5. Applications of the Integral

5.1 Area Under Curves

5.2 Average Value
5.3 Growth and Decay Models
5.4 Return to Physics

Problems

5.1 Area Under Curves

5.1.1 Area Under Curves
 Part I

5.1.2 Area Under Curves Part II

5.1.1 Area Under Curves Part I

- One of the classic applications of the integral is to compute areas.
- We defined the integral to be the area under the curve:
$\int_{a}^{b} f(x) d x=$ area under f from a to b

Compute the area between x^{2} and the x-axis from $x=0$ to $x=4$.

- By convention, areas are positive. So if $f(x)$ is negative on $[a, b]$,

$$
-\int_{a}^{b} f(x) d x=\text { area under } f \text { from } a \text { to } b
$$

- Geometry also informs the following result:

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x, \text { if } a<c<b
$$

5.1.2 Area Under Curves Part II

- One can also compute the area between two curves with the integral.
- Suppose $f(x) \geq g(x)$ on $[a, b]$.
- The area between $f(x), g(x)$ on $[a, b]$ is

$$
\int_{a}^{b}(f(x)-g(x)) d x
$$

Compute the area between $f(x)=\sin (x)$ and $g(x)=\cos (x)$ on $\left[0, \frac{\pi}{4}\right]$.

Compute the area between $f(x)=\sin (x)$ and $g(x)=\cos (x)$ on $\left[0, \frac{\pi}{2}\right]$.

Compute the area between $f(x)=x$ and $g(x)=x^{2}$ on $[0,1]$.

5.2 Average Value

- The integral also has an interpretation as the average of a function's value over an interval.
- This makes sense if you recall that an integral $\int_{a}^{b} f(x) d x$ is approximated by Riemann sums, which are just rectangles whose heights are the function's values.
- The following statement is also worth considering for constant functions, which clearly have constant average.
- The average value of $f(x)$ on the interval $[a, b]$ is

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

- So, we compute the integral, then divide by the length of the interval.
- Interpreting the integral as a sum, this bears resemblance to how the average of a finite set of numbers is computed.

Compute the average value of $\ln (x)$ on $[1,100]$.

Compute the average value of $\frac{1}{x^{2}+1}$ on $[-1,1]$.

5.3 Growth and Decay Models

- The integral allows us to solve certain basic differential equations.
- Differential equations is a huge world of mathematics, and a subject with many problems without solutions.
- It is a field of active research, including with computers.
- We will focus on an simple differential equation on the CLEP exam.
- Consider the equation in terms of the unknown function $y(x)$:
$y^{\prime}=k y, \quad$ some constant k.
- To solve for $y(x)$, we do some algebra and recall the chain rule and formula for the derivative of $\ln (x)$.

$$
\begin{aligned}
y^{\prime} & =k y \\
\Leftrightarrow \frac{y^{\prime}}{y} & =k \\
\Leftrightarrow \int \frac{y^{\prime}}{y} d x & =\int k d x \\
\Leftrightarrow \ln (y) & =k x+C \\
\Leftrightarrow y(x) & =C e^{k x}
\end{aligned}
$$

- If $k>0$, we have exponential growth.
- If $k<0$, we have exponential decay.
- The constant $C>0$ is determined based on details in the problem, noting that $y(0)=C$.

Suppose $y^{\prime}=2 y, y(0)=100$. Find $y(5)$.

Suppose $y^{\prime}=-5 y, y(0)=1000$. Find x such that $y(x)=1$.

5.4 Return to Physics

- Just as we used derivatives to understand position, velocity, and acceleration of a onedimensional particle, so too can we use integrals.
- We simply follow the fundamental theory of calculus:

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

- Let $v(t)$ be the instantaneous velocity of a particle at time t.
- The position of the particle at time t is $p(t)$ and satisfies

$$
\begin{aligned}
p^{\prime}(t) & =v(t) \\
\Rightarrow \int_{a}^{b} p^{\prime}(t) d t & =\int_{a}^{b} v(t) d t \\
\Rightarrow p(b) & =p(a)+\int_{a}^{b} v(t) d t
\end{aligned}
$$

Suppose a particle has instantaneous velocity $v(t)=-t^{2}$ and initial position $p(0)=10$. Find $p(5)$.

- A similar game can be played with acceleration:

$$
\begin{aligned}
v^{\prime}(t) & =a(t) \\
\Rightarrow \int_{t_{0}}^{t_{1}} v^{\prime}(t) d t & =\int_{t_{0}}^{t_{1}} a(t) d t \\
\Rightarrow v\left(t_{1}\right) & =v\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} a(t) d t
\end{aligned}
$$

- With this formula for velocity, we can keep going and get a formula for position.

Suppose a particle has instantaneous acceleration $a(t)=-10$, initial position $p(0)=0$, and initial velocity $v(0)=0$. Find $p(5)$.

