢; decrease rapidly, generally expo-
nentially, equation (5.9.1) is often quite efficient as the basis for a quadrature scheme. The
routines chebft and chint, used in that order, can be followed by repeated calls to chebev
if [f(x)dz is required for many different values of z in the range a < z < b.

If only the single definite integral fab f(x)dz is required, then chint and chebev are
replaced by the simpler formula, derived from equation (5.9.1),

b o — (b 1 1 1 1

/a f@)de = (b—a)|5e0 = gea = qzea 2k +1)(2k—1) "

(5.9.3)
where the ¢;’s are as returned by chebft. The series can be truncated when c2j, becomes
negligible, and the first neglected term gives an error estimate.

This scheme is known as Clenshaw-Curtis quadrature [1]. It is often combined with an
adaptive choice of N, the number of Chebyshev coefficients calculated via equation (5.8.7),
which is also the number of function evaluations of f(x). If a modest choice of N does
not give a sufficiently small cax in equation (5.9.3), then a larger value is tried. In this
adaptive case, it is even better to replace equation (5.8.7) by the so-called “trapezoidal” or
Gauss-Lobatto (§4.5) variant,

Cv—ziﬁf cos L cos ik =0 N -1 (5.9.4)
J—Nkzo N N j=0,..., 9.

where (N.B.!) the two primes signify that the first and last terms in the sum are to be
multiplied by 1/2. If N is doubled in equation (5.9.4), then half of the new function
evaluation points are identical to the old ones, allowing the previous function evaluations to be
reused. This feature, plus the analytic weights and abscissas (cosine functions in 5.9.4), give
Clenshaw-Curtis quadrature an edge over high-order adaptive Gaussian quadrature (cf. §4.5),
which the method otherwise resembles.

If your problem forces you to large values of NV, you should be aware that equation (5.9.4)
can be evaluated rapidly, and simultaneously for all the values of j, by a fast cosine transform.
(See §12.3, especially equation 12.3.17.) (We already remarked that the nontrapezoidal form
(5.8.7) can also be done by fast cosine methods, cf. equation 12.3.22.)

CITED REFERENCES AND FURTHER READING:

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), pp. 78-79.

Clenshaw, C.W., and Curtis, A.R. 1960, Numerische Mathematik, vol. 2, pp. 197-205. [1]

5.10 Polynomial Approximation from Chebyshev Coefficients 197

5.10 Polynomial Approximation from
Chebyshev Coefficients

You may well ask after reading the preceding two sections, “Must I store and
evaluate my Chebyshev approximation as an array of Chebyshev coefficients for a
transformed variable y? Can’t I convert the cy’s into actual polynomial coefficients
in the original variable = and have an approximation of the following form?”

m—1
flo) =Y geat (5.10.1)
k=0

Yes, you can do this (and we will give you the algorithm to do it), but we
caution you against it: Evaluating equation (5.10.1), where the coefficient g’s reflect
an underlying Chebyshev approximation, usually requires more significant figures
than evaluation of the Chebyshev sum directly (as by chebev). This is because
the Chebyshev polynomials themselves exhibit a rather delicate cancellation: The
leading coefficient of T},(z), for example, is 2"~ !; other coefficients of T},(x) are
even bigger; yet they all manage to combine into a polynomial that lies between +£1.
Only when m is no larger than 7 or 8 should you contemplate writing a Chebyshev
fit as a direct polynomial, and even in those cases you should be willing to tolerate
two or so significant figures less accuracy than the roundoff limit of your machine.

You get the ¢’s in equation (5.10.1) from the c’s output from chebft (suitably
truncated at a modest value of m) by calling in sequence the following two procedures:

#include "nrutil.h"

void chebpc(float c[], float d[], int n)
Chebyshev polynomial coefficients. Given a coefficient array c[0..n-1], this routine generates

a coefficient array d[0..n-1] such that ZE;% dpyk = 1,3;% ckTk(y) — co/2. The method
is Clenshaw's recurrence (5.8.11), but now applied algebraically rather than arithmetically.
{

int k,j;

float sv,*dd;

dd=vector(0,n-1);
for (j=0;j<n;j++) d[jl=dd[j]1=0.0;
d[0]=c[n-1];
for (j=n-2;j>=1;j--) {
for (k=n-j;k>=1;k--) {
sv=d[k];
d[k]=2.0*d[k-1]-dd[k];
dd[k]=sv;
}
sv=d[0];
d[0] = -dd[0]+c[j];
dd[0]=sv;
}
for (j=n-1;j>=1;j--)
d[jl=d[j-11-dd[j];
d[0] = -dd[0]+0.5%c[0];
free_vector(dd,0,n-1);

198 Chapter 5. Evaluation of Functions

void pcshft(float a, float b, float d[], int n)

Polynomial coefficient shift. Given a coefficient array d[O .n- 1] this routine generates a
coefficient array g[0..n-1] such that EE;% dpy® Zk 0 gxx®, where and y are related
by (5.8.10), i.e., the interval —1 < y < 1 is mapped to the interval a < z < b. The array
g is returned in d.

{
int k,j;
float fac,cnst;
cnst=2.0/(b-a);
fac=cnst;
for (j=1;j<m;j++) { First we rescale by the factor const...
d[j] *= fac;
fac *= cnst;
}
cnst=0.5%(a+b); ...which is then redefined as the desired shift.
for (j=0;j<=n-2;j++) We accomplish the shift by synthetic division. Synthetic
for (k=n-2;k>=j;k--) division is a miracle of high-school algebra. If you
d[k] -= cnst*d[k+1]; never learned it, go do so. You won't be sorry.
}

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 59, 182—183 [synthetic division].

5.11 Economization of Power Series

One particular application of Chebyshev methods, the economization of power series, is
an occasionally useful technique, with a flavor of getting something for nothing.

Suppose that you are already computing a function by the use of a convergent power
series, for example

22 g8

f(a:)zlf§+§fﬁ+ (5.11.1)

(This function is actually sin(y/x)/+/x, but pretend you don’t know that.) You might be

domg a groblem that requires evaluating the series many times in some particular interval, say

0, (2m)“]. Everything is fine, except that the series requlres a large number of terms before

1ts error (appr0x1mated by the first neglected term, say) is tolerable. In our example, with

x = (27)?, the first term smaller than 10~ is ' /(27!). This then approximates the error
of the finite series whose last term is =% /(25!).

Notice that because of the large exponent in x'3, the error is much smaller than 10~7
everywhere in the interval except at the very largest values of x. This is the feature that allows
“economization”: if we are willing to let the error elsewhere in the interval rise to about the
same value that the first neglected term has at the extreme end of the interval, then we can
replace the 13-term series by one that is significantly shorter.

Here are the steps for doing so:

1. Change variables from x to y, as in equation (5.8.10), to map the z interval into

“1<y<L

2. Find the coefficients of the Chebyshev sum (like equation 5.8.8) that exactly equals your
truncated power series (the one with enough terms for accuracy).

3. Truncate this Chebyshev series to a smaller number of terms, using the coefficient of the
first neglected Chebyshev polynomial as an estimate of the error.

5.11 Economization of Power Series 199

4. Convert back to a polynomial in y.
5. Change variables back to .

All of these steps can be done numerically, given the coefficients of the original power
series expansion. The first step is exactly the inverse of the routine pcshft (§5.10), which
mapped a polynomial from y (in the interval [—1, 1]) to = (in the interval [a, b]). But since
equation (5.8.10) is a linear relation between = and y, one can also use pcshft for the
inverse. The inverse of

pcshft(a,b,d,n)

turns out to be (you can check this)

pcshft<2bba,2 ba,d,n)

—a b—a

The second step requires the inverse operation to that done by the routine chebpc (which
took Chebyshev coefficients into polynomial coefficients). The following routine, pccheb,
accomplishes this, using the formula [1]

1 k k
zF = 7o |Tr(@) + <1>TH($) + <2>Tk4(x) 4+ (5.11.2)
where the last term depends on whether & is even or odd,
et [P V@) odd), 4 E[F)T@) (keven). (5.113)
(k—1)/2)"" ’ 2\k/2)7° ' o

void pccheb(float d[], float c[], int n)
Inverse of routine chebpc: given an array of polynomial coefficients d[0..n-1], returns an
equivalent array of Chebyshev coefficients c[0..n-1].

{
int j,jm,jp,k;
float fac,pow;
pow=1.0; Will be powers of 2.
c[0]=2.0%d[0];
for (k=1;k<n;k++) { Loop over orders of x in the polynomial.
c[k]=0.0; Zero corresponding order of Chebyshev.
fac=d[k]/pow;
jm=k;
jp=1;
for (j=k;j>=0;j-=2,jm——,jp++) {
Increment this and lower orders of Chebyshev with the combinatorial coefficent times
d[k]; see text for formula.
c[j]l += fac;
fac *= ((float)jm)/((float)jp);
}
pow += pow;
}
}

The fourth and fifth steps are accomplished by the routines chebpc and pcshft,
respectively. Here is how the procedure looks all together:

200 Chapter 5. Evaluation of Functions

#define NFEW ..
#define NMANY ..

float *c,*d,*e,a,b;
Economize NMANY power series coefficients e[0..NMANY-1] in the range (a,b) into NFEW
coefficients d[0. .NFEW-1].

c=vector (0,NMANY-1) ;

d=vector (0,NFEW-1);

e=vector (0,NMANY-1);

pcshft ((-2.0-b-a)/(b-a), (2.0-b-a)/(b-a),e,NMANY) ;
pccheb(e,c,NMANY) ;

Here one would normally examine the Chebyshev coefficients c[0..NMANY-1] to decide
how small NFEW can be.

chebpc(c,d,NFEW) ;

pcshft(a,b,d,NFEW) ;

In our example, by the way, the 8th through 10th Chebyshev coefficients turn out to
be on the order of —7 x 1076, 3 x 1077, and —9 x 10™°, so reasonable truncations (for
single precision calculations) are somewhere in this range, yielding a polynomial with 8 —
10 terms instead of the original 13.

Replacing a 13-term polynomial with a (say) 10-term polynomial without any loss of
accuracy — that does seem to be getting something for nothing. Is there some magic in
this technique? Not really. The 13-term polynomial defined a function f(z). Equivalent to
economizing the series, we could instead have evaluated f(x) at enough points to construct
its Chebyshev approximation in the interval of interest, by the methods of §5.8. We would
have obtained just the same lower-order polynomial. The principal lesson is that the rate
of convergence of Chebyshev coefficients has nothing to do with the rate of convergence of
power series coefficients; and it is the former that dictates the number of terms needed in a
polynomial approximation. A function might have a divergent power series in some region
of interest, but if the function itself is well-behaved, it will have perfectly good polynomial
approximations. These can be found by the methods of §5.8, but not by economization of
series. There is slightly less to economization of series than meets the eye.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 12.

Arfken, G. 1970, Mathematical Methods for Physicists, 2nd ed. (New York: Academic Press),
p. 631. [1]

5.12 Pade Approximants

A Padé approximant, so called, is that rational function (of a specified order) whose
power series expansion agrees with a given power series to the highest possible order. If
the rational function is

M
k
Zakx
Rlz)= -2 (5.12.1)

N
1+ bt
k=1

5.12 Padé Approximants 201

then R(z) is said to be a Padé approximant to the series

oo

fl@) =) epa® (5.12.2)
k=0
if
R(0) = £(0) (5.12.3)
and also
d* d*
wR(x) N = wf(x) L k=1,2,....M+N (5.12.4)

Equations (5.12.3) and (5.12.4) furnish M + N + 1 equations for the unknowns ag, . .., anm
and by,...,bny. The easiest way to see what these equations are is to equate (5.12.1) and
(5.12.2), multiply both by the denominator of equation (5.12.1), and equate all powers of
x that have either a’s or b’s in their coefficients. If we consider only the special case of
a diagonal rational approximation, M = N (cf. §3.2), then we have ag = cp, with the
remaining a’s and b’s satisfying

N

> bmenomik=—cnpk, k=1,...,N (5.12.5)
m=1
k
> bmck—m = ax, k=1,...,N (5.12.6)
m=0

(note, in equation 5.12.1, that by = 1). To solve these, start with equations (5.12.5), which
are a set of linear equations for all the unknown b’s. Although the set is in the form of a
Toeplitz matrix (compare equation 2.8.8), experience shows that the equations are frequently
close to singular, so that one should not solve them by the methods of §2.8, but rather by
full LU decomposition. Additionally, it is a good idea to refine the solution by iterative
improvement (routine mprove in §2.5) [1].

Once the b’s are known, then equation (5.12.6) gives an explicit formula for the unknown
a’s, completing the solution.

Padé approximants are typically used when there is some unknown underlying function
f(x). We suppose that you are able somehow to compute, perhaps by laborious analytic
expansions, the values of f(z) and a few of its derivatives at z = 0: f(0), f'(0), f"(0),
and so on. These are of course the first few coefficients in the power series expansion of
f(x); but they are not necessarily getting small, and you have no idea where (or whether)
the power series is convergent.

By contrast with techniques like Chebyshev approximation (§5.8) or economization
of power series (§5.11) that only condense the information that you already know about a
function, Padé approximants can give you genuinely new information about your function’s
values. It is sometimes quite mysterious how well this can work. (Like other mysteries in
mathematics, it relates to analyticity.) An example will illustrate.

Imagine that, by extraordinary labors, you have ground out the first five terms in the
power series expansion of an unknown function f(z),

N 1 1 5 49 3 175 4
f(z)~2+9m—0—81m g7as” t 7gr3n’ + (5.12.7)
(It is not really necessary that you know the coefficients in exact rational form — numerical
values are just as good. We here write them as rationals to give you the impression that
they derive from some side analytic calculation.) Equation (5.12.7) is plotted as the curve
labeled “power series” in Figure 5.12.1. One sees that for 2 4 it is dominated by its
largest, quartic, term.

We now take the five coefficients in equation (5.12.7) and run them through the routine
pade listed below. It returns five rational coefficients, three a’s and two b’s, for use in equation
(5.12.1) with M = N = 2. The curve in the figure labeled “Padé” plots the resulting rational
function. Note that both solid curves derive from the same five original coefficient values.

202 Chapter 5. Evaluation of Functions

10||||||||||||||||||

8 — F@) =7+ (1 + x)43]1/3 -

power series (5 terms)\

fx)

Padé (5 coefficients)

Figure 5.12.1. The five-term power series expansion and the derived five-coefficient Padé approximant
for a sample function f(z). The full power series converges only for x < 1. Note that the Padé
approximant maintains accuracy far outside the radius of convergence of the series.

To evaluate the results, we need Deus ex machina (a useful fellow, when he is available)
to tell us that equation (5.12.7) is in fact the power series expansion of the function

fla) =17+ 1 +x)*?)? (5.12.8)

which is plotted as the dotted curve in the figure. This function has a branch pointat x = —1,
so its power series is convergent only in the range —1 < z < 1. In most of the range
shown in the figure, the series is divergent, and the value of its truncation to five terms is
rather meaningless. Nevertheless, those five terms, converted to a Padé approximant, give a
remarkably good representation of the function up to at least x ~ 10.

Why does this work? Are there not other functions with the same first five terms in
their power series, but completely different behavior in the range (say) 2 < z < 10? Indeed
there are. Padé approximation has the uncanny knack of picking the function you had in
mind from among all the possibilities. Except when it doesn’t! That is the downside of
Padé approximation: it is uncontrolled. There is, in general, no way to tell how accurate
it is, or how far out in z it can usefully be extended. It is a powerful, but in the end still
mysterious, technique.

Here is the routine that gets a’s and b’s from your ¢’s. Note that the routine is specialized
to the case M = N, and also that, on output, the rational coefficients are arranged in a format
for use with the evaluation routine ratval (§5.3). (Also for consistency with that routine,
the array of ¢’s is passed in double precision.)

#include <math.h>
#include "nrutil.h"
#define BIG 1.0e30

void pade(double cof[], int n, float *resid)

Given cof [0..2#n], the leading terms in the power series expansion of a function, solve the
linear Padé equations to return the coefficients of a diagonal rational function approximation to
the same function, namely (cof [0] + cof [1]z + - - + cof [n] xN)/(l +cof[n+1]z+---+

5.12 Padé Approximants 203

cof [2*n] xN). The value resid is the norm of the residual vector; a small value indicates a
well-converged solution. Note that cof is double precision for consistency with ratval.

{

void lubksb(float **a, int n, int *indx, float b[]);

void ludcmp(float **a, int n, int *indx, float *d);

void mprove(float **a, float **alud, int n, int indx[], float b[],
float x[]);

int j,k,*indx;

float d,rr,rrold,sum,**q,**qlu,*x,*y,*z;

indx=ivector(1,n);
g=matrix(1l,n,1,n);
qlu=matrix(1,n,1,n);
x=vector(1l,n);
y=vector(1,n);
z=vector(1,n);
for (j=1;j<=n;j++) { Set up matrix for solving.
y[jl=x[jl=cof [n+j];
for (k=1;k<=n;k++) {
qlj] [k]l=cof [j-k+n];
qluljl [k1=q[j][k];

}
}
ludcmp(qlu,n,indx,&d) ; Solve by LU decomposition and backsubstitu-
lubksb(qlu,n,indx,x); tion.
rr=BIG;
do { Important to use iterative improvement, since
rrold=rr; the Padé equations tend to be ill-conditioned.
for (j=1;j<=n;j++) z[jl=x[j];
mprove(q,qlu,n,indx,y,x) ;
for (rr=0.0,j=1;j<=n;j++) Calculate residual.
rr += SQR(z[j1-x[j1);
} while (rr < rrold); If it is no longer improving, call it quits.
*resid=sqrt(rrold);
for (k=1;k<=n;k++) { Calculate the remaining coefficients.
for (sum=cof [k],j=1;j<=k;j++) sum —-= z[jl*cof[k-j];
y[k]=sum;
} Copy answers to output.

for (j=1;j<=n;j++) {

cof [j1=y[jl;

cof[j+n] = -z[j];
}
free_vector(z,1,n);
free_vector(y,1,n);
free_vector(x,1,n);
free_matrix(qlu,1,n,1,n);
free_matrix(q,1,n,1,n);
free_ivector(indx,1,n);

CITED REFERENCES AND FURTHER READING:
Ralston, A. and Wilf, H.S. 1960, Mathematical Methods for Digital Computers (New York: Wiley),

p. 14.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-

Holland), Chapter 2.

Graves-Morris, P.R. 1979, in Padé Approximation and Its Applications, Lecture Notes in Mathe-

matics, vol. 765, L. Wuytack, ed. (Berlin: Springer-Verlag). [1]

204 Chapter 5. Evaluation of Functions

5.13 Rational Chebyshev Approximation

In §5.8 and §5.10 we learned how to find good polynomial approximations to a given
function f(z) in a given interval a < z < b. Here, we want to generalize the task to find
good approximations that are rational functions (see §5.3). The reason for doing so is that,
for some functions and some intervals, the optimal rational function approximation is able
to achieve substantially higher accuracy than the optimal polynomial approximation with the
same number of coefficients. This must be weighed against the fact that finding a rational
function approximation is not as straightforward as finding a polynomial approximation,
which, as we saw, could be done elegantly via Chebyshev polynomials.

Let the desired rational function R(x) have numerator of degree m and denominator
of degree k. Then we have

- 14+ qr+- A+ gea?

~ f(x) fora <z <b (5.13.1)

The unknown quantities that we need to find are po, . .., pm and q1, . . ., gk, thatis, m +k +1
quantities in all. Let r(x) denote the deviation of R(x) from f(x), and let » denote its
maximum absolute value,

r(z) = R(x) — f(x) r= arg;a,%(b |r(x)| (5.13.2)

The ideal minimax solution would be that choice of p’s and ¢’s that minimizes r. Obviously
there is some minimax solution, since r is bounded below by zero. How can we find it, or
a reasonable approximation to it?

A first hint is furnished by the following fundamental theorem: If R(x) is nondegenerate
(has no common polynomial factors in numerator and denominator), then there is a unique
choice of p’s and ¢’s that minimizes r; for this choice, r(z) has m + k + 2 extrema in
a < x < b, all of magnitude r and with alternating sign. (We have omitted some technical
assumptions in this theorem. See Ralston [1] for a precise statement.) We thus learn that the
situation with rational functions is quite analogous to that for minimax polynomials: In §5.8
we saw that the error term of an nth order approximation, with n + 1 Chebyshev coefficients,
was generally dominated by the first neglected Chebyshev term, namely 7,1, which itself
has n + 2 extrema of equal magnitude and alternating sign. So, here, the number of rational
coefficients, m + k + 1, plays the same role of the number of polynomial coefficients, n 4 1.

A different way to see why r(x) should have m + k + 2 extrema is to note that R(x)
can be made exactly equal to f(z) at any m + k + 1 points =;. Multiplying equation (5.13.1)
by its denominator gives the equations

Po+p1xi + - 4 pmal” = fla)(1+ qai + - + qrat)
(5.13.3)
i=1,2,...om+k+1

This is a set of m + k + 1 linear equations for the unknown p’s and ¢’s, which can be
solved by standard methods (e.g., LU decomposition). If we choose the z;’s to all be in
the interval (a,b), then there will generically be an extremum between each chosen z; and
x;4+1, plus also extrema where the function goes out of the interval at a and b, for a total
of m 4+ k + 2 extrema. For arbitrary z;’s, the extrema will not have the same magnitude.
The theorem says that, for one particular choice of x;’s, the magnitudes can be beaten down
to the identical, minimal, value of r.

Instead of making f(z;) and R(xz;) equal at the points x;, one can instead force the
residual 7(z;) to any desired values y; by solving the linear equations

o+ D1z + -+ pmzlt = [f(@:) — w1+ i + - - + qral)

(5.13.4)
i=1,2,...,m+k+1

5.13 Rational Chebyshev Approximation 205

In fact, if the x;’s are chosen to be the extrema (not the zeros) of the minimax solution,
then the equations satisfied will be

po+pizi + -+ pmalt = [f(@) £]+ @ + - + qeal)

(5.13.5)

i=1,2,....m+k+2
where the + alternates for the alternating extrema. Notice that equation (5.13.5) is satisfied at
m + k + 2 extrema, while equation (5.13.4) was satisfied only at m + k + 1 arbitrary points.
How can this be? The answer is that r in equation (5.13.5) is an additional unknown, so that
the number of both equations and unknowns is m + k + 2. True, the set is mildly nonlinear
(in 7), but in general it is still perfectly soluble by methods that we will develop in Chapter 9.

We thus see that, given only the locations of the extrema of the minimax rational
function, we can solve for its coefficients and maximum deviation. Additional theorems,
leading up to the so-called Remes algorithms [1], tell how to converge to these locations by
an iterative process. For example, here is a (slightly simplified) statement of Remes’ Second
Algorithm: (1) Find an initial rational function with m + k + 2 extrema x; (not having equal
deviation). (2) Solve equation (5.13.5) for new rational coefficients and . (3) Evaluate the
resulting R(x) to find its actual extrema (which will not be the same as the guessed values).
(4) Replace each guessed value with the nearest actual extremum of the same sign. (5) Go
back to step 2 and iterate to convergence. Under a broad set of assumptions, this method will
converge. Ralston [1] fills in the necessary details, including how to find the initial set of x;’s.

Up to this point, our discussion has been textbook-standard. We now reveal ourselves
as heretics. We don’t much like the elegant Remes algorithm. Its two nested iterations (on
r in the nonlinear set 5.13.5, and on the new sets of x;’s) are finicky and require a lot of
special logic for degenerate cases. Even more heretical, we doubt that compulsive searching
for the exactly best, equal deviation, approximation is worth the effort — except perhaps for
those few people in the world whose business it is to find optimal approximations that get
built into compilers and microchips.

When we use rational function approximation, the goal is usually much more pragmatic:
Inside some inner loop we are evaluating some function a zillion times, and we want to
speed up its evaluation. Almost never do we need this function to the last bit of machine
accuracy. Suppose (heresy!) we use an approximation whose error has m + k + 2 extrema
whose deviations differ by a factor of 2. The theorems on which the Remes algorithms
are based guarantee that the perfect minimax solution will have extrema somewhere within
this factor of 2 range — forcing down the higher extrema will cause the lower ones to rise,
until all are equal. So our “sloppy” approximation is in fact within a fraction of a least
significant bit of the minimax one.

That is good enough for us, especially when we have available a very robust method
for finding the so-called “sloppy” approximation. Such a method is the least-squares solution
of overdetermined linear equations by singular value decomposition (§2.6 and §15.4). We
proceed as follows: First, solve (in the least-squares sense) equation (5.13.3), not just for
m + k + 1 values of x;, but for a significantly larger number of z;’s, spaced approximately
like the zeros of a high-order Chebyshev polynomial. This gives an initial guess for R(x).
Second, tabulate the resulting deviations, find the mean absolute deviation, call it , and then
solve (again in the least-squares sense) equation (5.13.5) with r fixed and the & chosen to be
the sign of the observed deviation at each point z;. Third, repeat the second step a few times.

You can spot some Remes orthodoxy lurking in our algorithm: The equations we solve
are trying to bring the deviations not to zero, but rather to plus-or-minus some consistent
value. However, we dispense with keeping track of actual extrema; and we solve only linear
equations at each stage. One additional trick is to solve a weighted least-squares problem,
where the weights are chosen to beat down the largest deviations fastest.

Here is a program implementing these ideas. Notice that the only calls to the function
fn occur in the initial filling of the table £s. You could easily modify the code to do this filling
outside of the routine. Itis not even necessary that your abscissas xs be exactly the ones that we
use, though the quality of the fit will deteriorate if you do not have several abscissas between
each extremum of the (underlying) minimax solution. Notice that the rational coefficients are
output in a format suitable for evaluation by the routine ratval in §5.3.

206 Chapter 5. Evaluation of Functions

- m=k=41 :
2x 1070 F(x) =cos(x)/(1 +e*)

1070}

00—

R(x) = f(x)

—1x 10—6[I __

-2x 10—6[! —

Figure 5.13.1. Solid curves show deviations r(x) for five successive iterations of the routine ratlsq
for an arbitrary test problem. The algorithm does not converge to exactly the minimax solution (shown
as the dotted curve). But, after one iteration, the discrepancy is a small fraction of the last significant
bit of accuracy.

#include <stdio.h>

#include <math.h>

#include "nrutil.h"

#define NPFAC 8

#define MAXIT 5

#define PI02 (3.141592653589793/2.0)
#define BIG 1.0e30

void ratlsq(double (*fn)(double), double a, double b, int mm, int kk,

double cof[], double *dev)
Returns in cof [0. .mm+kk] the coefficients of a rational function approximation to the function
fn in the interval (a,b). Input quantities mm and kk specify the order of the numerator and
denominator, respectively. The maximum absolute deviation of the approximation (insofar as
is known) is returned as dev.
{

double ratval(double x, double cof[], int mm, int kk);

void dsvbksb(double **u, double w[], double **v, int m, int n, double b[],

double x[1);

void dsvdcmp(double **a, int m, int n, double w[], double **v);

These are double versions of svdcmp, svbksb.

int i,it,j,ncof,npt;

double devmax,e,hth,power,sum,*bb,*coff,*ee,*fs,**u,**v,*w,*wt,*xs;

ncof=mm+kk+1;

npt=NPFAC*ncof; Number of points where function is evaluated,
bb=dvector(1,npt); i.e., fineness of the mesh.
coff=dvector(0,ncof-1);

ee=dvector (1,npt);

fs=dvector(l,npt);

u=dmatrix(1l,npt,1,ncof);

v=dmatrix(1,ncof,1,ncof);

w=dvector(1,ncof);

wt=dvector (1,npt);

5.13 Rational Chebyshev Approximation 207

xs=dvector(l,npt);

*dev=BIG;
for (i=1;i<=npt;i++) { Fill arrays with mesh abscissas and function val-
if (i < npt/2) { ues.
hth=PI02*(i-1)/(npt-1.0); At each end, use formula that minimizes round-
xs[i]=a+(b-a)*DSQR(sin(hth)); off sensitivity.
} else {

e=0.
for

}

hth=PI02*(npt-i)/(npt-1.0);
xs [i]=b-(b-a)*DSQR(sin(hth)) ;

}
fs[il=(*fn) (xs[il);
wt[i]=1.0; In later iterations we will adjust these weights to
eel[i]=1.0; combat the largest deviations.
03
(it=1;it<=MAXIT;it++) { Loop over iterations.
for (i=1;i<=npt;i++) { Set up the “design matrix” for the least-squares
power=wt[i]; fit.
bb[i]l=power* (fs[i]+SIGN(e,ee[i]));
Key idea here: Fit to £n(z) + e where the deviation is positive, to fn(z) — e where
it is negative. Then e is supposed to become an approximation to the equal-ripple
deviation.
for (j=1;j<=mm+1;j++) {
ulil [jl=power;
power *= xs[il;
}
power = -bb[i];
for (j=mm+2;j<=ncof;j++) {
power *= xs[il;
ulil [jl=power;
}
}
dsvdcmp (u,npt ,ncof ,w,v); Singular Value Decomposition.

In especially singular or difficult cases, one might here edit the singular values w[1. .ncof],
replacing small values by zero. Note that dsvbksb works with one-based arrays, so we
must subtract 1 when we pass it the zero-based array coff.
dsvbksb(u,w,v,npt,ncof ,bb,coff-1);

devmax=sum=0.0;

for (j=1;j<=npt;j++) { Tabulate the deviations and revise the weights.
ee[jl=ratval(xs[j],coff,mm,kk)-fs[j];
wt[jl=fabs(eel[jl); Use weighting to emphasize most deviant points.

sum += wt[j];
if (wt[j] > devmax) devmax=wt[j];

}
e=sum/npt; Update e to be the mean absolute deviation.
if (devmax <= *dev) { Save only the best coefficient set found.
for (j=0;j<ncof;j++) cof[jl=coff[j];
*dev=devmax;
}

printf (" ratlsq iteration= %2d max error= %10.3e\n",it,devmax) ;

free_dvector(xs,1,npt);
free_dvector(wt,1,npt);
free_dvector(w,1,ncof);
free_dmatrix(v,1,ncof,1,ncof);
free_dmatrix(u,1,npt,1,ncof);
free_dvector(fs,1,npt);
free_dvector(ee,1,npt);
free_dvector(coff,0,ncof-1);
free_dvector(bb,1,npt);

208 Chapter 5. Evaluation of Functions

Figure 5.13.1 shows the discrepancies for the first five iterations of ratlsq when it is
applied to find the m = k = 4 rational fit to the function f(z) = cosz/(1 + €*) in the
interval (0, 7). One sees that after the first iteration, the results are virtually as good as the
minimax solution. The iterations do not converge in the order that the figure suggests: In
fact, it is the second iteration that is best (has smallest maximum deviation). The routine
ratlsq accordingly returns the best of its iterations, not necessarily the last one; there is no
advantage in doing more than five iterations.

CITED REFERENCES AND FURTHER READING:

Ralston, A. and Wilf, H.S. 1960, Mathematical Methods for Digital Computers (New York: Wiley),
Chapter 13. [1]

5.14 Evaluation of Functions by Path
Integration

In computer programming, the technique of choice is not necessarily the most
efficient, or elegant, or fastest executing one. Instead, it may be the one that is quick
to implement, general, and easy to check.

One sometimes needs only a few, or a few thousand, evaluations of a special
function, perhaps a complex valued function of a complex variable, that has many
different parameters, or asymptotic regimes, or both. Use of the usual tricks (series,
continued fractions, rational function approximations, recurrence relations, and so
forth) may result in a patchwork program with tests and branches to different
formulas. While such a program may be highly efficient in execution, it is often not
the shortest way to the answer from a standing start.

A different technique of considerable generality is direct integration of a
function’s defining differential equation — an ab initio integration for each desired
function value — along a path in the complex plane if necessary. While this may at
first seem like swatting a fly with a golden brick, it turns out that when you already
have the brick, and the fly is asleep right under it, all you have to do is let it fall!

As a specific example, let us consider the complex hypergeometric func-
tion o F}(a,b,c; z), which is defined as the analytic continuation of the so-called
hypergeometric series,

1 1) 22
2F1(0L,b,c;z):1_|_a_bi_i_a((17L)b(b +)Z_
c

1! c(c+1) 2!
a(a+1)...(a+j—1)b(b+1)...(b+j—1)z_j+
clc+1)...(c+j5—-1) 4!
(5.14.1)

The series converges only within the unit circle |z| < 1 (see[1]), but one’s interest
in the function is often not confined to this region.

The hypergeometric function o F} is a solution (in fact the solution that is regular
at the origin) of the hypergeometric differential equation, which we can write as

2(1—2)F" = abF —[c— (a+ b+ 1)2]F’ (5.14.2)

5.14 Evaluation of Functions by Path Integration 209

Here prime denotes d/dz. One can see that the equation has regular singular points
at z = 0,1, and oco. Since the desired solution is regular at z = 0, the values 1 and
oo will in general be branch points. If we want 5 F to be a single valued function,
we must have a branch cut connecting these two points. A conventional position for
this cut is along the positive real axis from 1 to oo, though we may wish to keep
open the possibility of altering this choice for some applications.

Our golden brick consists of a collection of routines for the integration of sets
of ordinary differential equations, which we will develop in detail later, in Chapter
16. For now, we need only a high-level, “black-box” routine that integrates such
a set from initial conditions at one value of a (real) independent variable to final
conditions at some other value of the independent variable, while automatically
adjusting its internal stepsize to maintain some specified accuracy. That routine is
called odeint and, in one particular invocation, calculates its individual steps with
a sophisticated Bulirsch-Stoer technique.

Suppose that we know values for F and its derivative F” at some value zg, and
that we want to find F' at some other point z; in the complex plane. The straight-line
path connecting these two points is parametrized by

2(8) = zo + s(z1 — 20) (5.14.3)

with s a real parameter. The differential equation (5.14.2) can now be written as
a set of two first-order equations,

qs (21— 20)F
dF (21 — 20) (abF —[c—(a+b+ 1)z]F/> (5.14.4)
ds 21— %0 02

to be integrated from s = 0 to s = 1. Here F and F' are to be viewed as two
independent complex variables. The fact that prime means d/dz can be ignored; it
will emerge as a consequence of the first equation in (5.14.4). Moreover, the real and
imaginary parts of equation (5.14.4) define a set of four real differential equations,
with independent variable s. The complex arithmetic on the right-hand side can be
viewed as mere shorthand for how the four components are to be coupled. It is
precisely this point of view that gets passed to the routine odeint, since it knows
nothing of either complex functions or complex independent variables.

It remains only to decide where to start, and what path to take in the complex
plane, to get to an arbitrary point z. This is where consideration of the function’s
singularities, and the adopted branch cut, enter. Figure 5.14.1 shows the strategy
that we adopt. For |z| < 1/2, the series in equation (5.14.1) will in general converge
rapidly, and it makes sense to use it directly. Otherwise, we integrate along a straight
line path from one of the starting points (+1/2,0) or (0, +1/2). The former choices
are natural for 0 < Re(z) < 1 and Re(z) < 0, respectively. The latter choices are
used for Re(z) > 1, above and below the branch cut; the purpose of starting away
from the real axis in these cases is to avoid passing too close to the singularity at
z = 1 (see Figure 5.14.1). The location of the branch cut is defined by the fact that
our adopted strategy never integrates across the real axis for Re (z) > 1.

An implementation of this algorithm is given in §6.12 as the routine hypgeo.

210 Chapter 5. Evaluation of Functions

Im
0 e
\ 5
A} 1]
\ i
PP B e
. / \ (e e
\ : -
‘| / \ 1]
Yy] \
\ / use power series \!
Y l ; branch cut
7 L
’0‘ \ O I“‘ 1 Re
‘ [y
/
N VA
- / |
o N P ,
~ - — - B
L .- Y
~~~~~~ °
BREE

Figure 5.14.1. Complex plane showing the singular points of the hypergeometric function, its branch

cut, and some integration paths from the circle |z| = 1/2 (where the power series converges rapidly)
to other points in the plane.

A number of variants on the procedure described thus far are possible, and easy
to program. If successively called values of z are close together (with identical values
of a, b, and c), then you can save the state vector (F, F’) and the corresponding value
of z on each call, and use these as starting values for the next call. The incremental
integration may then take only one or two steps. Avoid integrating across the branch
cut unintentionally: the function value will be “correct,” but not the one you want.

Alternatively, you may wish to integrate to some position z by a dog-leg path
that does cross the real axis Re z > 1, as a means of moving the branch cut. For
example, in some cases you might want to integrate from (0,1/2) to (3/2,1/2),
and go from there to any point with Re z > 1 — with either sign of Im z. (If
you are, for example, finding roots of a function by an iterative method, you do
not want the integration for nearby values to take different paths around a branch
point. If it does, your root-finder will see discontinuous function values, and will
likely not converge correctly!)

In any case, be aware that a loss of numerical accuracy can result if you integrate
through a region of large function value on your way to a final answer where the
function value is small. (For the hypergeometric function, a particular case of this is
when @ and b are both large and positive, with ¢ and z 2 1.) In such cases, you’ll
need to find a better dog-leg path.

The general technique of evaluating a function by integrating its differential
equation in the complex plane can also be applied to other special functions. For



5.14 Evaluation of Functions by Path Integration 211

example, the complex Bessel function, Airy function, Coulomb wave function, and
Weber function are all special cases of the confluent hypergeometric function, with a
differential equation similar to the one used above (see, e.g., [1] §13.6, for a table of
special cases). The confluent hypergeometric function has no singularities at finite z:
That makes it easy to integrate. However, its essential singularity at infinity means
that it can have, along some paths and for some parameters, highly oscillatory or
exponentially decreasing behavior: That makes it hard to integrate. Some case by
case judgment (or experimentation) is therefore required.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York). [1]



