DESCRIPTION OF LABS The table presented below indicates the chapter and page of the student book to which each lab is associated. It also provides the type of lab, the concepts targeted and the materials necessary for its realization. | Lab number (Chapter and page of student book) | Lab title
(Type of lab) | Concepts | Materials | |---|---|---|--| | 1
(Chapter 1,
page 11) | Solution or colloid? (Observation) | Homogenous
and
heterogenous
mixtures | 6 slides 6 cover slips light microscope dropper bottle of milk (not skim) dropper bottle of toothpaste dropper bottle of apple juice dropper bottle of mayonnaise dropper bottle of shampoo (clear brand) dropper bottle of black coffee (drip) | | 2
(Chapter 1,
page 13) | Preparing a solution by dissolution (Technique) | Concentration Dissolution Technique of solution preparation | balance (accurate to 0.01 g) weighing pan spatula 10 g of coloured solid soluble in water graduated cylinder wash bottle of distilled water glass stirring rod test tube (18 mm × 150 mm) and stopper (No. 1) test tube (18 mm × 150 mm) of control solution test-tube rack | | 3
(Chapter 1,
page 13) | The effect of concentration on the colour of a solution (Technique) | Concentration | marker test-tube rack 3 test tubes (18 mm × 150 mm) and stoppers (No. 1) balance (accurate to 0.01 g) weighing pan spatula 10 g of coloured solid soluble in water 25-mL graduated cylinder wash bottle of distilled water glass stirring rod 50-mL graduated cylinder | | Lab number
(Chapter and page
of student book) | Lab title
(Type of lab) | Concepts | Materials | |---|--|--|---| | 4
(Chapter 1,
page 13) | Preparing
a solution
by dilution
(Technique) | Dilution Concentration Preparation of solution by dilution | test-tube rack 2 test tubes (18 mm × 150 mm)
and stoppers (No. 1) container of given solution with a
concentration of 10 g/L 25-mL graduated cylinder 100-mL beaker 50-mL graduated cylinder wash bottle of distilled water glass stirring rod | | 5
(Chapter 1,
page 13) | The effect of dilution on the colour of a solution (Experiment) | • Dilution | marker 4 test tubes (18 mm × 150 mm)
and stoppers (No. 1) test-tube rack 50-mL graduated cylinder container of given solution with10 g/L
concentration 25-mL graduated cylinder wash bottle of distilled water | | 6
(Chapter 1,
page 13) | Measuring
solubility
(Technique) | Solubility Characteristic properties | marker 4 test tubes (16 mm × 150 mm)
and stoppers (No. 1) test-tube rack balance (accurate to 0.01 g) wash bottle of distilled water 10-mL graduated cylinder container of solid soluble in water
(e.g. table salt, sugar) spatula | | 7
(Chapter 1,
page 13) | The effect of temperature on the solubility of certain solids (Experiment) | • Solubility | marker test-tube rack 4 test tubes (18 mm × 150 mm) and stoppers (No. 0) 10-mL graduated cylinder wash bottle of distilled water balance (accurate to 0.01 g) weighing pan spatula container of sodium nitrate (NaNO₃) 250-mL beaker hot plate thermometer clamp <i>or</i> universal clamp and perforated cork stopper ring stand thermometer temperature-resistant gloves | | Lab number (Chapter and page of student book) | Lab title
(Type of lab) | Concepts | Materials | |---|---|--|---| | 8
(Chapter 1,
page 23) | Measuring the melting point (Technique) | Characteristic physical properties Melting point Change of state | 150-mL beaker hot plate test tube (18 mm × 150 mm) test-tube rack container of powdered solid spatula ring stand universal clamp thermometer clamp <i>or</i> universal clamp and perforated cork stopper thermometer | | 9
(Chapter 1,
page 23) | Measuring the boiling point (Technique) | Characteristic physical properties Boiling point Change of state | 100-mL beaker container of liquid hot plate ring stand thermometer thermometer clamp <i>or</i> universal clamp and perforated cork stopper beaker tongs ceramic plate | | 10
(Chapter 1,
page 23) | Measuring the density of a gas (Technique) | Characteristic physical properties Density | 140-mL syringe with pierced plunger and stopper 4-inch nail balance (accurate to 0.01 g) cylinder of gas (e.g. oxygen, carbon dioxide, nitrogen) | | 11
(Chapter 1,
page 23) | Measuring the density of a liquid (Technique) | Characteristic physical propertiesDensity | balance (accurate to 0.01 g) 25-mL graduated cylinder wash bottle of distilled water or container of methanol | | 12
(Chapter 1,
page 23) | Measuring the density of a solid (Technique) | Characteristic physical properties Density | balance (accurate to 0.01 g) solid that can be inserted into graduated cylinder (e.g. copper, sulphur, iron) small rubber stopper 100-mL graduated cylinder wash bottle of distilled water | | Lab number
(Chapter and page
of student book) | Lab title
(Type of lab) | Concepts | Materials | |---|---|--|---| | 13
(Chapter 1, page 23) | Separating a mixture by distillation (Technique) | Characteristic physical properties Boiling point Pure substance Change of state | cobalt chloride paper strips 50 mL of liquid mixture 125-mL Erlenmeyer flask and two-hole stopper 2 or 3 porous stones thermometer hot plate condenser tube ring stand universal clamp glass elbow tube and one-hole stopper 2 flexible tubings 2 100-mL beakers | | 14
(Chapter 1,
page 24) | Determining acidity,
alkalinity and
neutrality
(Observation) | Characteristic
chemical
properties Reaction to
indicators | 7 neutral litmus paper strips spot plate dropper bottle of milk dropper bottle of apple juice dropper bottle of shampoo dropper bottle of soft drink dropper bottle of glass cleaner dropper bottle of all-purpose cleaner dropper bottle of tap water | | 15
(Chapter 1,
page 25) | Identifying
unknown
substances
(Experiment) | Characteristic physical properties Characteristic chemical properties | 4 samples of unknown substances (solid insoluble in water, solid soluble in water, liquid and gas) balance (accurate to 0.01 g) small rubber stopper 100-mL graduated cylinder wash bottle of distilled water electrical conductivity detector test-tube rack 3 test tubes (18 mm × 150 mm) and stoppers (No. 1) 10-mL graduated cylinder spatula wire loop Bunsen burner cobalt chloride paper strips 100-mL beaker hot plate thermometer clamp <i>or</i> universal clamp and perforated cork stopper | | Lab number
(Chapter and page
of student book) | Lab title
(Type of lab) | Concepts | Materials | |---|---|--|---| | 15
(continued) | | | ring stand thermometer 140-mL syringe with perforated plunger and stopper 4-inch nail container of limewater wood splints matches <i>or</i> lighter | | 16
(Chapter 2,
page 36) | The effect of substance quantity on the absorption of thermal energy (Experiment) | Forms of energyThermal energy | 50-mL graduated cylinder wash bottle of distilled water 2 100-mL beakers hot plate 2 thermometers ring stand 2 thermometer clamps or 2 universal clamps and perforated cork stoppers stopwatch or watch 2 glass stirring rods | | 17
(Chapter 2,
page 39) | Mechanical
energy of an
object in free fall
(Experiment) | Forms of energyMechanical energy | plasticine (about 400 mL) large plastic container 1-m ruler 3 marbles (different sizes) balance (optional) | | 18
(Chapter 2,
page 43) | Temperature variation during a change of state (Experiment) | Physical changeChange of stateThermal energy | 100-mL graduated cyllinder wash bottle of distilled water 250-mL beaker hot plate thermometer ring stand thermometer clamp or universal clamp with perforated cork stopper stopwatch or watch glass stirring rod balance (optional) | | 19
(Chapter 2,
page 46) | The amount of energy involved during dissolution (Experiment) | Physical changeDissolution | wash bottle of distilled water 25-mL graduated cylinder polystyrene foam cup thermometer spatula container of table salt (NaCI) weighing pan balance (accurate to 0.01 g) container of ammonium
chloride (NH₄CI) container of calcium chloride (CaCI₂) | **Description of labs** | Lab number (Chapter and page of student book) | Lab title
(Type of lab) | Concepts | Materials | |---|--|--|---| | 20
(Chapter 2,
page 53) | The synthesis of water (Observation) | Chemical changeSynthesis | matches or lighter wood splint test-tube rack test tube (25 mm × 150 mm) of
hydrogen and stopper (No. 4) cobalt chloride paper strip thermometer (optional) | | 21
(Chapter 2,
page 55) | The electrolysis of water (Experiment) | Chemical change Decomposition | wash bottle of distilled water 600-mL beaker balance (accurate to 0.01 g) weighing pan spatula container of sodium carbonate (Na₂CO₃) glass stirring rod marker test-tube rack 2 test tubes (16 mm × 150 mm) and stoppers (No. 1) 2 electrolysis electrodes (platinum or stainless steel) and stand 2 conductor wires and clamps source of electric current (battery or other) 30-cm ruler wood splints matches or lighter | | 22
(Chapter 2,
page 56) | The oxidation of copper (Observation) | Chemical change Oxidation Synthesis Pure substance (compound, element) | PART I porcelain dish balance (accurate to 0.01 g) spatula container of copper powder electrical conductivity detector hot plate crucible tongs 30-cm glass stirring rod stopwatch or watch (optional) ceramic plate PART II test tube (25 mm × 150 mm) and one-hole stopper (No. 4) test-tube rack balance (accurate to 0.01 g) porcelain dish (and contents) from PART I | | Lab number
(Chapter and page
of student book) | Lab title
(Type of lab) | Concepts | Materials | |---|---|--|--| | 22
(continued) | | | container of carbon (active) weighing pan spatula 30-cm glass stirring rod ring stand test-tube clamp Bunsen burner glass elbow tube gas collection apparatus 3 test tubes (18 mm × 150 mm) and stoppers (No.1) flexible tubing stopwatch <i>or</i> watch (optional) 50-mL beaker wash bottle of distilled water container of limewater matches <i>or</i> lighter wood splints | | 23
(Chapter 2,
page 58) | Precipitation
(Observation) | Chemical changePrecipitation | spot plate 6 dropper bottles labelled A to F with following solutions: A – lead nitrate (Pb(NO₃)₂) B – sodium iodide (Nal) C – copper sulphate (CuSO₄) D – potassium carbonate (K₂CO₃) E – nickel chloride (NiCl₂) F – sodium hydroxide (NaOH) glass stirring rod <i>or</i> toothpick wash bottle of distilled water 250-mL beaker | | 24
(Chapter 2,
page 58) | Physical change or
chemical change?
(Observation) | Physical change Chemical change | test tube (18 mm × 150 mm) and stopper (No. 1) test-tube rack balance (accurate to 0.01 g) wash bottle of distilled water 10-mL graduated cylinder thermometer cobalt chloride paper strips container of nickel chloride solid (NiCl₂) spatula weighing pan watch glass hot plate crucible tongs | | Lab number (Chapter and page of student book) | Lab title
(Type of lab) | Concepts | Materials | |---|--|----------|--| | 24
(continued) | | | container of sodium hydroxide solution (NaOH) neutral litmus paper strips container of nickel chloride solution (NiCl₂) 250-mL beaker 25-mL graduated cylinder 125-mL Erlenmeyer flask and one-hole stopper nickel-chromium wire (5 cm) Bunsen burner tongs magnesium ribbon (5 cm) container of hydrochloric acid (HCI) container of magnesium powder glass stirring rod | | 25
(Chapter 3,
page 70) | The effect of force
and surface area
on pressure
(Experiment) | Pressure | 5-mL glass syringe ring stand universal clamp flexible tubing aneroid gauge weights of 50 g, 100 g, 200 g and 500 g vernier scale <i>or</i> ruler 10-mL glass syringe 30-mL glass syringe | | 26
(Chapter 3,
page 73) | Liquid pressure
(Experiment) | Pressure | balance (accurate to 0.01 g) 50-mL graduated cylinder 3 containers each with more than 1 L of different liquid: distilled water, methanol, glycol, saline solution, etc. 2 30-cm rulers 1000-mL graduated cylinder or container more than 40 cm in height U-tube manometer 30-cm glass stirring rod | | 27
(Chapter 3,
page 75) | Gas pressure
(Experiment) | Pressure | 30-mL syringe and stopper 3 cylinders each of different gas:
nitrogen (N₂), oxygen (O₂) and
carbon dioxide (CO₂) flexible tubing aneroid gauge | | Lab number
(Chapter and page
of student book) | Lab title
(Type of lab) | Concepts | Materials | |---|--|--|---| | 28
(Chapter 3,
page 83) | Measuring
blood pressure
(Technique) | Circulatory pressure | sphygmomanometerstethoscopealcohol wipes | | 29
(Chapter 4,
page 92) | The characteristics of waves (Observation) | WavesFrequencyWavelengthAmplitude | PART I: SPRING 10-m spring of large diameter ribbon (15 cm) masking tape or chalk stopwatch or watch indicating seconds 1-m ruler or tape measure PART II: RIPPLE TANK ripple tank | | | | | large sheet of white paper cork stopper tied to nail light source dropper bottle of water stopwatch <i>or</i> watch indicating seconds 30-cm ruler | | 30
(Chapter 4,
page 92) | Modifying wave amplitude (Experiment) | WavesAmplitudeEnergy | 10-m spring or rope masking tape or chalk 1-m ruler or tape measure | | 31
(Chapter 4,
page 96) | The colours of light (Observation) | Electromagnetic
spectrum | ray box triangular prism (transparent) sheet of white paper pencil eraser coloured pencils (optional) | | 32
(Chapter 4,
page 100) | The effect of distance on sound intensity (Experiment) | Decibel scale | sound source (musical instrument, whistle, alarm, etc.) sound meter tape measure | | 33
(Chapter 4,
page 106) | Forming images with a plane mirror (Experiment) | Reflection | pencil eraser ruler sheet of white paper mirror stand plane mirror light source (preferably ray box with one-slit comb) protractor | | Lab number (Chapter and page of student book) | Lab title
(Type of lab) | Concepts | Materials | |---|--|--------------------------|--| | 34
(Chapter 4,
page 111) | Locating the focal point of a lens (Technique) | Focal point of a lens | converging lens(es) optical bench ray box screen (white cardboard) 1-m ruler | | 35
(Chapter 4,
page 113) | Forming images with a converging lens (Experiment) | Focal point
of a lens | converging lens optical bench screen (white cardboard) ray box small light bulb on base or candle 1-m ruler | | 36
(Chapter 4,
page 113) | Forming images with a diverging lens (Experiment) | Focal point of a lens | diverging lens optical bench screen (white cardboard) small light bulb on base or candle 1-m ruler | | 37
(Chapter 5,
page 128) | Locating DNA (Observation) | • DNA | toothpicks slide dropper bottle of methyl-green dye cover slip light microscope white paper pencil eraser | | 38
(Chapter 5,
page 128) | Extracting DNA (Technique) | • DNA | electrical mixer piece of onion (chilled) spatula 5 g of table salt weighing pan balance (accurate to 0.01 g) wash bottle of distilled water (chilled) 150-mL beaker (chilled) glass stirring rod 20 mL of liquid detergent mortar and pestle (chilled) coarse filter 100 mL graduated cylinder 50 mL of ethanol (chilled) slide dropper bottle of methyl-green dye cover slip light microscope | | Lab number (Chapter and page of student book) | Lab title
(Type of lab) | Concepts | Materials | |---|---|--|---| | 39
(Chapter 5,
page 133) | The phases of mitosis (Observation) | • Mitosis | dropper bottle of acetocarmine solution (dye) slide forceps onion roots or garlic roots (trimmed and coloured) cover slip blotting paper light microscope | | 40
(Chapter 5,
page 143) | Observing ovarian follicles (Observation) | Female reproductive systemOvarian cycle | light microscope commercial slide of a mammal ovary | | 41
(Chapter 6,
page 160) | Detecting simple
and complex
carbohydrates
(Technique) | Types of foods | 400-mL beaker hot plate wash bottle of distilled water marker 3 test tubes (15 mm × 125 mm) test-tube rack dropper bottle of distilled water dropper bottle of glucose solution dropper bottle of lactose solution dropper bottle of Fehling's reagent solution A dropper bottle of Fehling's reagent solution B test-tube clamp | | 42
(Chapter 6,
page 160) | Detecting starch (Technique) | Types of foods | 2 test tubes (15 mm × 125 mm) test-tube rack marker dropper bottle of distilled water dropper bottle of starch solution dropper bottle of Lugol's solution | | 43
(Chapter 6,
page 160) | Detecting fats
(Technique) | Types of foods | 2 test tubes (15 mm × 125 mm) and stoppers (No. 00) test-tube rack marker dropper bottle of distilled water dropper bottle of vegetable oil weighing pan containing Sudan IV particles spatula | | Lab number
(Chapter and page
of student book) | Lab title
(Type of lab) | Concepts | Materials | |---|--|----------------|---| | 44
(Chapter 6,
page 160) | Detecting proteins (Technique) | Types of foods | 2 test tubes (15 mm × 125 mm) test-tube rack marker dropper bottle of distilled water dropper bottle of protein solution dropper bottle of Biuret reagent | | 45
(Chapter 6,
page 160) | Detecting vitamin C (Technique) | Types of foods | 2 test tubes (15 mm × 125 mm) test-tube rack marker dropper bottle of distilled water dropper bottle of vitamin C solution dropper bottle of indophenol solution | | 46
(Chapter 6,
page 160) | Detecting chloride
(Technique) | Types of foods | 2 test tubes (15 mm × 125 mm) test-tube rack marker dropper bottle of distilled water dropper bottle of sodium chloride solution dropper bottle of silver nitrate solution | | 47
(Chapter 6,
page 160) | Detecting calcium (Technique) | Types of foods | 2 test tubes (15 mm × 125 mm) test-tube rack marker dropper bottle of distilled water dropper bottle of calcium salt solution dropper bottle of ammonium oxalate solution | | 48
(Chapter 6,
page 160) | Detecting nutrients in foods (Observation) | Types of foods | marker 5 test tubes (18 mm × 150 mm) and stoppers (No. 1) test-tube rack 400-mL beaker hot plate forceps dropper bottle of colourless soft drink dropper bottle of rice water dropper bottle of vegetable oil dropper bottle of homogenized milk (3.25%) dropper bottle of maple syrup glassware soap test-tube brush wash bottle of distilled water | | Lab number (Chapter and page of student book) | Lab title
(Type of lab) | Concepts | Materials | |---|---|---------------|--| | 48
(continued) | | | dropper bottle of Fehling's reagent solution A dropper bottle of Fehling's reagent solution B dropper bottle of Lugol's solution dropper bottle of Biuret reagent dropper bottle of indophenol solution dropper bottle of silver nitrate solution dropper bottle of ammonium oxalate solution container of Sudan IV solid spatula | | 49
(Chapter 6,
page 160) | Do all carbohydrates have the same sweet taste? (Experiment) | Carbohydrates | sheet of paper 7 bottles with perforated caps (e.g. salt shakers) containing: – maltose – glucose – fructose – galactose – lactose – sucrose – starch drinking glass wash bottle of water or tap water | | 50
(Chapter 6,
page 167) | Observing a mechanical change and a chemical change (Observation) | Carbohydrates | 10 elbow macaroni pieces 2 watch glasses or Petri dishes dropper bottle of Lugol's solution wash bottle of distilled water 250-mL beaker hot plate stopwatch or watch spatula 2 droppers spot plate beaker tongs electrical mixer or mortar and pestle dropper bottle of artificial saliva toothpicks | | Lab number (Chapter and page of student book) | Lab title
(Type of lab) | Concepts | Materials | | |---|---|-------------------------|--|--| | 51
(Chapter 6,
page 167) | Nutrient absorption
(Observation) | Transformation of foods | marker 2 400-mL beakers 250-mL graduated cylinder 200 mL of starch solution 2 dialysis bags 200 mL of glucose solution stopwatch or watch 600-mL beaker hot plate 2 test tubes (18 mm × 150 mm) test-tube rack dropper bottle of distilled water 2 droppers dropper bottle of Fehling's reagent solution A dropper bottle of Fehling's reagent solution B spot plate dropper bottle of Lugol's solution test-tube clamp | | | 52
(Chapter 6,
page 167) | The role of bile in digestion (Observation) | Transformation of foods | marker 2 125-mL Erlenmeyer flasks and stoppers (No. 5) 50-mL graduated cylinder dropper bottle of distilled water vegetable oil dropper bottle of dishwashing liquid | | | 53
(Chapter 6,
page 172) | Oxygen content in the air (Observation) | Respiratory system | | | | 54
(Chapter 6,
page 172) | Determining vital lung capacity (Observation) | Respiratory
system | wash bottle of water 100-mL graduated cylinder plastic bottle (5 L or more) and cap marker basin <i>or</i> sink flexible tubing (length of about 50 cm) cotton ball alcohol | | | Lab number (Chapter and page of student book) | Lab title
(Type of lab) | Concepts | Materials | | |---|--|---|--|--| | 55
(Chapter 6,
page 172) | The effect of physical effort on respiratory rhythm (Experiment) | Respiratory
system | stopwatch <i>or</i> watch indicating seconds | | | 56
(Chapter 6,
page 177) | Observing
the elements
found in blood
(Observation) | BloodConstituents
of blood | light microscope commercial blood smear slide | | | 57
(Chapter 6,
page 180) | Determining
blood type
(Observation) | Compatibility of blood types | marker spot plate dropper bottle of blood sample 1 dropper bottle of blood sample 2 dropper bottle of blood sample 3 dropper bottle of blood sample 4 box of toothpicks clean cloth <i>or</i> paper towel dropper bottle of anti-A serum dropper bottle of anti-B serum dropper bottle of anti-Rh serum stopwatch <i>or</i> watch | | | 58
(Chapter 6,
page 184) | Blood circulation
in a goldfish's tail
(Observation) | Blood circulation | light microscope 50-mL beaker aquarium 2 pieces of gauze Petri dish fish net goldfish dropper | | | 59
(Chapter 6,
page 185) | Dissecting
a pig's heart
(Observation) | • Heart | gloves pig heart dissecting pan glass stirring rod dissecting scissors dissecting forceps | | | 60
(Chapter 6,
page 190) | Dissecting
a kidney
(Observation) | Urinary system | gloves kidney of a mammal dissecting pan scalpel or knife dissecting forceps glass stirring rod | | | Lab number
(Chapter and page
of student book) | Lab title
(Type of lab) | Concepts | Materials | |---|---|--|--| | 61
(Chapter 6,
page 192) | The composition of urine (Observation) | Urinary system | marker 4 test tubes (18 mm × 150 mm) and stoppers (No. 1) test-tube rack dropper bottle of urine sample A dropper bottle of urine sample B dropper bottle of urine sample C dropper bottle of urine sample D 400-mL beaker hot plate dropper bottle of Fehling's reagent solution A dropper bottle of Fehling's reagent solution B test-tube clamp glassware soap test-tube brush wash bottle of distilled water weighing pan with Sudan IV particles spatula dropper bottle of Biuret reagent dropper bottle of silver nitrate solution | | 62
(Chapter 7,
page 206) | Dissecting a
sheep's brain
(Observation) | Central nervous
system | gloves brain of a sheep scalpel or knife dissecting forceps dissecting scissors dissecting pan toothpicks adhesive paper | | 63
(Chapter 7,
page 206) | Reflexes
(Experiment) | Central nervous
systemSpinal chordNervous impulseReflex arc | 30-cm ruler | | 64
(Chapter 7,
page 213) | Dissecting
the eye
of a mammal
(Observation) | Sensory receptorsEye | gloves eye of a mammal scalpel or knife dissecting forceps dissecting scissors dissecting pan 4 watch glasses or Petri dishes | | Lab number (Chapter and page of student book) | Lab title
(Type of lab) | Concepts | Materials | | |---|---|---|--|--| | 65
(Chapter 7,
page 213) | Adjusting
the eye to light
(Experiment) | Sensory receptorsEye | flashlight 1-m ruler or tape measure stopwatch (accurate to 0.10 sec) | | | 66
(Chapter 7,
page 217) | Sensory receptors of the skin (Experiment) | Sensory receptorsSkin | 200 mL of water 2 250-mL beakers hot plate thermometer ring stand thermometer clamp or universal clamp and perforated cork stopper 2 copper wires (20 cm in length and bent in half) or 4-inch nails ice cubes bandana cotton thread (6 cm in length) fine-point pen paper towel or cloth | | | 67
(Chapter 7,
page 220) | The relationship between smell and taste (Experiment) | Sensory receptorsNoseTongue | 6 fruit purées of similar texture
(e.g. baby foods) in containers
marked A to F 6 teaspoons bandana onion nose clip (optional) | | | 68
(Chapter 7,
page 220) | Studying
a fresh calf bone
(Observation) | • Bone | gloves fresh calf bone sawed lengthwise dissecting pan scalpel or knife dissecting needle watch glass or Petri dish ruler paper towel toothpicks adhesive paper | | | Lab number
(Chapter and page
of student book) | Lab title
(Type of lab) | Concepts | Materials | |---|--|----------------------------|---| | 69
(Chapter 8,
page 238) | Studying
baker's yeast
(Observation) | Conventional biotechnology | container of dry baker's yeast spatula test tube (15 mm × 125 mm) test-tube rack wash bottle of distilled water 10-mL graduated cylinder glass stirring rod dropper bottle of methylene blue dropper slide cover slip light microscope | | 70
(Chapter 8,
page 238) | The gas produced from baker's yeast (Experiment) | Conventional biotechnology | gas collection apparatus 4 test tubes (15 mm × 125 mm) test-tube rack 3 stoppers (No. 00) 500-mL Erlenmeyer flask or Florence flask and one-hole stopper (No. 7) glass elbow tube 600-mL beaker flexible tubing hot plate ring stand thermometer thermometer clamp or universal clamp and perforated cork stopper container of dry baker's yeast spatula 50-mL graduated cylinder container of table sugar (sucrose) glass stirring rod wood splints matches dropper bottle of limewater | | Lab number (Chapter and page of student book) | Lab title
(Type of lab) | Concepts | Materials | |---|--|----------------|--| | 71
(Chapter 8,
page 240) | Carbohydrates to use in culturing baker's yeast (Experiment) | Cell culture | 150-mL beaker wash bottle of distilled water hot plate ring stand thermometer thermometer clamp or universal clamp and perforated cork stopper container of dry baker's yeast spatula 25-mL graduated cylinder glass stirring rod 5 test tubes (18 mm × 150 mm) marker 10-mL graduated cylinder container of glucose container of fructose container of galactose container of lactose container of table sugar (sucrose) 5 latex balloons stopwatch or watch | | 72
(Chapter 8,
page 251) | The effect of pasteurization on baker's yeast (Observation) | Pasteurization | marker 2 test tubes (18 mm × 150 mm) test-tube rack wash bottle of distilled water 150-mL beaker container of dry baker's yeast spatula glass stirring rod hot plate ring stand thermometer thermometer clamp or universal clamp and perforated cork stopper beaker tongs container of table sugar (sucrose) 25-mL graduated cylinder 2 latex balloons stopwatch or watch heat-resistant plate |