1. Limits

1.1 Definition of a Limit

1.2 Computing Basic Limits

1.3 Continuity

1.4 Squeeze Theorem

1.1 Definition of a Limit

- The *limit* is the central object of calculus.
- It is a tool from which other fundamental definitions develop.
- The key difference between calculus and everything before is this idea.
- We say things like:
 - a function f(x) has a limit at a point y

 $\lim_{x\to y} f(x) = L$ if, for all $\epsilon > 0$, there exists some $\delta > 0$ such that if $0 < |x-y| < \delta$, then $|f(x)-L| < \epsilon$.

• In other words, if a point $\,x\,$ is close to $\,y\,$, then the outpoint f(x) is close to $\,L\,$.

- The limit definition does not say f(x) needs to exist!
- The special case when f(x) exists and is equal to $\lim_{y\to x} f(y)$ is special, and will be discussed later.

- One can sometimes
 visually check if a limit
 exists, but the definition is
 very important too.
- It's a tough one the first time, but is a thing of great beauty.

1.2 Computing Basic Limits

- Computing limits can be easy or hard.
- A limit captures what the function looks like around a certain point, rather than at a certain point.

 To compute limits, you need to ignore the function's value, and only analyze what happens nearby.

• This is what the $\epsilon-\delta$ definition attempts to characterize.

Compute
$$\lim_{x\to 0} (x+1)^2$$

Compute
$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{x + 1}$$

Compute
$$\lim_{x \to 1} \frac{x^2 + 2x + 1}{x + 1}$$

Compute
$$\lim_{x\to 0} \frac{1}{x}$$

Compute
$$\lim_{x \to 0} \left(\frac{\sqrt{x^4 + x^2}}{x} \right)$$

1.3 Continuity

 Sometimes, plugging into a function is the same as evaluating a limit. But not always!

• Continuity captures this property.

f is continuous at x if

$$\lim_{y \to x} f(y) = f(x)$$

 Intuitively, a function that is continuous at every point can be drawn without lifting the pen. f is continuous if it is continuous at x for all x

Discuss the continuity of $f(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

Discuss the continuity of $f(x) = \begin{cases} 2x+1 & \text{if } x \leq 1 \\ 3x^2 & \text{if } x > 1 \end{cases}$

- Polynomials, exponential functions, and \sin, \cos are continuous functions.
- Rational functions are continuous except at points where the denominator is 0.
- Logarithm is continuous, because its domain is only $(0,\infty)$.

1.4 Squeeze Theorem

- There are no one-sizefits-all methods for computing limits.
- One technique that is useful for certain problems is to relate one limit to another.
- A foundational technique for this is based around the Squeeze Theorem.

Squeeze Theorem

Suppose $g(x) \le f(x) \le h(x)$ for some interval containing y.

$$\Rightarrow \lim_{x \to y} g(x) \le \lim_{x \to y} f(x) \le \lim_{x \to y} h(x)$$

- We will not prove this (or any, really) theorem.
- One classic application of the theorem is computing

$$\lim_{x \to 0} \frac{\sin(x)}{x}$$

- Direct substitution (which one should be very wary of when computing limits) fails.
- Indeed, plugging in x = 0 yields

$$\frac{\sin(0)}{0} = \frac{0}{0} = DNE$$

An instructive exercise is to show that, for

$$\cos(x) \le \frac{\sin(x)}{x} \le 1$$

$$\Rightarrow \lim_{x \to 0} \cos(x) \le \lim_{x \to 0} \frac{\sin(x)}{x} \le \lim_{x \to 0} 1$$

$$\Rightarrow 1 \le \lim_{x \to 0} \frac{\sin(x)}{x} \le 1$$

$$\Rightarrow \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$