TECH 10

Adhesion and friction of parts

PROGRAMS: EST, AST
LAB TYPE: Experiment
CONCEPT: Adhesion and friction
of parts
STUDENT BOOK: Chapter 13, page 433

GOAL

Compare the adhesion of a shoe on different types of surfaces (ceramic, plastic, metal and wood).

- 1. What is the independent variable in this lab?
- 2. What is the dependent variable in this lab?

HYPOTHESIS

I think that	
because	

MATERIALS

- ceramic tile (305 mm \times 610 mm [12 in \times 24 in])
- piece of polystyrene (305 mm imes 610 mm [12 in imes 24 in])
- piece of wood (305 mm \times 610 mm [12 in \times 24 in])
- piece of aluminum (305 mm \times 610 mm [12 in \times 24 in])
- universal clamp
- · retort stand
- ruler
- shoe
- stopwatch

PROCEDURE

- 1. Firmly clamp one short edge of the ceramic tile in the universal clamp.
- 2. Attach the other end of the clamp to the retort stand.
- 3. Set the clamp 300 mm above the base of the retort stand.
- 4. Place the shoe at the higher end of the ceramic tile.

Name:	Group:	Data:
Name	Group	Date

- 5. Allow the shoe to slide down the tile. Time its descent and record the result.
- 6. Repeat steps 4 and 5 two more times.
- 7. Repeat steps 1 to 6, using the samples of polystyrene, wood and aluminum consecutively.
- 8. Put away the materials.

RESULTS

Record your results in the table below. Give your table a title.

Title:

Type of	Results										
Type of surface	Trial 1 Time (s)	Trial 2 Time (s)	Trial 3 Time (s)	Average Time (s)							

ANALYSIS OF THE RESULTS

1	Ι. Ι	List t	the	test	surfaces	in	order	ot	increasing	adhesion	tor t	the	sh	106	٤

2.	Which surface creates the most friction? Explain your answer.

b) Which of these factors did you study in this lab?

a) What are these five factors?

Name: ______ Group: _____ Date: _____

3. Five main factors can cause variations in the strength of adhesion between two surfaces.

4. Compare your results with those of other teams. Are they the same? Explain your answer.