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4.1 Antidifferentiation



• We will begin our study of the integral 
by discussing antidifferentiation. 

• As you might expect, this is the 
process of undoing a derivative.  

Let f(x) be a function. A function F (x) is an

antiderivative of f(x) if F

0
(x) = f(x).



Let f(x) = 1. Find an antiderivative of f(x).



Let f(x) = sin(x). Find an antiderivative of f(x).



Let f(x) = e

2x
. Find an antiderivative of f(x).



• Notice that I am asking to 
find an antiderivative, not 
the antiderivative.   

• That is because 
antiderivatives are not 
unique! 

• Indeed, if          is an 
antiderivative for        , then                  

                   is also an  
   antiderivative for any  
   constant     . 

F (x)
f(x)

F (x) + C

C



4.2 Definite Integral



• We will relate the 
antiderivative to another 
important object: the definite 
integral. 

• This is a quantity that 
depends on two endpoint 
values,      , and a function,   

• It is written as 

a, b
f(x).

Z b

a
f(x)dx.



• The definite integral has many 
important interpretations.   

• The most significant for us is 
area under the curve          
from     to  

• It is not obvious how to 
compute the area under the 
curve of a general function—
this is the power of calculus!   

• Let’s start with simple things.

f(x)
a b.



Compute

Z 2

0
3dx.



Compute

Z 1

�1
xdx.



Compute

Z 5

0
2xdx.



4.3 Riemann Sums



4.3.1 Riemman Sums Part I 

 4.3.2 Riemman Sums Part II



4.3.1 Riemann Sums Part I



• We have seen how to 
compute definite integrals 
of functions with certain 
simple properties, by 
exploiting well-known area 
formulas from geometry. 

• What can we do in general?  
Not much yet.   

• We can, however, 
approximate the area with 
Riemann sums.  



• A Riemann sum 
approximates an integral by 
covering the area beneath 
the curve with rectangles.  

• The areas of the these 
rectangles are more easily 
computed.



• This is because the width of 
these rectangles is fixed, 
and the height is given by 
the value of the function at 
a given point.   

• Programmers—try coding 
this!  It’s a classic.  







Estimate

Z 4

0
x

2
dx with left and right Riemann sums of width 1.



4.3.2 Riemann Sums Part II



Estimate

Z 2

�1
(1� x)dx with left and right Riemann sums of width 1.



4.4 The Fundamental Theorem of 
Calculus



• The fundamental theorem 
of calculus is a classic 
result. 

• It links the derivative and 
the integral.



• We will not prove it, 
though we will use it 
extensively to compute 
areas under curves. 

• Intuitively, definite 
integrals can be 
computed by evaluating 
an antiderivative at the 
endpoints of integration.



Suppose f has antiderivative F (x). Then

Z b

a
f(x)dx = F (b)� F (a).



Compute

Z 2

0
x

2
dx.



Compute

Z 2⇡

0
cos(x)dx.



• When no particular 
endpoints are specified, 
the FTC suggests that we 
write  

• Here,       is an arbitrary 
constant.

Z
f(x) = F (x) + C

C



Compute

Z
e

3x
dx.



Compute

Z
2

x

dx.



• Another way to interpret the 
FTC is as stating that the 
derivative and integral undo 
each other. 

• More precisely, 

• This is valid for all         likely 
to appear on the CLEP exam. 

d

dx

Z
f(x)dx = f(x)

f(x)



4.5 Basic Integral Rules



4.5.1 Basic Integral  
         Rules I 

4.5.2 Basic Integral  
         Rules II



4.5.1 Basic Integral Rules I



• Using the FTC, we see that 
all the basic derivative 
rules apply, in an inverted 
way, to integrals. 

• This means that to know 
the basic rules for 
integrals, it suffices to 
know the basic rules for 
derivatives.



For constants a, b,

Z
(af(x) + bg(x))dx = a

Z
f(x)dx+ b

Z
g(x)dx



If n 6= �1,

Z
x

n
dx =

1

n+ 1
x

n+1 + C

If n = �1,

Z
x

n
dx = ln(x) + C



Compute

Z
(x

3
+ 2x� 3)dx



Compute

Z
(x

�1
+ 1)dx



Z
e

x

dx = e

x + C



Compute

Z ✓
�4

x

+ 2e

x

◆
dx



4.5.2 Basic Integral Rules II



Compute

Z
(sin(x) + x

2
)dx



Z
sin(x)dx = � cos(x) + C

Z
cos(x)dx = sin(x) + C



Z
tan(x)dx = � ln | cos(x)|+ C

Z
sec(x)dx = ln | tan(x) + sec(x)|+ C



Compute

Z
(tan(✓)� cos(✓))d✓



Z
dxp
1� x

2
= arcsin(x) + C

Z
dx

1 + x

2
= arctan(x) + C

Z
dx

|x|
p
x

2 � 1
= sec�1(x) + C



Compute

Z �3dxp
4� 4x

2



Compute

Z
dy

2|y|
p
y2 � 1



4.6 U-Substitutions 



• There are many more 
sophisticated types of 
integration methods.

• These include those based 
on the product rule 
(integration by parts), special 
properties of trigonometric 
functions (trig. substitutions), 
and those based on tedious 
algebra (partial fraction 
decomposition).



• We focus on a method 
based on the chain rule.  



• Recall that to compute the 
derivative of a composition of 
functions, we use the chain 
rule: 

• According to the FTC,  

• Hence, 

d

dx

f(g(x)) = f

0(g(x)) · g0(x).

Z
f

0(g(x))g0(x)dx = f(g(x)) + C

Z
d

dx

f(g(x)) = f(g(x)) + C.



Compute

Z
xe

x

2

dx



Compute

Z
cos(4x+ 1)dx



Compute

Z
x

3
p

x

4
+ 1dx



Compute

Z
tan(x)dx


