CSCE 5160 Parallel Processing and Algorithms
Spring 2024

Instructor: Song Fu
Office: F250
Email: song.fu@unt.edu

Office Hours:
Tuesday, 2:00-3:00pm
Thursday, 10:00-11:00am

Teaching Assistant: Jubair Ibn Malik Rifat
(JubairIbnMalikRifat@my.unt.edu)

Office Hours:
Monday, 11:00am-12:00pm
Wednesday, 11:00am-12:00pm
F296B

Breakdown of Course Grade

- Homework Assignments: 25%
 (including programming labs)
- Mid-semester exam: 25%
- Final exam: 25%
- Term Project: 20%
- Attendance/Discussion: 5%

The course is designed to introduce issues involved in parallel programming along with efficient parallel algorithms and an analysis of the algorithms. Programming exercises will involve the use of MPI, OpenMP, Cuda, OpenCL and/or Pthreads.

Term Project: The goal of the project is for you to explore parallel processing to an application of interest based on your research. You should consider implementing an application using either OpenMP, MPI or CUDA or a combination. Alternatively, you can learn a new parallel programming language, libraries (e.g., MapReduce, Parallel Haskell, OpenCL), simulator, or implement some applications/algorithms from recent publications.

Academic Integrity: All students will be trusted to pursue their academic careers with honesty and integrity. Academic dishonesty includes, but not limited to, cheating on a test or other course work, plagiarism, unauthorized collaboration with other persons. Students found guilty of dishonesty will be subject to penalties that may include suspension from the university. For more information about your rights and responsibilities, visit https://vpaa.unt.edu/ss/integrity
CSCE 5160 Parallel Processing and Algorithms
Tentative Schedule

1. Introduction 3 hours
 Motivation
 Multiprocessor architectures, Networking
 Levels of parallelism
2. Performance Models 3 hours
 Performance and Speedup
 Scalability models
3. Communication and Coordination 4 hours
 Communication models
 Synchronization models
 Analyzing communication overhead
 Analyzing synchronization overhead
4. Parallel Programming 6 hours
 Message passing and Shared memory
 Using MPI, OpenMP, Pthreads, CUDA, OpenCL
5. Parallel Algorithm Design 3 hours
 Task level and data level decomposition
6. Matrix Algorithms 6 hours
 Matrix inverse
 Matrix-Vector multiplication
 Matrix Multiplication
7. Solving Linear Systems 4 hours
 Iterative methods
 Conjugate Gradient Method
8. Sorting 6 hours
 Parallel sorting
 Parallel search
9. Graph Algorithms 4 hours
 Spanning trees
 Shortest paths
10. Search and optimizations 4 hours
 Load balancing
 Termination

Textbook:
A. Grama, A. Gupta, G. Karypis and V. Kumar. Introduction to Parallel Computing

Useful Reference Books:
3. J. Sanders and E. Kandrot. CUDA by Example: An introduction to general purpose GPU Programming, Addison-Wesley
6. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming
7. J. Dongarra (Editor) The Sourcebook of Parallel Computing
8. Michael Quinn: Parallel Programming in C with MPI and OpenMP