1. Limits

1.1 Definition of a Limit

1.2 Computing Basic Limits
1.3 Continuity
1.4 Squeeze Theorem

1.1 Definition of a Limit

- The limit is the central object of calculus.
- It is a tool from which other fundamental definitions develop.
- The key difference between calculus and everything before is this idea.
- We say things like:
a function $f(x)$ has a limit at a point y
$\lim _{x \rightarrow y} f(x)=L$ if, for all $\epsilon>0$, there exists some $\delta>0$ such that if $0<|x-y|<\delta$, then $|f(x)-L|<\epsilon$.
- In other words, if a point x is close to y, then the outpoint $f(x)$ is close to L.
- The limit definition does not say $f(x)$ needs to exist!
- The special case when $f(x)$ exists and is equal to $\lim _{y \rightarrow x} f(y)$ is special, and will be discussed later.
- One can sometimes visually check if a limit exists, but the definition is very important too.
- It's a tough one the first time, but is a thing of great beauty.
1.2 Computing Basic Limits
- Computing limits can be easy or hard.
- A limit captures what the function looks like around a certain point, rather than at a certain point.
- To compute limits, you need to ignore the function's value, and only analyze what happens nearby.
- This is what the $\epsilon-\delta$ definition attempts to characterize.

Compute $\lim _{x \rightarrow 0}(x+1)^{2}$

Compute $\lim _{x \rightarrow-1} \frac{x^{2}+2 x+1}{x+1}$

Compute $\lim _{x \rightarrow 1} \frac{x^{2}+2 x+1}{x+1}$

Compute $\lim _{x \rightarrow 0} \frac{1}{x}$

Compute $\lim _{x \rightarrow 0}\left(\frac{\sqrt{x^{4}+x^{2}}}{x}\right)$
1.3 Continuity

- Sometimes, plugging into a function is the same as evaluating a limit. But not always!
- Continuity captures this property.
f is continuous at x if

$$
\lim _{y \rightarrow x} f(y)=f(x)
$$

- Intuitively, a function that is continuous at every point can be drawn without lifting the pen.
f is continuous if it is continuous at x for all x

Discuss the continuity of $f(x)= \begin{cases}\frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$

Discuss the continuity of $f(x)= \begin{cases}2 x+1 & \text { if } x \leq 1 \\ 3 x^{2} & \text { if } x>1\end{cases}$

- Polynomials, exponential functions, and sin, cos are continuous functions.
- Rational functions are continuous except at points where the denominator is 0 .
- Logarithm is continuous, because its domain is only $(0, \infty)$.

1.4 Squeeze Theorem

- There are no one-size-fits-all methods for computing limits.
- One technique that is useful for certain problems is to relate one limit to another.
- A foundational technique for this is based around the Squeeze Theorem.

Squeeze Theorem

Suppose $g(x) \leq f(x) \leq h(x)$ for some interval containing y.

$$
\Rightarrow \lim _{x \rightarrow y} g(x) \leq \lim _{x \rightarrow y} f(x) \leq \lim _{x \rightarrow y} h(x)
$$

- We will not prove this (or any, really) theorem.
- One classic application of the theorem is computing

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}
$$

- Direct substitution (which one should be very wary of when computing limits) fails.
- Indeed, plugging in $x=0$ yields

$$
\frac{\sin (0)}{0}=\frac{0}{0}=\mathrm{DNE}
$$

- An instructive exercise is to show that, for

$$
\cos (x) \leq \frac{\sin (x)}{x} \leq 1
$$

$$
\begin{aligned}
\Rightarrow \lim _{x \rightarrow 0} \cos (x) & \leq \lim _{x \rightarrow 0} \frac{\sin (x)}{x} \leq \lim _{x \rightarrow 0} 1 \\
\Rightarrow 1 & \leq \lim _{x \rightarrow 0} \frac{\sin (x)}{x} \leq 1 \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
\end{aligned}
$$

