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Preface

The present paper is devoted to a somewhat idiosyncratic account of the theorem of de Bruijn–Erdös and
Hanani from the combinatorics of finite geometries and its various proofs. Among the proofs discussed
are the original proofs by de Bruijn–Erdös and by Hanani (the latter seems to be largely forgotten, being
published in a hard to access journal) and few others. Each of these proofs sheds new light on the the-
orem, illustrating the maxim that proofs are more important than the theorems proved. Some proofs
and arguments in this paper seem to be new. I explain how one of the proofs was discovered, and how
another one could have been discovered. See Sections 4 and 8.

I am grateful to F. Petrov for stimulating correspondence and to M. Prokhorova for careful reading of this
paper, numerous suggestions, and providing me with copies of H. Hanani’s papers [H1, H2].

© Nikolai V. Ivanov, 2017. Neither the work reported in this paper, nor its preparation were supported by any
governmental or non-governmental agency, foundation, or institution.
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1. N. Bourbaki and the “Kvant” magazine

Problem. Let E be a set of n elements. Suppose that m different subsets of E (not equal to
E itself) are selected in such a way that for every two elements of E there is exactly one selected
subset containing both these elements. Prove that m Ê n .

When an equality is possible?

In 1970 this problem was included as the Problem M5 in the very first issue of the Soviet
“Kvant” magazine and attributed to N. Bourbaki [B-70]. The intended audience of the “Kvant”
magazine (its name means “Quantum” ) was the school students in the USSR of the last two-
three grades. Nowadays the audacity of the editorial board inspires awe: Problem M5 was of-
fered to this audience exactly as it is cited above, as an abstract problem about finite sets with-
out any motivation and any hints. The readers were expected to be interested in this problem
and to appreciate its beauty without any crutches.

In 1970 I was among the intended audience of “Kvant”, but I was more interested in the foun-
dations of mathematics and in the set theory than in the combinatorics of finite sets. I eas-
ily found this problem in the Russian translation [B-65] of the “Théorie des ensembles” by N.
Bourbaki. It turned out to be the Exercise 12 to the section “Calcul sur les entiers”. In all edi-
tions this exercise is marked as one of the most difficult.

The editors of “Kvant” were faithful to N. Bourbaki in not offering any motivation. But, in
contrast with “Kvant”, N. Bourbaki split the result into few steps, offered a hint to the key one,
and stated the expected result in the case of the equality. The first two steps were rather easy,
but the hint to key step turned out to be incomprehensible for me.

According to the authors of the solution [T] published in “Kvant” a few months later, they
followed “the hints of the author of the problem, N. Bourbaki himself ” and referred to [B-65].
The habit of N. Bourbaki to include in his tract recent results without attribution as exercises
is well known, and was well known in 1970 in the Soviet Union. But it seems that neither the
editors of the “Kvant” magazine, nor the authors of the solution [T] were aware that this result
is due to N.G. de Bruijn and P. Erdös [dB-E] and H. Hanani [H1, H2].

Neither was I before by an accident I returned to this problem in 2016. By this time I was able
to immediately recognize that this exercise from [B-65] is about points and lines in a geometry,
and this realization quickly lead me to the de Bruijn–Erdös paper [dB-E]. The exercise turned
out to be a quite faithful summary of the de Bruijn–Erdös proof, and the key part of the proof,
summarized by N. Bourbaki as a hint, turned out to be nearly as obscure as this hint. Here is
my translation of this exercise based on the reprint [B-06] of the 1970 edition (where it appears
as the Exercise 14 to § 5). It is slightly different from the translation in [B-04].
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Exercise. Let E be a finite set of n elements, (a j )1É j Én be the sequence of elements of E
arranged in some order, (Ai )1É i Ém be a sequence of parts of E .

(a) For each index j , let k j be the number of indices i such that a j ∈ Ai ; for each index i
let si = Card (Ai ). Show that

n∑
j = 1

k j =
m∑

i = 1
si .

(b) Suppose that for each subset { x , y } of two elements of E , there exists one and only one
index i such that x and y are contained in Ai . Show that if a j 6∈ Ai , then si É k j .

(c) Under the assumptions of (b), show that m Ê n . (Let kn be the least of the numbers k j ;
show that one may assume that, whenever i É kn , j É kn and i 6= j , one has a j 6∈ Ai ,
and an 6∈ A j for all j Ê kn .)

(d) Under the assumptions of (b), show that in order for m = n to hold, it is necessary and
sufficient that one of the following two cases occurs:

(i) A1 = { a1 , a2 , . . . , an − 1 } , Ai = { ai − 1 , an } for i = 2, . . . , n ;

(ii) n = k (k − 1) + 1, each Ai is a set of k elements, and each element of E belongs to
exactly k sets Ai .

Remarks. Two aspects of this exercise need to be clarified. First, the parts Ai are implicitly
assumed to be different from E. Second, the case (i) of the part (d) is expected to hold only
up to renumbering of elements ai and parts A j .

The troubles with the hint. The parts (a) and (b) of this exercise are rather easy, and there is
a hint for the part (c). But for me this hint turned out to be more of a riddle than of a help.

It would be quite easy to accept and follow the suggestion to consider the least of the numbers
k j . But why it should be kn ? The phrase “Let kn be the least of the numbers k j ” is fairly hard
to interpret (the expressions used in the French original and in the Russian translation have
the same meaning). The standard usage of “Let” (and of “Soit” in French) in mathematics is
to introduce new notations. But kn is already defined.

The authors of the solution [T] found a clever way out. They introduce the number kn be-
fore introducing other numbers k j ! This trick helps only partially: the question “Why kn ?”
remains. The de Bruijn–Erdös exposition [dB-E] is better. They write “Assume now that kn is
the smallest ki . . . ”. This is less obscure, and amounts to renumbering elements of E, but
leaves the question “Why kn ?” unanswered.
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If one manages to put this question aside, there is another riddle: how the subscripts i , j ,
which are merely marking the points (and do not even need to be numbers) may be compared
with kn , which is a genuine characteristic of the point marked by n ? Perhaps, this difficulty
is encountered only by the categorically minded mathematicians; analysts appear to be quite
comfortable with using the values of a function in its domain of definition.

Here de Bruijn and Erdös [dB-E] are again doing better. They write “Assume . . . that A1 , A2 ,
. . . , A kn are lines through an ” (they call the parts Ai lines). This amounts to renumbering
the parts Ai , and one may wonder why renumbering is treated as an assumption. The trick of
the authors of [T] saves the day here for them. They simply denote the kn lines through an

by A1 , A2 , . . . , A kn and other lines by A kn +1 , A kn +2 , . . . , Am .

There is one more riddle in the store. How one uses the assumption that kn is the least of the
numbers k j in the proof of the claim in the hint? One does not, this claim is true without it.

Partially decrypting the hint. Even if one encounters all these troubles and is not aware of the
de Bruijn–Erdös paper (like me in 1970), the hint still may be of some help. The first message
is that it is important to know when an element a j is not in the part Ai . Together with the part
(b) this suggest that the inequalities s i É k j , which hold for a j 6∈ Ai , should play a key role.

Another message is that the least of the numbers k j should play some role. After wasting some
time assuming that for a given u the number ku is minimal among all numbers k j and trying
to use this minimality to prove something like stated in the hint, it is only natural to abandon
this assumption and consider an arbitrary subscript u such that 1 É u É n .

The 1970 proof of m Ê n . With no more than this limited help from this exercise (in 1970
I definitely understood less than in 2016) I managed to prove in the early 1970 the inequality
m Ê n . Among my schoolmates this qualified as a solution of the Problem M5. This solution
was lost long time ago. In April of 2016 and another time one year later I attempted to recon-
struct this proof. In these attempts I encountered the same difficulties as in 1970, and it is
likely that I dealt with them in the same manner. At the very least, the resulting proof does not
use any tools not known to me at the time, and does not involve any tricks (such as the cyclic
ordering of some parts Ai by de Bruijn–Erdös) which I was unlikely to discover at the time. It
is presented in Section 2 below.

The question “When an equality is possible?” was considered by my classmates as too vague to
be addressed seriously, and this was indirectly admitted by the authors of the solution [T]. If
m = n , then (d) easily implies that Ai ∩ A j 6= ; if i 6= j . In fact, proving this property is
an almost inevitable part of the proof of (d). This property means that the set E together with
the parts Ai is a finite projective plane, possibly degenerate in the case (i) of the part (d).
Therefore, this question amounts to the classification of finite projective planes and, to the
best of my knowledge, it remains largely open. See the paper by Ch. Weibel [W] for a survey
of the state of the art as of 2007, and [I1] for an introduction (not focusing on the finite case).
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“Kvant” publishes a solution. “Kvant” published a solution [T] of the Problem M5 in the
August or September of 1970, close to the beginning of the school year in the USSR (always
September 1). The editors of the problem section wrote (see [T], p. 49):

The letters to editors indicate that this problem is extremely difficult, but interest-
ing. As a matter of fact, here we have two problems: 1) prove that m Ê n , 2)
when an equality is possible?

The first problem was completely solved only by A. Suslin from the city of Lenin-
grad. His proof is based on a basic theorem of the linear algebra: if the number of
n-vectors is greater than n , then they are linearly dependent.

Looking for such a proof will be interesting for whose who are familiar with these
notions. Nobody solved completely the second problem. Of course, this is not sur-
prising, since, as it will be explained below, it can be reduced to a well known, but
unsolved problem in mathematics.

Among my schoolmates, these remarks stirred a renewed interest in the problem. A. Suslin
was known as a very strong problem solver and as a winner of the gold medal at 1967 Inter-
national Mathematical Olympiad. Since only he submitted a complete solution, the problem
had to be really difficult. Since he used tools going beyond the school level, the problem had to
be even more difficult. And this caused a real interest in my unsubmitted to the “Kvant” solu-
tion. I had an outline as a sparsely filled with formulas sheet of paper. One of my schoolmates
borrowed this sheet for few days, and I have not seen it anymore.

But I am not aware of any serious attempt to study the published solution [T]. For me it was
almost as condensed and obscure as the N. Bourbaki hint. The role of the numbering of ele-
ments and parts is overemphasized:

Let us pay attention once again to the way we numbered elements and sets.

First of all, kn is the least of the numbers k1 , k2 , . . . , kn −1 (sic! – N.I. ). . . .

See [T], p. 51. And I always disliked random numerical examples, which are supposed to
help the reader and are extensively used in [T]. I must admit that I did not even look at the
last two pages of [T] before writing these comments, and, in particular, before writing down
the proof in the next section. Surprisingly, it turned out that the proof [T] contains a gap: it
is mentioned that kn = 2 in the situation described in the case (i) of the Bourbaki exercise,
but no proof that this is the only possibility is even attempted.
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2. A solution of the N. Bourbaki exercise

The terminology and notations. In contrast with N. Bourbaki and with the “Kvant”, I have
no reasons to hide the geometric content of this result. Following de Bruijn and Erdös, I will
call the elements of E points and the sets Ai lines. Since the lines are assumed to be proper
subsets of E, every point is contained in at least 2 lines. Indeed, if a point is contained in
only one line, then all points are contained in this line, i.e. it is not a proper subset.

It is convenient to explicitly introduce a counterpart to the set E of points, namely the set of
lines L = { A1 , A2 , . . . , Am }. If the case (i) of the part (d) of the Bourbaki exercise occurs,
up to renumbering of points and lines, then the pair (E, L ) is called a near-pencil. If the
case (ii) of the part (d) occurs, then (E, L ) is called a projective plane.

I also do not see any reason to follow the outdated fashion of using numerical indices (i.e.
subscripts), which amounts to ordering objects even when their order is irrelevant. Instead of
this, for every point z we will denote by kz the number of lines containing z , and for every
line l we will denote by s l the number of points in l , i.e. the number of elements of the set l .

The part (a) of the Bourbaki exercise. With the above notations the part (a) takes the form

(2.1)
∑

l ∈L

s l = ∑
z ∈E

kz .

after interchanging the sides. This immediately follows from counting in two different ways the
pairs (z , l ) ∈ E×L such that z ∈ l .

The part (b) of the Bourbaki exercise. For the rest of the paper we will assume that the as-
sumption of the part (b) holds, i.e. that for every pair of distinct points there is exactly one
line containing both of them. If a line l contains É 1 points, then removing l from the set
of lines does not affects this assumption, and at the same time decreases number of lines by 1.
Hence we may assume for the rest of the paper that every line contains at least 2 points.

With the above notations the part (b) takes the form

If z 6∈ l , then s l É kz .

We will call these inequalities the de Bruijn–Erdös inequalities.

In order to prove the de Bruijn–Erdös inequalities, suppose that z 6∈ l . Then for every y ∈ l
there is a unique line containing { z , y } and it is different from l because z 6∈ l . These lines
are pairwise distinct because if y , y ′ ∈ l and y 6= y ′, then l is the only line containing
{ y , y ′ }. There are is s l such lines and all of them contain z ; therefore s l É kz .
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Lines through an arbitrary point. Let u ∈ E be an arbitrary point, let p = ku be the
number of lines containing u , and let U be the set of these lines.

By the definition of U , if a line l is not in U , then u 6∈ l . For every l 6∈ U we have
the de Bruijn–Erdös inequality s l É ku . By summing all these inequalities and taking into
account that there are m − p lines not belonging to U , we see that

(2.2)
∑

l 6∈ U

s l É (m − p)ku .

Since every set of the form {u , y } with y 6= u is contained in one and only one line, the sets
l à {u } with l ∈ U are pairwise disjoint and form a partition of E à {u }. Since we assumed
that sl Ê 2 for all lines l , all these sets are non-empty. Let U be a set of representatives of
these sets. In other terms, U is contained in E à {u } and intersects every set l à {u } with
l ∈ U in exactly 1 point. In particular, U consists of exactly p points.

If (l , z ) ∈ U × U and z 6∈ l , then the de Bruijn–Erdös inequality s l É kz holds. There are
p (p − 1) of such pairs (l , z ) and hence p (p − 1) of such inequalities. For each l ∈ U the
number s l occurs p − 1 times in the left hand sides of them, and for each z ∈ U the number
kz occurs p − 1 times in the right hand sides. Hence the sum of all these inequalities is

(2.3)
∑

l ∈ U

(p − 1) s l É ∑
z ∈ U

(p − 1)kz .

After dividing (2.3) by p − 1 we get

(2.4)
∑

l ∈ U

s l É ∑
z ∈ U

kz .

Now it is only natural to take the sum of the inequalities (2.2) and (2.4) and conclude that

(2.5)
∑

l ∈ L

s l É (m − p)ku + ∑
z ∈ U

kz .

The left hand side of the inequality (2.5) is the same as the left hand side of the equality (2.1).
The right hand side of (2.5) can be compared with the right hand side of the equality (2.1) if
ku is the least among the numbers kz and m É n .

Proof of the inequality m Ê n . Now we are ready to do the part (c) of the Bourbaki exercise.
Let u ∈ E be a point such that ku is the least of the numbers kz over all points z ∈ E. Then

(2.6) (m − p)ku É ∑
z ∈ Y

kz .

for every subset Y ⊂ E consisting of m − p points.
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Suppose that m É n . Then the subset Y can be chosen to be disjoint from U (because U
consists of p points). Let us choose an arbitrary Y disjoint from U and let Z = Y ∪ U.
Then Z is a subset of E consisting of m points and the inequalities (2.5) and (2.6) imply that

(2.7)
∑

l ∈ L

s l É ∑
z ∈ Z

kz É ∑
z ∈ E

kz ,

where the last inequality is strict unless Z = E. In view of (2.1) this inequality cannot be strict
and hence Z = E and m = n . Since m É n implies that m = n , we see that m Ê n .

The case m = n . After the work done in the proofs of (a), (b), and (c), the part (d) nearly
proves itself. As we will see, in this case all inequalities (2.2) – (2.7) are, in fact, equalities.

By (2.1) the leftmost and the rightmost sums in (2.7) are equal. It follows that Z = E and
hence Y = E à U. Moreover, the sides of each of the inequalities (2.5) and (2.6) are equal.
Since ku is the least of the numbers kz , the equality of the sides of (2.6) implies that

(2.8) ku = kz for all z ∈ Y = E à U .

The fact that the sides of (2.5) are equal implies that the sides of each of the inequalities (2.2)
and (2.4) are equal also. The equality of the sides of (2.2) implies that

(2.9) s l = ku for all l 6∈ U .

Since the sides of (2.4) are equal, the sides of (2.3) are also equal. Since (2.3) is the sum of
the inequalities s l É kz over all pairs (l , z ) ∈ U × U such that z 6∈ l , the equality of the
sides of (2.3) implies that s l = kz for all (l , z ) ∈ U × U such that z 6∈ l . Equivalently,

(2.10) s l = kz if l ∈ U and z ∈ U à l .

The rest of the proof splits into two subcases depending on if p = 2 or p Ê 3.

The subcase p = 2. In this case U = { l , l ′ } for some l , l ′ and hence E = l ∪ l ′. It
follows that every line different from l , l ′ contains only 2 points, namely the points of its
intersection with the lines l , l ′. If s l , s l ′ Ê 3, then there are at least 4 points z 6= u and
the part (b) implies that kz Ê 3 for every z 6= u . On the other hand, (2.8) implies that

kz = ku = p = 2

for every z 6∈ U. But U consists of only two points and hence kz Ê 3 for no more than
two points z . The contradiction shows that either s l = 2 or s l ′ = 2. We may assume that
s l = 2. Then l = {u , a } for some a ∈ E and every line different from l , l ′ has the form
{ a , z } with z ∈ l ′ à {u }. It follows that (E, L ) is a near-pencil.
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The subcase p Ê 3. The set U is a set of representatives of the sets l à {u } with l ∈ U .
For any two lines l , l ′ ∈ U the assumption p Ê 3 implies that there exists a point z ∈ U
such that z 6∈ l , l ′. If z is such a point, then (2.10) implies that

s l = kz = s l ′ .

Similarly, if z , z ′ ∈ U, then there exists a line l ∈ U such that z , z ′ 6∈ l and hence

kz = s l = kz ′ .

It follows that in the subcase p Ê 3 all numbers s l , kz with l ∈ U and z ∈ U are equal.
Since ku = p Ê 3 is the smallest of the numbers kz over all z ∈ E, it follows that

s l = kz Ê 3 for all l ∈ U , z ∈ U.

Let l ∈ U , and let y be the unique element of U contained in l . Since s l Ê 3, there exists
a point x ∈ l not equal to u , y . We can replace in U the point y by the point x and get
a new set of representatives U′. Then all previous results apply to U′ in the role of U. In
particular, kx = kz for all z ∈ U à l = U′ à l and hence

kx = kz for all z ∈ U.

On the other hand, x 6∈ U and hence kx = ku by (2.8) applied to the original set U. At the
same time (2.8) implies that ku = kz for all z 6∈ U and hence

kx = kz for all z 6∈ U.

It follows that all numbers kz are equal. At the same time by (2.9) and (2.10) every s l is
equal to some kz . It follows that all numbers s l , kz with l ∈ L and z ∈ E are equal. It
remains to apply the following lemma.

Lemma 1. If all the numbers s l , kz are equal, then (E, L ) is a projective plane.

Proof. Let k be the common value of the numbers s l , kz , and let y ∈ E. The sets l à { y }
with y ∈ l are pairwise disjoint and form a partition of E à { y }. Each of them consists of

s l − 1 = k − 1

points, and there are k y = k such sets. It follows that the number n of elements of E is
equal to k (k − 1) + 1. Therefore, (E, L ) is a projective plane. ■

Remarks. A key step of this solution and the solution [T] differ from the de-Bruijn–Erdös pa-
per in the same way: the cyclic order argument of de Bruijn–Erdös (see Section 3) is replaced
by the inequalities (2.3) and (2.4).
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3. The de Bruijn–Erdös proof

Since the proof presented in Section 2 grow out of a summary of the de Bruijn–Erdös proof,
albeit not quite understood, it is not surprising that the two proofs have a lot in common. In
the following exposition of the de Bruijn–Erdös proof we will use the notations of Section 2 and
will refer to Section 2 for the arguments which differ from [dB-E] only in the notations and the
amount of details. The Bruijn–Erdös paper is concise on the border of being cryptic.

The de Bruijn–Erdös proof begins with the parts (a) and (b) of the Bourbaki exercise. After
this de Bruijn–Erdös introduce ku as the smallest among all numbers kz (and denote it by
kn ). Then de Bruijn–Erdös observe that it can assumed that every line contains at least two
points. Following the notations of Section 2, let us denote by U the set of all lines containing
u . By the de Bruijn–Erdös inequalities s l É ku for every l 6∈ U . The inequalities (2.2) and
(2.6) follows. The following argument plays a role similar to the role of the inequality (2.3).

The cyclic order argument. Let l 1 , l 2 , . . . , l p be a cyclically ordered list of elements of U .
We treat the subscripts 1, 2, . . . , p as integers mod p . For each i = 1, 2, . . . , p let us
choose some point a j ∈ l j à {u } and let U be the set of these points. Let

s i = s l i and k j = ka j .

Since a i +1 6∈ l i , by the de Bruijn–Erdös inequalities s i É k i +1 for all i = 1, 2, . . . , p , i.e.

(3.1) s1 É k2 , s2 É k3 , . . . , sp É k1 .

By summing the inequalities (3.1) one concludes that

(3.2)
p∑

j = 1
s j É

p∑
j = 1

k j .

The inequality (3.2) is nothing else but another form of (2.4). The arguments of Section 2
show that (3.2) implies that m Ê n . In fact, de Bruijn and Erdös do not bother to write down
even the inequality (3.2), to say nothing about other details presented in Section 2.

The case m = n . In view of the equality (2.1) in this case the left hand and the right hand
sides of the inequality (3.2) are equal. Together with (3.1) this implies that

(3.3) s1 = k2 , s2 = k3 , . . . , sp = k1 .

Similarly, in this case the left hand and the right hand sides of the inequality (2.6) are equal.
Since m = n , one can take Y = E à U in (2.6). It follows that ku = kz for all z ∈ E à U.
Finally, the left hand and the right hand sides of the inequality (2.2) are equal. It follows that
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s l = ku for all l 6∈ U . By combining the last two observations, we see that

s l = kz for all l ∈ L à U , z ∈ E à U .

Since m = n , both sets L à U and E à U consist of n − p elements. It follows that one
can number the points and lines in such a way that (in the notation of the Bourbaki exercise)

s1 = k1 , s2 = k2 , . . . , sn = kn .

As the next step, let us renumber the points and lines once more and assume that

(3.4) k1 Ê k2 Ê . . . Ê kn .

The rest of the proof splits into two subcases depending on if k1 > k2 or not.

The subcase k1 > k2 . In this case s1 = k1 > k i for all i Ê 2. By the de Bruijn–Erdös
inequalities this implies that a i ∈ A1 for all i Ê 2. It follows that (E, L ) is a near-pencil.

The subcase k1 = k2 . Suppose that k j < k1 = k2 for some j . By the de Bruijn–Erdös in-
equalities a j belongs to the both lines A1 and A2 . This is possible for only one point, namely
the point of the intersection of the lines A1 and A2 . In view of (3.4), this may happen only if

k1 = k2 = . . . = kn −1 > kn

and hence s j = k j > kn Ê 2 for all j 6= n . It follows that s j Ê 3 if j < n . In
particular, all kn lines containing an consist of Ê 2 points and all except, perhaps, the
line An , consist of Ê 3 points. Therefore one can choose 2 points x , y 6= an on one of
these lines, and a point z 6= an on some other line. Let l j , l j ′ be the lines containing the
pairs { x , z } and { y , z } respectively. Then j 6= j ′ and an 6∈ l j , l j ′ . Hence the de Bruijn–
Erdös inequalities imply that s j , s j ′ É kn , contrary to the fact that s j > kn if j 6= n .
The contradiction shows that all numbers k j are equal, and hence all numbers s i , k j are
equal. Now the observation at the end of Section 2 implies that (E, L ) is a projective plane.

Intersection of lines. After the proof is completed, de Bruijn–Erdös point out that in the sub-
case k1 = k2 of the case m = n every two lines intersect. Indeed, if l ′ , l ′′ are two disjoint
lines and a ∈ l ′′, then there are s l ′ lines containing a and intersecting l ′, and still one more
line, namely l ′′, containing a . Therefore ka Ê s l ′ + 1, contrary to the fact all numbers
kz , s l are equal. In fact, every two lines obviously intersect in the subcase k1 > k2 also.

Why kn ? Now it is clear why the smallest of the numbers kz is denoted by kn . The number
kn is indeed the smallest if the points are ordered in such a way that (3.4) holds. At the same
time (3.4) plays almost no role in the proof. One may speculate that (3.4) and notation kn

for the smallest of the numbers kz are remnants of an earlier approach to the theorem.
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4. From de Bruijn–Erdös to systems of distinct representatives

The cyclic order argument and systems of distinct representatives. The key step of the de
Bruijn–Erdös proof is the cyclic order argument used to prove the inequality (3.2) and the
equalities (3.3) in the case m = n . Ultimately, the cyclic order argument is based on the fact
that a i +1 6∈ l i for all i = 1, 2, . . . , p , i.e. on the fact that i 7−→ a i +1 is a system of dis-
tinct representatives for the family i 7−→ E à l i of subsets of E, where i = 1, 2, . . . , p .

Once this is realized, it is only natural to look for a system of distinct representatives of the full
family l 7−→ E à l of the complements of lines, i.e. for an injective map l 7−→ a(l ) from
L to E such that a(l ) ∈ E à l for all l ∈ L .

By the well known Ph. Hall’s marriage theorem, such a system of distinct representatives exists
if and only if for every subset K ⊂ L the union

(4.1)
⋃

l ∈K

E à l = E à ⋂
l ∈K

l

contains Ê |K | elements, where |X | denotes the number of elements of a set X. But the in-
tersection of Ê 2 lines consists of É 1 points, and, almost obviously, this condition holds.

The message. All this emerged in my mind in one instant as an irreducible revelation. My
first thought after this revelation was that it cannot be true, because if it is true, then every-
body writing about this topic would use systems of distinct representatives. Perhaps, the right
question is not how I came up with this idea, but why experts missed it. The rest of this section
is devoted to the proof [I2] based on this revelation.

Proof of m Ê n . We may assume that m É n . Let K be a subset of L . If |K | = 1, then
(4.1) is the complement of a line and hence contains Ê 1 elements. If 2 É |K | É m − 1,
then (4.1) is a complement in E of É 1 point and hence contains

Ê n − 1 Ê m − 1 Ê |K |

elements. If |K | = m , then (4.1) contains n Ê m = |K | elements. Therefore there exists
a system of distinct representatives for the family l 7−→ E à l , i.e. there exists an injective
map l 7−→ a(l ) such that a(l ) 6∈ l for every l . By the de Bruijn–Erdös inequalities

(4.2) s l É ka (l ) for every l ∈ L .

By summing all these inequalities and using the injectivity of l 7−→ a(l ) we see that

(4.3)
∑

l ∈L

s l É ∑
l ∈L

ka (l ) É ∑
z ∈E

kz .

12



Moreover, the second inequality is strict unless m = n (otherwise the last sum has more
positive summands than the previous one). But (2.1) implies that both inequalities in (4.3)
should be actually equalities. It follows that m = n . Moreover, in view of the inequalities
(4.2), it follows that s l = ka (l ) for every l ∈ L (under the assumption m É n ).

The case m = n . Suppose that a point z is contained in Ê m − 1 lines. Each of these lines
contains at least one point in addition to z . Since m = n , there are no other points and z
is contained in exactly m − 1 lines. Since there are exactly m lines, only one line does not
contain z . This line should contain all points 6= z . It follows that (E, L ) is a near-pencil.

Suppose now that no point is contained in Ê m − 1 lines. Let K be a proper subset of L . If
|K | = 1, then (4.1) is equal to E à l for some line l . If E à l consists of only one point z ,
then by the de Bruijn–Erdös inequalities z is contained in Ê s l = m − 1 lines, contrary to
the assumption. Therefore, (4.1) contains Ê 2 = |K | + 1 points. If |K | É m − 2, then
(4.1) contains Ê n − 1 = m − 1 Ê |K | + 1 points. Finally, if |K | = m − 1, then (4.1)
contains all n = m = |K | + 1 points because no point is contained in Ê m − 1 lines.

We see that (4.1) contains Ê |K | + 1 elements for every proper subset K ⊂ L . This allows
to get from the marriage theorem more than just the existence of a system of distinct represen-
tatives. Let λ ∈ L and z ∈ E à λ. Then there exists a system of distinct representatives
l 7−→ a(l ) such that a(λ) = z . This immediately follows from an application of the mar-
riage theorem to the family of sets (E à { z }) à l with l ∈ L à {λ }.

Since m É n , the existence of a system of distinct representatives l 7−→ a(l ) such that
a(λ) = z implies that sλ = ka (λ) = kz . Therefore, z 6∈ l implies that s l = kz and
hence every line containing z intersects l . It follows that every two lines intersect.

If E cannot be obtained as the union of two lines, then for every two lines l , l ′ there exists a
point z such that z 6∈ l , l ′ and hence s l = kz = s l ′ . In this case all the numbers s l , kz are
equal and hence (E, L ) is a projective plane by Lemma 1 at the end of Section 2. If there
exist two lines l , l ′ such that E = l ∪ l ′ , then k y = 2, where y is the point of intersection
of l and l ′, and the proof is completed by applying the following lemma.

Lemma 2. If m = n and k y = 2 for some point y , then (E, L ) is a near-pencil.

Proof. Let l , l ′ be the lines containing y . Then E = l ∪ l ′ and there are n = s l + s l ′ − 1
points. In addition to the lines l , l ′ there are (sl − 1)(sl ′ − 1) lines consisting of a point in
l à { y } and a point in l ′ à { y }. If s l Ê s l ′ Ê 3, then the number m of lines is

Ê 2 + (sl − 1)(sl ′ − 1) Ê 2 + 2(sl − 1) = 2sl Ê sl + sl ′ = n + 1,

contrary to the assumption m = n . Therefore one of the lines l , l ′ consists of 2 points and
hence (E, L ) is a near-pencil. ■
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5. Linear algebra and the inequality m Ê n

A proof of the inequality m Ê n based on the linear independence. This proof was com-
municated to me by F. Petrov [P]. I believe that this is essentially the proof found by A. Suslin.

Let RL be the vector space of maps L −→ R with the scalar product

( v , w ) = ∑
l ∈ L

v(l ) w(l ).

Every z ∈ E defines a map v z : L −→ R by the rule v z (l ) = 1 if z ∈ l and v z (l ) = 0
otherwise. There are n maps v z . Since the dimension of RL is equal to m , it is sufficient
to prove that the maps v z are independent as vectors of RL .

The scalar product ( v z , v z ) is equal to the number of lines containing the point z , and hence
( v z , v z ) Ê 2 for all z ∈ E. If z 6= y , then ( v z , v y ) is equal to the number of lines contain-
ing both z and y , and hence ( v z , v y ) = 1. If the vectors v z are linearly dependent, then∑

z ∈ E
cz v z = 0

for some real numbers cz , z ∈ E, such that not all cz are equal to 0. For every y ∈ E taking
the scalar product of this equality with the vector v y results in the equality∑

z ∈ E
cz (v z , v y ) = 0.

Since (v z , v y ) = 1 for all z 6= y , this equality implies that

c y ((v y , v y ) − 1) + ∑
z ∈ E

cz = 0.

Since (v y , v y ) Ê 2, it follows that the coefficient c y and the sum∑
z ∈ E

cz

have opposite signs. But since not all c y are equal to 0, this cannot be true for all y ∈ E.
The contradiction shows that vectors v z are linearly independent and hence m Ê n . ■

Standard linear algebra proofs of the inequality m Ê n . In order to present standard proofs
it is convenient to return to the notations of the N. Bourbaki exercise. Let M be the incidence
matrix of the points a j and sets Ai . Namely, M is an n ×m matrix with entries m j i = 1
if a j ∈ Ai and m j i = 0 otherwise. Let us consider the product MMT , where MT is the
matrix transposed to M. It is an n ×n matrix with all non-diagonal entries equal to 1 and
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with diagonal entries k1 , k2 , . . . , kn . The most classical linear algebra proofs, going back to
the paper [Bo] by R.C. Bose, proceed with the computation of the determinant of MMT . It
is rarely presented in details; apparently, it is expected that the readers enjoy computations of
determinants. Curious readers may find a computation of det MMT at the end of this section;
in particular, the computation shows that this determinant is non-zero. The non-vanishing of
det MMT means that the rank of the matrix MMT is equal to n , and this implies that the rank
of M is Ê n . Since M is an n ×m matrix, this may happen only if m Ê n .

More modern expositions avoid computation of the determinant det MMT by observing that
MMT is equal to the sum of the diagonal matrix with the diagonal entries

k1 − 1, k2 − 1, . . . , kn − 1

and the n ×n matrix J with all entries equal to 1. Since k j Ê 2 and hence k j − 1 Ê 1 for
all j , the first matrix is positive definite. The matrix J is positive semi-definite, although is
not definite. In fact, the associated quadratic form x J xT , where x = (x1 , x2 , . . . , xn ) is a
row vector, is equal to (x1 + x2 + . . . + xn )2. It follows that the sum MMT of these matrices
is positive definite and hence has the rank n . As above, this implies that m Ê n .

Comparing the proofs. The standard proofs do not fit the “Kvant” description of the proof
by A. Suslin: they use more advanced tools than the theorem about the linear dependence of
more than n vectors in an n-dimensional vector space. One can find a proof based only on
this theorem in the unpublished book draft [BF] by L. Babai and P. Frankl. But even in this
remarkable book it is hidden in the exercises. See Exercise 4.1.5 and its solution on p. 184.
The preference for using the matrix MMT seems to be a part of a dominating culture. On the
other hand, all proofs based on the linear algebra more or less explicitly reduce the inequality
m Ê n to the following lemma and then prove it.

Lemma. Let V be an m-dimensional vector space over R equipped with a scalar product
(•, •). Let P be a set of n vectors in V. Suppose that there exists λ ∈ R, λ > 0, such that

(u , u) > λ and (v , w ) = λ

for every u ∈ P and every two distinct vectors v , w ∈ P. Then m Ê n . ■

A generalization. The linear algebra proofs apply with only trivial changes to a more general
situation. Namely, it is sufficient to assume that there exist a natural number λ Ê 1 such that
every two distinct points are contained in exactly λ lines and every point is contained in > λ

lines. Then the conclusion m Ê n still holds. This is due to H.J. Ryser [R]. Apparently, no
combinatorial proof of Ryser’s theorem is known. Ryser [R] also used linear algebra to provide
a description of the case m = n similar to de Bruijn–Erdös description in the case λ = 1.
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The determinant of MMT . For the benefit of the readers who do not like to compute the
determinants themselves, here is a computation of det MMT following the textbook [HP].

Let m j = k j − 1 for all j . Then

MMT =



m1 + 1 1 1 . . . . . . 1 1
1 m2 + 1 1 . . . . . . 1 1
1 1 m3 + 1 . . . . . . 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1 1 . . . . . . 1 mn + 1


.

Let us subtract the first row from every other one and get the matrix



m1 + 1 1 1 . . . . . . 1 1
− m1 m2 0 . . . . . . 0 0
− m1 0 m3 . . . . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

− m1 0 0 . . . . . . 0 mn


.

For j = 2, 3, . . . , n , let us multiply the j -th column by m1/m j (recall that k j Ê 2 and
hence m j Ê 1 > 0) and add the result to the first column. We get the matrix



D 1 1 . . . . . . 1 1
0 m2 0 . . . . . . 0 0
0 0 m3 . . . . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . . . . 0 mn


,

where D = m1 + 1 +
n∑

j = 2

m1

m j
= m1 +

n∑
j = 1

m1

m j
.

It follows that det MMT = D ·
n∏

j = 2
m j =

n∏
j = 1

m j ·
(

1 +
n∑

j = 1

1

m j

)
6= 0 .
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6. Hanani’s theorem

Two papers of H. Hanani. According to the Th. Motzkin [M], the first proof of the inequality
m Ê n and, it seems, of the full de Bruijn–Erdös theorem, was given in 1938 by H. Hanani.
He published an outline of his proof [H1] only in 1951. Later on H. Hanani published a de-
tailed exposition [H2] of a simplified proof. In fact, in [H2] he proved (at no extra cost)
a stronger version of the de Bruijn–Erdös theorem. He also used his methods to prove a 3-
dimensional analogue dealing with points, lines, and planes.

Hanani’s Theorem. Under the previous assumptions, let L ∈ L be a line containing the
maximal number of points among all lines, let P be the set of all lines intersecting L (in
particular, L ∈ P ), and let p be the number of elements of P . Then p Ê n , and if p = n ,
then P = L and (E, L ) is either a near-pencil, or a projective plane.

Suppose that n Ê p and (E, L ) is not a near-pencil. As usual, we assume that every line
contains Ê 2 points. Let a = s L . Let K be the line with the maximal number of points
among the lines different from L, and let b = s K . Then a Ê b . The strategy is to estimate
n , or, what is the same, n − 1 in terms of a and b both from the below and from the above.

Hanani’s Lemma. If x ∈ L, then

(6.1) kx − 1 Ê n − a

b − 1
.

Proof. Let us consider pairs (l , y ) such that l is a line containing x and y is a point in
l à L. Such a pair is uniquely determined by the point y and hence there are n − a such
pairs. A line l occurs in such a pair if and only if x ∈ l and l 6= L. It follows that there are
kx − 1 choices of l . Given a line l , there are É b − 1 choices for the point y . Therefore
the number n − a of such pairs is É (kx − 1)(b − 1). The lemma follows. ■

An upper estimate of n − 1. By summing the inequalities (6.1) over all x ∈ L and adding 1
in order to account for the line L itself, we can estimate p from below and conclude that

(6.2) n Ê p Ê 1 + a
n − a

b − 1
= 1 + a

(n − 1) − (a − 1)

b − 1

or, what is the same,

(6.3) a(a − 1) Ê (n − 1)(a − b + 1).

The inequality (6.3) provides an estimate of n − 1 from the above.
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A lower estimate of n − 1. There is another way to estimate p from below. By a miracle,
this other estimate of p from the same side leads to an estimate of n − 1 from the other
side. Let z be a point in L ∩ K if L ∩ K 6= ;, and an arbitrary point of L otherwise. For
every x ∈ L à { z }, y ∈ K à { z } there is a unique line l containing { x , y }. All these lines
are distinct, not equal to L, and do not contain z . Clearly, there are (a − 1)(b − 1) of such
lines. A lower estimate of number kz of lines containing z is provided by (6.1). It follows that

n Ê p Ê 1 + n − a

b − 1
+ (a − 1)(b − 1)

= 1 + (n − 1) − (a − 1)

b − 1
+ (a − 1)(b − 1)

and hence (n − 1)(b − 1) Ê (n − 1) − (a − 1) + (a − 1)(b − 1)2 and

(n − 1)(b − 2) Ê (a − 1)(b 2 − 2b) = (a − 1)b(b − 2).

Since b Ê 2, it follows that either b = 2, or n − 1 Ê (a − 1)b . If b = 2, then all lines
except L consist of 2 points and the inequality (6.3) implies that a Ê n − 1. But L 6= E and
hence a É n − 1. It follows that a = n − 1 and hence L contains all points of E except one
and (E, L ) is a near-pencil, contrary to the assumption. Therefore

(6.4) n − 1 Ê (a − 1)b .

The inequality (6.4) provides an estimate of n − 1 from the below.

Combining the two estimates. After multiplying the inequality (6.4) by (a − b + 1) and
combining the result with the inequality (6.3), we see that

a(a − 1) Ê (a − 1)b(a − b + 1)

and hence a Ê b(a − b + 1) = b(a − b) + b , or, what is the same

0 Ê (b − 1)(a − b) .

Since b > 1, this implies that b Ê a . On the other hand, b É a by the definition of
a , b . It follows that a = b . By combining a = b with the inequalities (6.3) and (6.4)
we conclude, respectively, that a(a − 1) Ê n − 1 and n − 1 Ê a(a − 1). It follows that
n − 1 = a(a − 1) and hence n = a(a − 1) + 1. By combining this with (6.2) we see that

a(a − 1) + 1 = n Ê p Ê 1 + a
a(a − 1) + 1 − a

a − 1
= 1 + a(a − 1).

It follows that n = p , and therefore p Ê n if the inequality p É n is not assumed.
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The case p = n . As we just saw, in this case a = b and n = a(a − 1) + 1.

Let us prove first that every line belonging to P consists of exactly a points. Consider all
pairs (l , y ) such that l ∈ P and y ∈ E à L. The line l is uniquely determined by its point
of intersection with L (which can be any point of L) and the point y . Therefore there are
a(n − a) = an − a 2 such pairs. On the other hand, for every line l ∈ P à { L } there are
É a − 1 choices of the point y and hence the number of such pairs is É (p − 1)(a − 1).
Moreover, if at least one line l ∈ P à { L } has < a points, then the number of such pairs is
< (p − 1)(a − 1). But (p − 1)(a − 1) = (n − 1)(a − 1) = n a − a 2. It follows that every line
belonging to P à { L }, and hence every line belonging to P , consists of exactly a points.

Now we are ready to prove that L = P . By the definition, every line containing a point of
L belongs to P . Let y ∈ E à L. For every x ∈ L there is a unique line containing {x , y }.
These lines are pairwise distinct, intersect only at y , and belong to P . Moreover, every line
containing y and belonging to P is equal to one of these a lines. Each of these lines contains
a − 1 points different form y . It follows that the total number of points on these lines is equal
to a (a − 1) + 1, i.e. to the number n of points in E. Therefore for every point z 6= y there
is a line belonging to P and containing {z , y }. Since there is only one line containing any
two given points, it follows that all lines containing a point y ∈ E à L belong to P . It follows
that L = P and every point in E à L belongs to exactly a lines. In view of the previous
paragraph, L = P implies that every line consists of exactly a points.

By the previous paragraph k y = a if y ∈ E à L. If y ∈ L, then by (6.1)

k y Ê 1 + n − a

b − 1
= 1 + a(a − 1) + 1 − a

a − 1
= a .

If k y > a , then the arguments of the previous paragraph show that n > a(a − 1) + 1,
contrary to n = a(a − 1) + 1. The contradiction shows that k y = a also for y ∈ L. It
follows that (E, L ) is a projective plane. This completes the proof of Hanani’s theorem.

Deducing the de Bruijn–Erdös theorem. Suppose that m É n . Obviously, p É m and
hence p É n . By Hanani’s theorem this implies that p = n and (E, L ) is either a near-
pencil, or a projective plane. Since p É m É n and p = n , it follows that m = n .

Remarks. In contrast with [dB-E] and many papers written much later, Hanani’s proof of his
version of the de Bruijn–Erdös theorem in [H2] is quite modern. The points and lines are not
enumerated; in fact, there are no subscripts at all. But when he turns to the 3-dimensional
case, he returns to the tradition of enumerating almost everything in sight . . .

Also, in contrast with almost every other proof, Hanani’s proof does not use the de Bruijn–
Erdös inequalities, at least not directly. But the proof of the fact that P = L includes a
proof of the de Bruijn–Erdös inequalities s L É k y for y 6∈ L.
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7. A simpler proof of Hanani’s theorem

This proof follows the outline of the Hanani’s one, but brings into the play the smallest number
ku among all kz . Also, “the second largest” line is chosen not among all lines, but among
the lines containing u . This allows to avoid Hanani’s Lemma and to replace “miraculous”
estimates by rather straightforward ones. The proof was partially inspired by V. Napolitano
[N]. If one is interested only in the de Bruijn–Erdös theorem, it can be simplified even further.

Suppose that n Ê p . Following de Bruijn–Erdös [dB-E], let us consider a point u such that
ku is the smallest number among all numbers kz . Let a = s L and k = ku . There are two
cases to consider: the case when k Ê a and the case when k < a . The arguments in both
cases are similar and can be unified, but the first case is simpler and we will deal with it first.

The case k Ê a . Every point is contained in one of the k lines containing u, and each of
these lines contains É a − 1 points in addition to u. Therefore the total number of points

(7.1) n É 1 + k (a − 1).

For every point x ∈ L there are Ê k − 1 lines containing x and different from L. All these
lines belong to P and are pairwise distinct. Therefore

(7.2) p Ê 1 + a(k − 1).

If n Ê p , then the inequalities (7.1) and (7.2) imply that

1 + k (a − 1) Ê 1 + a(k − 1)

and hence a Ê k . Together with k Ê a this implies that a = k and the inequalities (7.1)
and (7.2) are actually equalities. It follows that n = p = 1 + a(a − 1), every line containing u
consists of exactly a points, and every point belonging to L is contained in exactly k lines. In
other terms, k y = k if y ∈ L. In particular, every point of L can be taken as u and hence
every line intersecting L consists of exactly a points. In other terms, sl = a if l ∈ P .

Let y ∈ E à L. Then there are a lines containing y and belonging to P , and together they
contain 1 + a(a − 1) = n points. It follows that for every point y ′ 6= y there is a line belong-
ing to P and containing { y , y ′ }. Since there is only one line containing { y , y ′ }, this implies
that L = P . This implies that sl = a for all l ∈ L and k y = a for all y ∈ E à L. Since
we already proved that k y = k = a for all y ∈ L, we see that k y = a for all points y . It
follows that (E, L ) is a projective plane.

The case k < a . By the de Bruijn–Erdös inequalities in this case u ∈ L. Let M be a line
containing u and such that s M is the largest number among all numbers sl for lines l con-
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taining u and different from L. Let a′ = s M . Then a Ê a′ . The strategy is to use the fact
that u ∈ L to refine the inequalities (7.1) and (7.2) by using a′.

Every point is contained either in L or in one of the other k − 1 lines containing u. Each of
these lines contains É a′ − 1 points in addition to u. Therefore the total number of points

(7.3) n É a + (k − 1)(a′ − 1).

There are k lines containing u, and for every point x ∈ L and different from u there are
kx − 1 of lines containing x and different from L. All these lines belong to P and are pair-
wise distinct. If x ∈ L and x 6= u, then x 6∈ M and hence kx Ê s M = a′. It follows that

(7.4) p Ê k + (a − 1)(a′ − 1).

The inequalities (7.3) and (7.4) together with the assumption n Ê p imply that

a + (k − 1)(a′ − 1) Ê k + (a − 1)(a′ − 1).

By simplifying this inequality we see that a + k (a′ − 1) Ê k + a (a′ − 1) and hence

k (a′ − 2) Ê a (a′ − 2).

Since a′ is the number of points in a line, a′ Ê 2. It follows that either k Ê a , or a′ = 2.
But k Ê a contradicts to the assumption k < a , and hence a′ = 2.

The equality a′ = 2 means that M consists of 2 points. By the choice of M, this implies
that every line containing u and different from L consists of 2 points. Since L and these
other lines contain all points and pairwise intersect only in u, it follows that n = a + k − 1.

One of the points of M is u. Let z be the other point. Then z 6∈ L because M 6= L, and
hence there are a lines containing z and belonging to P . Among these lines only M contains
u . There are also k − 1 lines containing u and not equal to M, and all of them belong to
P . It follows that p Ê k + a − 1 = n . Since n Ê p , this implies that p = n and every line
belonging to P contains either u or z .

Suppose that there is a line l containing u and different from L, M. Let y ∈ l and y 6= u .
Then y 6∈ L and hence there are a lines containing y and belonging to P . Among these
lines only one contains u . By the previous paragraph, the other a − 1 lines contain z . Since
there is only one line containing { y , z }, it follows that a − 1 É 1 and hence a = 2. Since
k < a , this implies that k É 1 contrary to the fact that kx Ê 2 for all x . The contradiction
shows that only the lines L, M contain u .

It follows that E = L ∪ M and hence z is the only point not belonging to L. In turn, this
implies that the set of lines L consists of L and the lines of the form { x , z }, where x ∈ L.
Therefore L = P and (E, L ) is a near-pencil.
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8. All the de Bruijn–Erdös inequalities

The Basterfield–Kelly–Conway argument. Suppose that m < n . Then

(n − s l )
/

(m − s l ) > n
/

m

for every l ∈ L . If z 6∈ l , then s l É kz and hence m − kz É m − s l . It follows that

n = ∑
z ∈ E

m − kz

m − kz
= ∑

l 63 z

1

m − kz
Ê ∑

l 63 z

1

m − s l
= ∑

l ∈ L

n − s l

m − s l
> ∑

l ∈ L

n

m
= n .

The contradiction leads to the conclusion that m Ê n .

This argument is the main part of the proof of Theorem 2.1 (dealing with a more general situ-
ation) of the paper [BK] by J.G. Basterfield and L.M. Kelly. Basterfield and Kelly [BK] wrote
that they are “indebted to J. Conway for the simplicity of the present formulation of the proof
of Theorem 2.1.” By some reason this acknowledgment led to attributing this argument to J.
Conway alone even by some authors referring directly to [BK]. By replacing the strict inequal-
ities < by the non-strict ones É , one can use this argument also to deal with the case m = n
along the lines of Sections 2– 4. This observation is apparently due to P. de Witte [dW].

This is a sharp-witted, but also the most obscure and puzzling proof. It appears as a rabbit
from a hat without any context or explanations and tells nothing about why the theorem is true.
In the rest of this section I will explain a natural line of thinking which leads to such a proof.
There is no evidence suggesting that it was discovered in this way, but it could have been.

Summing the de Bruijn–Erdös inequalities. Summing de Bruijn–Erdös inequalities and then
comparing the result with (2.1) is the key step of both the de Bruijn–Erdös proof and the proof
from Section 2. A natural idea is to use all de Bruijn–Erdös inequalities on an equal footing.
One way to do this is to use systems of distinct representatives as in Section 4.

One may hope for a proof using all de Bruijn–Erdös inequalities in a way closer to the proof of
inequalities (2.3) and (2.4) in Section 2 than to the cyclic order argument of de Bruijn–Erdös.
Let us sum the inequalities s l É kz over all pairs (l , z ) ∈ L × E such that z 6∈ l . Every s l

appears n − s l times in the left hand side of these inequalities, and every kz appears m − kz

times in the right hand side. Therefore, taking the sum results in the inequality∑
l ∈ L

s l (n − s l ) É ∑
z ∈ E

kz (m − kz) .

This inequality does not lead to a proof of the desired sort, but it admits a natural general-
ization. Let F be an increasing function. Instead of s l É kz , one can sum the inequalities
F(s l ) É F(kz ). In fact, there is no need to apply the same function to s l and kz .
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Let F, G be a pair of functions such that s É k implies F(s ) É G(k ). Taking the sum of
the inequalities F(s l ) É G(kz ) over all pairs l , z such that z 6∈ l results in the inequality∑

l ∈ L

F(s l )(n − s l ) É ∑
z ∈ E

G(kz )(m − kz) .

It remains to realize that the functions F, G may depend on the numbers m , n and that one
can get rid of the factors n − s l and m − kz by dividing by these factors.

A proof of the de Bruijn–Erdös-Hanani theorem. As usual, we may assume that m É n . Let

F(s ) = s

n − s
and G(k ) = k

m − k
.

Then s É k implies F(s ) É G(k ). Indeed, the latter inequality is equivalent to the in-
equality s (m − k) É k (n − s), and hence to the inequality sm É kn , which is obviously
true if s É k and m É n . By summing the inequalities F(s l ) É G(kz ) over all pairs
(l , z ) ∈ L × E such that z 6∈ l we get the inequality

(8.1)
∑

l ∈ L

s l

n − s l
(n − s l ) É ∑

z ∈ E

kz

m − kz
(m − kz) ,

which is obviously equivalent to∑
l ∈ L

s l É ∑
z ∈ E

kz .

In view of (2.1) the sides of the latter inequality are actually equal, and hence the sides of the
inequality (8.1) are also equal. Since the inequality (8.1) is obtained by summing inequalities
F(s l ) É G(kz ), it follows that if (l , z ) ∈ L × E and z 6∈ l , then

s l

n − s l
= kz

m − kz
.

and hence s l m = kz n . Since m É n and s l É kz , the last equality implies that m = n
and s l = kz . In particular, z 6∈ l implies that s l = kz and hence every line containing z
intersects l . It remains to repeat the last paragraph of Section 4.

This proof has the advantage of explicitly using the equality (2.1). The Basterfield–Kelley–
Conway argument implicitly uses double sums and a change of the order of summation. This
change of the order of summation is a stronger tool than the double counting proving (2.1).

A version of this proof. Suppose that m É n . One can take as F, G the functions

F(s ) = n

n − s
and G(k ) = m

m − k
.
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They can be obtained by adding 1 to the previous choice of the functions F, G. Therefore
s É k again implies F(s ) É G(k ). This can be also verified in the same way as before. By
summing the inequalities F(s l ) É G(kz ) over all pairs l , z such that z 6∈ l we get

(8.2)
∑

l ∈ L

n

n − s l
(n − s l ) É ∑

z ∈ E

m

m − kz
(m − kz) ,

which is obviously equivalent to mn É nm . But the sides of the latter inequality are equal.
It follows that if (l , z ) ∈ L × E and z 6∈ l , then

n

n − s l
= m

m − kz

and hence s l m = kz n . The rest of the proof is exactly the same as above.

Dividing everything in this version of the proof by m , which amounts to taking

F(s ) = n

m(n − s)
and G(k ) = 1

m − k
,

and omitting the explanations turns this version into the Basterfield–Kelly–Conway argument.
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