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3.1.1 Increasing and Decreasing Functions



• Recall that the 
derivative of a function 
corresponds to the rate 
of change of a function.   

• If the rate of change is 
positive, we say the 
function is increasing.



• If it is negative, we say it 
is decreasing.   

• We can quantify this by 
discussing the sign of 
the derivative.



• Let         be a function.   

• If                 , then         is 
increasing at      . 

• If                 , then         is 
decreasing at      . 

• If                  , no 
definitive conclusion 
can be made without 
further analysis.



• Note that a function may 
not even be differentiable 
and still be increasing/
decreasing.   









3.1.2 Extrema



• We have seen that: 

• So, what about if 

• This is perhaps the most 
exciting aspect of 
differential calculus, and is 
a major reason it is studied 
by all kinds of people. 



• Suppose  

• Then     transitions from 
decreasing to increasing at 

• This means         has a local 
minimum at   





• Suppose  

• Then     transitions from 
increasing to decreasing at 

• This means         has a local 
maximum at   





• A classic calculus problem 
is to find the local extrema 
(minima and maxima) of a 
function.   

• To do so, set the derivative 
equal to 0 and check how 
the derivative changes 
sign.   

• Not every place the 
derivative equals zero is a 
local extrema, however.







3.1.3 Concavity



• We saw in the previous 
submodule that the 
properties of a function 
being increasing, 
decreasing, and its local 
extrema are governed by 
its first derivative,  

• A more subtle notion, 
concavity, is governed by 
the second derivative, 



• A loose metaphor is in 
order: when plotting a 
function, try pouring 
water on it. 

• If the function holds the 
water, it is concave up 
there. 

• If it doesn’t hold water, it 
is concave down there.



• A function         is concave up 
wherever  

• A function         is concave down 
wherever  





• The second derivative can also be 
used to classify critical points, i.e. 
points where  

• Second Derivative Test: 





3.2 Rate of Change 



• A classic application of the derivate is to compute 
the instantaneous rate of change of a quantity. 

• Recall that the instantaneous rate of change of         
at           is 

• In contrast, the average rate of change of         on 
the interval              is     









3.3 Some Physics Problems



• Another classic application of 
derivatives is related to the 
physical laws of motion.   

• In this context, a one-
dimensional particle’s 
position is given by a function  

• Related quantities, like its 
velocity        and its 
acceleration        may be 
understood as certain 
derivatives of the position.        



• Let the position of a particle be 
given by 

• The velocity of the particle is 
given by 

• The acceleration of the particle 
is given by  

• So, velocity is the rate of 
change of position, and 
acceleration is the rate of 
change of velocity.





Suppose a one-dimensional particle has position p(t) = ln(t4 + t2), t > 0.

Show that the particle never changes direction.


