THE EFFECT OF DILUTION ON THE COLOUR OF A SOLUTION | STUDENT BOOK | Chapter 1, page 13 | |--------------|--------------------| | TOOLBOX | Page 29 | ### Goal Determine the effect of dilution on the colour of a solution. - 1. What is the independent variable in this lab? - 2. What is the dependent variable in this lab? # **Hypothesis** | I think that | | |--------------|--| | because | | ### **Materials** - marker - 4 test tubes (18 mm × 150 mm) and stoppers (No. 1) - test-tube rack - 50-mL graduated cylinder - container of given solution with 10 g/L concentration - · 25-mL graduated cylinder - · wash bottle of distilled water # **Procedure** - 1. Number the test tubes from 1 to 4 with the marker. - **2.** Measure into the 50-mL graduated cylinder 50 mL of the given solution (concentration of 10 g/L). - 3. Pour the solution into test tube 1 and record the volume. - 4. Measure into the 25-mL graduated cylinder 10 mL of the given solution. - 5. Pour the solution into test tube 2 and record the volume. - 6. Measure into the 50-mL graduated cylinder 40 mL of distilled water. - 7. Pour the water into test tube 2 and record the volume of solvent added. - 8. Stopper test tube 2 and shake to mix the solution. - 9. Calculate the concentration of solution in test tube 2. - **10.** Prepare a solution in test tube 3 of a different total volume and the same concentration as the solution in test tube 2. Write down your calculations. | Name: | | Gr | oup: | Date: | | | | |--|-------------------------------|----------------------------------|--|---|-----------------------------------|--|--| | 11. Prepare a solution in test tube 4 of a different volume of distilled water and the same volume of given solution as in test tube 2. Write down your calculations. 12. Compare the colour of the four solutions and record your results. 13. Clean up and put away materials. | | | | | | | | | Results | | | | | | | | | Record your results in the table below. Give the table a title. | | | | | | | | | Title: | | | | | | | | | Test tube | Volume of given solution (mL) | Volume of
water added
(mL) | Total volume of prepared solution (mL) | Concentration
of prepared
solution (g/mL) | Colour of
prepared
solution | | | | | | | | | | | | | | | | | | _ | Calculation | S | | | | | | | | Write down you | r calculations belo | W. | | | | | | | Calculation of concentration or volume of prepared solutions | Observatory/Guide 11071-B | ann | e: Date: | |----------------|--| | na | alysis of the results | | 1. [| Does the colour of a solution of the same final concentration change according to volume? Explain your answer. | | -
2. \
- | What happens to the colour of a solution when distilled water is added? | | -
3. H
- | How is the concentration of a solution affected by the adding of distilled water? | | -
\ | What are the possible sources of error in this lab? | | -
5. H | How could you improve the protocol for this lab? | | 01 | nclusion | | | Complete the following sentence: When a solution is diluted, concentration | | 2. \ | Was your hypothesis confirmed or not? Explain your answer. | | - | | | _ | | | - | | | _ | | | Name: | Group: | Date: | | | | | |--|--------|-------|--|--|--|--| | Application | | | | | | | | To prepare fruit juice from a concentrate of 250 mL, you need to pour the concentrate into a large container, then add four times the volume of water and mix well. How would you prepare a glass of fruit juice (250 mL) of the same concentration? | | | | | | |