• Review of basic topics covered in the epidemiology section of the exam

• Materials covered cannot replace basic epidemiology course

• This review will be archived on the NBPHE website under Study Resources www.nbphe.org
Outline

• Definition and Terminology
• Measures of Disease Frequency
• Epidemiologic Study design
• Causation
• Screening for Disease
Epidemiology is the study of distribution and determinants of health-related states or events in specified populations and the application of this study to control health problems.
Disease Distribution

- How common?
- Who is affected?
- When does it occur?
- Where does it occur?
Disease Distribution

• How common?
• Who is affected?
• When does it occur?
• Where does it occur?
Endemic, Epidemic and Pandemic

- **Endemic**: usual presence of a disease within a given population.
- **Epidemic**: occurrence of a disease clearly in excess of normal expectancy in a defined community or region
- **Pandemic**: worldwide epidemic
Endemic, Epidemic and Pandemic

- **Endemic**: usual presence of a disease within a given population.
- **Epidemic**: occurrence of a disease clearly in excess of normal expectancy in a defined community or region.
- **Pandemic**: worldwide epidemic.

- **WHAT IS A RARE (SPORADIC) DISEASE?**
Disease Distribution

• How common?
• **Who is affected?**
• When does it occur?
• Where does it occur?
DESCRIPTIVE EPIDEMIOLOGY - PERSON

Some personal characteristics that are examined with respect to disease occurrence are:

- age
- sex / gender
- race / ethnicity
- education
- income
- occupation
- marital status
Populations

• Membership can be permanent or transient

 – Population with permanent membership is referred to as “Fixed” or “Closed”
 • People present at Hiroshima
 • Passengers on an airplane

 – Population with transient membership is referred to as “Dynamic” or “Open”
 • Population of Omaha
Disease Distribution

- How common?
- Who is affected?
- **When does it occur?**
- Where does it occur?
Annual Plague Deaths, London

Disease Distribution

• How common?
• Who is affected?
• When does it occur?
• Where does it occur?
Cholera cases in the Golden Square area of London, August-September 1854
Measures of Morbidity
Four simple mathematical parameters

- Counts
- Ratios
- Proportions
- Rates
Measures of Frequency

“Count” - the most basic epidemiologic measure

- Expressed as integers (1, 2, 3, ...)
- Answers the question, “How many people have this disease?”
- Important to distinguish between *incident* (new) and *prevalent* (existing) cases
Deaths in the U.S. 20th Century

Gordis: Epidemiology, 4th Edition. Copyright © 2008 by Saunders, an imprint of Elsevier, Inc. All rights reserved.
Ratio

- One number \((x)\) divided by another \((y)\): \(\frac{x}{y}\)
- Range: zero \((0)\) to infinity \((\infty)\)
- \((x)\) and \((y)\) may be related or completely independent

- Sex of children
- Attending a clinic

\[
\frac{\text{females}}{\text{males}}
\]
Ratio

• One number \((x) \) divided by another \((y) \): \(\frac{x}{y} \)

• Range: zero \((0) \) to infinity \((\infty) \)

• \((x) \) and \((y) \) may be related or completely independent

• Sex of children

• Attending a clinic

\[
\frac{\text{females}}{\text{males}} \quad \frac{\text{females}}{\text{all}}
\]
Ratio

- One number \((x) \) divided by another \((y) \): \(\frac{x}{y} \)
- Range: zero \((0) \) to infinity \((\infty) \)
- \((x) \) and \((y) \) may be related or completely independent

Proportion

- Sex of children
- Attending a clinic

\[\frac{\text{females}}{\text{males}} \quad \frac{\text{females}}{\text{all}} \]
Proportion

• Ratio in which the numerator \((x)\) is included in the denominator \((x+y)\):

• Range: zero \((0)\) to one \((1)\)

• Often expressed as percentage (e.g., Among all children who attended a clinic, what proportion was female)?

\[
\frac{\text{females}}{\text{all}}
\]
Ratio

Obtained by dividing one quantity by another.

Example: Number of stillbirths per thousand live births.

\[
\frac{50 \text{ stillbirths}}{2500 \text{ live births}} \times 1,000 = 20 \text{ stillbirths for every 1,000 live births}
\]
Proportion

A ratio in which the numerator is included in the denominator (expressed as %)

Example: The number of fetal deaths out of the total number of births

\[
\frac{50 \text{ stillbirths}}{2550 \text{ total births}} \times 100 = 1.96\%
\]
Proportion

A ratio in which the numerator is included in the denominator (expressed as %)

Example: The number of fetal deaths out of the total number of births

\[
\frac{50\text{ stillbirths}}{2550\text{ total births}} \times 100 = 1.96\%
\]
Rate

Generally speaking, a quantity per unit of time.

Example: The woman’s heart rate was 60 beats per minute.

Example: The driver’s rate of speed was 60 miles per hour.

Example: The man’s pay rate was $60 per day.
Rate

• Can be expressed as \((a/T)\) where \((a)\) = cases and \((T)\) involves a component of time

• Range: zero \((0)\) to infinity \((\infty)\)

• Measures speed at which things happen
Incidence rate (IR)

\[
IR = \frac{\text{# of new cases of disease (I)}}{\text{# of person-time (PT) units of observation}}
\]
Rate Example

A measure of how fast something of interest happens in a population

Example: The number of new cases of Parkinson’s disease that develops per 1,000 people

\[
\frac{\# \text{ of new cases of Parkinson's disease}}{\text{Total \# years disease - free subjects observed}} \times 1000
\]
Rate in Epidemiology

A measure of how fast something of interest happens in a population

Example: The number of new cases of Parkinson’s disease that develops per 1,000 Knox residents over 30 years of age per year

\[
\frac{\text{# of new cases of Parkinson's disease}}{\text{Total # years disease - free subjects observed}} \times 1000
\]

What information would you always want to know with such a rate?
Rate in Epidemiology

A measure of how fast something of interest happens in a population

Example: The number of new cases of Parkinson’s disease that develops per 1,000 Knox residents over 30 years of age per year

\[
\frac{\text{# of new cases of Parkinson's disease}}{\text{Total # years disease - free subjects observed}} \times 1000
\]

Time, place and population should be specified
Rate in Epidemiology

A measure of how fast something of interest happens in a population

Example: The number of new cases of Parkinson’s disease that develops per 1,000 Knox residents over 30 years of age per year

$$\frac{\text{# of new cases of Parkinson's disease}}{\text{Total # years disease - free subjects observed}} \times 1000$$

Time, place and population should be specified
Rate in Epidemiology

A measure of how fast something of interest happens in a population

Example: The number of new cases of Parkinson’s disease that develops per 1,000 Knox residents over 30 years of age per year

\[
\frac{\text{# of new cases of Parkinson's disease}}{\text{Total # years disease - free subjects observed}} \times 1000
\]

Time, place and population should be specified
Cohort Follow-up

Time (12 months)
Prevalence

• Proportion
• Not a rate – no time component in the calculation
• Measures proportion of existing disease in the population at a given time
• “Snapshot”
• Dimensionless, positive number (0 to 1)
Prevalence proportion

\[
Prevalence = \frac{A}{N} = \frac{A}{A + B}
\]

Where:

A = number of existing cases
B = number of non-cases
N = total population
Incidence

• Measures the occurrence of new cases in a population at risk over time

• Can be measured as a proportion or a rate
Incidence proportion

- **Synonyms:** incidence, cumulative incidence, *risk*
- Measures probability (risk) of developing disease during period of observation
- Dimensionless, positive number (0 to 1)
Risk

Risk = \frac{a}{N}

Where:

a = number of new onset cases (events)
N = population-at-risk at beginning of follow-up
RISK

• Must specify time period of observation because risk changes with time

• Must specify population because risk varies across populations

• Must specify region / place (for same reason)
Follow 2000 newborns at monthly intervals to measure development of respiratory infection in the first year

- Suppose 50 infants develop respiratory infection in first year of life

\[\text{Risk} = \frac{50}{2000} = 0.025 = 2.5\% \]

- The risk (probability) of developing a respiratory infection in the first year of life is \(\sim 2.5\%\)

- 25 of 1000 infants in this population or 1 in 40 will develop infection in the first year of life.
Incidence Rate

• Measures how rapidly new cases develop during specified time period

• NEW cases per person-time

• Synonyms: incidence, incidence density, rate
Incidence Rate

\[IR = \frac{a}{T} \]

Where:

\(a \) = number of new onset cases
\(T \) = person-time at risk during study period (follow-up)
Person-time

- Accounts for all the time each person is in the population at risk

- The length of time for each person is called person-time

- Sum of person-times is called the total person-time at risk for the population
Person-time Assumption

- 100 persons followed 10 years = 1000 person years
- 1000 persons followed for 1 year = 1000 person years

Assumes rate is constant over different periods of time
Example: Cohort Follow-up

1

2 × (6 months)

3

4

5

Time (12 months)
Example: Cohort Follow-up

Time (12 months)

(6 months)
Example: Cohort Follow-up

12 Months

1

(6 months)

Time (12 months)
1 new case / 4.5 person-years = .2222 cases per person per year (per person-year)
Cohort Follow-up

1 new case / 54 person-months = 0.0185 cases per person per month (per person-month)
Incidence, Prevalence, Duration

- Prevalence increases as new cases added to the existing cases (i.e., incidence)
- Prevalence decreases as people are cured or die
- Prevalence = Incidence * Duration
Measures of Mortality
Mortality

- Measures the occurrence of death
- Can be measured as a proportion or a rate
- Risk of death
- Rate of death

The statistical calculations for risks and rates for mortality are similar to those for disease morbidity.
Case Fatality Rate

• This is **not a rate**, this is a proportion
• Proportion of deaths from a specific illness

\[
\text{Case Fatality Rate} = \frac{a}{N}
\]

Where:
\(a = \text{Number of deaths from an illness} \)
\(N = \text{Number of people with that illness} \)

What percentage of people diagnosed as having a disease die within a certain time after diagnosis?
Case-fatality rate

- Case-fatality – a measure of the severity of the disease
- Case-fatality – can be used to measure benefits of a new therapy
 - As therapy improves - the case-fatality rate would be expected to decline
 - e.g. AIDS deaths with the invention of new drugs
Proportionate Mortality

• Of all deaths, the proportion caused by a certain disease
• Can determine the leading causes of death
• Proportion of cause-specific death is dependent on all other causes of death
• This does not tell us the risk of dying from a disease
Proportionate Mortality

“One of every four deaths in the United States is due to cancer.” -- CDC

25%
Other Mortality Rates

• Crude Mortality Rate
 – Includes all deaths, total population, in a time period

• Cause-Specific Mortality Rate
 – Includes deaths from a specific cause, total population, in a time period

• Age-Specific Mortality Rate
 – Includes all deaths in specific age group, population in the specific age group, in a time period
Age Adjustment

Mortality rate in 1996
387 per 100,000/year

Mortality rate in 1996
1,026 per 100,000/year

Should I Move?
Table 1. Vital Statistics for Alaska and Florida, 1996

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>Alaska Deaths</th>
<th>Alaska Population</th>
<th>Florida Deaths</th>
<th>Florida Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>122</td>
<td>57,000</td>
<td>2,177</td>
<td>915,000</td>
</tr>
<tr>
<td>5-24</td>
<td>144</td>
<td>179,000</td>
<td>2,113</td>
<td>3,285,000</td>
</tr>
<tr>
<td>25-44</td>
<td>382</td>
<td>222,000</td>
<td>8,400</td>
<td>4,036,000</td>
</tr>
<tr>
<td>45-64</td>
<td>564</td>
<td>88,000</td>
<td>21,108</td>
<td>2,609,000</td>
</tr>
<tr>
<td>65-74</td>
<td>406</td>
<td>16,000</td>
<td>30,977</td>
<td>1,395,000</td>
</tr>
<tr>
<td>75+</td>
<td>582</td>
<td>7,000</td>
<td>71,483</td>
<td>1,038,000</td>
</tr>
<tr>
<td>Totals</td>
<td>2,200</td>
<td>569,000</td>
<td>136,258</td>
<td>13,278,000</td>
</tr>
</tbody>
</table>

Crude MR in AL

\[
Crude \ MR \ in \ AL = \frac{2,200}{569,000} \times 10^5 = 387 \text{ per } 100,000
\]

Crude MR in FL

\[
Crude \ MR \ in \ FL = \frac{136,258}{13,278,000} \times 10^5 = 1,026 \text{ per } 100,000
\]

CPH Certified Public Health Exam Reviews by National Board of Public Health Examiners
<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>Alaska Deaths</th>
<th>Alaska Population</th>
<th>Florida Deaths</th>
<th>Florida Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>122</td>
<td>57,000</td>
<td>2,177</td>
<td>915,000</td>
</tr>
<tr>
<td>5-24</td>
<td>144</td>
<td>179,000</td>
<td>2,113</td>
<td>3,285,000</td>
</tr>
<tr>
<td>25-44</td>
<td>382</td>
<td>222,000</td>
<td>8,400</td>
<td>4,036,000</td>
</tr>
<tr>
<td>45-64</td>
<td>564</td>
<td>88,000</td>
<td>21,108</td>
<td>2,609,000</td>
</tr>
<tr>
<td>65-74</td>
<td>406</td>
<td>16,000</td>
<td>30,977</td>
<td>1,395,000</td>
</tr>
<tr>
<td>75+</td>
<td>582</td>
<td>7,000</td>
<td>71,483</td>
<td>1,038,000</td>
</tr>
<tr>
<td>Totals</td>
<td>2,200</td>
<td>569,000</td>
<td>136,258</td>
<td>13,278,000</td>
</tr>
</tbody>
</table>

Crude MR in AL = \[
\frac{2,200}{569,000} \times 10^5 = 387 \text{ per 100,000}
\]

Crude MR in FL = \[
\frac{136,258}{13,278,000} \times 10^5 = 1,026 \text{ per 100,000}
\]
Table 1. Vital Statistics for Alaska and Florida, 1996

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>Alaska</th>
<th>Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deaths</td>
<td>Population</td>
</tr>
<tr>
<td>0-4</td>
<td>122</td>
<td>57,000</td>
</tr>
<tr>
<td>5-24</td>
<td>144</td>
<td>179,000</td>
</tr>
<tr>
<td>25-44</td>
<td>382</td>
<td>222,000</td>
</tr>
<tr>
<td>45-64</td>
<td>564</td>
<td>88,000</td>
</tr>
<tr>
<td>65-74</td>
<td>406</td>
<td>16,000</td>
</tr>
<tr>
<td>75+</td>
<td>582</td>
<td>7,000</td>
</tr>
<tr>
<td>Totals</td>
<td>2,200</td>
<td>569,000</td>
</tr>
</tbody>
</table>

Crude MR in AL

\[
Crude = \frac{2,200}{569,000} \times 10^5 = 387 \text{ per 100,000}
\]

Crude MR in FL

\[
Crude = \frac{136,258}{13,278,000} \times 10^5 = 1,026 \text{ per 100,000}
\]
Can we remove this confounding by age?

- Separate (stratify) the population into age groups and calculate rates for each age
 - Compare age-specific mortality rates

- If two different populations, adjust (standardize) the mortality rates of the two populations, taking into account the age structures
 - Results in comparable rates between populations or in the same population over time
Direct Standardization

• If the age composition of the populations were the same, would there be any differences in mortality rates?

• Direct age adjustment is used to remove the effects of age structure on mortality rates in two different populations.

• Apply actual age-specific rates to a standard population (US population 2000).
Table 1. Vital Statistics for Alaska and Florida, 1996

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>Alaska</th>
<th>Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deaths</td>
<td>Population</td>
</tr>
<tr>
<td>0-4</td>
<td>122</td>
<td>57,000</td>
</tr>
<tr>
<td>5-24</td>
<td>144</td>
<td>179,000</td>
</tr>
<tr>
<td>25-44</td>
<td>382</td>
<td>222,000</td>
</tr>
<tr>
<td>45-64</td>
<td>564</td>
<td>88,000</td>
</tr>
<tr>
<td>65-74</td>
<td>406</td>
<td>16,000</td>
</tr>
<tr>
<td>75+</td>
<td>582</td>
<td>7,000</td>
</tr>
<tr>
<td>Totals</td>
<td>2,200</td>
<td>569,000</td>
</tr>
</tbody>
</table>

Table 2. Age-specific mortality rates, Alaska and Florida, 1996

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Age (Years)</th>
<th>Alaska</th>
<th>Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-4</td>
<td>214</td>
<td>238</td>
</tr>
<tr>
<td>2</td>
<td>5-24</td>
<td>80</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>25-44</td>
<td>172</td>
<td>208</td>
</tr>
<tr>
<td>4</td>
<td>45-64</td>
<td>640</td>
<td>808</td>
</tr>
<tr>
<td>5</td>
<td>65-74</td>
<td>2528</td>
<td>2221</td>
</tr>
<tr>
<td>6</td>
<td>75+</td>
<td>8314</td>
<td>6887</td>
</tr>
</tbody>
</table>
Table 1. Vital Statistics for Alaska and Florida, 1996

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>Alaska Deaths</th>
<th>Alaska Population</th>
<th>Florida Deaths</th>
<th>Florida Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>122</td>
<td>57,000</td>
<td>2,177</td>
<td>915,000</td>
</tr>
<tr>
<td>5-24</td>
<td>144</td>
<td>179,000</td>
<td>2,113</td>
<td>3,285,000</td>
</tr>
<tr>
<td>25-44</td>
<td>382</td>
<td>222,000</td>
<td>8,400</td>
<td>4,036,000</td>
</tr>
<tr>
<td>45-64</td>
<td>564</td>
<td>88,000</td>
<td>21,108</td>
<td>2,609,000</td>
</tr>
<tr>
<td>65-74</td>
<td>406</td>
<td>16,000</td>
<td>30,977</td>
<td>1,395,000</td>
</tr>
<tr>
<td>75+</td>
<td>582</td>
<td>7,000</td>
<td>71,483</td>
<td>1,038,000</td>
</tr>
<tr>
<td>Totals</td>
<td>2,200</td>
<td>569,000</td>
<td>136,258</td>
<td>13,278,000</td>
</tr>
</tbody>
</table>

Table 2. Age-specific mortality rates, Alaska and Florida, 1996

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Age (Years)</th>
<th>Alaska</th>
<th>Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-4</td>
<td>214</td>
<td>238</td>
</tr>
<tr>
<td>2</td>
<td>5-24</td>
<td>80</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>25-44</td>
<td>172</td>
<td>208</td>
</tr>
<tr>
<td>4</td>
<td>45-64</td>
<td>640</td>
<td>808</td>
</tr>
<tr>
<td>5</td>
<td>65-74</td>
<td>2528</td>
<td>2221</td>
</tr>
<tr>
<td>6</td>
<td>75+</td>
<td>8314</td>
<td>6887</td>
</tr>
</tbody>
</table>
Hypothetical:

• If the deaths in the US were based on Alaska’s age-specific mortality rates…

• If the deaths in the US were based on Florida’s age-specific mortality rates…
\textbf{Crude} MR in AL = \frac{2,200}{569,000} \times 10^5 = 387 \text{ per } 100,000 \\

\textbf{Crude} MR in FL = \frac{136,258}{13,278,000} \times 10^5 = 1,026 \text{ per } 100,000 \\

\text{Age-adjusted MR in AK} = \frac{\sum_{i=1}^{k} N_i r_i}{\sum_{i=1}^{k} N_i} = \frac{232,421,256,000}{265,406,000} = 875 \text{ per } 100,000 \\

\text{Age-adjusted MR in FL} = \frac{\sum_{i=1}^{k} N_i r_i}{\sum_{i=1}^{k} N_i} = \frac{216,324,617,000}{265,406,000} = 815 \text{ per } 100,000
Indirect Standardization

- When age-specific rates are not available – use age-specific mortality rates from the general population to calculate expected number of deaths

Standardized mortality ratios (SMR) = observed deaths/ expected deaths
10 Minute Break
Study Design
Study Design

• Experimental studies (Clinical Trial, Randomized Controlled Trial)

• Observational studies
 – Cohort
 – Case-control
 – Cross-sectional
 – Ecological
Experimental studies are characterized by:

• Manipulation of the exposure by the researcher
Randomized Controlled Trials

• A randomized controlled trial is a type of experimental research design for comparing different treatments, in which the assignment of treatments to patients is made by a random mechanism.

• Customary to present table of patient characteristics to show that the randomization resulted in a balance in patient characteristics.
Randomized Controlled Trials

STUDY POPULATION

RANDOMLY ASSIGNED

CURRENT TREATMENT

IMPROVE

DO NOT IMPROVE

NEW TREATMENT

IMPROVE

DO NOT IMPROVE

Copyright © 2008 by Saunders, an imprint of Elsevier, Inc. All rights reserved

Time
Type of Study?

Methods: Fifteen patients were randomized to receive a preoperative beverage with high (125 mg/ml) or low (25 mg/ml) carbohydrate content. Postoperative cognitive ability was subsequently measured.
Type of Study?

Methods: Fifteen patients were randomized to receive a preoperative beverage with high (125 mg/ml) or low (25 mg/ml) carbohydrate content. Postoperative cognitive ability was subsequently measured.

CLINICAL TRIAL
Type of Study?

Methods: Ninety eight individuals 18-65 years of age were randomized to placebo or sertraline 25 mg/day for 2 days, followed by 50 mg from day 3 to 90, and buspirone 5 mg three times a day for 7 days, and 10 mg from day 8 to 90.
Type of Study?

Methods: Ninety eight individuals 18-65 years of age were randomized to placebo or sertraline 25 mg/day for 2 days, followed by 50 mg from day 3 to 90, and buspirone 5 mg three times a day for 7 days, and 10 mg from day 8 to 90.

CLINICAL TRIAL
Some Limitations of a Clinical Trial

1. Ethical considerations
2. Select population
3. Duration
4. Adherence / compliance
Use of “Blinding”

- Important when knowing treatment could influence the interpretation of results

- Placebo- ensure control and treatment group have same “experience”
Treat

- Blinding helps ensure that bias is avoided
 - Single-blind: patient does not know what treatment they are receiving
 - Double-blind: patient and investigator do not know what treatment (cannot be used for some treatments, e.g. surgery)
It All Comes Down to...

- Obtaining groups that are comparable for everything except the treatment...

- So that differences in outcome can fairly be ascribed only to the difference between the groups (i.e., to the treatment).
A Clinical Trial...

- Can be viewed as a type of **prospective cohort study**

- It involves active follow-up of a group of people and determines their outcomes (disease, cure, side-effects, etc.)

- However, a cohort study typically referred to is OBSERVATIONAL (no assigned treatments)
PROSPECTIVE COHORT STUDY

Eligible patients

E+

With outcome

Without outcome

E−

With outcome

Without outcome

Onset of study Time
Example: Cohort Follow-up

Time (12 months)

1
2
3
4
5
Example: Cohort Follow-up

Exposed

UN-exposed

Time (12 months)
Cohort Studies

• **Definition**: groups, defined on the basis of some characteristics (often exposure and non-exposure) are prospectively followed to see whether an outcome of interest occurs

• **Comparison of interest**: Compare the proportion of persons with the disease in the exposed group to the proportion with the disease in the unexposed group (or compare rates)

• **Motivation**: If the exposure is associated with the disease, we expect that the proportion of persons with the disease in the exposed group (or rate of disease) will be greater than the proportion with disease in the unexposed group.
Cohort Studies

Prospective

now

Exposed

Diseased

Not diseased

future

Retrospective

past

Not Exposed

Diseased

Not diseased

now
Prospective cohort studies

- Define sample free of the disease/outcome of interest, measure the exposure and classify to exposed vs unexposed at “baseline,” then follow up to ascertain outcome

- Measure the proportion of outcome between the exposed and unexposed (Risk Ratio or Relative Risk) or rate (Rate Ratio)
Retrospective cohort studies

• Synonyms: historical cohort study, historical prospective study, non-concurrent prospective study

• Do not design retrospective cohort studies *a priori* – question always in retrospect

• Exposures and Outcomes have already occurred - data on the relevant exposures and outcomes already have been collected
Cohort study strengths

- May be used to define incidence / natural history
- Known temporal sequence
- Efficient in investigating rare exposures
- Permits study of multiple exposures AND outcomes
Some cohort study limitations

- Expensive
- Slow to find answers (time-consuming)
- Associations may be due to confounding (true with any observational study)
- Exposures assessed at baseline may be incomplete
- Disease with long pre-clinical phase may not be detected
- Sensitive to follow-up bias (loss of diseased subjects)
Type of Study?

Methods: Cigarette smoking data were collected on all household members during two private censuses in Washington County, Maryland. These two groups were followed up, one from 1963-1978 and the other from 1975-1994 for first-time diagnoses of rectal cancer.
Type of Study?

Methods: Cigarette smoking data were collected on all household members during two private censuses in Washington County, Maryland. These two groups were followed up, one from 1963-1978 and the other from 1975-1994 for first-time diagnoses of rectal cancer.

COHORT STUDY
Type of Study?

Methods: Ninety eight individuals 18-65 years of age were randomized to placebo or sertraline 25 mg/day for 2 days, followed by 50 mg from day 3 to 90, and buspirone 5 mg three times a day for 7 days, and 10 mg from day 8 to 90.
Type of Study?

Methods: Ninety eight individuals 18-65 years of age were randomized to placebo or sertraline 25 mg/day for 2 days, followed by 50 mg from day 3 to 90, and buspirone 5 mg three times a day for 7 days, and 10 mg from day 8 to 90.

CLINICAL TRIAL
CASE-CONTROL STUDIES
Case-control Studies

- **Definition**: compare various characteristics (past exposure) for cases (subjects with disease) to those of controls (subjects without the disease).

- **Comparison of interest**: Compare the proportion with the exposure in the cases to the proportion with the exposure in the control group.

- **Motivation**: If the exposure is associated with the disease, we expect that the proportion of persons with the exposure in the cases will be greater than the proportion with the exposure in the control group.
Case-control Studies

- Cases with disease
 - Exposed in past
 - Not Exposed in past

- Controls without disease
 - Exposed in past
 - Not Exposed in past
Case-control Studies

Present

Cases with disease

Exposed in past

Not Exposed in past

Controls without disease

Exposed in past

Not Exposed in past

Past
Case-Control Studies (compared with cohort)

- More efficient for rare diseases
- Can evaluate multiple exposures
- Less expensive
- Can get answers more quickly
- Challenges of control selection
- Challenges of retrospective exposure assessment
Nested Case-Control Studies

- A case control study nested in a cohort study
- Controls selected either at baseline (case-cohort) or at the time the case occurs (nested)
- Advantage
 - Data on exposure are obtained before disease develops
 - Possibility of recall bias is thus eliminated.
 - Less expensive than expanding the analysis to include the entire cohort
 - Here the OR is a statistically unbiased estimate of relative risk
Type of Study?

Methods: Danish women with a first time MS discharge diagnosis from a neurological department at most 40 years old during the period 1998-2005, and an age and geographically matched healthy group. Information on number of full term pregnancies was elicited.
Type of Study?

Methods: Danish women with a first time MS discharge diagnosis from a neurological department at most 40 years old during the period 1998-2005, and an age and geographically matched healthy group. Information on number of full term pregnancies was elicited.

CASE-CONTROL STUDY
Cross-Sectional Studies

- Prevalence studies
- All measurements of exposure and outcome are made simultaneously (snapshot)
- Disease proportions are determined and compared among those with or without the exposure or at varying level of the exposure
- Examine association – determination of associations with outcomes; generates hypotheses that are the basis for further studies
- Most appropriate for studying the associations between chronic diseases and chronic exposure
- Sometimes useful for common acute diseases of short duration
Cross-Sectional Studies

Defined Population

Gather Data on Exposure (Cause) and Disease (Effect / Outcome)

Exposed: Have Disease
Exposed: No Disease
Not Exposed: Have Disease
Not Exposed: No disease
Cross-Sectional Studies

Defined Population

Gather Data on Exposure (Cause) and Disease (Effect / Outcome)

- Exposed: Have Disease
- Exposed: No Disease
- Not Exposed: Have Disease
- Not Exposed: No Disease
Ecological

• The unit of observation is the population or community

• Disease rates and exposures are measured in each of a series of populations

• Disease and exposure information may be abstracted from published statistics and therefore does not require expensive or time consuming data collection
Type of Study?

Methods: Two hundred children aged 9 to 12 years were recruited to evaluate the effect of body mass on foot structure. In addition to BMI, three reliable anthropometric measures were recorded: foot length, forefoot width, and navicular height.
Type of Study?

Methods: Two hundred children aged 9 to 12 years were recruited to evaluate the effect of body mass on foot structure. In addition to BMI, three reliable anthropometric measures were recorded: foot length, forefoot width, and navicular height.

CROSS SECTIONAL STUDY
Ecological Studies
CORRELATIONAL / ECOLOGICAL STUDIES

• Measures that represent characteristics of the entire population are used to describe disease in relation to some factor of interest.

• Presence of suspected risk factor can be measured in different populations and compared with the incidence of a particular disease.
Cancer Rates by Country

Cancer Rates

Omega 3 Fatty Acid Intake
Cancer Rates by Country

- USA
- Japan

Cancer Rates vs. Omega 3 Fatty Acid Intake
Cancer Rates by Country

Cancer Rates vs. Omega 3 Fatty Acid Intake
ECOLOGICAL STUDIES - LIMITATIONS

- Hypothesis generating - cannot establish causal relationship
- Unable to control the effects of potential confounding factors.
- Unable to link exposure with disease in a particular individual – ecologic fallacy.
ECOLOGIC FALLACY

Suspected risk factor and disease are associated at the population level, but not at the individual level.
Methods: During the period 1995 to 2000, 81,132 lung cancer cases were reported in Texas. Researchers examined the association of metal air releases with the average annual age-adjusted primary and non-small cell lung cancer rates in the 254 Texas counties.
Type of Study?

Methods: During the period 1995 to 2000, 81,132 lung cancer cases were reported in Texas. Researchers examined the association of metal air releases with the average annual age-adjusted primary and non-small cell lung cancer rates in the 254 Texas counties.

CORRELATIONAL / ECOLOGIC STUDY
Type of Study?

Methods: A survey was performed in nine European countries, i.e. Austria, Belgium, Denmark, Iceland, the Netherlands, Norway, Portugal, Spain and Sweden, from October-December 2003, as a part of the Pro Children study. Data on usual intake of fruit and vegetables, and related correlates were collected by means of a self-administered questionnaire among 11-year-old school children.
Type of Study?

Methods: A survey was performed in nine European countries, i.e. Austria, Belgium, Denmark, Iceland, the Netherlands, Norway, Portugal, Spain and Sweden, from October-December 2003, as a part of the Pro Children study. Data on usual intake of fruit and vegetables, and related correlates were collected by means of a self-administered questionnaire among 11-year-old school children.

CROSS SECTIONAL STUDY
Measures of Association
Measures of Association

In general:

Cohort studies:
1. Risk / Rate / Hazard Ratios (RR)
2. Disease Odds Ratios (DOR or OR)

Case-control studies:
1. Exposure Odds Ratios (EOR or OR)
2. Risk Ratios (RR)
RELATIVE RISK

An estimate of the magnitude of an association between exposure and disease.

Indicates the likelihood of developing the disease for the exposed group relative to those who are not exposed.
ANALYSIS OF A COHORT STUDY

<table>
<thead>
<tr>
<th></th>
<th>Disease</th>
<th>No Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp +</td>
<td>24</td>
<td>50</td>
</tr>
<tr>
<td>Exp -</td>
<td>315</td>
<td>876</td>
</tr>
</tbody>
</table>

Relative risk \(\frac{A}{(A+B)} = \frac{C}{(C+D)} \) = \(\frac{24}{74} = \frac{315}{1191} \) = 1.23
Null Hypothesis

• The risk of the outcome in the exposed persons is equal to the risk of the outcome in the unexposed persons.

Ho: RR = 1.0
Two-sided Alternate Hypothesis

- The risk of the outcome in the exposed persons is not equal to the risk of the outcome in the unexposed persons.

Ha: $RR \neq 1.0$
One-sided Alternate Hypothesis

- The risk of the outcome in the exposed persons is greater than (or less than) the risk of the outcome in the unexposed.

\[\text{Ha: } RR > 1.0 \]

or

\[\text{Ha: } RR < 1.0 \]
INTERPRETING RR

Relative risks between 1.0 and 2.0

$\text{RR} - 1.0 = \% \text{ increased risk}$

$\text{RR} = 1.50$

$1.50 - 1.0 = 0.50 = 50\% \text{ increased risk of outcome given exposure}$
INTERPRETING RR

Relative risks > 2.0

RR number = number of times increased risk

RR = 3.0 = 3 times increased risk of outcome given exposure
INTERPRETING RR

Relative risks < 1.0

1.0 – RR = % decreased risk

RR = 0.75

1.0 – 0.75 = 0.25 = 25% less risk of outcome given exposure
2. Evaluating the precision of the RR:

- The 95% confidence interval (CI) is a measure of precision.

Lower limit of 95% CI = RR \times e^{-1.96 / \text{var} \ln RR}

Upper limit of 95% CI = RR \times e^{+1.96 / \text{var} \ln RR}

- 95% CI = (lower limit – upper limit)
Rate Ratio

Rate ratio = \frac{\text{rate of outcome in E+}}{\text{rate of outcome in E-}} = RR

Interpretation: The rate of outcome in E+ is X times the rate of the outcome in the E-.
Rate Ratio

Rate ratio = 50/20 = 2.5

Interpretation: The rate of outcome in E+ is 2.5 times the rate of the outcome in the E-.
Analysis of a Case-Control Study
Odds

• Odds are another way of representing a probability

• The odds is the ratio of probability that the event of interest occurs to the probability that it does not.

• The odds are often estimated by the ratio of the number of times that the event occurs to the number of times that it does not.
Odds Ratios

• Relative risk requires an estimate of the incidence of the disease

• For **most** case control studies, we do not know the incidence of disease because we determine the number of cases and controls when the study is designed – we really don’t know the underlying cohort

• For case control studies, **generally** use the odds ratio (OR)
Odds Ratio

\[\frac{p}{1-p} = \text{odds} \]

\[\left(\frac{p_1}{1-p_1} \right) \left(\frac{p_2}{1-p_2} \right) = \frac{p_1(1-p_2)}{(1-p_1)p_2} = \text{odds ratio} \]
Odds Ratio Example

Case control study of 200 CHD cases and 400 controls to examine association of smoking with CHD
(Note: now we are examining the probability of exposure)

What is the odds of smoking among CHD cases?
\[
\frac{112}{88} = 1.27
\]

What is the odds of smoking among controls?
\[
\frac{176}{224} = 0.79
\]
Odds Ratio Example

<table>
<thead>
<tr>
<th></th>
<th>CHD Cases</th>
<th>Controls</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smokers</td>
<td>112</td>
<td>176</td>
<td>288</td>
</tr>
<tr>
<td>Nonsmokers</td>
<td>88</td>
<td>224</td>
<td>312</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>400</td>
<td>600</td>
</tr>
</tbody>
</table>

\[
OR = \frac{1.27}{0.79} = 1.61
\]

Interpretation:
The Cases’ odds of exposure is 1.6 times that of controls.
Odds Ratio Example

<table>
<thead>
<tr>
<th></th>
<th>CHD Cases</th>
<th>Controls</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smokers</td>
<td>112</td>
<td>176</td>
<td>288</td>
</tr>
<tr>
<td>Nonsmokers</td>
<td>88</td>
<td>224</td>
<td>312</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>400</td>
<td>600</td>
</tr>
</tbody>
</table>

Another simple calculation:

\[(112 \times 224) / (88 \times 176) = 1.61\]
Odds ratio

- Odds ratio = \text{odds of exposure in case} \div \text{odds of exposure in controls}

\text{OR}=1 \text{ exposure is not associated with the disease}
\text{OR}>1 \text{ exposure is positively associated with the disease}
\text{OR}<1 \text{ exposure is negatively associated with the disease}
Odds Ratio

- **Interpretation:** The odds of exposure among the diseased is \(X \) times higher/lower than the odds of exposure among the non-diseased.
OR vs. RR

- **OR**: The odds of exposure among the diseased is X times higher/lower than the odds of exposure among the non-diseased.

- **RR**: The risk of disease among the exposed is X times higher/lower than the risk of disease among unexposed.
Odds Ratios vs. Relative Risks

Odds ratio can be used to estimate the relative risk when in a case control study when:

1. Cases are representative of people with the disease in the population with respect to history of exposure AND
2. The controls are representative of the entire study population ("source population") with respect to history of exposure AND
3. The disease is rare
Odds ratio estimates relative risk when disease is rare

- When the disease is rare, the number of people with the disease (a and c) is small so that $a+b \approx b$ and $c+d \approx d$

\[
RR = \frac{a/(a+b)}{c/(c+d)} \approx \frac{a/b}{c/d} = \frac{ad}{bc} = OR
\]
Odds Ratios for matched case control studies

• Often, cases are matched with a control based on age, sex, etc.

• For a matched study, describe the results for each pair

• Concordant pairs: both case and control exposed or both not exposed

• Discordant pairs: Case exposed/control unexposed or case unexposed/control exposed
Odds Ratios for matched case control studies

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exposed</td>
</tr>
<tr>
<td>Exposed</td>
<td>a</td>
</tr>
<tr>
<td>Unexposed</td>
<td>c</td>
</tr>
</tbody>
</table>

OR is based on the discordant pairs:

\[\text{OR} = \frac{b}{c} \]
Measures of IMPACT
Risk

• RR and OR measure strength of the association
• How much of the disease can be attributed to the exposure? How much of the CHD risk experienced by smokers can be attributed to smoking?
• OR and RR do not address this.
Risk Difference

- Most often referred to as “attributable risk”
 - Refers to the amount of risk attributable to the exposure of interest
 - For example, in the birth cohort analysis, where exposure = prenatal care in the first 5 months

\[RD = R_1 - R_0 = \text{Excess risk of preterm birth attributable to prenatal care} \]
Absolute Excess Measures

Incidence proportion (or rate)

If E is thought to cause D: Among persons exposed to E, what amount of the incidence of D is E responsible for?
Absolute Excess Measures

Incidence proportion (or rate)

If E is thought to cause D: Among persons exposed to E, what amount of the incidence of D is E responsible for?
If E is thought to cause D: Among persons exposed to E, what amount of the incidence of D is E responsible for?
Example

Sleeping Position and Crib Death

<table>
<thead>
<tr>
<th>Usual sleeping position</th>
<th>Crib Death</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YES</td>
<td>NO</td>
<td>TOTAL</td>
</tr>
<tr>
<td>Prone</td>
<td>9</td>
<td>837</td>
<td>846</td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
<td>1755</td>
<td>1761</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>2592</td>
<td>2607</td>
</tr>
</tbody>
</table>

1-year risk prone = \(\frac{9}{846} = 10.64\) per 1000

1-year risk other = \(\frac{6}{1761} = 3.41\) per 1000

Risk difference = 10.64 per 1000 – 3.41 per 1000 = 7.23 per 1000

Added risk due to exposure
Attributable Risk Percent

\[
\%AR_0 = \frac{IP_1 - IP_0}{IP_1} \times 100
\]

(Risk difference / Risk in Exposed) x 100

What proportion of occurrence of disease in exposed persons is due to the exposure?
Example

Sleeping Position and Crib Death

<table>
<thead>
<tr>
<th>Usual sleeping position</th>
<th>Crib Death</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YES</td>
<td>NO</td>
<td>TOTAL</td>
</tr>
<tr>
<td>Prone</td>
<td>9</td>
<td>837</td>
<td>846</td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
<td>1755</td>
<td>1761</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>2592</td>
<td>2607</td>
</tr>
</tbody>
</table>

1-year cumulative incidence prone = $\frac{9}{846} = 10.64$ per 1000

1-year cumulative incidence other = $\frac{6}{1761} = 3.41$ per 1000

Risk difference = 10.64 per 1000 – 3.41 per 1000 = 7.23 per 1000

Attributable risk percent = $\frac{10.64 \text{ per 1000} - 3.41 \text{ per 1000}}{10.64 \text{ per 1000}} \times 100 = 68.0\%$
Population Attributable Risk

Should resources be allocated to controlling E or, instead, to exposures causing greater health problems in the population.
Population Attributable Risk

Should resources be allocated to controlling E or, instead, to exposures causing greater health problems in the population.
Example

Sleeping Position and Crib Death

<table>
<thead>
<tr>
<th>Usual sleeping position</th>
<th>Crib Death</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YES</td>
<td>NO</td>
<td>TOTAL</td>
</tr>
<tr>
<td>Prone</td>
<td>9</td>
<td>837</td>
<td>846</td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
<td>1755</td>
<td>1761</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>2592</td>
<td>2607</td>
</tr>
</tbody>
</table>

1-year cumulative incidence total = 15/2607 = 5.75 per 1000
1-year cumulative incidence other = 6/1761 = 3.41 per 1000

Population attributable risk (PAR) = 5.75 per 1000 − 3.41 per 1000 = 2.35 per 1000
Sleeping Position and Crib Death

<table>
<thead>
<tr>
<th>Sleeping Position</th>
<th>Crib Death</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prone</td>
<td>YES 9</td>
<td>NO 837</td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
<td>1755</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>2592</td>
</tr>
</tbody>
</table>

1-year cumulative incidence total = 15/2607 = 5.75 per 1000
1-year cumulative incidence other = 6/1761 = 3.41 per 1000

Population attributable risk percent (PAR) = 5.75 per 1000 – 3.41 per 1000 x 100 = 40.8%
10 Minute Break
Summary of Measures

- Absolute measures address questions about public health impact of an exposure
 - Excess risk in the exposed or population attributable to the exposure
- Relative measures address questions about etiology and relations between exposure and outcome
 - Relative difference in risk between exposed and unexposed populations
Causal Inference
The Epidemiologic Triad
Factors involved in the Natural History of Disease

- Agent
- Vector
- Host
- Environment
Causal Inference

• During 1950s -1960s epidemiologists developed a set of postulates for causal inferences regarding non-infectious diseases of unknown etiology

• Response to the discovery of association between smoking and lung cancer

• Sir Austin Hill came up with the best known criteria or guidelines in 1965
Hill “Criteria”

1. Strength of Association
2. Consistency
3. Specificity of the Association
4. Temporal relationship
5. Biological gradient
6. Biologic plausibility
7. Coherence
8. Experiment
9. Analogy
Disease Causation – 2 components

• **Sufficient Cause**
 – precedes the disease
 – if the cause is *present*, the disease *always* occurs

• **Necessary Cause**
 – precedes the disease
 – if the cause is *absent*, the disease *cannot* occur
From Study to Causation

• Associations between ‘exposures’ and outcomes identified in observational studies may or may not be ‘causal’

• There is need to pay attention to valid assessment of exposure and outcome in order to think about causality
 – Reliability
 – Validity
 • External validity
 • Internal validity – three concepts are considered
 – Bias
 – Confounding
 – Chance (Random error)
Validity

• Suggests that a measure actually measures what it is expected to measure:
 – Accurate (free of systemic error or bias)
 – Precise (minimal variations; repeatability)

• The degree to which a measurement or study reaches a correct conclusion

• Two types of validity: Internal validity, External validity
Internal validity

- Is the extent to which the results of the study accurately reflect the true situation of the study population

- Is influenced by:
 - **Chance**
 - The probability that an observation occurred unpredictability without discernible human intention or observable cause

 - **Bias**
 - Any systemic error (not random or due to chance) in a study which leads to an incorrect estimate of the association between exposure and disease

 - **Confounding**
 - The influence of other variables in a study which leads to an incorrect estimate of the association between exposure and disease
External validity: generalizability

• The extent to which the results of a study are applicable to broader populations
 – Example: Do the study results apply to other patients?

• A representative sample is drawn from the population (usually randomly)

• Individuals have equal chance to participate in the study

• High participation rate

• Inference is made back to the population – but still may not apply to other populations
Random error

- Chance

- “That part of our experience that we cannot predict”

- Usually most easily conceptualized as sampling variability and can be influenced by sample size
Random error can be problematic, but . . .

- Influence can be reduced
 - increase sample size
 - improve precision of instrument

- Probability of an observation occurring by chance can be quantified (e.g., p-value or confidence interval width)
I. Bias - Definition

• Any systemic error (not random or due to chance) in a study which leads to an incorrect estimate of the association between exposure and disease or outcome

• Therefore:
 – Bias is a systematic error that results in an incorrect (invalid) estimate of the measure of association
I. Bias - Definition

1. Can create spurious association when there is none (bias away from the null)
2. Can mask an association when there is one (bias towards the null)
3. Bias is primarily introduced by the investigator or study participants
4. Bias does not mean that the investigator is “prejudiced”
5. Can occur in all study types: experimental, cohort, case-control
6. Occurs in the design and conduct of a study
7. Bias can be evaluated but not necessarily “fixed” in the analysis phase
8. Three main types are selection and information bias and confounding
Direction of bias

- **Bias towards the null** – observed value is **closer to 1.0** than is the true value

- **Bias away from the null** – observed value is **farther from 1.0** than is the true value
Direction of bias

- **Bias towards the null** – observed value is closer to 1.0 than is the true value

![Diagram showing bias towards the null]

- **Bias away from the null** – observed value is farther from 1.0 than is the true value

![Diagram showing bias away from the null]
Types of bias

- **Selection bias**
 - Refusals, exclusions, non-participants
 - Failure to enumerate the entire population
 - Loss to follow up

- **Information bias**
 - Interviewer bias
 - Recall bias
 - Misclassification of exposure and outcome

- **Misclassification (is part of information bias)**
 - Non-differential
 - Differential
II. Selection bias

• Systematic error that occurs in the process of identifying (or retaining) study populations

• The error that occurs when losses to follow-up are not independent of exposure and outcome (cohort study)

• Error due to systematic difference between those selected for study versus those not selected for the study (case-control study)
II. Selection bias - cohort study

Solutions:

– Minimize losses to follow-up!!!
II. Selection bias: case-control study

• **Sources of selection bias**

 – When controls do not reflect the population that gave rise to the cases

• The selection of cases and controls **must be independent of the exposure status**

 – Do controls in the study have higher or lower prevalence of exposure than controls not selected for the study?
II. Selection bias: case-control study

1. Occurs when controls or cases are more or less likely to be included in a study if they have been exposed – inclusion in the study is not independent of exposure

2. Results: relationship between exposure and disease observed among study participants is different from relationship between exposure and disease in eligible individuals who were not included

3. The odds ratio from a study that suffers from selection bias will incorrectly represent the relationship between exposure and disease in the overall study population
III. Information bias

• An error that arises from systematic differences in the way information on exposure or disease is obtained from the study groups

• Results in participants who are incorrectly classified as either exposed or unexposed or as diseased or not diseased

• Occurs after the subjects have entered the study

• Several types of observation bias: recall bias, interviewer bias, and differential and non-differential misclassification
III. Observation/Information bias

Recall bias

• People with disease remember or report exposures differently (more/less accurately) than those without disease

• Can result in over-or under-estimation of measure of association
Recall bias

• Solutions:
 – Use controls who are themselves sick
 – Use standardized questionnaires that obtain complete information
 – Mask subjects to study hypothesis
III. Observation/Information bias

Interviewer bias

• Systematic difference in soliciting, recording, interpreting information

• Can occur whenever exposure information is sought when outcome is known (as in case-control) or when outcome information is sought when exposure is known (as in cohort study)
III. Observation/Information bias

• **Interviewer bias**

 – Solutions:

 • Mask interviewers to study hypothesis and disease or exposure status of subjects

 • Use standardized questionnaires, or standardized methods of outcome or exposure ascertainment

 • Use biomarkers to compare when possible
III. Observation/Information bias – Misclassification bias

- A type of information bias

- Error arising from inaccurate measurement or classification of study subjects or variables

- Subject’s exposure or disease status is erroneously classified

- Happens at the assessment of exposure or outcome in both cohort and case-control studies

- Two types: non-differential and differential
A. Non-differential misclassification

- Inaccuracies with respect to disease classification are independent of exposure
- Inaccuracies with respect to exposure are independent of disease status
- The probability of exposure (or of outcome) misclassification is the same for cases and controls (or in study/comparison groups)
- Bias results towards the null - if the exposure has two categories, will make groups more similar

Solution: Use multiple measurements and/or choose the most accurate sources of information
B. Differential Misclassification

• **Differential misclassification**

 – Probability of misclassification of disease or exposure status differs for exposed and unexposed persons (cohort) or presence of absence of exposure (case-control)

 – Probability of misclassification is different for cases and controls or for levels of exposure within cases and controls

 – Direction of bias is unknown, i.e. overestimation or underestimation of the true risk

 – Know that the observed RR or OR deviates from truth, but direction is **unknown**
Confounding
Definition and Impact

• “A mixing of effects”: the association between exposure and disease is distorted because it is mixed with the effects of another factor that is associated with the disease

• Result of confounding is to distort the true association toward the null or away from the null
Criteria for a variable to be a confounder

• The variable must be an independent predictor of disease

• The variable must be associated (correlated) with exposure

• The variable must not be an intermediate link in the causal chain between exposure and outcome
Example:

Smoking is a confounder of association between coffee consumption and lung cancer
Opportunities for confounding

• In an experimental designs:
 – No randomization
 – Residual confounding after randomization

• In cohort and case-control studies:
 – When comparison group differs by subject characteristics
 – When risk factors other than the exposure are distributed differently between the exposed and unexposed groups
 – There is residual confounding
Control for confounding- design phase

- **Randomization**
 - With sufficient sample size, randomization is likely to control for both known and unknown confounders- but not guaranteed

- **Restriction**
 - Restrict admissibility criteria for study subjects and limit entrance to individuals who fall within a specified category of the confounder

- **Matching**
 - No so much a control for confounding; more of a way to maximize efficiency
Control for confounding- analysis phase

- **Standardization**: by age, race, gender, or calendar time in order to make fair comparisons between populations

- **Restriction**: Restrict during data analysis

- **Stratified analysis**: a way of eliminating variation in the confounding factor – feasible with a small number of variables

- **Multivariate analysis**: To enable controlling for several potential confounders simultaneously
Effect modification

- Interaction
- The strength of the association between an exposure and disease differs according to the level of another variable.
- Modification of the relationship between exposure and a disease by a variable.
- If the association changes according to the level of that variable, then effect modification is present.
Example: Antioxidant Intake and Esophageal Squamous-cell

- RR high vs. low (SMOKERS) = 0.4
- RR high vs. low (NON-SMKs) = 0.9
Example: Aspirin and Reye’s Syndrome

- RR yes vs. no (youth) = 4.4
- RR yes vs. no (adults) = 1.0
SCREENING
Screening

- The application of one or more tests to determine those likely to have the disease from those unlikely to have the disease
- Two step process – screening followed by diagnosis
Two Step Process

Screening test

Positive

Negative

Diagnostic test

Disease

No disease

Treatment
Some examples

• Mammography – breast cancer
• Fecal occult blood test – colon cancer
• Pap smear for cervical cancer
• X-ray – lung cancer
• Blood pressure - hypertension
• Blood sugar – diabetes
• Prostate specific antigen – prostate cancer
Natural History of Chronic Disease and Types of Prevention

- Biological onset
- Detectable by screening
- Symptoms begin
- Diagnosed
- Disabled
- Death

Primary Prevention
Secondary Prevention
Tertiary Prevention

(Screening)
Some Fundamental Truths about Screening

- Screening is not error-free
- Screening tests will fail to identify some individuals with the disease, and falsely identify some without disease as needing further testing.
Accuracy

• Sensitivity and specificity measure the ability of a test to correctly identify diseased and nondiseased people.

• **Sensitivity** refers to the proportion of people with the disease who test positive.

• **Specificity** refers to the proportion of people without the disease who test negative.

• A test with poor sensitivity will miss people who have the disease (false negatives) and a test with poor specificity will falsely identify healthy people as diseased (false positives).

• Gold standard is needed to assess those classified as test positive or test negative – “diagnostic test”
Sensitivity

- The probability of testing positive if the disease is truly present

Sensitivity = \(\frac{a}{a + c} \)

<table>
<thead>
<tr>
<th>Results of Screening Test</th>
<th>True Disease Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>a</td>
</tr>
<tr>
<td>-</td>
<td>c</td>
</tr>
</tbody>
</table>
Specificity

- The probability of screening negative if the disease is truly absent

Specificity = \(\frac{d}{b + d} \)
Relationship between Sensitivity and Specificity

• Lowering the criterion of positivity results in an increased sensitivity, but at the expense of decreased specificity

• Making the criterion of positivity more stringent increases the specificity, but at the expense of decreased sensitivity

• The goal is to have a high sensitivity and high specificity, but this is often not possible or feasible
3 different levels defining a "positive" test

Cut-off 1
Cut-off 2
Cut-off 3

Normals
Diabetes

Fasting Serum Glucose Levels (mg/dL)

110
120
130
Performance Yield

• Positive Predictive Value (PPV)
 – Individuals with a positive screening test results will also test positive on the diagnostic test

• Negative Predictive Value (NPV)
 – Individuals with a negative screening test results are actually free of disease
Performance Yield

- **Predictive Value Positive (PV+)**
 - The probability that a person actually has a disease given that he/she tests positive

 \[PV+ = \frac{a}{a + b} \]

- **Predictive Value Negative (PV-)**
 - The probability that a person is truly disease free given that he/she tests negative

 \[PV- = \frac{d}{c + d} \]
Performance Yield

- Factors that influence PPV

 1. Higher sensitivity and specificity

 1. The higher the prevalence of preclinical disease in the screened population, the higher the PPV
GOOD LUCK!!!

CONTACT INFORMATION

Questions about Epidemiology

Paul Terry, PhD
Associate Professor
Departments of Public Health and Surgery
University of Tennessee
pdterry@utk.edu

Questions about CPH process or CPH exam

Kate Brundage
Certification Program Manager
NBPHE
info@nbphe.org