THE TECHNOLOGICAL WORLD

Graphical language

STUDENT BOOK Ch. 11, pp. 336–342

Basic lines, geometric lines, sketches

- 1. In technology, the two most widely used types of technical drawings are:
 - a) sketch and oblique projection.
 - b) diagram and production drawing.
 - c) sketch and diagram.
 - d) geometric line and diagram.
 - e) perspective drawing and diagram.
- **2.** Match the following terms to their corresponding description.

	Sketch Basic line	Production drawing Diagram	Technical drawing Geometric line
a) la	ım a freehand drawing tha	at follows technical drawing sta	andards.
b) la	ım a shape made with dra	wing instruments and used in	complex drawings.
c) la	ım a line with an appearar	nce and a significance govern	ed by international standards.
d) la	ım a drawing type that mo	st accurately represents the p	parts of an object.
e) Ip	provide details of an object	t or system.	
f) la	ım a simplified type of tecl	nnical drawing.	

Basic lines, geometric lines, sketches (continued)

3. Identify the type of line according to its usage.

Line type

Usage

- a) _____
- **1.** Establishes the extent of a dimension.
- b) _____ 2. Indicates the dimensions of an object.
 - 3. Indicates a surface that has been theoretically cut.
- d)
- 4. Indicates the centre of a circle.
- e)
- **5.** Indicates the area on a drawing referred to by a note.
- **4.** True or false?
 - **a)** The two types of basic lines drawn with a thick line are the object line and centre cut line.
 - **b)** Most basic lines are drawn with a thin line.
 - c) A medium line is used to draw hidden object lines.
 - d) Only one type of basic line is made with small lines.
 - e) Two types of basic lines contain arrowheads.
 - f) The dimension line is placed between two leader lines.

© **ERPI** Reproduction and adaptation permitted solely for use with *Observatory*.

n		
7		

GRAPHICAL LANGUAGE (continued)

STUDENT BOOK Ch. 11, pp. 343-351

Orthogonal projections (multiview, isometric), forms of representation (perspective drawing, oblique projection), types of production drawings

- 1. True or false?
 - a) The representation of an object on a piece of paper is achieved by projection drawing.
 - b) A projection is used to represent a three-dimensional object on a two-dimensional surface.
 - c) A face represents only two dimensions of an object.
 - d) An edge indicates the limits of a face and is one-dimensional.
 - e) A perspective drawing represents two dimensions of an object.
- **2.** Answer "yes" or "no." If the answer is "no," explain why.

a)	Can the same object be represented using several types of projections?

b)	Do small lines on a multiview projection represent the visible lines of an object?

c)) Is a multiview projection generally used for detailed drawings?		

Orthogonal projections (multiview, isometric), forms of representation (perspective drawing, oblique projection), types of production drawings (continued)

3. Objects are represented using three main types of projection.

A. Multiview

B. Isometric

C. Oblique

Indicate the type or types of projection described in each statement below.

- a) One of the faces of the object is parallel to the sheet of paper.
- b) Each object can be seen from six different angles.
- c) These projections are part of orthogonal projections.
- d) Objects are represented in three dimensions in the same view.
- e) Projection that represents objects in two dimensions.
- f) Visual rays leaving the object are oblique according to the projection plan.
- **4.** What are we?
 - a) We are often used together to provide a better display of an object.
 - **b)** We are three views positioned in an L in multiview projections.
 - c) I am a projection where all angles between the axes are 120 degrees.
- **5.** Match each of the following examples to the corresponding type of drawing.

Example	Drawing
a) Drawing of the sole of a running shoe showing a front view and a top view	Assembly drawing
b) Drawing of a lamp with shapes, parts and locations shown in isometric and multiview projections	Exploded assembly
c) Drawing of an armoire with all parts shown separately in isometric projection	drawing
d) Drawing of a chair specifying all details necessary to manufacture the chair back	3. Detail drawing

GRAPHICAL LANGUAGE (continued)

Scales, dimensioning, tolerance (AST), cross sections, sections (AST)

- 1. In a scale with a ratio of 1:300 on a technical drawing, what is the meaning of:
 - a) the factor on the left?
 - **b)** the factor on the right?
- **2.** Below are the different types of scales used in technical drawings.
 - A. Scale reduction
- B. Actual size
- C. Scale enlargement

- a) Identify the type of scale for each ratio.
 - 1. 1:100

2. 1:5

4. 1:15. 25:1

- 3. 50:1
- **b)** For each example in question a), indicate the real size of a 20 mm line in a drawing made with the ratio.
 - 1. _____
- 4. _____
- 2. _____
- 5. _____
- 3. _____
- **3.** What is the ratio in each example below?
 - a) A hair clip five times larger in the drawing than in reality
 - **b)** The plan for a new model of sports car with parts drawn 80 times smaller than in reality
 - c) A remote control drawn according to its actual dimensions
 - d) An electrical component enlarged 25 times in the drawing
- **4.** What is the ratio in each example below?

- 1. Diameter of a hole or a circle
- 2. Radius or arc of a circle
- 3. Value of an angle

Scales, dimensioning, tolerance (AST), cross sections, sections (AST) (continued)

- **5.** True or false? a) Dimensioning is the indication of actual dimensions and position of elements of an object. b) The two base lines used in dimensioning a drawing are dimension lines and construction lines. c) Tolerance is always indicated with a dimension. d) Tolerance is the maximum acceptable variation between a specified measurement and an actual measurement. e) In industry, the greater the tolerance, the higher is the cost of production. 6. Place a checkmark beside the correct way to indicate dimensioning, including tolerance, for a diameter of between 39 mm and 45 mm. a) R 780 ± 28 **b)** 150 c) \emptyset 42 \pm 3 **d)** $45^{\circ} \pm 5$ e) Ø 45
- 7. Use the following words to complete the sentences below. Terms may be used more than once.

hatching

cross section

		multiview hidden	section inside	outside surface	visible
a)	Α _		reveals the	of a	in object, exposing its
		(details to view. Cross	s sections are used	in
	drav	vings when the illu	strated object contai	ins many superimpo	osed details.
b)		pro	ojection is used to re	present a view in _	. With a
	view	in a	, the sectioned	surfaces are indica	ted with
c)	To b	etter represent an	object, a	can also	be reproduced.It represents
	a _		located in the cross	s-section view. In ar	n engineering drawing,
	sect	ions are located _	c	or	_ of the object represented
d)	The	basic lines used to	o represent sections	are	lines and

superimposed

engineering

ame:	Group:	Date:

GRAPHICAL LANGUAGE (continued) Standards and representations diagrams, symbols

STUDENT BOOK Ch. 11, pp. 355–359

- **1.** Circle the definition that best describes a diagram.
 - a) Technical drawing with more precision than an engineering drawing
 - b) Drawing made with drafting software
 - c) A simplified representation of an object, part of an object or a system
 - d) Drawing used to represent a technical object
- **2.** For the statements below:
 - a) Circle each one that follows rules for drawing a diagram.
 - b) Identify the element of the rules referred to by each statement.

		Diagram element
1.	Parts that touch one another must be in different colours.	
2.	The proportions of parts must be respected.	
3.	Lines must be drawn using a computer.	
4.	The object can be represented in different perspectives.	
5.	Diagrams must always include dimensions as in engineering drawings.	

3. Complete the sentences below with the following words. A word may be used more than once.

translation	n compression	symbols	rotation	shearing	tension	
In a diagram,	,		and		are	
examples of constraints that can be represented by						
are also used to re	epresent movement	such as		and		
and helical mover						

Standards and representations: diagrams, symbols (continued)

	diagrams, symbols (continued)		
4.	True or false?		
	 a) Compression and tension are represented by but oriented in opposite directions. 	the same symbols,	
	b) All parts of an object have a specific symbol.		
	c) Translational motion identified on a diagram r or bidirectional.	nay be unidirectiona	
	d) Components of electrical circuits can be repre-	esented by symbols.	
5.	Indicate with a checkmark if the information refers One item refers to both types of diagrams.	s to a technical diagr	am or a design plan.
	Information	Type of	diagram
		Technical	Design plan
	a) Information on functioning of the object		
	b) Legend of materials		
	c) Name of parts		
	d) Types of guides		

6. Draw the appropriate symbol.

e) Symbols of movements

a)	Tension	c)	Bidirectional helical movement

f) Information on construction of the object

d)	Light bulb
,	3