CSCE 4201-001 Introduction to Artificial Intelligence

Introduction to concepts and ideas in artificial intelligence, including topics such as search techniques, adversarial search & games, knowledge representation, problem-solving, logic, probabilistic reasoning, machine learning, perception, natural language processing, robotics, and the future of artificial intelligence.

Required Text:

TOPICS
ARTIFICIAL INTELLIGENCE
 Introduction
 Intelligent Agents
PROBLEM SOLVING
 Solving Problems by Searching
 Beyond Classical Search
 Adversarial Search
 Constraint Satisfaction Problems
KNOWLEDGE AND REASONING*
 Extremely Brief Introduction to Logic and Knowledge Representation*
UNCERTAIN KNOWLEDGE AND REASONING*
 Extremely Brief Introduction to Uncertainty in AI*
MACHINE LEARNING
 Decision Trees
 Artificial Neural Networks
 Other ML Algorithms and Ensemble Learning
 Deep Learning
 Reinforcement Learning
COMMUNICATING, PERCEIVING AND ACTING
 Natural Language Processing
 Natural Language Communication
 Machine Vision
 Robotics
CONCLUSIONS
 The Future of AI

Final Exam: Thursday, May 7, 8:00am-10:00am, Room NTDP K150
ADA accommodation: UNT Policy 16.001: https://policy.unt.edu/policy/16-001
Academic Integrity Expectations: Do the right thing!
Per UNT Policy 06.003: https://policy.unt.edu/policy/06-003 consequences of violations could include course failure, or in some repeat cases, expulsion.

Learning Objectives:
1. Use and create programs that demonstrate understanding (including computational complexity) of search algorithms such as depth first, breadth first, iterative deepening, A*, Hill-climbing.

2. Implement programs that demonstrate understanding of two-person adversarial games (partially observable, stochastic, with state spaces too large to search).

3. Demonstrate basic understanding of logic and knowledge-based computational reasoning and probabilistic reasoning.

4. Utilize and demonstrate fundamental principles of machine learning algorithms and computational learning theory.

5. Use and create programs that show understanding of machine learning techniques.

6. Apply AI techniques in computational linguistics, machine vision and robotics.

Major Assignments:

Midterms: One or two midterm exams will assess your competency with regard to the learning objectives and topics covered from the beginning of the class.

Final Exam: A final exam will assess your competency with regard to the learning objectives and topics covered throughout the semester.

Grading:

- 10% Class participation (asking and answering thought provoking questions)
- 20% Homework assignments and quizzes
- 40% Exams (evenly split across 2-3 exams)
- 20% Project
- 10% Self Assessment

Under extraordinary circumstances, late assignments might be accepted for partial credit if negotiated in advance with the instructor.

Attendance is required and will be reflected as a component of the class participation grade.

Instructor: Rodney Nielsen, PhD
Office: Discovery Park F246
Rodney.Nielsen@unt.edu

Office Hours: 11:30-12:30 Tuesday and Thursday or by appointment

TA: Suleyman Polat
Office: Discovery Park F232
suleymanolcaypolat@my.unt.edu

Office Hours: See department website