GEOG 5550 – Advanced GIS (online, asynchronous)

Summer 2022, 5W2, July 11 – August 12, 2022

Dr. Pinliang Dong Professor, Department of Geography and the Environment University of North Texas E-mail: <u>Pinliang.Dong@unt.edu</u>, URL: <u>http://geography.unt.edu/~pdong</u> Virtual Office Hours: Mondays & Fridays 7:30 – 8:30 pm, or by appointment. **Teaching Assistant:** Douglas Smith, E-mail: <u>douglas.smith2@unt.edu</u> Virtual Office Hours: Tuesdays & Wednesdays 1:00 – 2:00 pm.

Prerequisites

GEOG 3500/5510, or consent of department.

Objectives

This online asynchronous course aims to improve students' spatial thinking skills through advanced GIS topics in spatial analysis, three-dimensional (3D) analysis, and network analysis. The course includes a combination of lectures, hands-on exercises, homework, short essays, online quizzes, and an individual project. Upon successful completion of the course, students should be able to: (1) conduct visualization, conversion, and analysis of categorical and continuous raster data; (2) manipulate raster data through local, focal, and zonal statistics; (3) use spatial interpolation, surface analysis, and hydrologic modeling tools; (4) apply spatial analysis, 3D analysis, and network analysis methods to solve real-world problems; (5) identify some new developments in GIS; and (6) design and implement a GIS project. Students are required to participate in group or individual meetings with the instructor to discuss advanced GIS topics.

References

- (1) ArcGIS Extensions (Spatial Analyst, ArcScan, 3D Analyst, and Network Analyst)
- (2) Michael J. de Smith, Michael F. Goodchild, and Paul A. Longley, <u>Geospatial Analysis</u>, 6th Edition, 2020 update. (Free web version).

<u>Software</u>

ArcGIS Desktop 10.x or ArcGIS Pro with Spatial Analyst, ArcScan, 3D Analyst, and Network Analyst extensions. You can <u>access UNT CSAM1 and CSAM2 labs remotely</u>. If you like to install ArcGIS 10.x or ArcGIS Pro on your personal computer, please contact the instructor for a license file.

Labs and Homework

Labs and homework should be submitted to Canvas. Each lab should be finished within two days, and the instructor will check the labs every two days. Late labs and homework will be marked down 10% each day.

<u>Short Essays</u>

Graduate students will complete two short essays (1 single-spaced page) assigned by the instructor. Each graduate student is also required to write a third essay (2 single-spaced pages) on new developments in GIS. The topic can be related to the hardware, software, methods, data products, or emerging applications of GIS.

Quizzes

The course has three quizzes in Canvas. Each quiz has 10 questions (True/False and multiple choice).

Course Project

Each student will design and implement a course project involving raster data analysis. A project report of 5 single-spaced pages (NOT including tables, figures, and references) will be graded. More instructions on the project will be provided in class.

Grading Structure

Labs (35 labs) and group meetings	35%	
Three short essays (1 single-spaced page)	15%	
Three homework assignments	15%	
Three quizzes (each quiz has 10 questions)	15%	
Project report	20%	
Total	100%	
90-100: A; 80-89: B; 70-79: C; 60-69: D; 0-59: F. A minimum grade of "B" is required for the GIS Certificate.		

<u>Schedule</u>

Date	Topics	Assignments
	1. Review of GIS Basics	
	1.1 Review of basic GIS concepts	Lab 1.1 Selecting features (1 point)
	1.2 Vector data model	Lab 1.2 Working with tables (1 point)
	1.3 Feature selection	Lab 1.3 Creating points and lines (1 point)
July 11	1.4 Attribute tables	Lab 1.4 Creating polygons (1 point)
-	1.5 Clip, intersect, union, and buffer	
	1.6 Merge, dissolve, and spatial join	
	1.7 Feature editing	
	1.8 Projection	
	2. ModelBuilder	Lab 2.1 ModelBuilder (1) (1 point)
July 12	2.1 Executing tools in ModelBuilder	Lab 2.2 ModelBuilder (2) (1 point)
	2.2 Creating tools with ModelBuilder	
	3. Basics of Raster Data	
	3.1 Raster data model	Lab 3.1 NLCD data (1 point)
	3.2 Categorical rasters	Lab 3.2 Continuous rasters (1) (1 point)
	3.3 Continuous rasters	Lab 3.3 Continuous rasters (2) (1 point)
July 13	3.4 Digital images	Lab 3.4 Digital images (1 point)
	3.5 Displaying raster values	
	3.6 Raster formats	
	3.7 Raster naming conventions	
	3.8 Raster vs. vector	
	4. Raster Conversion and Extraction	
	4.1 Environment settings	Lab 4.1 Vector to raster (1 point)
	4.2 Vector to raster conversion	Lab 4.2 Raster layer to KML (1 point)
	4.3 Raster to vector conversion	
July 14	4.4 Raster to ASCII conversion	
	4.5 Raster layer to KML conversion	
	4.6 Raster to raster conversion	
	4.7 Raster to video conversion	
	4.8 Raster extraction by attributes	Lab 4.3 Raster extraction (1) (1 point)
July 18	4.9 Raster extraction by mask	Lab 4.4 Raster extraction (2) (1 point)
	4.10 Extracting rater values to points	
	5. Local Analysis	Lab 5.1 Cell statistics (1 point)
	5.1 Frequency	Lab 5.2 Local analysis (1 point)
July 19	5.2 Highest position	Quiz 1 (5 points)
	5.3 Lowest position	Homework 1 (due 7/24)

	5.4 Cell statistics	
	6. Focal Analysis	
	6.1 Definition of focal analysis	Lab 6.1 Focal statistics (1 point)
July 20	6.2 Shape and size of neighborhood	Lab 6.2 Point statistics (1 point)
	6.3 Focal statistics	Short Essay 1 (5 points, due 7/27)
	6.4 Point statistics	
	6.5 Line statistics	
	7. Zonal Analysis	
	7.1 Definition of a zone	Lab 7.1 Zonal statistics (1) (1 point)
July 21	7.2 Zonal statistics	Lab 7.2 Zonal statistics (2) (1 point)
July 21	7.3 Zonal statistics as table	Lab 7.2 Zonai statistics (2) (1 point)
	7.4 Zonal geometry	
	7.5 Zonal histogram	
		$L_{1} = 1 + 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$
L-1 25	8. Map Algebra and Distance Transformation	Lab 8.1 Raster calculator (1) (1 point)
July 25	8.1 Map algebra	Lab 8.2 Raster calculator (2) (1 point)
	8.2 Raster calculator	
	8.3 Euclidean distance	Quiz 2 (5 points)
July 26	8.4 Euclidean allocation	Lab 8.3 Distance/allocation rasters (1 point)
	8.5 Weighted Voronoi diagrams	Lab 8.4 Weighted Voronoi diagrams (1 point)
		Homework 2 (due 8/1)
	9. ArcScan	Lab 9.1 Interactive vectorization (1 point)
July 27	9.1 Interactive vectorization	Lab 9.2 Automatic vectorization (1 point)
	9.2 Automatic vectorization	
	10. Spatial Interpolation	
July 28	10.1 Definition of spatial interpolation	Lab 10.1 Spatial interpolation (1 point)
	10.2 Inverse distance weighed interpolation	
	10.3 Natural neighbor	
	10.4 Spline	Lab 10.2 Trend surface analysis (1 point)
Aug 1	10.5 Trend surface	
	11. Hydrologic Modeling	
	11.1 Digital elevation models (DEM)	Lab 11.1 Hydrologic modeling (1 point)
	11.2 Flow direction	
	11.3 Flow accumulation	
Aug 2	11.4 Flow length and flow distance	
0	11.5 Sink and fill	
	11.6 Basin	
	11.7 Watershed	
	12. Surface and 3D Analysis	Lab 12.1 Surface analysis and 3D analysis (1)
Aug 3	12.1 Surface models	(1 point)
	12.2 Slope and aspect	Homework 3 (due 8/8)
	12.3 Cut Fill	Short Essay 2 (5 points, due 8/8)
	12.4 Hillshade	Short Essay 3 (5 points, due 8/11)
	12.5 Viewshed	Lab 12.2 Surface analysis and 3D analysis (2)
Aug 4	12.6 Line of sight	(1 point)
Tug T	12.0 Elite of sight 12.7 Stack profile	
	12.7 Stack prome	
	12.8 Arcscene 13. Network Analysis	Lab 13.1 Creating a network dataset (1 point)
	13.1 Network dataset	Lab 13.2 Finding the best route (1 point)
Aug 9		
Aug 8	13.2 Closest facility	Lab 13.3 Finding the closest facility (1 point)
	13.3 Vehicle routing	Lab 13.4 Calculating service area (1 point)
	13.4 Service area	$0 \cdot 2(5 \cdot 1 \cdot 1)$
Aug 9	Course Project	Quiz 3 (5 points)
Aug 10	Course Project	
Aug 11	Course Project	Short Essay 3 Due
Aug 12	Course Project	Project Report Due

Extra Credit

The Department of Geography does not allow extra credit assignments (work not specified on a course syllabus).

Academic Dishonesty

Students caught cheating or plagiarizing will receive a "0" for that particular assignment or exam. Additionally, the incident will be reported to the Office of Student Rights and Responsibilities for further penalty. According to the UNT catalog, the term "cheating" includes, but is not limited to:

- a. Use of any unauthorized assistance in taking quizzes, tests, or examinations;
- b. Dependence upon the aid of sources beyond those authorized by the instructor in writing papers, preparing reports, solving problems, or carrying out other assignments;
- c. The acquisition, without permission, of tests or other academic material belonging to a faculty or staff member of the university;
- d. Dual submission of a paper or project, or resubmission of a paper or project to a different class without express permission from the instructor(s); or
- e. Any other act designed to give a student an unfair advantage.

The term "plagiarism" includes, but is not limited to:

- a. The knowing or negligent use by paraphrase or direct quotation of the published or unpublished work of another person without full and clear acknowledgment; and
- b. The knowing or negligent unacknowledged use of materials prepared by another person or agency engaged in the selling of term papers or other academic materials.

Accommodations

The University of North Texas makes reasonable academic accommodation for students with disabilities. Students seeking accommodation must first register with the Office of Disability Accommodation (ODA) to verify their eligibility. If a disability is verified, the ODA will provide you with an accommodation letter to be delivered to faculty to begin a private discussion regarding your specific needs in a course. You may request accommodations at any time, however, ODA notices of accommodation should be provided as early as possible in the semester to avoid any delay in implementation. Note that students must obtain a new letter of accommodation for every semester and must meet with each faculty member prior to implementation in each class. For additional information see the Office of Disability Accommodation website at http://www.unt.edu/oda. You may also contact them by phone at 940.565.4323.

Classroom Courtesy

Please follow these guidelines to avoid disrupting the class:

- (1) Turn off cell phones before arriving.
- (2) Do not arrive late or leave early (except for a bathroom break or emergency).
- (3) Do not sleep or eat during class.
- (4) Do not work on other assignments during class.
- (5) Do not talk when the instructor is lecturing, unless prompted for feedback by the instructor.

Course Evaluation

You will receive an email with a link to the UNT Student Perceptions of Teaching (SPOT) Course Evaluation by the end of the semester.