The Genetic Basis of Ovarian Cancer: Identifying Hereditary Ovarian Cancer Using a 25-gene Panel

Lucy R. Langer, MD, Brent Evans, MS, Jennifer Saam, PhD, Richard J. Wenstrup, MD

Compass Oncology, Portland, OR
Myriad Genetic Laboratories, Inc., Salt Lake City, UT

Presented at SGO Annual Meeting on Women's Cancer - March 2015
Background

- Mutations in hereditary cancer susceptibility genes account for up to 20% of all ovarian cancers.
- Identifying patients with hereditary cancer provides an opportunity to:
 - Prevent 2nd cancer
 - Notify family members regarding cancer risk
 - Enroll patients in clinical trials for new treatments
- All patients with epithelial ovarian cancer meet NCCN guidelines for BRCA1 and BRCA2 testing (Risch et al. AJHG 2001).
- Patients with ovarian cancer and personal or family history of colon and/or endometrial cancer may also meet guidelines for Lynch syndrome testing.
- With next-generation sequencing, patients receiving hereditary cancer testing can be tested for more genes using a multi-gene panel approach.

Methods

- We queried a commercial laboratory database for patients affected with ovarian cancer (including fallopian tube and peritoneal cancer).
- All patient data regarding clinical history was obtained by health care provider report on test requisition forms.
- Analysis included 3,088 patients (September 2013 - November 2014).
- Panel based on next generation sequencing and rearrangement analysis of 25 genes with cancer risk data: BRCA1, BRCA2, MLH1, MSH2, MSH6, PMS2, EPCAM, APC, MUTYH, CDKN2A, CDK4, PALB2, CHEK2, SMAD4, BMPR1A, STK11, TP53, CDH1, PTEN, ATM, NBN, BARD1, BRIP1, RAD51C, and RAD51D.
- Panel limited to genes with strong evidence of cancer association.

Results

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th># of Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovary</td>
<td>2868 (92.9%)</td>
</tr>
<tr>
<td>Peritoneum</td>
<td>71 (2.3%)</td>
</tr>
<tr>
<td>Fallopian Tube</td>
<td>65 (2.1%)</td>
</tr>
<tr>
<td>Ovary (non-epithelial)</td>
<td>60 (1.9%)</td>
</tr>
<tr>
<td>Ovary and Fallopian Tube</td>
<td>16 (0.5%)</td>
</tr>
<tr>
<td>Ovary and Peritoneum</td>
<td>8 (0.3%)</td>
</tr>
<tr>
<td>Total</td>
<td>3,088</td>
</tr>
</tbody>
</table>
Panel Test Results

- 13.6% (419/3,088) patients were identified as having a pathogenic or likely pathogenic mutation.
- 86.4% (2,669/3,088) patients were mutation negative.
- Seven patients had two mutations.

Distribution of mutations in BRCA1/BRCA2 and Lynch syndrome genes*

- **BRCA1/BRCA2**: 65%
- Lynch syndrome: 7.8%
- Other: 27.2%

*426 mutations detected in 419 patients

Distribution of mutations in ‘other’ genes*

- ATM: 20.62%
- BRIP1: 18.12%
- CHEK2: 16.42%
- PALB2: 11.21%
- RAD51C: 16.42%
- RAD51D: 3.4%
- BARD1: 3.4%
- APC: 1.7%
- TP53: 1.7%
- p16: 0.9%
- PTEN: 0.9%
- NBN: 5.2%

*ATM and BRIP1 were the most common other genes found to have a mutation

Patients with two deleterious mutations

<table>
<thead>
<tr>
<th>Gene Pair</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1, ATM</td>
<td>2</td>
</tr>
<tr>
<td>BRCA1, BARD1</td>
<td>1</td>
</tr>
<tr>
<td>BRCA1, PMS2</td>
<td>1</td>
</tr>
<tr>
<td>BRCA2, ATM</td>
<td>1</td>
</tr>
<tr>
<td>BRCA2, p16</td>
<td>1</td>
</tr>
<tr>
<td>BRCA2, PALB2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
</tr>
</tbody>
</table>

Variants of uncertain significance in tested patients

- 63.1% NO VUS
- 27.9% 1 VUS
- 7.4% 2 VUS
- 1.3% 3 VUS
- 0.3% 4 VUS

Conclusions

- 13.6% of patients had at least one pathogenic mutation identified with a 25-gene hereditary cancer panel.
 - 65.0% of mutations were in BRCA1 and BRCA2.
 - 7.8% of mutations were in the Lynch syndrome genes (MLH1, MSH2, MSH6, PMS2).
 - 27.2% of mutations were in other hereditary cancer genes.
- ATM and BRIP1 were the most common other genes found to have a mutation.
- Panel testing led to a 53.8% increase in the identification of deleterious mutations over BRCA1 and BRCA2 testing alone.
- Panel testing in this series led to the identification of mutations in genes that would not otherwise be suspected by clinical or family history alone.