Homologous Recombination Deficiency (HRD) as a predictive biomarker of response to neoadjuvant platinum-based therapy in patients with triple-negative breast cancer (TNBC): A pooled analysis

Melinda L. Telli, M.D.,1 Alex McMillan, Ph.D.,1 James M. Ford, M.D.,1 Andrea L. Richardson, M.D., Ph.D.,1 Daniel P. Silver, M.D., Ph.D.,2 Steven J. Isakoff, M.D., Ph.D.,2 Virginia G. Kakkalaki, M.D.,2 William Gradishar, M.D.,2 Vered Stearns, M.S.,1 Roslin M. Connolly, M.B., B.Ch.,1 Sibylle Loibl, M.D.,2 Karsten Weber, Ph.D.,2 Eric Elkin, M.S.,2 Brent Evans, M.S.,2 Anne-Renee Hartman, M.D.2, Gunter von Minckwitz, M.D.2
1Stanford University School of Medicine, 2Dana Farber Cancer Institute, 3Massachusetts General Hospital, 4Harvard Medical School, 5UT San Antonio, 6Northwestern University, 7Johns Hopkins School of Medicine, 8German Breast Group, 9Myriad Genetics, Inc.

Background and Rationale
- Genetic instability and a high frequency of BRCA1 and BRCA2 germline mutations are commonly associated with triple-negative breast cancer (TNBC).- TNBC patients with homologous recombination (HR) deficient tumors have significantly higher pathologic complete response (pCR; ypT0/is) rates when treated with platinum-based chemotherapy regimens than TNBC patients whose tumors are HR non-deficient.

We performed a pooled analysis of clinical trials that included patients with TNBC treated with neoadjuvant platinum-based chemotherapy to better estimate the pCR rates amongst HR deficient tumors.

Study Design
A total of 267 patients with TNBC and known HR deficiency status from the following neoadjuvant clinical trials were available for analysis:
- NCT001486945 18 12 Cisplatin
- NCT005803333 32 12 Cisplatin with bevacizumab

The HRD score is the unweighted sum of LOH (number of LOH regions >15 Mb but less than the length of a whole chromosome) + LST (breakpoints between regions of imbalance >10Mb after filtering out regions <3 Mb) + TAI (regions of allelic imbalance that extend to the subtelomere but do not cross the centromere) + Filtered LOH (number of regions with >15 Mb LOH but ≤1-kB intervals between breakpoints). Filtered LOH is distinguished from LST by filtering out regions <3 Mb.

The HRD score for BRCA1 or BRCA2 mutations with higher HRD scores is more likely to achieve a pCR.

Results
- In this primary analysis, HR deficiency status was associated with an improved odds of pCR.
- Adjusted OR: 4.46; p<0.001

Table 1: Correlation of pCR and binary HRD score (<42 versus ≥42)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Level</th>
<th>HR Deficient</th>
<th>No HR Deficiency</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCR</td>
<td>Yes</td>
<td>0.31-1.08</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>0.3-2.46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Determinants of HRD Status

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>Unadjusted OR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1/2 mutation</td>
<td>Presence</td>
<td>4.64</td>
<td>2.30-9.37</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Absence</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions
- In this pooled analysis of 6 phase II trials of platinum-based neoadjuvant chemotherapy, HR deficiency status was significantly associated with an improved odds of pCR among those with and without a BRCA1/2 mutation.
- Adjusted OR for pCR in HR deficient ≥4.46; p<0.001
- Overall, 67% of cases were HR deficient
- Associations between response and stage, age and planned duration of therapy were not significant
- HR deficiency was correlated with response
- The neoadjuvant chemotherapy regimens included heterogeneous (non-anthracycline/non-taxane, taxane-based or anthracycline/taxane-based) and the majority of patients received cytotoxic chemotherapies varied (1-3) as did the use of other investigational therapies (bevacizumab, iniparib, vorinostat).

References
2. Clinical Trials ID: NCT00616967 (TBCRC 008)
5. Gibbs EL, et al. JCO 2010
6. Clinical Trials ID: NCT005803333
8. Clinical Trials ID: NCT001486945
9. Clinical Trials ID: NCT005803333
10. Clinical Trials ID: NCT005803333
11. Clinical Trials ID: NCT005803333
12. Clinical Trials ID: NCT005803333
13. Clinical Trials ID: NCT005803333
14. Clinical Trials ID: NCT005803333
15. Clinical Trials ID: NCT005803333
16. Clinical Trials ID: NCT005803333

Figure 1. HR score by pCR status in BRCA1/2 mutation negative subset

- Patients lacking BRCA1 or BRCA2 mutations with higher HRD score are more likely to achieve a pCR
- p = 0.0005

Table 3: Determinants of HRD Status

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>Unadjusted OR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>18-28 years</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29-39 years</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-69 years</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥70 years</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>Unadjusted OR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage</td>
<td>I (ref)</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0.39</td>
<td>0.15-1.02</td>
<td>0.118</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>0.3</td>
<td>0.09-1.04</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please see the slide presentation for detailed figures. Contact the author/presenter at mtelli@stanford.edu for permission to reprint and/or distribute.