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2.1 Tangent Lines



• Before we do any heavy 
lifting, let’s get a mental 
picture.   

• One of the classical ideas 
behind calculus is the 
notion of tangent line to a 
function.  

• This will motivate the limit 
definition of a derivative 
in the next submodule.



• A line is tangent to a 
function if it intersects it 
only once. 

• This is somewhat of a 
simplification, in that the 
line is allowed to intersect 
multiple times outside of 
some small interval, but 
that is more advanced and 
theoretical than we will 
get into.



• Tangent lines can be 
constructed as limits of 
secant lines, i.e. lines that 
intersect a function in 
exactly two points.









• The slopes of the secant 
lines are computed 
using the classical 
slope formula. 

• If a line passes through:                                 

   then the slope of the    
   line is 



• What is the slope of the 
tangent line?  We need 
limits!  This gives us the 
formal definition of the 
derivative!!!



2.2 Definition of Derivative 



• The derivative is one of 
the two central objects 
in calculus.  

• It measures rate of 
change of a function.



• In module 2, we will 
discuss methods for 
computing it, and 
discuss its geometric 
role. 

• In module 3, we will use 
it as a tool to solve real-
world problems.



• The slopes of the secant 
lines are computed using 
the classical slope 
formula. 

• If a line passes through:  

   then the slope of the line  
   is



• What is the slope of the 
tangent line?  We need 
limits!  This gives us the 
formal definition of the 
derivative!!!



f

0(x) = lim
h!0

f(x+ h)� f(x)

h

Let f(x) be a function. The derivative of f at x is



• So, the derivative is 
defined in terms of a limit. 

• Notice that plugging in         
yields 0/0, so we must be 
careful. 

• In later submodules, we 
will develop some nice 
tricks and formulae.

h = 0



Let f(x) = x. Compute f

0
(x).



Let f(x) = x

2
. Compute f

0
(x).



2.3 Rates of Change



• Recall that for a general function        , 
the slope of the secant line through      
may be interpreted as the average rate 
of change of    on          . 

• More precisely, 



• Let                  .  Then we can say that  

• This looks an awful lot like the 
definition of the derivative! 

• Simply take the limit as 



• This shrinks the interval in question 
to        alone. 

• We conclude that  

• So, derivatives are equal to 
instantaneous rates of changes.
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2.4.1 Fundamental Derivative Rules



• The limit definition of the 
derivative is not always 
very convenient.   

• For practical purposes, it is 
nice to know exactly how 
this definition works for 
certain types of functions.   

• The following results are 
not obvious, but we will not 
prove them in this course.



Derivative of a Constant

[a]0 = 0



Derivative of a 
Polynomial

[xa]0 = ax

a�1
, if a 6= 0



Let f(x) = x

4
. Compute f

0
(x).



Derivative of a Sum

[f(x) + g(x)]0 = f

0(x) + g

0(x)



Let f(x) = x

3 � 2x+ 1. Compute f

0
(x).



Derivative of a Product

[f(x) · g(x)]0 = f

0(x) · g(x) + f(x) · g0(x)



Let f(x) = (x+ 1)

p
x. Compute f

0
(x).



Derivative of a Quotient


f(x)

g(x)

�0
=

f

0(x) · g(x)� f(x) · g0(x)
g(x)2



Let f(x) =

2x� 3

x

4
+ 1

. Compute f

0
(x).



2.4.2 Chain Rule



• The chain rule is 
arguably to most 
foundational property 
of derivatives. 

• It tells how to compute 
the derivation of a 
composition of 
functions, i.e. a function 
of the form 
f(x) = g � h(x) = g(h(x))



[g � h(x)]0 = [g0 � h(x)] · h0(x)

i.e. [g(h(x))]0 = [g0(h(x))] · h0(x)



Compute the derivative of f(x) = (3x+ 2)

�2



Compute the derivative of f(x) = (x

2
+ 2)

3
p
4x+ 1



• What if we are considering 
just plain old            that 
does not appear to have 
the form of a composition?  

• Well, we may always write: 

• Taking derivatives and 
applying the chain rule 
yields:

f(x)

f(x) = f(g(x)), g(x) = x



• This emphasizes that we 
are always implicitly using 
the chain rule, even when it 
might appear there is no 
composition.  

f

0(x) =f

0(g(x)) · g0(x)
=f

0(x) · 1
=f

0(x)



• It may be necessary to apply the chain rule iteratively:

[f(g(h(x)))]0 = f

0(g(h(x))) · g0(h(x)) · h0(x)



Compute the derivative of f(x) = (

p
x

2 � 1� 2)

�1



2.4.3 Derivatives of Exponential and 
Logarithmic Functions



• The exponential function 
with base    is rather simple 
from the calculus 
standpoint.  

• More general exponential 
functions have a slightly 
more delicate formula:

e

[ex]0 = ex

[ax]0 = ax · ln(a)



Compute

d

dx

⇥
e

2x
⇤



Compute

d

dz

h
ez

2

+ 4z
i



Compute

d

dx

h
xe

x

3
i



• By contrast, logarithms 
are somewhat trickier.  
Derivatives of logarithms 
do not stay as logarithms:  

[ln(x)]0 =
1

x

[loga(x)]
0
=

1

ln(a)x



Compute

d

dx

⇥
ln(x

2
)

⇤



Compute

d

dy

⇥
ln(y + y4)

⇤



Compute

d

dx

⇥
ln(e

2x+1
)

⇤



2.4.4 Trigonometric Derivatives  



• The trigonometric 
functions all have 
derivatives that related to 
other trigonometric 
functions.   

• The foundational ones 
are:

d

dx

[sin(x)] = cos(x)

d

dx

[cos(x)] = � sin(x)



Compute

d

dx

[cos(x

2
+ 1)]



• We can use decompose into                      and then 
use the quotient rule to compute the derivatives of 
the remaining trigonometric functions. 

• We will prove that   

• Proving the rest of the trigonometric derivatives in a 
similar way is an excellent exercise.

sin(x), cos(x)

d

dx

[tan(x)] = sec(x)2





d

dx

[sec(x)] = sec(x) tan(x)

d

dx

[csc(x)] = � csc(x) cot(x)

d

dx

[cot(x)] = � csc(x)

2



Compute [tan(✓ + 1)]

0



Let f(x) = csc(x

2
). Compute f

0
(x).



2.4.5 Derivatives of Inverse 
Trigonometric Functions



• The inverse trigonometric 
functions also have 
derivatives that ought to 
be committed to memory 
for the CLEP exam.



• We will see in a later 
submodule how to prove 
these formulae starting 
from a general principle 
for derivatives of inverse 
functions. 

• Until then, we will take the 
basic rules for granted.  











2.5 Higher Order Derivatives



• It is possible to 
differentiate a function  
multiple times.   

• The result of iterated 
differentiation is called a 
higher order derivative.



• First derivative: 

• Second derivative: 

• Third derivative: 

•       derivative: nth

f

0(x)

f

00(x)

f

(3)(x)

f

(n)(x)



Let f(x) = x

3 � 4x+ 1. Compute f

0
, f

00
, f

(3)



Let f(x) = e

x

2

. Compute f

0
, f

00
, f

(3)



Let f(x) = sin(2x). Find all values x for which f

00
= 1.



Let f(x) = ln(g(x)). Compute f

00
(x) in terms of g(x).



2.6 Implicit Differentiation



• All of our work has so far 
focused on differentiating 
a function where there 
was only one variable: 

• We may at times come 
across an expression 
involving both  

• In this case,    is implicitly 
a function of    .

f(x) = something depending on x

x and y

y
x



• We differentiate in this case 
by noting that: 

• This allows us to 
differentiate both sides of an 
expression, and solve for 
the resulting    .

d

dx

[y] = y

0
,

d

dx

[x] = 1.

y0



Solve for y

0
: 2xy + y

2
= 1



Solve for y

0
:

p
y + 1 + x

2
= y



Solve for y

0
: e

xy�1
= x

2



2.7 L’Hôpital’s Rule



• Recall that certain 
quantities are not well-
defined: 

• These indeterminate 
forms sometimes arise 
when taking limits of 
rational functions, i.e. 
computing limits of the 
form  

0

0
,
1
1

lim
x!y

f(x)

g(x)



• In these special indeterminate cases, 
one can apply manipulations to           
in order to compute the limit. 

• Another, slicker, trick is to use 
L’Hôpital’s rule, which we state 
loosely as 

f(x)

g(x)

If lim

x!y

f(x) = lim

x!y

g(x) = 0 or ±1,

then lim

x!y

f(x)

g(x)

= lim

x!y

f

0
(x)

g

0
(x)

, provided the second limit exists.



Compute lim

x!1

x+ 1

3x� 1



Compute lim

x!0

e

x � 1

x



Compute lim

x!2

x

3 � 8

x� 2



Compute lim

x!0

sin(x)

x



Compute lim

x!0

cos(x)

x



2.8 Some Classic Theoretical Results



• This is not a course in 
theory, but certain 
results are important for 
the CLEP.   

• Proving these would be 
an excellent learning 
experience, but is 
certainly not necessary.  
A basic understanding 
would suffice for the 
CLEP exam.



Differentiability Implies Continuity

Suppose a function f is di↵erentiable at a point x.

Then f is continuous at x.



Rolle’s Theorem 

Suppose a function f is di↵erentiable on an interval (a, b).

If f(a) = f(b), then there is a point c, a < c < b such that f 0
(c) = 0.



2.9 Derivatives of Inverse Functions



• We have seen already 
some special examples 
of derivatives of inverse 
functions: inverse 
trigonometric functions. 

• Recall that the inverse 
function of         is a 
function              
satisfying 





Suppose f(x) = x

3
+ x� 1. Compute the derivative of f

�1
at x = 1.




