4. Theory of the Integral

4.1 Antidifferentiation

4.2 The Definite Integral
4.3 Riemann Sums
4.4 The Fundamental Theorem of Calculus
4.5 Fundamental Integration Rules
4.6 U-Substitutions

4.1 Antidifferentiation

- We will begin our study of the integral by discussing antidifferentiation.
- As you might expect, this is the process of undoing a derivative.

Let $f(x)$ be a function. A function $F(x)$ is an antiderivative of $f(x)$ if $F^{\prime}(x)=f(x)$.

Let $f(x)=1$. Find an antiderivative of $f(x)$.

Let $f(x)=\sin (x)$. Find an antiderivative of $f(x)$.

Let $f(x)=e^{2 x}$. Find an antiderivative of $f(x)$.

- Notice that I am asking to find an antiderivative, not the antiderivative.
- That is because antiderivatives are not unique!
- Indeed, if $F(x)$ is an antiderivative for $f(x)$, then $F(x)+C$ is also an antiderivative for any constant C.

4.2 Definite Integral

- We will relate the antiderivative to another important object: the definite integral.
- This is a quantity that depends on two endpoint values, a, b, and a function, $f(x)$.
- It is written as

$$
\int_{a}^{b} f(x) d x
$$

- The definite integral has many important interpretations.
- The most significant for us is area under the curve $f(x)$ from a to b.
- It is not obvious how to compute the area under the curve of a general functionthis is the power of calculus!
- Let's start with simple things.

Compute $\int_{0}^{2} 3 d x$.

Compute $\int_{-1}^{1} x d x$.

Compute $\int_{0}^{5} 2 x d x$.

4.3 Riemann Sums

4.3.1 Riemman Sums Part I

4.3.2 Riemman Sums Part II

4.3.1 Riemann Sums Part I

- We have seen how to compute definite integrals of functions with certain simple properties, by exploiting well-known area formulas from geometry.
- What can we do in general? Not much yet.
- We can, however, approximate the area with Riemann sums.
- A Riemann sum approximates an integral by covering the area beneath the curve with rectangles.
- The areas of the these rectangles are more easily computed.
- This is because the width of these rectangles is fixed, and the height is given by the value of the function at a given point.
- Programmers-try coding this! It's a classic.

Estimate $\int_{0}^{4} x^{2} d x$ with left and right Riemann sums of width 1.

4.3.2 Riemann Sums Part II

Estimate $\int_{-1}^{2}(1-x) d x$ with left and right Riemann sums of width 1.

4.4 The Fundamental Theorem of Calculus

- The fundamental theorem of calculus is a classic result.
- It links the derivative and the integral.
- We will not prove it, though we will use it extensively to compute areas under curves.
- Intuitively, definite integrals can be computed by evaluating an antiderivative at the endpoints of integration.

Suppose f has antiderivative $F(x)$. Then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.

Compute $\int_{0}^{2} x^{2} d x$.

Compute $\int_{0}^{2 \pi} \cos (x) d x$.

- When no particular endpoints are specified, the FTC suggests that we write

$$
\int f(x)=F(x)+C
$$

- Here, C is an arbitrary constant.

Compute $\int e^{3 x} d x$.

Compute $\int \frac{2}{x} d x$.

- Another way to interpret the FTC is as stating that the derivative and integral undo each other.
- More precisely,

$$
\frac{d}{d x} \int f(x) d x=f(x)
$$

- This is valid for all $f(x)$ likely to appear on the CLEP exam.

4.5 Basic Integral Rules

4.5.1 Basic Integral Rules I
4.5.2 Basic Integral Rules II

4.5.1 Basic Integral Rules I

- Using the FTC, we see that all the basic derivative rules apply, in an inverted way, to integrals.
- This means that to know the basic rules for integrals, it suffices to know the basic rules for derivatives.

For constants $a, b, \int(a f(x)+b g(x)) d x=a \int f(x) d x+b \int g(x) d x$

If $n \neq-1, \int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$
If $n=-1, \int x^{n} d x=\ln (x)+C$

Compute $\int\left(x^{3}+2 x-3\right) d x$

Compute $\int\left(x^{-1}+1\right) d x$

$$
\int e^{\sec x}=e^{2}+c
$$

Compute $\int\left(\frac{-4}{x}+2 e^{x}\right) d x$

4.5.2 Basic Integral Rules II

Compute $\int\left(\sin (x)+x^{2}\right) d x$

$$
\int \sin (x) d x=-\cos (x)+C
$$

$$
\int \cos (x) d x=\sin (x)+C
$$

$$
\int \tan (x) d x=-\ln |\cos (x)|+C
$$

$$
\int \sec (x) d x=\ln |\tan (x)+\sec (x)|+C
$$

Compute $\int(\tan (\theta)-\cos (\theta)) d \theta$

$$
\begin{gathered}
\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin (x)+C \\
\int \frac{d x}{1+x^{2}}=\arctan (x)+C \\
\int \frac{d x}{|x| \sqrt{x^{2}-1}}=\sec ^{-1}(x)+C
\end{gathered}
$$

Compute $\int \frac{-3 d x}{\sqrt{4-4 x^{2}}}$

Compute $\int \frac{d y}{2|y| \sqrt{y^{2}-1}}$

4.6 U-Substitutions

- There are many more sophisticated types of integration methods.
- These include those based on the product rule (integration by parts), special properties of trigonometric functions (trig. substitutions), and those based on tedious algebra (partial fraction decomposition).
- We focus on a method based on the chain rule.
- Recall that to compute the derivative of a composition of functions, we use the chain rule:

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

- According to the FTC,

$$
\int \frac{d}{d x} f(g(x))=f(g(x))+C
$$

- Hence,

$$
\int f^{\prime}(g(x)) g^{\prime}(x) d x=f(g(x))+C
$$

Compute $\int x e^{x^{2}} d x$

Compute $\int \cos (4 x+1) d x$

Compute $\int x^{3} \sqrt{x^{4}+1} d x$

Compute $\int \tan (x) d x$

