Multi-Gene Panel Testing in Patients Suspected to Have Lynch Syndrome

Matthew B. Yurgelun, Brian Allen, Rajesh Kaldate, Karla Bowles, Benjamin Roa, Richard J. Wenstrup, Anne-Renee Hartman, Sapna Syngal

Presented at ASCO- June 2014
Background – Genetic Testing for Hereditary Cancer Syndromes

Traditional model
- Analyze specific genes for patients who fulfill clinical criteria for a specific syndrome
 - Per NCCN guidelines, Lynch syndrome testing recommended for patients whose histories fulfill Bethesda guidelines or Amsterdam criteria

Emerging model → Multi-gene panel testing
- Next generation sequencing of numerous cancer susceptibility genes in parallel
 - Advantages:
 - Analyze multiple genes simultaneously
 - Cost is dropping
 - Concerns:
 - Identification of uninformative variants of uncertain significance (VUS)
 - Identification of mutations in moderate-penetrance cancer susceptibility genes
 - Does panel testing offer meaningful advantages over targeted, criteria-based testing strategies?

Study Aims
- Using 25-gene panel:
 - Determine prevalence of non-Lynch mutations in patients undergoing testing for Lynch syndrome
 - Describe clinical phenotype of mutation carriers

Methods: Study Population
- 3057 consecutive subjects
 - Personal history of Lynch-associated cancer and/or polyps
 - DNA submitted in 2012-13 for clinical Lynch testing
 - Subjects undergoing testing for <5 Lynch syndrome genes were not included
 - After completion of clinical Lynch testing, samples anonymized for research-based testing
- 1797 subjects excluded
 - Testing originated from one of 10 states that mandate destruction of samples after clinical genetic testing (N=1615)
 - Technical factors (insufficient remaining DNA, non-blood sample) N=182
- Final study population:
 - 1260 subjects
 - All with personal history of Lynch-associated cancer and/or polyps

Methods: Clinical Characteristics
- As part of routine clinical testing, clinicians completed standard test request forms
 - Ancestry
 - Personal history of cancer and/or polyps
 - Age at diagnosis
 - Family history of cancer
 - Personal/family history data broadly categorized to protect anonymization
 - “Lynch-associated” cancers included:
 - Colorectal, endometrial, ovarian, gastric, pancreatic, small bowel, urinary tract, hepatobiliary, and brain cancers, and sebaceous adenomas/carcinomas
 - Breast cancer not considered Lynch-associated, but data on personal/family histories of breast cancer were tracked
 - Fulfillment of NCCN criteria for Lynch testing and hereditary breast ovarian cancer (HBOC) testing
 - Determined based on reported personal/family history data

Methods: 25-Gene Hereditary Cancer Panel

High-penetrance genes
- Lynch syndrome
 - MLH1
 - MSH2
 - MSH6
 - PMS2
 - EPCAM
 - BRCA1/2

Other high-penetrance genes
- APC
- BMPR1A
- CDH1
- CDKN2A
- MUTYH
- PTEN
- SMAD4
- STK11
- TP53

Moderate-penetrance
- ATM
- BARD1
- BRIP1
- CDK4
- CHEK2
- NBN
- PALB2
- RAD51C
- RAD51D

All sequence variations and large rearrangements classified for pathogenicity
Results: Subject Characteristics (N=1260)
- 73% female
- 41% Western/Northern European ancestry
- Median age 1st cancer diagnosis: 47 years (IQR 39-55.5)
- 63% with history of colorectal cancer
 - 34% with colorectal cancer age<50
- 23% with endometrial cancer
- 7% with ovarian cancer
- 5% with breast cancer
- 14% with multiple primary cancers
- 74% with family history of any Lynch-associated cancer
- 23% with family history of breast cancer
- 88% met NCCN criteria for Lynch testing
- 25% met NCCN criteria for hereditary breast/ovarian cancer (HBOC) testing

Results: Germline Testing (N=1260)
- 155 (12.3%) subjects with ≥1 pathogenic mutation on the 25-gene panel
 - 114 (9.0%) subjects with a Lynch mutation
 - 43 (3.4%) with a non-Lynch mutation
 - Including 2 subjects with both Lynch and non-Lynch mutations
 - One with MSH6 and STK11 mutations
 - One with MSH2 and ATM mutations

Pathogenic mutations identified by multi-gene panel testing

Lynch syndrome mutations identified by multi-gene panel testing

Non-Lynch mutations identified by multi-gene panel testing

Pathogenic mutations identified by multi-gene panel testing
Multi-Gene Panel Testing in Patients Suspected to Have Lynch Syndrome

BRCA1/2 carriers (N=15) 10% of all mutations identified

- Personal history
 - 53% female
 - 60% colorectal cancer
 - 33% colorectal cancer age <50
 - 27% endometrial cancer
 - 7% ovarian cancer
 - 0 with breast cancer
 - 0 with pancreatic cancer

- Family history
 - 67% any Lynch cancer
 - 47% colorectal cancer
 - 13% endometrial cancer
 - 47% breast cancer
 - 13% ovarian cancer

- 93% fulfilled NCCN Lynch testing criteria
 - versus 95% of Lynch carriers $P=0.59$

- 33% fulfilled NCCN HBOC testing criteria
 - versus 16% Lynch carriers $P=0.15$

Other high-penetration mutation carriers (N=8)

- APC (N=5) and biallelic MUTYH (N=2)
 - 5 (71%) with colorectal cancer
 - 2 at age <50
 - 3 (43%) with history of colorectal polyps
 - 1 (14%) with history of breast cancer
 - 100% with family history colorectal cancer
 - 100% met NCCN Lynch criteria

- STK11 (N=1); same patient also carried pathogenic MSH6 mutation
 - Personal history of 3 primary cancers
 - Colorectal, endometrial, and breast cancers
 - Met NCCN Lynch criteria

- Note: 28 subjects (2% of study cohort) with monoallelic MUTYH mutations
 - Significance unclear
 - 23/28 were G396D or Y179C

Variants of Uncertain Significance (VUS)

- Of the 20 non-Lynch genes, 594 VUS were seen in 433 (34%) subjects

- Most common genes to have a VUS:
 - ATM (N=114 subjects)
 - APC (N=50)
 - NBN (N=50)
 - BRIP1 (N=50)
 - CDKN2A (N=32)
 - CHEK2 (N=31)

Results Summary

- 1260 subjects with a Lynch-associated cancer referred for clinical Lynch testing
 - 9% with Lynch mutation
 - 12.3% with ≥1 mutation on 25-gene panel
 - 3.4% with a non-Lynch mutation
 - 34% with ≥1 VUS in a non-Lynch gene

- 28% of mutation carriers had mutations in non-Lynch cancer susceptibility genes
 - 54% of non-Lynch mutations in high-penetration genes

- 10% of mutation carriers had BRCA1/2 mutations
 - Clinically appear more "Lynch-like" than "BRCA-like"

Strengths/Limitations

- Strengths
 - Large cohort of consecutive individuals
 - Representative sample of patients referred for clinical Lynch testing

- Limitations
 - Clinical data obtained via clinician report
 - Unable to verify accuracy or completeness
 - No data on other non-Lynch genetic testing done clinically
 - No data on tumor testing (MSI, mismatch repair IHC)
 - Do the identified mutations explain clinical phenotype?

Conclusions: Multi-Gene Panel Testing in Suspected Lynch Patients

- Identification of unexpected actionable mutations in high-penetration non-Lynch genes
 - BRCA1/2 mutations in “Lynch-like” patients who do not fulfill clinical criteria for HBOC

- Increased yield comes at the cost of VUS identification and discovery of mutations in moderate-penetration genes