ГРУППЫ ДИФФЕОМОРФИЗМОВ МНОГООБРАЗИЙ ВАЛЬДХАУЗЕНА

Н.В.Иванов

I. Обозначения и определения. Мы употресляем дийференциально-топологическую C^{∞} — терминологию. Пусть V — компактное мно-гообразие, F — его подмногообразие, N и A — замкнутие мно-жества в V и F соответственно. Мы обозначаем через $\mathop{\mathcal{D}iff}(V,N)$ группу всех диффеоморфизмов многообразин V , неподвижных на ∂V и N , через $Em_A(F,V)$ — множество вложений мно-гообразия F в V , совпадающих на ∂F и A с включением, и через H(V) — множество гомотопических эквивалентностей мно-гообразия V , неподвижных на ∂V ; $\mathop{\mathcal{D}iff}(V,N)$ и $Em_A(F,V)$ наделяются $\mathop{\mathcal{C}}^{\infty}$ — топологией, а $\mathop{\mathcal{C}}^{\infty}$ — компактно-откритой топологией. Положим $\mathop{\mathcal{D}iff}(V) = \mathop{\mathcal{D}iff}(V,\emptyset)$.

Пусть V — компактное трехмерное многообразие. Поверхность (компактное двумерное подмногообразие) F в V называется с о б с т в е н н о й , если $\partial F = \partial V \cap F$ и F трансверсальна к ∂V . Она называется н е с ж и м а е м о й , если: (i) F является связной, собственной и лекит в V двусторонне; (ii) F не является краем стятиваемого подмногообразия и либо F не является диском, либо включение $(F,\partial F) \longrightarrow (V,\partial V)$ не допускает гомотопии в отображение с образом, лежащим в V; (iii) гомоморфизм включения $\pi_1(F) \longrightarrow \pi_1(V)$ является мономорфизмом.

многообразие V называется неприводимим, если всякая вложенная в V двумерная сфера ограничивает в V шар. Оно называется м ногообразие м Вальд-хаузена, если V неприводимо, содержит несжимаемую поверхность и \mathbb{R} \mathbb{P}^2 не вкладывается в V двусторонне.

2. История вопроса. Если \mathbb{N} — подмногообразие многообразия \mathbb{V} , то $\mathbb{J}iff(\mathbb{V},\mathbb{N})$ обладает структурой многообразия френе; см. Лесли [9]. В частности, в этом случае $\mathbb{J}iff(\mathbb{V},\mathbb{N})$ имеет гомотопический тип счетного клеточного пространства (счетного " $\mathbb{C}\mathbb{W}$ — комплекса") и определяется своим гомотопическим типом с точностью до гомеморфизма; см. Бургелеаи Кюйпер [3]. Гомотопический тип $\mathbb{J}iff(\mathbb{V})$ изучался в ряде работ. Первнии были результати милнора о $\pi_0\mathbb{J}iff(\mathbb{S}^n)$ (см. [7], [10]). На их основе новиковым [11], Антонелли, Бургелеа и Каном [1] и другими авторами была доказана нетривиальность большого числа гомотопических

групп π_i $\mathfrak{J}_{iff}(V)$ для $V=\mathfrak{J}^n$ и некоторых других V

Полная информация о гомотопическом типе Diff(V) имеется лишь в немногих случаях. В существенном они сволятся к следующему. Хорошо известно (и легко доказнвается), что $\text{Diff}(S^1) \approx S^1$. Смейлом [12] доказано, что $\text{Diff}(S^2) \approx 0(3)$, для остальных замкнутых поверхностей гомотопический тип группы диффеоморфизмов вычислен Илсом и Ирлом [5]. Что касается трехмерного случая, то Акиба [2] анонсировал доказательство гипотезы Смейла, согласно которой $\text{Diff}(\mathfrak{D}^3)$ стягиваема (автор не знаком с ним, поэтому теоремы 2 и 3 ниже формулируются с осторожностью).

Кроме этого в трехмерном случае имеются частичние результати. Лауденбах получил значительную информацию о $\pi_0 \text{ Jiff}(S^1 \times S^2 + \dots + S^1 \times S^2)$. В случае, когда V — многообразие Вальд-хаузена, Вальдхаузен и Лауденбах свели внчисление $\pi_0 \text{ Jiff}(V)$ к гомотопической задаче, а Лауденбах доказал, что $\pi_4 \text{ Jiff}(V, \{v\}) = 0$, где $v \in V$. Изложение этих результатов имеется у Лауденбаха [8].

3. <u>Основные результати</u>. Пусть V - многообразие Вальдхау-

ТЕОРЕМА I. (теорема разделения). Пусть F — несжимаемая поверхность в V и F' — результат малого сдвига F вдоль нормального поля. Если $v \in F$, то включение

 $\operatorname{Em}_{\{v\}}(F,V\setminus F') \subset \operatorname{Em}_{\{v\}}(F,V)$ индуцирует изоморфизм гомотопических групп.

Предположим теперь, что верна гипотеза Смейла.

TEOPEMA 2. (основная теорема). Если $\partial V \neq \emptyset$, то компоненти группи liff(V) стягиваеми. Если $\partial V \neq \emptyset$ и $v \in V$, то компоненти группи $\text{liff}(V, \{v\})$ стягиваеми.

ТЕОРЕМА 3. Включение $\text{Diff}(V) \subset \text{H}(V)$ является гомотопической эквивалентностью.

Теорема 3 является легким следствием теоремы 2. Теорема 2 выводится без большого труда из теоремы I и существования мерархий хакена на многообразиях Вальдхаузена [6]. Главную трудность представляет теорема разделения, имеющая и самостоятельный интерес. Наброску ее доказательства посвящен цункт 4. Ее можно интерпретировать как утверждение, что любое конечнопараметрическое семейство вложений $F \longrightarrow V$ можно столкнуть с F'. Ее частний случай был доказан Лауденбахом [8], который построил сталкивания 0 и I — параметрических семейств.

4. Основние этапи доказательства теореми разделения. Доказа-

тельство состоит из двух частей. Сначала строится более или менее каноническая сталкивающая изотопия для одного вложения. Потом из нескольких таких изотопий склеивается сталкивание целого семейства.

42. Наконтие. Обозначим через $P: (V, w) \longrightarrow (V, v)$ накрытие, ассоциированное с образом группы $\pi_i(F, v)$ в $\pi_i(V, v)$ положим $F'' = P^{-1}(F)$ и обозначим через П множество компонент многообразия F''. Каждая поверхность С из П делит V на две части χ_c и χ_c ; через χ_c мн обозначаем ту часть, которая содержит w. Отношение $\chi_c \subset \chi_d$ определяет отношение порядка D < C на П.

Использовать эту конструкцию для доказательства теоремы разделения предложил Дауденбах [8].

46. Вложения общего вида. Точку y из F ми будем называть о с о б о \hat{n} для вложения $f\colon F \longrightarrow V$, если f не трановерсально к F' в y . Особур точку y вложения f будем называть к о н е ч н о к р а т н о \hat{n} , если росток в f(y) четверки (V, F', f(F), f(y)) диффеоморфен ростку в О некоторой четверки вида $(\mathbb{R}^2 \times \mathbb{R}, \mathbb{R}^2 \times 0, \Gamma, 0)$ с Γ , являющимся графиком функции $\mathbb{R}^2 \longrightarrow \mathbb{R}$ такой, что 0 — ее конечнократная критическая точка. Будем говорить, что вложение f — общего вида, если все его особие точки конечнократные.

дополнение в $\mathbb{E}_{m_{\{v\}}}(F,V)$ до множества вложений общего вида имеет коразмерность ∞ и потому для доказательства теореми разделения достаточно столкнуть с F' конечнопараметрическое семейство вложений общего вида.

E такой, что $G \subset E \subset g(F)$; (v) если компонента S многообразия ∂G ограничивает в F'' диск \mathbb{D}_s , то либо $\mathbb{D}_s \cap W = S$, либо существует диск E_s такой, что $\partial E_s = S$ и $G \subset E_s \subset g(F)$.

(диск E_3 с $\partial E_3 = S'$ и $G \subset E_3 \subset g$ (F) существует не более чем для одной компонентн S' многообразия $\partial \overline{G}$).

ДОКАЗАТЕЛЬСТВО основано на изучении ашпроксимаций вложения f вложениями, трансверсальными к F'.

4г. Сталкивающие изотонии. В ситуации основной лемми сужение $\rho|_W$ является вложением. Вноерем вложение $\varphi: F' \times [0,1] \rightarrow V$ такое, что $\varphi^{-1}(\rho(\overline{G})) = \rho(\partial \overline{G}) \times [0,1]$.

для каждой компонентн S многообразия $P(\partial \overline{G})$ ограничивающей в F' диск \mathbb{D}_s такой, что $\mathbb{D}_s \cap P(W) = S'$ добавим к многообразию P(W) цилиндр $P(\mathbb{D}_s \times [0, g_s])$, где $0 < g_s < 1$, и сгладим у полученного многообразия угли, не лежащие на F'. В результате получим многообразие \mathbb{Z} , являющееся тривиальным кобордизмом между $\partial \mathbb{Z} \cap F'$ и $\partial \mathbb{Z} \setminus F'$. С его помощью можно построить изотопию многообразия \mathbb{V} , переводящую $\partial \mathbb{Z} \setminus F'$ в $\partial \mathbb{Z} \cap F'$ и $\partial \mathbb{Z} \cap F'$ и оследует, что если числа g_s достаточно малы, то эта изотопия в некотором смысле (который мы здесь не уточняем) упрощает пересечение образа вложения g_s . Поэтому, последовательно выполнив несколько таких изотопий, мы столкнем вложение с g_s

4д. Сталкивание семейства. Мы ограничимся случаем однопараметрического семейства (ср. Лаупенбах [8]): общий сдучай аналогичен, но довольно громоздок. Построим сталкивающую изотонию для какдого вложения из семейства. Изотопия, сталкивающая некоторое вложение, сталкивает и все близкие вложения. Поэтому можно выбрать несколько изотопий λ^b и разбиение $\{\top_i\}$ области определения семейства на замкнутие отрезки так, что λ^i сталкивает $f_{\mathfrak{t}}$, где $\{f_t:t\in T\}$ — рассматриваемое семейство. Ес $t \in T_i \cap T_i$ и $i \neq j$, то имеются две изотопии, сталкиваюние f_+ . Их можно рассматривать как отображение $\lambda: I \times 0 \cup 0 \times I \rightarrow$ o] iff (V) . Чтобы построить нужное сталкивание, достаточно продолжить это отображение на I^2 так, чтобы $\lambda(x) \circ f_t \in$ $\in \mathbb{E} m_{\{a_r\}}(F, V \setminus F')$ при $x \in I \times 1 \cup 1 \times I$. Такое продолжение составинется из отображений $\sigma: I^2 \longrightarrow \text{Diff}(V)$ вида $\sigma(t_1, t_2)$ $=\lambda_4(t_4)\circ\lambda_2(t_2)$, где λ_4 и λ_2 или построены с помощью основной леммы, как в 4г. или оставляют Г неподвижной.

(В случае многопараметрического семейства употребляются отображения вида $\sigma(t_1,\ldots,t_n)=\lambda_4(t_4)\circ\ldots\circ\lambda_n(t_n)$).

5. Автор одагодарит своего руководителя профессора В.А. Рохлина за постановку задачи и внимание к работе.

Литература

- 1. Antonelli P., Burghelea D., Kahn P.J., The non-finite homotopy of some Diff.-Topology. 1972, 11, N 1, p.1-49.
- 2. AkibaT . Homotopy types of some PL -complexes. Bull. Amer. Math. Soc., 1971, 77, N 6, 1060-1062.
- 3. Burghelea D., Kuiper N., Hilbert manitolds.
 Ann. Math., 1969, 90, N 2, p. 379-417.
- 4. Cerf J., Sur les diffeomorphismes de la sphere de dimension trois $(\Gamma_4=0)$. Lect.Not.Math., N 53.
- 5. Eells J., Earle C.J. A fibre bundle description of Teichmuller theory. J.Different.Geometry, 1969, 3, N 1, p.19-43.
- 6. Haken W., Uber das Homeomorphie problem der 3-Mannig-faltigkeiten I. Math.Z., 1962, 80, N 2, p.89-120.
- 7. Kervaire M.A., Milnor J.W., Groups of homotopy spheres I. Ann. Math., 1963, 77, N 2, p.504-573.
- 8. Laudenbach F. Topologie de la dimension trois homotopie et izotopic. Asterisque, 1974, 12.
- 9. Les lie J., On a differential structure for the group of diffeomorphisms. Topology. 1967, 6, p.263-271.
- 10. M i 1 n o r J.W., On manifolds homeomorphic to the 7-sphere. Ann. Math., 1956, 64, N 2, p. 399-405.
- 11. Новиков С.П. Дифференцируемые пучки сфер. Изв. АН СССР, сер.мат., 1965, 29, № 1, с.7I-96.
- 12. S m a l e S., Diffeomorphisms of the 2- sphere. Proc. Amer. Math. Soc., 1959, 10, N 4, p.621-629.

Ivanov N.V. Diffeomorphism groups of Waldhausen manifolds.
The author describs the homotopy type of the group of diffeomorphisms of some 3-dimensional manifolds and studies the
space of incompressible surfaces in these manifolds.