5. Applications of the Integral

5.1 Area Under Curves

5.2 Average Value

5.3 Growth and Decay Models

5.4 Return to Physics Problems

5.1 Area Under Curves

5.1.1 Area Under Curves Part I

5.1.2 Area Under Curves Part II

5.1.1 Area Under Curves Part I

- One of the classic applications of the integral is to compute areas.
- We defined the integral to be the area under the curve:

$$\int_{a}^{b} f(x)dx = \text{area under } f \text{ from } a \text{ to } b$$

Compute the area between x^2 and the x-axis from x = 0 to x = 4.

• By convention, areas are positive. So if f(x) is negative on [a,b],

$$-\int_{a}^{b} f(x)dx = \text{area under } f \text{ from } a \text{ to } b$$

Geometry also informs the following result:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx, \text{ if } a < c < b.$$

5.1.2 Area Under Curves Part II

• One can also compute the area between two curves with the integral.

- Suppose $f(x) \ge g(x)$ on [a, b].
- The area between f(x), g(x) on [a,b] is

$$\int_a^b (f(x) - g(x)) dx.$$

Compute the area between $f(x) = \sin(x)$ and $g(x) = \cos(x)$ on $\left[0, \frac{\pi}{4}\right]$.

Compute the area between $f(x) = \sin(x)$ and $g(x) = \cos(x)$ on $\left[0, \frac{\pi}{2}\right]$.

Compute the area between f(x) = x and $g(x) = x^2$ on [0,1].

5.2 Average Value

- The integral also has an interpretation as the average of a function's value over an interval.
- This makes sense if you recall that an integral $\int_a^b f(x)dx$ is approximated by Riemann sums, which are just rectangles whose heights are the function's values.
- The following statement is also worth considering for constant functions, which clearly have constant average.

• The average value of f(x) on the interval [a,b] is

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx$$

- So, we compute the integral, then divide by the length of the interval.
- Interpreting the integral as a sum, this bears resemblance to how the average of a finite set of numbers is computed.

Compute the average value of ln(x) on [1, 100].

Compute the average value of $\frac{1}{x^2+1}$ on [-1,1].

5.3 Growth and Decay Models

- The integral allows us to solve certain basic differential equations.
- Differential equations is a huge world of mathematics, and a subject with many problems without solutions.

- It is a field of active research, including with computers.
- We will focus on an simple differential equation on the CLEP exam.

• Consider the equation in terms of the unknown function y(x):

$$y' = ky$$
, some constant k .

• To solve for y(x), we do some algebra and recall the chain rule and formula for the derivative of $\ln(x)$.

$$y' = ky$$

$$\Leftrightarrow \frac{y'}{y} = k$$

$$\Leftrightarrow \int \frac{y'}{y} dx = \int k dx$$

$$\Leftrightarrow \ln(y) = kx + C$$

$$\Leftrightarrow y(x) = Ce^{kx}$$

- If k > 0, we have exponential growth.
- If k < 0, we have exponential decay.
- The constant C>0 is determined based on details in the problem, noting that y(0)=C.

Suppose y' = 2y, y(0) = 100. Find y(5).

Suppose y' = -5y, y(0) = 1000. Find x such that y(x) = 1.

5.4 Return to Physics

- Just as we used derivatives to understand position, velocity, and acceleration of a onedimensional particle, so too can we use integrals.
- We simply follow the fundamental theory of calculus:

$$\int_{a}^{b} f'(x)dx = f(b) - f(a).$$

- Let v(t) be the instantaneous velocity of a particle at time t.
- The position of the particle at time t is p(t) and satisfies

$$p'(t) = v(t)$$

$$\Rightarrow \int_{a}^{b} p'(t)dt = \int_{a}^{b} v(t)dt$$

$$\Rightarrow p(b) = p(a) + \int_{a}^{b} v(t)dt.$$

Suppose a particle has instantaneous velocity $v(t) = -t^2$ and initial position p(0) = 10. Find p(5).

 A similar game can be played with acceleration:

$$v'(t) = a(t)$$

$$\Rightarrow \int_{t_0}^{t_1} v'(t)dt = \int_{t_0}^{t_1} a(t)dt$$

$$\Rightarrow v(t_1) = v(t_0) + \int_{t_0}^{t_1} a(t)dt.$$

 With this formula for velocity, we can keep going and get a formula for position.

Suppose a particle has instantaneous acceleration a(t) = -10, initial position p(0) = 0, and initial velocity v(0) = 0. Find p(5).