2. Theory of the Derivative

2.1 Tangent Lines

2.2 Definition of Derivative

2.3 Rates of Change

2.4 Derivative Rules

2.5 Higher Order
Derivatives

2.6 Implicit

Differentiation

2.7 L'Hôpital's Rule

2.8 Some Classic Theoretical Results

2.9 Derivatives of Inverse Functions

2.1 Tangent Lines

- Before we do any heavy lifting, let's get a mental picture.
- One of the classical ideas behind calculus is the notion of tangent line to a function.
- This will motivate the limit definition of a derivative in the next submodule.
- A line is tangent to a function if it intersects it only once.
- This is somewhat of a simplification, in that the line is allowed to intersect multiple times outside of some small interval, but that is more advanced and theoretical than we will get into.
- Tangent lines can be constructed as limits of secant lines, i.e. lines that intersect a function in exactly two points.

- The slopes of the secant lines are computed using the classical slope formula.
- If a line passes through:

$$
(a, f(a)),(b, f(b))
$$

then the slope of the
line is

$$
m=\frac{f(b)-f(a)}{b-a}
$$

- What is the slope of the tangent line? We need limits! This gives us the formal definition of the derivative!!!

2.2 Definition of Derivative

- The derivative is one of the two central objects in calculus.
- It measures rate of change of a function.
- In module 2, we will discuss methods for computing it, and discuss its geometric role.
- In module 3, we will use it as a tool to solve realworld problems.
- The slopes of the secant lines are computed using the classical slope formula.
- If a line passes through:

$$
(a, f(a)),(b, f(b)),
$$

then the slope of the line is

$$
m=\frac{f(b)-f(a)}{b-a}
$$

- What is the slope of the tangent line? We need limits! This gives us the formal definition of the derivative!!!

Let $f(x)$ be a function. The derivative of f at x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- So, the derivative is defined in terms of a limit.
- Notice that plugging in $h=0$ yields $0 / 0$, so we must be careful.
- In later submodules, we will develop some nice tricks and formulae.

Let $f(x)=x$. Compute $f^{\prime}(x)$.

Let $f(x)=x^{2}$. Compute $f^{\prime}(x)$.
2.3 Rates of Change

- Recall that for a general function $f(x)$, the slope of the secant line through a, b may be interpreted as the average rate of change of f on (a, b).
- More precisely,

Average change of f on $(a, b)=\frac{f(b)-f(a)}{b-a}$

- Let $b=a+h$. Then we can say that

Average change of f on $(a, a+h)=\frac{f(a+h)-f(a)}{h}$

- This looks an awful lot like the definition of the derivative!
- Simply take the limit as $h \rightarrow 0$.
- This shrinks the interval in question to $\approx a$ alone.
- We conclude that

Instantaneous change of f at $a=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{\prime}(a)$.

- So, derivatives are equal to instantaneous rates of changes.

Let $f(x)=x^{2}$. Find the average rate of change on $(-2,2)$.
Find the instantaneous rate of change at $x=2$.

Let $f(x)=c x$, for some fixed constant c .
Find the average rate of change on $(-1,3)$.
Find the instantaneous rate of change at $x=1$.

2.4 Derivative Rules

2.4.1 Fundamental Derivative Rules

2.4.2 Chain Rule
2.4.3 Derivatives of Exponential and Logarithmic Functions
2.4.4 Trigonometric Derivatives
2.4.5 Derivatives of Inverse Trigonometric Functions

2.4.1 Fundamental Derivative Rules

- The limit definition of the derivative is not always very convenient.
- For practical purposes, it is nice to know exactly how this definition works for certain types of functions.
- The following results are not obvious, but we will not prove them in this course.

Derivative of a Constant

$$
[a]^{\prime}=0
$$

Derivative of a Polynomial

$$
\left[x^{a}\right]^{\prime}=a x^{a-1}, \text { if } a \neq 0
$$

Let $f(x)=x^{4}$. Compute $f^{\prime}(x)$.

Derivative of a Sum

$$
[f(x)+g(x)]^{\prime}=f^{\prime}(x)+g^{\prime}(x)
$$

Let $f(x)=x^{3}-2 x+1$. Compute $f^{\prime}(x)$.

Derivative of a Product

$$
[f(x) \cdot g(x)]^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
$$

Let $f(x)=(x+1) \sqrt{x}$. Compute $f^{\prime}(x)$.

Derivative of a Quotient

$$
\left[\frac{f(x)}{g(x)}\right]^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{g(x)^{2}}
$$

Let $f(x)=\frac{2 x-3}{x^{4}+1}$. Compute $f^{\prime}(x)$.
2.4.2 Chain Rule

- The chain rule is arguably to most foundational property of derivatives.
- It tells how to compute the derivation of a composition of functions, i.e. a function of the form

$$
f(x)=g \circ h(x)=g(h(x))
$$

$$
\begin{gathered}
\quad[g \circ h(x)]^{\prime}=\left[g^{\prime} \circ h(x)\right] \cdot h^{\prime}(x) \\
\text { i.e. }[g(h(x))]^{\prime}=\left[g^{\prime}(h(x))\right] \cdot h^{\prime}(x)
\end{gathered}
$$

Compute the derivative of $f(x)=(3 x+2)^{-2}$

Compute the derivative of $f(x)=\left(x^{2}+2\right)^{3} \sqrt{4 x+1}$

- What if we are considering just plain old $f(x)$ that does not appear to have the form of a composition?
- Well, we may always write:

$$
f(x)=f(g(x)), g(x)=x
$$

- Taking derivatives and applying the chain rule yields:

$$
\begin{aligned}
f^{\prime}(x) & =f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& =f^{\prime}(x) \cdot 1 \\
& =f^{\prime}(x)
\end{aligned}
$$

- This emphasizes that we are always implicitly using the chain rule, even when it might appear there is no composition.
- It may be necessary to apply the chain rule iteratively:

$$
[f(g(h(x)))]^{\prime}=f^{\prime}(g(h(x))) \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x)
$$

Compute the derivative of $f(x)=\left(\sqrt{x^{2}-1}-2\right)^{-1}$

2.4.3 Derivatives of Exponential and Logarithmic Functions

- The exponential function with base e is rather simple from the calculus standpoint.

$$
\left[e^{x}\right]^{\prime}=e^{x}
$$

- More general exponential functions have a slightly more delicate formula:

$$
\left[a^{x}\right]^{\prime}=a^{x} \cdot \ln (a)
$$

Compute $\frac{d}{d x}\left[e^{2 x}\right]$

Compute $\frac{d}{d z}\left[e^{z^{2}}+4 z\right]$

Compute $\frac{d}{d x}\left[x e^{x^{3}}\right]$

- By contrast, logarithms are somewhat trickier. Derivatives of logarithms do not stay as logarithms:

$$
\begin{gathered}
{[\ln (x)]^{\prime}=\frac{1}{x}} \\
{\left[\log _{a}(x)\right]^{\prime}=\frac{1}{\ln (a) x}}
\end{gathered}
$$

Compute $\frac{d}{d x}\left[\ln \left(x^{2}\right)\right]$

Compute $\frac{d}{d y}\left[\ln \left(y+y^{4}\right)\right]$

Compute $\frac{d}{d x}\left[\ln \left(e^{2 x+1}\right)\right]$

2.4.4 Trigonometric Derivatives

- The trigonometric functions all have derivatives that related to other trigonometric functions.
- The foundational ones are:

$$
\begin{aligned}
\frac{d}{d x}[\sin (x)] & =\cos (x) \\
\frac{d}{d x}[\cos (x)] & =-\sin (x)
\end{aligned}
$$

Compute $\frac{d}{d x}\left[\cos \left(x^{2}+1\right)\right]$

- We can use decompose into $\sin (x), \cos (x)$ and then use the quotient rule to compute the derivatives of the remaining trigonometric functions.
- We will prove that

$$
\frac{d}{d x}[\tan (x)]=\sec (x)^{2}
$$

- Proving the rest of the trigonometric derivatives in a similar way is an excellent exercise.

$$
\begin{aligned}
\frac{d}{d x}[\cot (x)] & =-\csc (x)^{2} \\
\frac{d}{d x}[\sec (x)] & =\sec (x) \tan (x) \\
\frac{d}{d x}[\csc (x)] & =-\csc (x) \cot (x)
\end{aligned}
$$

Compute $[\tan (\theta+1)]^{\prime}$

Let $f(x)=\csc \left(x^{2}\right)$. Compute $f^{\prime}(x)$.

2.4.5 Derivatives of Inverse Trigonometric Functions

- The inverse trigonometric functions also have derivatives that ought to be committed to memory for the CLEP exam.
- We will see in a later submodule how to prove these formulae starting from a general principle for derivatives of inverse functions.
- Until then, we will take the basic rules for granted.

$$
\begin{aligned}
\frac{d}{d x}[\arcsin (x)] & =\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}[\arctan (x)] & =\frac{1}{1+x^{2}} \\
\frac{d}{d x}\left[\sec ^{-1}(x)\right] & =\frac{1}{|x| \sqrt{x^{2}-1}}
\end{aligned}
$$

Compute the derivative of $f(x)=\sin ^{-1}\left(x^{3}+1\right)$.

Compute the derivative of $f(x)=\sec ^{-1}\left(e^{x}\right)$.

Compute the derivative of $f(x)=\arctan (\sin (x))$.

2.5 Higher Order Derivatives

- It is possible to differentiate a function multiple times.
- The result of iterated differentiation is called a higher order derivative.
- First derivative: $f^{\prime}(x)$
- Second derivative: $f^{\prime \prime}(x)$
- Third derivative: $f^{(3)}(x)$
- $n^{\text {th }}$ derivative: $f^{(n)}(x)$

Let $f(x)=x^{3}-4 x+1$. Compute $f^{\prime}, f^{\prime \prime}, f^{(3)}$

Let $f(x)=e^{x^{2}}$. Compute $f^{\prime}, f^{\prime \prime}, f^{(3)}$

Let $f(x)=\sin (2 x)$. Find all values x for which $f^{\prime \prime}=1$.

Let $f(x)=\ln (g(x))$. Compute $f^{\prime \prime}(x)$ in terms of $g(x)$.

2.6 Implicit Differentiation

- All of our work has so far focused on differentiating a function where there was only one variable:

$$
f(x)=\text { something depending on } x
$$

- We may at times come across an expression involving both x and y
- In this case, y is implicitly a function of x.
- We differentiate in this case by noting that:

$$
\begin{aligned}
\frac{d}{d x}[y] & =y^{\prime} \\
\frac{d}{d x}[x] & =1
\end{aligned}
$$

- This allows us to differentiate both sides of an expression, and solve for the resulting y^{\prime}.

Solve for $y^{\prime}: 2 x y+y^{2}=1$

Solve for $y^{\prime}: \sqrt{y+1}+x^{2}=y$

Solve for $y^{\prime}: e^{x y-1}=x^{2}$

2.7 L'Hôpital's Rule

- Recall that certain quantities are not welldefined:

$$
\frac{0}{0}, \frac{\infty}{\infty}
$$

- These indeterminate forms sometimes arise when taking limits of rational functions, i.e. computing limits of the form

$$
\lim _{x \rightarrow y} \frac{f(x)}{g(x)}
$$

- In these special indeterminate cases, one can apply manipulations to $f(x)$ in order to compute the limit. $\quad \overline{g(x)}$
- Another, slicker, trick is to use L'Hôpital's rule, which we state loosely as

If $\lim _{x \rightarrow y} f(x)=\lim _{x \rightarrow y} g(x)=0$ or $\pm \infty$,
then $\lim _{x \rightarrow y} \frac{f(x)}{g(x)}=\lim _{x \rightarrow y} \frac{f^{\prime}(x)}{g^{\prime}(x)}$, provided the second limit exists.

Compute $\lim _{x \rightarrow \infty} \frac{x+1}{3 x-1}$

Compute $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$

Compute $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$

Compute $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$

Compute $\lim _{x \rightarrow 0} \frac{\cos (x)}{x}$
2.8 Some Classic Theoretical Results

- This is not a course in theory, but certain results are important for the CLEP.
- Proving these would be an excellent learning experience, but is certainly not necessary. A basic understanding would suffice for the CLEP exam.

Differentiability Implies Continuity

Suppose a function f is differentiable at a point x. Then f is continuous at x.

Rolle's Theorem

Suppose a function f is differentiable on an interval (a, b). If $f(a)=f(b)$, then there is a point $c, a<c<b$ such that $f^{\prime}(c)=0$.

2.9 Derivatives of Inverse Functions

- We have seen already some special examples of derivatives of inverse functions: inverse trigonometric functions.
- Recall that the inverse function of $f(x)$ is a function $f^{-1}(x)$ satisfying

$$
f^{-1} \circ f(x)=f \circ f^{-1}(x)=x .
$$

Suppose $f^{-1} \circ f(x)=f \circ f^{-1}(x)=x$. Then

$$
\frac{d}{d x}\left[f^{-1}(x)\right]=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Suppose $f(x)=x^{3}+x-1$. Compute the derivative of f^{-1} at $x=1$.

Suppose $f(x)=e^{x}+2 x+3$. Compute the derivative of f^{-1} at $x=4$.

