CSCE 5300: Introduction to Big data and Data Science

Spring 2024

Course Information & Syllabus

Class Timings: Tue 5:30 PM - 8:20 PM
Location: NTDP E266

Instructor: Dr. Zeenat Tariq
Pronouns: she/her
Office Location: Discovery Park, E235M
Office timings: T/Th 4:30 PM - 5:30 PM (by appointment)
Email: Zeenat.Tariq@unt.edu

Syllabus

Course Description

This course aims to provide the opportunity to walk through hands-on examples with Hadoop, AWS, Cassandra and Spark frameworks. This course will introduce developers to the AWS, Hadoop and Hadoop-based ecosystem, focusing on multiple programming models including MapReduce, Hive, Solr and Lucene, Cassandra, and Apache Spark. Use these technologies for applications. Students will obtain the skills and knowledge about Hadoop architecture, software stack, and an execution environment and learn to implement Big Data applications with Hadoop, AWS, Cassandra and Spark. Students will build applied programming skills using case studies such as Public-Sector Services. Healthcare, Business, Learning Services. In addition to “lecture” classes, each student will participate in an in-class coding exercise if required.

Learning Outcomes

By the end of the course, students will be able to:

1. Understand the advances in the Big Data era, challenges, and opportunities for improving outcomes.
2. Use Data Science and Big Data tools to obtain, assess, and prepare data for analysis.
3. Articulate key advances in contemporary Data Science and describe the skillsets needed to be successful in a data science career.
4. Manage collections of data, create automated processes for analysis, use collaborative tools, and rapidly report quantitative findings.
5. Understand the application of data science tools across domain areas. These include model selection and validation, predictive modeling, and parameter tuning.
6. Become familiar with parallel and distributed computing environments and the capabilities they offer to support big data analytics

Course Prerequisites or Other Restrictions

- Basic knowledge of statistics, linux commands, SQL, data structures and algorithms.
- Problem solving skills.
- Familiarity with Programming (for programming activities/assignments). Basic of programming knowledge (Java and Python) is required.

Targeted audience: Graduate students from Computer Science and related areas.

Attendance: Attendance is essential for success in any endeavor, and it is the same for this graduate course. Consistency in attending classes is expected.

Materials

Required Textbook:

The textbook is not necessary for this course as technology is rapidly changing. However, the lectures and topic-based tutorials will be posted via Canvas throughout the semester. Students are also encouraged to consult online sources which will be referenced throughout the course.

Tentative Topics and Course Schedule (subject to change based on learning rate in class)

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Course/Topics</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan 15 - 20</td>
<td>Big Data Overview</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Jan 21 - 27</td>
<td>Introduction to HDFS and visualizations, Installations</td>
<td></td>
</tr>
<tr>
<td>Week</td>
<td>Dates</td>
<td>Topic/Project</td>
<td>Notes</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>3</td>
<td>Jan 28 - Feb 3</td>
<td>HDFS/ Map Reduce Application</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Feb 4 - 10</td>
<td>Hadoop Dependent Query Based No SQL Database Hive</td>
<td>Project idea/Proposal</td>
</tr>
<tr>
<td>5</td>
<td>Feb 11 - 17</td>
<td>Parallel Indexing: Solr & Lucene</td>
<td>Quiz 1</td>
</tr>
<tr>
<td>6</td>
<td>Feb 18 - 24</td>
<td>Independent Column Based No SQL Database: Cassandra</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Feb 25 - Mar 2</td>
<td>Data Visualization</td>
<td>Assignment 1</td>
</tr>
<tr>
<td>8</td>
<td>Mar 3 - 9</td>
<td>Intro to Spark, Spark Programming with RDDs and applications</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Mar 10 - 16</td>
<td>Spring Break</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Mar 17 - 23</td>
<td>Spark with Data Frames and SQL</td>
<td>Quiz2</td>
</tr>
<tr>
<td>10</td>
<td>Mar 24 - 30</td>
<td>Machine Learning concepts and Big Data Analytics Application</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Apr 7 - Apr 13</td>
<td>Machine Learning methods</td>
<td>Assignment 2</td>
</tr>
<tr>
<td>12</td>
<td>Apr 14 - Apr 20</td>
<td>Deep Learning Concepts</td>
<td>Quiz 3</td>
</tr>
<tr>
<td>13</td>
<td>Apr 21 - 27</td>
<td>Spark Programming with RDD and Streaming, Parallel Computing</td>
<td>Final Project Presentation</td>
</tr>
<tr>
<td>15</td>
<td>Apr 28 - May 4</td>
<td>Spark GraphX, GraphFrames, and Graph Analytics Applications</td>
<td>Review Session</td>
</tr>
<tr>
<td>16</td>
<td>May 5 – 11</td>
<td>Best Exam</td>
<td></td>
</tr>
</tbody>
</table>

Teaching Philosophy

I believe that the best way to really learn and understand concepts in computer science is to implement the techniques and perform the operations in an applied manner. While the process of reading examples and proofs in textbooks and lecture notes is valuable, real learning comes through one’s own efforts in debugging and solving logical and programming problems. I have a very hands-on approach to teaching, which includes coding-on-the-fly and describing how programs work, which typically requires students to be present in the lecture. I would encourage
students to use this opportunity to really learn and develop the skills covered in this class that will prepare you for entering a career in industry or furthering your education.

Course Requirements

Quizzes, Participation activities (hands on experience), Assignment, Conceptual Project Presentation, and Exam

Participation activities: Activities are designed to engage you in your learning, so you can begin to apply these principles in practice and tailor them to your needs. You will get hands on different concepts/examples in big data and data science. Your participation in activities will be counted towards your final grade. There will be no specific due dates for the activities. The activities will be given during the class session and expected to be completed during that time. However, if some students are unable to attend the session they can complete it remotely.

Assignments: There will be 2/3 assignments in the semester. The due date will be specified once the assignment is posted. Reports are to be turned in as PDF. Code is to be turned in with both Jupyter notebook/source code and PDF form, along with any files necessary to run your assignment. Results should be presentable, with appropriate comments for someone to follow what you have done. All assignments must be turned in individually, although students are encouraged to work together extensively.

Project Presentation (Conceptual): After a few weeks into the course, you will be working on project (conceptual idea) and present the work by the end of semester. You are required to work as a team. This is your opportunity to demonstrate what you have learned in a way that reaches beyond the selection of tools, data sets, and approaches demonstrated in the course. Commonly students find a unique, complex data set and associated learning problem and apply the techniques presented in the class. The goal here is to create a coherent, completed work for presentation at the end of class. Essentially ask yourself what you would want to show an employer (or brag about to others) demonstrating what you have learned in the course.

Quizzes: These quizzes are meant to focus students on the important aspects of the readings or lectures. You will be allowed to take the open book quizzes on canvas in class in person. You will be notified about the quiz one week prior taking it.

Exam: There will be one final Exam(closed book) and taken in class in person. Exam cannot be missed without prior arrangements or later documented proof of extenuating circumstances.

Grading

Grades are determined by a simple points system, with a total of at least 100 pts as the goal though more than 100 points are likely. The expected distribution of points is given below, with the exact scale determined by point values given for each component - this is subject to minor modification based on actual points given.
- 25% Participation activities
- 20% Assignments (2-3)
- 25% Presentation (Project Presentation)
- 15% Quizzes (Open book 3-4)
- 15% Exam
- Bonus (Possible one extra credit activity)

Grading Scale: A=90, B=80-89, C=70-79, D=60-69, F=0-59 pts. No exceptions. If class grades are low (e.g., I expect most students will end with A’s and B’s), rescaling of some of the components or extra assignment will be given to add points to the class.

Course Technology & Skills

Strongly Recommended: Laptop for in-class work/activities. Please come to the class with a laptop that has at least two CPU cores, 8GB memory, and a 200GB hard drive. Securing and maintaining compatible hardware for in-class exercises is your responsibility! **NO EXCEPTIONS.**

UNT Policies

Academic Integrity Policy

Academic Integrity Standards and Consequences. According to UNT Policy 06.003, Student Academic Integrity, academic dishonesty occurs when students engage in behaviors including, but not limited to cheating, fabrication, facilitating academic dishonesty, forgery, plagiarism, and sabotage. A finding of academic dishonesty may result in a range of academic penalties or sanctions ranging from admonition to expulsion from the University.

ADA Policy

UNT makes reasonable academic accommodation for students with disabilities. Students seeking accommodation must first register with the Office of Disability Accommodation (ODA) to verify their eligibility. If a disability is verified, the ODA will provide a student with an accommodation letter to be delivered to faculty to begin a private discussion regarding one’s specific course needs. Students may request accommodations at any time, however, ODA notices of accommodation should be provided as early as possible in the semester to avoid any delay in implementation. Note that students must obtain a new letter of accommodation for every semester and must meet with each faculty member prior to implementation in each class. For additional information see the [ODA website](https://disability.unt.edu/).

Emergency Notification & Procedures
UNT uses a system called Eagle Alert to quickly notify students with critical information in the event of an emergency (i.e., severe weather, campus closing, and health and public safety emergencies like chemical spills, fires, or violence). In the event of a university closure, please refer to Blackboard for contingency plans for covering course materials.

Retention of Student Records

Student records pertaining to this course are maintained in a secure location by the instructor of record. All records such as exams, answer sheets (with keys), and written papers submitted during the duration of the course are kept for at least one calendar year after course completion. Course work completed via the Blackboard online system, including grading information and comments, is also stored in a safe electronic environment for one year. Students have the right to view their individual record; however, information about student’s records will not be divulged to other individuals without proper written consent. Students are encouraged to review the Public Information Policy and the Family Educational Rights and Privacy Act (FERPA) laws and the University’s policy. See UNT Policy 10.10, Records Management and Retention for additional information.

Acceptable Student Behavior

Student behavior that interferes with an instructor’s ability to conduct a class or other students' opportunity to learn is unacceptable and disruptive and will not be tolerated in any instructional forum at UNT. Students engaging in unacceptable behavior will be directed to leave the classroom and the instructor may refer the student to the Dean of Students to consider whether the student's conduct violated the Code of Student Conduct. The University's expectations for student conduct apply to all instructional forums, including University and electronic classroom, labs, discussion groups, field trips, etc. Visit UNT’s [Code of Student Conduct](https://deanofstudents.unt.edu/conduct) to learn more.

Access to Information - Eagle Connect

Students’ access point for business and academic services at UNT is located at: my.unt.edu. All official communication from the University will be delivered to a student’s Eagle Connect account. For more information, please visit the website that explains Eagle Connect and how to forward e-mail [Eagle Connect](https://it.unt.edu/eagleconnect).

Student Evaluation Administration Dates

Student feedback is important and an essential part of participation in this course. The student evaluation of instruction is a requirement for all organized classes at UNT. The survey will be made available during weeks 13, 14 and 15 of the long semesters to provide students with an opportunity to evaluate how this course is taught. Students will receive an email from "UNT SPOT Course Evaluations via IASystem Notification" (no-reply@iasystem.org) with the survey link. Students should look for the email in their UNT email inbox. Simply click on the link and complete the survey. Once students complete the survey they will receive a confirmation email.
that the survey has been submitted. For additional information, please visit the SPOT website (http://spot.unt.edu/) or email spot@unt.edu.

Getting Help

Technical Assistance

UIT Help Desk (http://www.unt.edu/helpdesk/index.htm)

Email: helpdesk@unt.edu

Phone: 940-565-2324

In Person: Sage Hall, Room 130

Walk-In Availability: 8am-9pm

Telephone Availability:

- Sunday: noon-midnight
- Monday-Thursday: 8am-midnight
- Friday: 8am-8pm
- Saturday: 9am-5pm

Laptop Checkout: 8am-7pm

Student Support Services

- Registrar (https://registrar.unt.edu/registration)
- Financial Aid (https://financialaid.unt.edu/)
- Student Legal Services (https://studentaffairs.unt.edu/student-legal-services)
- Career Center (https://studentaffairs.unt.edu/career-center)
- Multicultural Center (https://edo.unt.edu/multicultural-center)
- Counseling and Testing Services (https://studentaffairs.unt.edu/counseling-and-testing-services)
- Student Affairs Care Team (https://studentaffairs.unt.edu/care)
- Student Health and Wellness Center (https://studentaffairs.unt.edu/student-health-and-wellness-center)
- Pride Alliance (https://edo.unt.edu/pridealliance)

Academic Support Services

- Academic Resource Center (https://clear.unt.edu/canvas/student-resources)
- Academic Success Center (https://success.unt.edu/asc)
- UNT Libraries (https://library.unt.edu/)
- Writing Lab (http://writingcenter.unt.edu/)
- MathLab (https://math.unt.edu/mathlab)