Exercise 6 – Using the NHDPlus Raster Data Sets – Last Updated 3/12/2014

Within this document, the term NHDPlus is used when referring to NHDPlus Version 2.1 (unless otherwise noted).

The NHDPlus includes several raster (grid) data sets. Several of these are primarily used in analytical processes that are beyond the scope of this exercise. Some, however, are useful for display purposes. This exercise will provide hints on efficient use of these raster data sets.

1. First, let's discuss the characteristics of each of the raster data sets in general
 a. The **cat** grid contains an unusually large number of unique grid values. Note: The **cat** grid can be symbolized with the Discrete Color renderer in ArcMap. In most cases you don’t really need to see the records in the **cat.vat** or to display it. All the same information is in the **catchment.shp** attribute table, and can be used much more readily in that form. The **cat** grid is primarily useful for gridded overlay analysis rather than for display purposes.
 b. The **fdr** (flow direction) contains only nine or ten unique values, one for each possible flow direction. Although it is easy to display this grid, it is not particularly easy to interpret. This grid may sometimes be inspected closely in order to understand the flow in a very small area, but generally this grid is not displayed, and is used by automated procedures to derive flow paths or delineate watersheds. The values indicate the direction of flow. A value of zero means that the cell is a sink and there is no flow to any adjacent cell.
 c. The **fac** grid contains a very skewed distribution of values. The vast majority of cells contain small numbers (fewer than 100), however the cells along major flow paths can have values into the hundreds of millions. The default display of such grids is very difficult to use. We will see later in this exercise how to display the **fac** grid in a more useful manner.
 d. The **elev_cm** grid contains integer values of elevation, using vertical units of centimeters. The original floating-point NED data were multiplied by 100 and converted to integer in order to allow automatic compression of the grids. This saves a large amount of disk space.

2. Open ArcMap and close ArcCatalog.
 a. Navigate to the NHDPlusMS\NHDPlus06\NEDSnapshot folder and add the **ShdRelief** grid to the map. Note that by adding a raster data set first, the map document takes on the NAD_1983_Albers coordinate system from the raster data set. When working with raster data, particularly when doing raster analysis, it is best to keep the map document in this projection. (Conversely, if doing vector analysis, particularly when using a geometric network, the GCS_North_American_1983 should be used.)
b. Right-click on the **ShdRelief** grid, and choose **Properties**. Select the **Symbology** tab. If the renderer is not Stretched, change it to Stretched as shown below, then click Apply.
c. Zoom in someplace far enough so you can see the blocky grid cells in the display. Open the **ShdRelief** grid **properties window**, select the **Display** tab and set Resample during display to Bilinear Interpolation for smoother display. Click OK. Notice how much smoother the display looks using this option.
3. Now let’s display elevation in a range of colors.

 a. Add the `elev_cm` grid to the map. Open its **Layer Properties Symbology** Tab as we did before with the ShdRelief grid. It should look like this:
b. Right-click on the black to white shaded Color Ramp pulldown menu and choose **Graphic View**. The check mark beside it should disappear and the text descriptions of the Color Ramps should appear. Using the pulldown menu scroll down to find the Elevation #1 color ramp and select it. The menu should now look as below.
c. Select the **Display** tab, then set the transparency level to 50%. The menu should look like the one shown below. Click OK.
d. In the ArcMap table of contents, drag the elev_cm layer above the shdrelief layer and turn them both on. Zoom in somewhere to see a nice color shaded relief map.
4. Now let’s see how we can use the fac (flow accumulation grid) to see where stream channels are according to the HydroDEM.

a. Add the fac grid to the map. Right-click on the fac grid, and choose Properties. Select the Symbology tab. Change the renderer from Stretched to Classified as shown below. “Build Histogram” if prompted.

b. Click the Classify button next to the number of classes.
c. On the Classification menu, change the number of classes to 2, then change the first Break Value to 100, as shown below. Click OK.
d. Now back on the **Layer Properties Symbology** menu, double-click on the black box under Symbol next to the 0 - 100 Range, then choose No Color on the color menu that pops up.
e. In a similar manner, change the color on the 100 - 116,954,153 range to a dark blue. Click OK. Zoom in somewhere so you can see the dark blue fac grid cells. The fac cells that are dark blue are cells having 100 or more cells upstream, and indicate where drainage channels are on the HydroDEM. In general these should follow the NHD Flowlines closely, since all networked NHD Flowlines were burned into the HydroDEM. The threshold of 100 is shown for illustrative purposes, but any threshold may be chosen. A threshold of around 2000 to 5000 has been found to result in a drainage density similar to the medium resolution NHD Flowlines, although this varies considerably throughout the NHD. Go back to the “Layer Properties” “Symbology” tab and change to 4,000. Try different values here to see what works best in your area.

Below is an example showing the 100-cell threshold fac grid in dark blue, with nhdflowline in orange, overlaid on the ShdRelief grid.