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1.1 Definition of a Limit



• The limit is the central 
object of calculus. 

• It is a tool from which other 
fundamental definitions 
develop. 

• The key difference between 
calculus and everything 
before is this idea. 

• We say things like:
a function f(x) has a limit at a point y



• In other words, if a point       is close to     , 
then the outpoint         is close to     .

y
x

L
f(x)

lim

x!y

f(x) = L if, for all ✏ > 0, there exists some � > 0

such that if 0 < |x� y| < �, then |f(x)� L| < ✏.



• The limit definition does not 
say          needs to exist! 

• The special case when         
exists and is equal to              
is special, and will be 
discussed later.

f(x)

f(x)
lim
y!x

f(y)



• One can sometimes 
visually check if a limit 
exists, but the definition is 
very important too.  

• It’s a tough one the first 
time, but is a thing of 
great beauty.



1.2 Computing Basic Limits



• Computing limits can be 
easy or hard. 

• A limit captures what the 
function looks like around 
a certain point, rather than 
at a certain point.



• To compute limits, you 
need to ignore the 
function’s value, and only 
analyze what happens 
nearby. 

• This is what the           
definition attempts to 
characterize.

✏� �



Compute lim

x!0
(x+ 1)

2



Compute lim

x!�1

x

2
+ 2x+ 1

x+ 1



Compute lim

x!1

x

2
+ 2x+ 1

x+ 1



Compute lim

x!0

1

x



Compute lim

x!0

 p
x

4
+ x

2

x

!



1.3 Continuity



• Sometimes, plugging 
into a function is the 
same as evaluating a 
limit. But not always! 

• Continuity captures this 
property.

f is continuous at x if

lim
y!x

f(y) = f(x)



• Intuitively, a function 
that is continuous at 
every point can be 
drawn without lifting the 
pen.



f is continuous if it is continuous at x for all x



Discuss the continuity of f(x) =

(
1
x

if x 6= 0

0 if x = 0



Discuss the continuity of f(x) =

(
2x+ 1 if x  1

3x

2
if x > 1



• Polynomials, exponential 
functions, and             are 
continuous functions. 

• Rational functions are 
continuous except at 
points where the 
denominator is 0. 

• Logarithm is continuous, 
because its domain is 
only            .

sin, cos

(0,1)



1.4 Squeeze Theorem



• There are no one-size-
fits-all methods for 
computing limits.   

• One technique that is 
useful for certain 
problems is to relate one 
limit to another.   

• A foundational technique 
for this is based around 
the Squeeze Theorem.  



Suppose g(x)  f(x)  h(x) for some interval containing y.

) lim
x!y

g(x)  lim
x!y

f(x)  lim
x!y

h(x)

Squeeze Theorem



• We will not prove this (or 
any, really)  theorem. 

• One classic application of 
the theorem is computing 

lim
x!0

sin(x)

x



• Direct substitution (which 
one should be very wary 
of when computing 
limits) fails.   

• Indeed, plugging in            
yields 

x = 0

sin(0)

0
=

0

0
= DNE



• An instructive exercise is to 
show that, for  

cos(x)  sin(x)

x

 1

) lim

x!0
cos(x)  lim

x!0

sin(x)

x

 lim

x!0
1

) 1  lim
x!0

sin(x)

x

 1

) lim
x!0

sin(x)

x

= 1
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2.1 Tangent Lines



• Before we do any heavy 
lifting, let’s get a mental 
picture.   

• One of the classical ideas 
behind calculus is the 
notion of tangent line to a 
function.  

• This will motivate the limit 
definition of a derivative 
in the next submodule.



• A line is tangent to a 
function if it intersects it 
only once. 

• This is somewhat of a 
simplification, in that the 
line is allowed to intersect 
multiple times outside of 
some small interval, but 
that is more advanced and 
theoretical than we will 
get into.



• Tangent lines can be 
constructed as limits of 
secant lines, i.e. lines that 
intersect a function in 
exactly two points.









• The slopes of the secant 
lines are computed 
using the classical 
slope formula. 

• If a line passes through:                                 

   then the slope of the    
   line is 



• What is the slope of the 
tangent line?  We need 
limits!  This gives us the 
formal definition of the 
derivative!!!



2.2 Definition of Derivative 



• The derivative is one of 
the two central objects 
in calculus.  

• It measures rate of 
change of a function.



• In module 2, we will 
discuss methods for 
computing it, and 
discuss its geometric 
role. 

• In module 3, we will use 
it as a tool to solve real-
world problems.



• The slopes of the secant 
lines are computed using 
the classical slope 
formula. 

• If a line passes through:  

   then the slope of the line  
   is



• What is the slope of the 
tangent line?  We need 
limits!  This gives us the 
formal definition of the 
derivative!!!



f

0(x) = lim
h!0

f(x+ h)� f(x)

h

Let f(x) be a function. The derivative of f at x is



• So, the derivative is 
defined in terms of a limit. 

• Notice that plugging in         
yields 0/0, so we must be 
careful. 

• In later submodules, we 
will develop some nice 
tricks and formulae.

h = 0



Let f(x) = x. Compute f

0
(x).



Let f(x) = x

2
. Compute f

0
(x).



2.3 Rates of Change



• Recall that for a general function        , 
the slope of the secant line through      
may be interpreted as the average rate 
of change of    on          . 

• More precisely, 



• Let                  .  Then we can say that  

• This looks an awful lot like the 
definition of the derivative! 

• Simply take the limit as 



• This shrinks the interval in question 
to        alone. 

• We conclude that  

• So, derivatives are equal to 
instantaneous rates of changes.







2.4 Derivative Rules



2.4.1 Fundamental  
  Derivative Rules 

2.4.2 Chain Rule 

2.4.3 Derivatives of  
         Exponential and  
         Logarithmic  
         Functions



2.4.4 Trigonometric  
         Derivatives 

2.4.5 Derivatives of  
         Inverse  
         Trigonometric  
         Functions



2.4.1 Fundamental Derivative Rules



• The limit definition of the 
derivative is not always 
very convenient.   

• For practical purposes, it is 
nice to know exactly how 
this definition works for 
certain types of functions.   

• The following results are 
not obvious, but we will not 
prove them in this course.



Derivative of a Constant

[a]0 = 0



Derivative of a 
Polynomial

[xa]0 = ax

a�1
, if a 6= 0



Let f(x) = x

4
. Compute f

0
(x).



Derivative of a Sum

[f(x) + g(x)]0 = f

0(x) + g

0(x)



Let f(x) = x

3 � 2x+ 1. Compute f

0
(x).



Derivative of a Product

[f(x) · g(x)]0 = f

0(x) · g(x) + f(x) · g0(x)



Let f(x) = (x+ 1)

p
x. Compute f

0
(x).



Derivative of a Quotient


f(x)

g(x)

�0
=

f

0(x) · g(x)� f(x) · g0(x)
g(x)2



Let f(x) =

2x� 3

x

4
+ 1

. Compute f

0
(x).



2.4.2 Chain Rule



• The chain rule is 
arguably to most 
foundational property 
of derivatives. 

• It tells how to compute 
the derivation of a 
composition of 
functions, i.e. a function 
of the form 
f(x) = g � h(x) = g(h(x))



[g � h(x)]0 = [g0 � h(x)] · h0(x)

i.e. [g(h(x))]0 = [g0(h(x))] · h0(x)



Compute the derivative of f(x) = (3x+ 2)

�2



Compute the derivative of f(x) = (x

2
+ 2)

3
p
4x+ 1



• What if we are considering 
just plain old            that 
does not appear to have 
the form of a composition?  

• Well, we may always write: 

• Taking derivatives and 
applying the chain rule 
yields:

f(x)

f(x) = f(g(x)), g(x) = x



• This emphasizes that we 
are always implicitly using 
the chain rule, even when it 
might appear there is no 
composition.  

f

0(x) =f

0(g(x)) · g0(x)
=f

0(x) · 1
=f

0(x)



• It may be necessary to apply the chain rule iteratively:

[f(g(h(x)))]0 = f

0(g(h(x))) · g0(h(x)) · h0(x)



Compute the derivative of f(x) = (

p
x

2 � 1� 2)

�1



2.4.3 Derivatives of Exponential and 
Logarithmic Functions



• The exponential function 
with base    is rather simple 
from the calculus 
standpoint.  

• More general exponential 
functions have a slightly 
more delicate formula:

e

[ex]0 = ex

[ax]0 = ax · ln(a)



Compute

d

dx

⇥
e

2x
⇤



Compute

d

dz

h
ez

2

+ 4z
i



Compute

d

dx

h
xe

x

3
i



• By contrast, logarithms 
are somewhat trickier.  
Derivatives of logarithms 
do not stay as logarithms:  

[ln(x)]0 =
1

x

[loga(x)]
0
=

1

ln(a)x



Compute

d

dx

⇥
ln(x

2
)

⇤



Compute

d

dy

⇥
ln(y + y4)

⇤



Compute

d

dx

⇥
ln(e

2x+1
)

⇤



2.4.4 Trigonometric Derivatives  



• The trigonometric 
functions all have 
derivatives that related to 
other trigonometric 
functions.   

• The foundational ones 
are:

d

dx

[sin(x)] = cos(x)

d

dx

[cos(x)] = � sin(x)



Compute

d

dx

[cos(x

2
+ 1)]



• We can use decompose into                      and then 
use the quotient rule to compute the derivatives of 
the remaining trigonometric functions. 

• We will prove that   

• Proving the rest of the trigonometric derivatives in a 
similar way is an excellent exercise.

sin(x), cos(x)

d

dx

[tan(x)] = sec(x)2





d

dx

[sec(x)] = sec(x) tan(x)

d

dx

[csc(x)] = � csc(x) cot(x)

d

dx

[cot(x)] = � csc(x)

2



Compute [tan(✓ + 1)]

0



Let f(x) = csc(x

2
). Compute f

0
(x).



2.4.5 Derivatives of Inverse 
Trigonometric Functions



• The inverse trigonometric 
functions also have 
derivatives that ought to 
be committed to memory 
for the CLEP exam.



• We will see in a later 
submodule how to prove 
these formulae starting 
from a general principle 
for derivatives of inverse 
functions. 

• Until then, we will take the 
basic rules for granted.  











2.5 Higher Order Derivatives



• It is possible to 
differentiate a function  
multiple times.   

• The result of iterated 
differentiation is called a 
higher order derivative.



• First derivative: 

• Second derivative: 

• Third derivative: 

•       derivative: nth

f

0(x)

f

00(x)

f

(3)(x)

f

(n)(x)



Let f(x) = x

3 � 4x+ 1. Compute f

0
, f

00
, f

(3)



Let f(x) = e

x

2

. Compute f

0
, f

00
, f

(3)



Let f(x) = sin(2x). Find all values x for which f

00
= 1.



Let f(x) = ln(g(x)). Compute f

00
(x) in terms of g(x).



2.6 Implicit Differentiation



• All of our work has so far 
focused on differentiating 
a function where there 
was only one variable: 

• We may at times come 
across an expression 
involving both  

• In this case,    is implicitly 
a function of    .

f(x) = something depending on x

x and y

y
x



• We differentiate in this case 
by noting that: 

• This allows us to 
differentiate both sides of an 
expression, and solve for 
the resulting    .

d

dx

[y] = y

0
,

d

dx

[x] = 1.

y0



Solve for y

0
: 2xy + y

2
= 1



Solve for y

0
:

p
y + 1 + x

2
= y



Solve for y

0
: e

xy�1
= x

2



2.7 L’Hôpital’s Rule



• Recall that certain 
quantities are not well-
defined: 

• These indeterminate 
forms sometimes arise 
when taking limits of 
rational functions, i.e. 
computing limits of the 
form  

0

0
,
1
1

lim
x!y

f(x)

g(x)



• In these special indeterminate cases, 
one can apply manipulations to           
in order to compute the limit. 

• Another, slicker, trick is to use 
L’Hôpital’s rule, which we state 
loosely as 

f(x)

g(x)

If lim

x!y

f(x) = lim

x!y

g(x) = 0 or ±1,

then lim

x!y

f(x)

g(x)

= lim

x!y

f

0
(x)

g

0
(x)

, provided the second limit exists.



Compute lim

x!1

x+ 1

3x� 1



Compute lim

x!0

e

x � 1

x



Compute lim

x!2

x

3 � 8

x� 2



Compute lim

x!0

sin(x)

x



Compute lim

x!0

cos(x)

x



2.8 Some Classic Theoretical Results



• This is not a course in 
theory, but certain 
results are important for 
the CLEP.   

• Proving these would be 
an excellent learning 
experience, but is 
certainly not necessary.  
A basic understanding 
would suffice for the 
CLEP exam.



Differentiability Implies Continuity

Suppose a function f is di↵erentiable at a point x.

Then f is continuous at x.



Rolle’s Theorem 

Suppose a function f is di↵erentiable on an interval (a, b).

If f(a) = f(b), then there is a point c, a < c < b such that f 0
(c) = 0.



2.9 Derivatives of Inverse Functions



• We have seen already 
some special examples 
of derivatives of inverse 
functions: inverse 
trigonometric functions. 

• Recall that the inverse 
function of         is a 
function              
satisfying 





Suppose f(x) = x

3
+ x� 1. Compute the derivative of f

�1
at x = 1.





3. Applications of the Derivative



3.1 Plotting with  
      Derivatives 

3.2 Rate of Change  
      Problems 

3.3 Some Physics  
      Problems



3.1 Plotting with Derivatives



3.1.1 Increasing and  
         Decreasing  
         Functions 

3.1.2 Extrema 

3.1.3 Concavity



3.1.1 Increasing and Decreasing Functions



• Recall that the 
derivative of a function 
corresponds to the rate 
of change of a function.   

• If the rate of change is 
positive, we say the 
function is increasing.



• If it is negative, we say it 
is decreasing.   

• We can quantify this by 
discussing the sign of 
the derivative.



• Let         be a function.   

• If                 , then         is 
increasing at      . 

• If                 , then         is 
decreasing at      . 

• If                  , no 
definitive conclusion 
can be made without 
further analysis.



• Note that a function may 
not even be differentiable 
and still be increasing/
decreasing.   









3.1.2 Extrema



• We have seen that: 

• So, what about if 

• This is perhaps the most 
exciting aspect of 
differential calculus, and is 
a major reason it is studied 
by all kinds of people. 



• Suppose  

• Then     transitions from 
decreasing to increasing at 

• This means         has a local 
minimum at   





• Suppose  

• Then     transitions from 
increasing to decreasing at 

• This means         has a local 
maximum at   





• A classic calculus problem 
is to find the local extrema 
(minima and maxima) of a 
function.   

• To do so, set the derivative 
equal to 0 and check how 
the derivative changes 
sign.   

• Not every place the 
derivative equals zero is a 
local extrema, however.







3.1.3 Concavity



• We saw in the previous 
submodule that the 
properties of a function 
being increasing, 
decreasing, and its local 
extrema are governed by 
its first derivative,  

• A more subtle notion, 
concavity, is governed by 
the second derivative, 



• A loose metaphor is in 
order: when plotting a 
function, try pouring 
water on it. 

• If the function holds the 
water, it is concave up 
there. 

• If it doesn’t hold water, it 
is concave down there.



• A function         is concave up 
wherever  

• A function         is concave down 
wherever  





• The second derivative can also be 
used to classify critical points, i.e. 
points where  

• Second Derivative Test: 





3.2 Rate of Change 



• A classic application of the derivate is to compute 
the instantaneous rate of change of a quantity. 

• Recall that the instantaneous rate of change of         
at           is 

• In contrast, the average rate of change of         on 
the interval              is     









3.3 Some Physics Problems



• Another classic application of 
derivatives is related to the 
physical laws of motion.   

• In this context, a one-
dimensional particle’s 
position is given by a function  

• Related quantities, like its 
velocity        and its 
acceleration        may be 
understood as certain 
derivatives of the position.        



• Let the position of a particle be 
given by 

• The velocity of the particle is 
given by 

• The acceleration of the particle 
is given by  

• So, velocity is the rate of 
change of position, and 
acceleration is the rate of 
change of velocity.





Suppose a one-dimensional particle has position p(t) = ln(t4 + t2), t > 0.

Show that the particle never changes direction.



4. Theory of the Integral



4.1 Antidifferentiation 

4.2 The Definite Integral 

4.3 Riemann Sums



4.4 The Fundamental  
      Theorem of  
      Calculus 

4.5 Fundamental  
      Integration Rules 

4.6 U-Substitutions



4.1 Antidifferentiation



• We will begin our study of the integral 
by discussing antidifferentiation. 

• As you might expect, this is the 
process of undoing a derivative.  

Let f(x) be a function. A function F (x) is an

antiderivative of f(x) if F

0
(x) = f(x).



Let f(x) = 1. Find an antiderivative of f(x).



Let f(x) = sin(x). Find an antiderivative of f(x).



Let f(x) = e

2x
. Find an antiderivative of f(x).



• Notice that I am asking to 
find an antiderivative, not 
the antiderivative.   

• That is because 
antiderivatives are not 
unique! 

• Indeed, if          is an 
antiderivative for        , then                  

                   is also an  
   antiderivative for any  
   constant     . 

F (x)
f(x)

F (x) + C

C



4.2 Definite Integral



• We will relate the 
antiderivative to another 
important object: the definite 
integral. 

• This is a quantity that 
depends on two endpoint 
values,      , and a function,   

• It is written as 

a, b
f(x).

Z b

a
f(x)dx.



• The definite integral has many 
important interpretations.   

• The most significant for us is 
area under the curve          
from     to  

• It is not obvious how to 
compute the area under the 
curve of a general function—
this is the power of calculus!   

• Let’s start with simple things.

f(x)
a b.



Compute

Z 2

0
3dx.



Compute

Z 1

�1
xdx.



Compute

Z 5

0
2xdx.



4.3 Riemann Sums



4.3.1 Riemman Sums Part I 

 4.3.2 Riemman Sums Part II



4.3.1 Riemann Sums Part I



• We have seen how to 
compute definite integrals 
of functions with certain 
simple properties, by 
exploiting well-known area 
formulas from geometry. 

• What can we do in general?  
Not much yet.   

• We can, however, 
approximate the area with 
Riemann sums.  



• A Riemann sum 
approximates an integral by 
covering the area beneath 
the curve with rectangles.  

• The areas of the these 
rectangles are more easily 
computed.



• This is because the width of 
these rectangles is fixed, 
and the height is given by 
the value of the function at 
a given point.   

• Programmers—try coding 
this!  It’s a classic.  







Estimate

Z 4

0
x

2
dx with left and right Riemann sums of width 1.



4.3.2 Riemann Sums Part II



Estimate

Z 2

�1
(1� x)dx with left and right Riemann sums of width 1.



4.4 The Fundamental Theorem of 
Calculus



• The fundamental theorem 
of calculus is a classic 
result. 

• It links the derivative and 
the integral.



• We will not prove it, 
though we will use it 
extensively to compute 
areas under curves. 

• Intuitively, definite 
integrals can be 
computed by evaluating 
an antiderivative at the 
endpoints of integration.



Suppose f has antiderivative F (x). Then

Z b

a
f(x)dx = F (b)� F (a).



Compute

Z 2

0
x

2
dx.



Compute

Z 2⇡

0
cos(x)dx.



• When no particular 
endpoints are specified, 
the FTC suggests that we 
write  

• Here,       is an arbitrary 
constant.

Z
f(x) = F (x) + C

C



Compute

Z
e

3x
dx.



Compute

Z
2

x

dx.



• Another way to interpret the 
FTC is as stating that the 
derivative and integral undo 
each other. 

• More precisely, 

• This is valid for all         likely 
to appear on the CLEP exam. 

d

dx

Z
f(x)dx = f(x)

f(x)



4.5 Basic Integral Rules



4.5.1 Basic Integral  
         Rules I 

4.5.2 Basic Integral  
         Rules II



4.5.1 Basic Integral Rules I



• Using the FTC, we see that 
all the basic derivative 
rules apply, in an inverted 
way, to integrals. 

• This means that to know 
the basic rules for 
integrals, it suffices to 
know the basic rules for 
derivatives.



For constants a, b,

Z
(af(x) + bg(x))dx = a

Z
f(x)dx+ b

Z
g(x)dx



If n 6= �1,

Z
x

n
dx =

1

n+ 1
x

n+1 + C

If n = �1,

Z
x

n
dx = ln(x) + C



Compute

Z
(x

3
+ 2x� 3)dx



Compute

Z
(x

�1
+ 1)dx



Z
e

x

dx = e

x + C



Compute

Z ✓
�4

x

+ 2e

x

◆
dx



4.5.2 Basic Integral Rules II



Compute

Z
(sin(x) + x

2
)dx



Z
sin(x)dx = � cos(x) + C

Z
cos(x)dx = sin(x) + C



Z
tan(x)dx = � ln | cos(x)|+ C

Z
sec(x)dx = ln | tan(x) + sec(x)|+ C



Compute

Z
(tan(✓)� cos(✓))d✓



Z
dxp
1� x

2
= arcsin(x) + C

Z
dx

1 + x

2
= arctan(x) + C

Z
dx

|x|
p
x

2 � 1
= sec�1(x) + C



Compute

Z �3dxp
4� 4x

2



Compute

Z
dy

2|y|
p
y2 � 1



4.6 U-Substitutions 



• There are many more 
sophisticated types of 
integration methods.

• These include those based 
on the product rule 
(integration by parts), special 
properties of trigonometric 
functions (trig. substitutions), 
and those based on tedious 
algebra (partial fraction 
decomposition).



• We focus on a method 
based on the chain rule.  



• Recall that to compute the 
derivative of a composition of 
functions, we use the chain 
rule: 

• According to the FTC,  

• Hence, 

d

dx

f(g(x)) = f

0(g(x)) · g0(x).

Z
f

0(g(x))g0(x)dx = f(g(x)) + C

Z
d

dx

f(g(x)) = f(g(x)) + C.



Compute

Z
xe

x

2

dx



Compute

Z
cos(4x+ 1)dx



Compute

Z
x

3
p

x

4
+ 1dx



Compute

Z
tan(x)dx



5. Applications of the Integral



5.1 Area Under Curves 

5.2 Average Value 

5.3 Growth and Decay  
      Models 

5.4 Return to Physics  
      Problems



5.1 Area Under Curves



5.1.1 Area Under Curves  
         Part I 

5.1.2 Area Under Curves  
         Part II



5.1.1 Area Under Curves Part I



• One of the classic 
applications of the integral 
is to compute areas. 

• We defined the integral to 
be the area under the curve: 

Z b

a
f(x)dx = area under f from a to b



Compute the area between x

2
and the x-axis from x = 0 to x = 4.



• By convention, areas are positive.  So 
if          is negative on         

• Geometry also informs the following 
result:

f(x) [a, b],

�
Z b

a
f(x)dx = area under f from a to b

Z b

a
f(x)dx =

Z c

a
f(x)dx+

Z b

c
f(x)dx, if a < c < b.



5.1.2 Area Under Curves Part II



• One can also compute the 
area between two curves with 
the integral.  

• Suppose  

• The area between                 
on         is  

f(x) � g(x) on [a, b].

f(x), g(x)
[a, b]

Z b

a
(f(x)� g(x))dx.



Compute the area between f(x) = sin(x) and g(x) = cos(x) on

h
0,

⇡

4

i
.



Compute the area between f(x) = sin(x) and g(x) = cos(x) on

h
0,

⇡

2

i
.



Compute the area between f(x) = x and g(x) = x

2
on [0, 1] .



5.2 Average Value



• The integral also has an interpretation as the 
average of a function’s value over an interval. 

• This makes sense if you recall that an integral                           
is approximated by Riemann sums, which are 
just rectangles whose heights are the function’s 
values. 

• The following statement is also worth 
considering for constant functions, which clearly 
have constant average.  

Z b

a
f(x)dx



• The average value of         on the interval         is   

• So, we compute the integral, then divide by the 
length of the interval. 

• Interpreting the integral as a sum, this bears 
resemblance to how the average of a finite set of 
numbers is computed.

f(x) [a, b]

1

b� a

Z b

a
f(x)dx



Compute the average value of ln(x) on [1, 100].



Compute the average value of

1

x

2
+ 1

on [�1, 1].



5.3 Growth and Decay Models



• The integral allows us to 
solve certain basic 
differential equations.   

• Differential equations is a 
huge world of 
mathematics, and a 
subject with many 
problems without 
solutions.



• It is a field of active 
research, including with 
computers. 

• We will focus on an 
simple differential 
equation on the CLEP 
exam.



• Consider the equation in 
terms of the unknown 
function  

• To solve for           we do 
some algebra and recall 
the chain rule and formula 
for the derivative of 

y(x) :

y0 = ky, some constant k.

y(x),

ln(x).



y

0 = ky

, y

0

y

= k

,
Z

y

0

y

dx =

Z
kdx

, ln(y) = kx+ C

, y(x) = Ce

kx



• If             we have 
exponential growth. 

• If            we have 
exponential decay. 

• The constant            is 
determined based on 
details in the problem, 
noting that 

k > 0,

k < 0,

C > 0

y(0) = C.



Suppose y0 = 2y, y(0) = 100. Find y(5).



Suppose y

0
= �5y, y(0) = 1000. Find x such that y(x) = 1.



5.4 Return to Physics



• Just as we used 
derivatives to understand 
position, velocity, and 
acceleration of a one-
dimensional particle, so 
too can we use integrals. 

• We simply follow the 
fundamental theory of 
calculus:
Z b

a
f

0(x)dx = f(b)� f(a).



• Let        be the instantaneous 
velocity of a particle at time  

• The position of the particle at 
time     is        and satisfies   

v(t)
t.

t p(t)

p0(t) =v(t)

)
Z b

a
p0(t)dt =

Z b

a
v(t)dt

) p(b) =p(a) +

Z b

a
v(t)dt.



Suppose a particle has instantaneous velocity v(t) = �t2

and initial position p(0) = 10. Find p(5).



• A similar game can be 
played with acceleration: 

• With this formula for 
velocity, we can keep going 
and get a formula for 
position.

v0(t) = a(t)

)
Z t1

t0

v0(t)dt =

Z t1

t0

a(t)dt

) v(t1) = v(t0) +

Z t1

t0

a(t)dt.





Suppose a particle has instantaneous acceleration a(t) = �10,

initial position p(0) = 0, and initial velocity v(0) = 0. Find p(5).


