Course Syllabus
ADTA 5550 – Deep Learning with Big Data
COURSE INFORMATION
- ADTA 5550: Deep Learning with Big Data – SUMMER 2020
- ADTA 5550: 3 credit hours

Professor / Instructor Contact Information
- Professor: Thuan L Nguyen, PhD, Clinical Assistant Professor
- Office Location: UNT New College at Frisco #146
- Office Hours: Friday: 10:00 AM – 12:00 PM; Online by appointment
- Email Address: Thuan.Nguyen@unt.edu

About the Professor / Instructor

Welcome to ADTA 5550.701 – Deep Learning with Big Data. I would like to share a little information about my background. I finished my BS in computer science, MS in Management Information Systems, and PhD in Information Systems. I had nearly 20 years of work experience in software engineering and information systems (designing, developing, and administering software, hardware systems in telecommunication, networking, business information systems, and IT industries) and data analytics. After that, I started my research and teaching career, first at the University of Texas at Dallas (UTD) and then University of North Texas (UNT). Besides data analytics and machine learning, my current research interests also include the theories of knowledge management, intellectual capital, and their applications in firm operations.
Course Pre-requisites, Co-requisites, and/or Other Restrictions

- One of the courses: ADTA 5240, 5250, 5340
- Or the instructor consent
- Knowledge and skills in Python programming are required

Materials – Text, Readings, Supplementary Readings

No textbook is required for this course.

In addition to the articles listed in the document suggested_reading.docx (Getting Started - Canvas), the following books are for suggested reading:

Course Description

This course introduces the fundamentals of artificial neural networks (ANN), the bedrock foundation of the current trend in AI deep learning. The course provides the student with a guide through how to use TensorFlow, the most popular AI framework at present, to build artificial neural networks for deep learning. Besides TensorFlow, Keras, another widely used AI framework that is often used along with TensorFlow in deep-learning projects, will be discussed. The course focuses on the convolutional neural network that has driven the latest breakthroughs in the AI field, especially image recognition. This course covers both the theory and the practical implementation of the AI network. As the fundamentals are discussed, exemplary AI techniques will be employed to illustrate how AI deep learning theories can be applied to real-world solutions using various programming and system tools.
Course Objectives

Upon successful completion of this course, the learner will be able to:

1. Describe the history and practice of artificial intelligence (AI), machine learning and deep learning.
2. Explain key concepts and techniques of AI deep learning with artificial intelligence networks (ANN).
3. Explain the McCulloch-Pitts AI Neuron Model and its significance in the AI field.
4. Describe the core concepts of Perceptron and Multilayer Perceptron (MLP).
5. Build, train, test, and improve the performance of MLP’s using Keras and Python.
6. Explain the core concepts of the Convolutional Neural Network (CNN).
7. Describe the architecture of the Convolutional Neural Network (CNN).
8. Build, train, test, and improve the performance of CNN’s in image recognition projects.
9. Demonstrate the understanding and skills of using TensorFlow and Keras AI framework (plus Python) in AI projects with CNN’s on real-world data sets.
10. Demonstrate the understanding and skills of using the cloud computing in AI Deep Learning projects.

Course Topics

- Overview of AI, Machine Learning, and Deep Learning
- Linear Algebra for AI Deep Learning
- McCulloch-Pitss AI Neuron Model: Fundamentals of Artificial Neural Network (ANN)
- Perceptron, Multilayer Perceptron (MLP), and the Fully-Connected Neural Network
- ANN: Convolutional Neural Network (CNN): Core Concepts
- ANN: Convolutional Neural Network (CNN): Architecture and Core Layers
- ANN: Convolutional Neural Network (CNN) and Image Recognition
- AI Frameworks for Deep Learning with Image Recognition: TensorFlow and Keras
- Neural Network Programming on Image Recognition: TensorFlow, Keras, and Python
- Applied AI Deep Learning with Convolutional Neural Network in Image Recognition
- Setting up the Cloud Computing Environment for Deep Learning Research
Teaching Philosophy
For teaching, it is my main goal to create a teaching/learning environment in which students feel respected and valued, and they believe that they are capable contributors. As an instructor, it is my responsibility to determine exactly what I expect students to understand after completing my course, then to facilitate student learning so that every student reaches this level. I believe the essence of effective teaching is to provide students with real-world examples, encourage them to discuss the material, and offer them opportunities to practice what they have learned. I also believe that creating an active learning environment is an essential part of teaching. Asking questions, promoting discussion, and using real-world analogies are important in an interactive classroom that can enhance students’ learning and sustain their enthusiasm. I expect all students to make the best efforts with their class work, respect others, and participate in the class activities so that their experiences can add to the overall learning experience.

COURSE REQUIREMENTS

1. The student will be responsible for checking the announcements that are sent to his/her UNT email.

2. The student will access and follow all course instructions found in the syllabus, announcements, assignments, and all other class-related documents.

3. The student will complete all the class assignments in the time frame specified in the class documents including the course calendar to participate effectively in class activities.

4. The student will complete all the assessment tests and exams – if required – in the time frame specified in the class documents including the course calendar.

5. The student will complete all the projects – if required – in the time frame specified in the class documents including the course calendar.

COMMUNICATIONS

Interaction with Instructor: I look forward to getting to know all of you and working with you. Contact me anytime using my UNT email (Thuan.Nguyen@unt.edu). I will check messages daily and will make every effort to respond as quickly as possible. If you would like to meet me personally, we can meet in the office at UNT New College in Frisco #109 during the office hours (10:00 AM – 12:00 PM Fridays). Please let me know in advance if you intend to have an online meeting.
My goal is for you to enjoy this course, to learn how to engage in meaningful and useful online course activities, to gain a greater understanding of the topics associated with the fundamentals of data engineering, and to help you in any way that I can to be successful.

ASSIGNMENTS, ASSESSMENTS, and PROJECTS

There will be weekly discussions, except for the midterm take-home week and the final week.

- The student will respond to posted online course discussion questions each week following the instructions for discussion forums. For each student, he/she should submit his/her initial posts to respond to the discussion questions by the deadline provided on the Course Calendar. Then he/she should continue by posting responses to his/her classmates’ posts throughout the week to maximize points earned each week. Students are encouraged to enhance the conversation by providing complementary resource materials and properly referenced supplementary items.

There will be five homework assignments throughout the course.

- Students are required to submit their homework on time.

There will be one midterm take-home assignment.

- Midterm assignment: Due in Week 4.

There will be a final project.

- The student will complete a final project following the project instructions.
- Students will submit the final project by the deadline provided on the Course Calendar.

Make-Up Policy
No make-up assessment tests or exams will be offered except for being approved in advance. Students will be required to provide necessary documentation.

Late-work Policy
All assignments are to be submitted using the UNT email.
The deadline for submitting an assignment is 11:00 PM on the due date.
Late submissions can still be submitted up to 24 hours after the deadline. Assignments submitted within 24 hours after the due date/time will be subject to a 25% penalty. No submissions will be accepted later than 24 hours after the deadline.

NOTES: Late work is subject to penalty described above unless previously approved by the instructor.
Class Schedule
The following is a tentative schedule. Should any change become necessary, it will be announced in class as well as in the announcements sent via the UNT email. It is the student’s responsibility to check for changes in the schedule.

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topics</th>
<th>Suggested Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>06/01 - 06/07/2020</td>
<td>Course Overview
Introduction: AI and Technology Advancements
Overview: AI, Machine Learning, and Deep Learning
GOOGLE CLOUD PLATFORM: GCP for Deep Learning
Big Data: Structured and Unstructured Data (Review)
Introduction to Jupyter Notebook
Python: Introduction to Python (Review)
Python: Standard Data Structures (Review)
Homework Assignment 1: Assigned
Discussion: Personal Introduction</td>
<td>Readings: Week 1</td>
</tr>
<tr>
<td>3</td>
<td>06/15 - 06/21/2020</td>
<td>TensorFlow for Deep Learning Research
Keras: Another AI Framework for Deep Learning: Introduction
AI: Multilayer Perceptrons (MLPs)
MLPs (Fully Connected Neural Networks) with Keras
Data Visualization with Pandas & Matplotlib (Review)
Python: Numpy Arrays & Pandas Series (Review)</td>
<td></td>
</tr>
<tr>
<td>Week</td>
<td>Dates</td>
<td>Topics</td>
<td>Readings</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>4</td>
<td>06/22 - 06/28/2020</td>
<td>Midterm Take-Home: Assigned</td>
<td>NO Readings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Midterm Take-Home: Due</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>06/29 - 07/05/2020</td>
<td>Convolutional Neural Networks (CNN) - PART I</td>
<td>Readings: Week 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Convolutional Neural Networks (CNN) - PART II</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Convolutional Neural Networks (CNN) - PART III</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Python: Pandas DataFrame (Review)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discussion 3: Assigned (Monday)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homework Assignment 3: Due</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homework Assignment 4: Assigned</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discussion 3: Due (Sunday)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>07/06 - 07/12/2020</td>
<td>Convolutional Neural Networks (CNN) & Image Recognition</td>
<td>Readings: Week 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recurrent Neural Networks (RNN): Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discussion 4: Assigned (Monday)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homework Assignment 4: Due</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homework Assignment 5: Assigned</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discussion 4: Due (Sunday)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>07/13 - 07/19/2020</td>
<td>Generative Adversarial Networks (GAN): Introduction</td>
<td>Readings: Week 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep Learning Neural Networks: Optimization</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discussion 5: Assigned (Monday)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homework Assignment 5: Due</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discussion 5: Due (Sunday)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>07/20 - 07/23/2020</td>
<td>Final Project Presentation</td>
<td>NO Readings</td>
</tr>
</tbody>
</table>
GRADING POLICY

The student’s grade in the course consists of the following components:

- Discussions: 15%
- Homework Assignments: 25%
- Midterm Assessment: 25%
- Final Project: 35%

The final letter grade will be determined as follows:

- A: 90 – 100
- B: 80 – 89
- C: 65 – 79
- D: 50 – 64
- F: < 50

STUDENT TECHNICAL SUPPORT

The University of North Texas UIT Student Helpdesk provides student technical support in the use of Canvas and supported resources. The student help desk may be reached at:

Email: helpdesk@unt.edu
Phone: 940.565-2324
In Person: Sage Hall, Room 130

Business hours are:
- Monday-Thursday 8am-midnight
- Friday 8am-8pm
- Saturday 9am-5p
- Sunday 8am-midnight

ACCESS & NAVIGATION

Access and Log in Information
This course was developed and will be facilitated utilizing the University of North Texas’ Canvas. To get started with the course, please go to the website at https://canvas.unt.edu

You will need your EUID and password to log in to the course. If you do not know your EUID or have forgotten your password, please go to the website at http://ams.unt.edu.
TECHNICAL REQUIREMENTS / ASSISTANCE

The following information has been provided to assist you in preparation for the technological aspect of the course.

UIT Help Desk: http://www.unt.edu/helpdesk/index.htm
Web Browser
Word Processor
Creating and submitting files in Microsoft Office, the standard software for this course

Minimum Technical Skills Needed:
Using the learning management system
Using email with attachments
Copying and pasting
Downloading and installing software
Using spreadsheet programs

ACADEMIC POLICIES

Scholarly Expectations

All works submitted for credit must be original works created by the scholar uniquely for the class. It is considered inappropriate and unethical, particularly at the graduate level, to make duplicate submissions of a single work for credit in multiple classes, unless specifically requested by the instructor. Work submitted at the graduate level is expected to demonstrate higher-order thinking skills and be of significantly higher quality than work produced at the undergraduate level.

Instructor Responsibilities and Feedback

The instructor is responsible for responding to student questions about assignments and projects, about the course material presented, and for providing additional resources to enhance understanding of course material. Timely feedback is essential for student success and the instructor is responsible for providing timely feedback to students throughout the course. The instructor will actively participate in each week’s discussion forum and will provide feedback to students each week regarding their participation. The instructor will grade submitted assignments and will post grades for students within 10 days of assignment due date.

Class Participation

Students are required to log in regularly to the online class site. Students are also required to participate in all class activities such as discussion boards, chat or conference sessions, and group projects. To learn more about campus resources and information on how you can achieve success, go to succeed.unt.edu.
Virtual Classroom Citizenship
The same guidelines that apply to traditional classes should be observed in the virtual classroom environment. Please use proper netiquette when interacting with class members and the professor as discussed at this link: http://www.albion.com/netiquette/corerules.html.

Incompletes
This course will observe the UNT policy on incompletes, found here: http://registrar.unt.edu/grades/incompletes

Policy on Server Unavailability or Other Technical Difficulties
The University is committed to providing a reliable online course system to all users. However, in the event of any unexpected server outage or any unusual technical difficulty which prevents students from completing a time-sensitive assessment activity, the instructor will extend the time windows and provide an appropriate accommodation based on the situation. Students should immediately report any problems to the instructor and also contact the UNT Student Help Desk: helpdesk@unt.edu or 940.565.2324. The instructor and the UNT Student Help Desk will work with the student to resolve any issues at the earliest possible time.

Copyright Notice
Some or all of the materials on this course Web site may be protected by copyright. Federal copyright law prohibits the reproduction, distribution, public performance, or public display of copyrighted materials without the express and written permission of the copyright owner unless fair use or another exemption under copyright law applies. Additional copyright information may be located at http://copyright.unt.edu.

Graduate Online Course Attendance Policy
Students are expected to participate actively each week and to meet all deadlines for course assignments as detailed in the Course Calendar. Information about the University of Texas’ Attendance Policy may be found at http://policy.unt.edu/policy/15-2-5

Administrative Withdrawal
This course will observe the UNT policy on academic withdrawal found here: https://deanofstudents.unt.edu/withdrawals

Syllabus Change Policy
Changes to the course syllabus or due dates are not anticipated but should they be necessary, the instructor will provide ample notification to students to allow them to complete assignments in a timely manner without penalty.
UNT GENERAL POLICIES

Student Conduct and Discipline: Student Handbook.
You are encouraged to become familiar with the University's Policy of Academic dishonesty found in the Student Handbook. The content of the Handbook applies to this course. If you are in doubt regarding the requirements, please consult with me before you complete any requirements of the course.

The UNT Code of Student Conduct can be found here: https://deanofstudents.unt.edu/sites/default/files/code_of_student_conduct.pdf

ADA Policy
The University of North Texas makes reasonable academic accommodation for students with disabilities. Students seeking accommodation must first register with the Office of Disability Accommodation (ODA) to verify their eligibility. If a disability is verified, the ODA will provide you with an accommodation letter to be delivered to faculty to begin a private discussion regarding your specific needs in a course. ... Note that students must obtain a new letter of accommodation for every semester and must meet with each faculty member prior to implementation in each class. Students are strongly encouraged to deliver letters of accommodation during faculty office hours or by appointment. Faculty members have the authority to ask students to discuss such letters during their designated office hours to protect the privacy of the student. For additional information see the Office of Disability Accommodation website at http://disability.unt.edu/. You may also contact them by phone at 940.565.4323.

Add/Drop Policy
The University of North Texas Add Drop Policy for Fall 2017 can be found at the following link: http://registrar.unt.edu/registration/fall-add-drop

Important Notice for F-1 Students taking Distance Education Courses:

Federal Regulation

The paragraph reads:

(G) For F–1 students enrolled in classes for credit or classroom hours, no more than the equivalent of one class or three credits per session, term, semester, trimester, or quarter may be
counted toward the full course of study requirement if the class is taken on-line or through distance education and does not require the student's physical attendance for classes, examination or other purposes integral to completion of the class.

University of North Texas Compliance

To comply with immigration regulations, an F-1 visa holder within the United States may need to engage in an on-campus experiential component for this course. This component (which must be approved in advance by the instructor) can include activities such as taking an on-campus exam, participating in an on-campus lecture or lab activity, or other on-campus experience integral to the completion of this course. If such an on-campus activity is required, it is the student's responsibility to do the following:

1. Submit a written request to the instructor for an on-campus experiential component within one week of the start of the course.
2. Ensure that the activity on campus takes place and the instructor documents it in writing with a notice sent to the International Student and Scholar Services Office. ISSS has a form available that you may use for this purpose.

Because the decision may have serious immigration consequences, if an F-1 student is unsure about his or her need to participate in an on-campus experiential component for this course, s/he should contact the UNT International Student and Scholar Services Office (telephone 940-565-2195 or email internationaladvising@unt.edu) to get clarification before the one-week deadline.