Instructor:	Xiaohua Li
Office:	NTDP F101G
Phone:	940-565-3446
Email:	xiaohua.li@unt.edu
Lecture Time:	MWF 10:00am-10:50am room B140
Office Hours:	Monday 3:00pm-5:00pm or by appointment.
Required Textbook:	Advanced Engineering Mathematics, 10 th edition
	Erwin Kreyszig
	ISBN-10: 0470458364
	ISBN-13: 978-0470458365

Course Description:

Applications of mathematical methods and computational techniques to typical problems in mechanical and energy engineering practice. Topics include vector calculus, numerical methods and probability and statistics.

Pre-requisites: MATH 2730.

Course Learning Outcomes (CLO):

Upon successful completion of this course, students will be able to:

- 1. Understand vectors and their operations in 2D and 3D space
- 2. Calculate vector integrals: line integrals, surface integrals and volume integrals
- 3. Find roots for algebra equation using Iterative method and Newton's method
- 4. Understand Lagrange, Newton and Spline interpolation method
- 5. Find numerical value for integration using Trapezoidal and Simpson's method
- 6. Solve linear equations using Gaussian elimination method and LU method
- 7. Solve ODE using Euler method and R-K method
- 8. Understand the basic idea of Galerkin and FEM method
- 9. Understand most common statistics distributions
- 10. Find the confidence interval of population mean and population proportion
- 11. Testing of Hypothesis for large and small samples

CLO	ABET Student Outcomes (SO)										
	SO1	SO2	SO3	SO4	SO5	SO6	SO7	SO8	SO9	SO10	SO11
1	Х				Х				Х		
2	Х				Х				Х		
3	Х				Х				Х		
4	Х				Х				Х		
5	Х				Х				Х		
6	Х				Х				Х		
7	Х				Х				Х		
8	Х				Х				Х		
9	Х				Х				Х		
10	Х				Х				Х		
11	Х				Х				Х		

Fall 2012

10%	≥ 90	А
10%	80-89.9	В
25%	70-79.9	С
25%	60-69.9	D
25%	< 60	F
5%		
100%		
	10% 25% 25% 25% 5%	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Homework: Homework is due one week after it is assigned, unless otherwise stated. Please turn in your homework on the due day before the lecture starts. <u>NO late</u> <u>homework will be collected.</u> Definition of "late": when the class is over and instructor steps out of the classroom, homework turned in thereafter is considered to be "late" and is not going to be collected.

Exam and Quiz: quizzes are open book and notes. Exams are closed book closed notes with one page of formula sheet (A4 size, both sides). **There will be NO make-up exam/quiz.** Only students who missed an exam with valid excuse (for instances: medical emergency of him/herself and close relatives, with valid hospital records or doctor's note) will be given make-up exam.

Disability Accommodations: If you need academic accommodations for disability you must have document which verifies the disability and makes you eligible for accommodations, then you can schedule an appointment with the instructor to make appropriate arrangements.

Academic Dishonesty:

<u>There is a zero tolerance policy</u>. Cheating of whatsoever will result in an automatic 'F' in this course and the matter will be turned over to the appropriate student disciplinary committee.

EXAM DATES

Exam #1 on Friday, October 5th, 10:00am-10:50am (12:00pm ?) Exam #2 on Friday, Nov 9th, 10:00am-10:50am (12:00pm ?) Exam #3 on Wednesday, Dec 12th, 8:00 a.m. - 10:00 a.m.

MEEN 3250 Analytical Methods for MEE Engineers Schedule Overview (Please note the schedule may change based on the needs during the semester)

Week	Date	Monday	Wednesday	Friday	HW Due
#1	Aug.27 th - Aug.31 st	-	Course overview, 9.1 Vectors in 2- Space and 3- Space	9.2 Inner Product 9.3 Cross Product	09/07
#2	Sep.3rd - Sept.7th	- No class	9.4 Vector and Scalar Functions and Fields. Derivatives	Curves. Arc Length. Curvature. Torsion	09/14
#3	Sept.10 th – Sept.14 th	Calculus Review: Functions of Several Variables; Gradient of a Scalar Field; directional derivatives, tangent planes;	extrema of functions of several variables; Lagrange multipliers	Divergence of a Vector Field Curl of a Vector Field	09/21
#4	Sept.17 th – Sept.21 st	10.1 Line Integrals 10.2 Path Independence of Line Integrals	10.3 Calculus Review: Double Integrals	10.4 Green's Theorem in the Plane	09/28
#5	Sept.24 th – Sept.28 th	10.5 Surfaces for Surface Integrals 10.6 Surface Integrals	10.7 Triple Integrals. Divergence Theorem of Gauss	10.8 Further Applications of the Divergence Theorem	10/05
#6	Oct.1 st – Oct. 5 th	10.9 Stokes's Theorem Review of vector calculus	Part III: Numerical methods: Read 19.1; 19.2 Solution of Equations by Iteration (Newton, Secant, Fixed- point)	Exam #1-vector calculus	10/12
#7	Oct. 8 th – Oct.12 th	19.2 Solution of Equations by Iteration (Newton, Secant, Fixed-point)	19.3 Interpolation: Lagrangian; Divided difference;	19.4: Spline interpolation	10/19
#8	Oct. 15 th – Oct.19 th	19.5 Numerical integration: rectangular, trapezoidal; Simpson rules (1/3,3/8): Numerical differentiation	20.1 linear system: Gauss elimination	20.2 linear system: LU factorization; Cholesky method	10/26
#9	Oct. 22 nd - Oct.26 th	20.3 sloution by Gauss-Seidel Iteration; Norm; ill-condition matrix	20.6 Eigenvalues 20.8 power method for Eigenvalues	21.1 Euler method; improved Euler method	11/02

#10	Oct. 29 th – Nov.2 nd	R-K method RKF method Backward Euler method	21.2 multistep methods: Adam- Bashforth and Adam-moulton method	21.3 Methods for higher order ODEs; Euler method; 4 th order RK	11/09	
#11	Nov.5 th –Nov.9 th	Handout: Boundary-value problem: Galerkin Method; FEM	Part III: Statistics 24.1 data representation, experiments, probability, basic theorems	Exam #2- Numerical methods	11/16	
#12	Nov.12 th -Nov.16 th	24.5 RV, pdf; 24.6 mean, Variance	24.7 Binomial, Poisson distribution	24.8 Normal distribution	-	
#13	Nov.19 th –Nov.23rd	24.9 Distribution of several RV: discrete/continuous, marginal, dependence, addition rules	25.2 point estimation 25.3 confidence interval: Large sample size, Small sample size	- No class Thanksgiving	11/30	
#14	Nov.26 th -Nov.30 th	25.3 confidence interval: Small sample size 25.3 Confidence interval: population proportion	25.4 Hypothesis testing: large sample mean, p- vale;	Hypothesis testing: p-vale;	12/07	
#15	Dec.3 rd – Dec. 7 th	25.4 Hypothesis testing: Small sample mean;	25.4 Hypothesis testing: Large sample population proportion	-	-	
#16	Dec. 12 th	Exam 3 - Statistics				