University of North Texas Department of Computer Science and Engineering

CSCE 5150 – Analysis of Computer Algorithms

Session: Fall/2022

Classes:

5150-005 (14159) - We 4:00 PM - 6:50 PM- CHEM 109 **5150-006** (14543) - Mo 5:30 PM - 8:20 PM- NTDP E264

Instructor:

Dr. Moawia Eldow

Office: E250E Tel: TBA

Email: moawia.eldow@unt.edu
Office hours: TuTh 12-01 PM

TAs/Graders:

5150-005 (14159):

Name: Ganesh Bommisetty

Email: GaneshBommisetty@my.unt.edu

Office & hours: TBA

Name: Ganesh Pasupuleti

Email: GaneshPasupuleti@my.unt.edu

Office & hours: TBA

5150-006(14543):

Name: Prathima Bommannagari

Email: PrathimaBommannagari@my.unt.edu

Office & hours: TBA

Name: Rahul Reddy Balabhadruni Email: Rahul.Balabhadruni@unt.edu

Office & Office hours: TBA

Description:

The study of efficient algorithms for various computational problems. Topics include advanced techniques of algorithm design: divide-and-conquer, the greedy method, dynamic programming, graph algorithms, and selected advanced topics. Other topics include NP-Completeness theory, including approximation algorithms and lower bound theory.

Course Objectives:

By the end of this course, students will be able to:

- 1. know the fundamentals of computer algorithms.
- 2. know how to analyze a computer algorithm.
- 3. know how to frame a problem and specify its solution with an appropriate algorithm.
- 4. have a good understanding of computer programming, data structures, and computer algorithms.
- 5. understand the key ideas behind divide and conquer, greedy algorithm, dynamic programming, and graph algorithms.
- 6. understand the theories behind NP-Completeness.

Prerequisites:

Programming with one of the high-level languages such as Python, C++, or Java; Introductory courses on data structures and algorithms.

Textbook:

Introduction to Algorithms, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stien, MIT Press, **Third Edition**.

Grades and grading policy:

Participation	5%
Homework Assignments	35%
Programming Assignments	20%
Midterm Exam	20%
Final Exam	20%

The letter grade will be assigned based on the following scale:

<u>Grade</u>	<u>5150</u>	
Α	90 and Above	
В	[80-90)	
C	[70-80)	
D	[60-70)	
F	Below 60	

Homework Assignments:

Written individual homework assignments/exercises <u>will be due at 11:59 p.m. on Fridays.</u> Assignments must be turned in using the dropbox on canvas.

Programming Assignments:

Programs may be written in any language as long as the TA/Grader and the instructor are able to build and execute from source code, and **will be due at 11:59 p.m. on Fridays**. If in doubt, contact the instructor to verify that the programming environment is acceptable. Instructions will be provided in Canvas. Programs must be turned in using the dropbox on canvas.

Exams:

There will be one midterm exam (*The First Exam*) during the semester at the normal lecture time, which will cover *the first half* of the class topics. There will also be a final exam (*The Second Exam*) during finals week, which will cover *the second half* of the class topics.

Late Submission Policy:

Assignments may be turned in late, but not more than two weeks. All the late submissions may lose a percentage of their graded point values according to the following schedule:

On time: **0%**1-3 days: **10%**4-7 days: **20%**8-14 days: **40%**> 14 days: **100%**

Announcements

Stay tuned and make sure to check Canvas frequently. Important announcements will be posted there.

Academic Policies

No cheating or plagiarism is allowed in assignments and exams. Academic dishonesty will result in a final course *grade of "F"*. "Sharing/reuse" of solutions to assignment problems is strictly prohibited. All work turned in with your name on it must be your own work.

Other Policies:

Students should refer to any other polices from university, college and department.

CSCE 5150 - Course Outline (*Tentative Schedule***)**:

Week	Classes, Reading chapters and Topics	Homework (HW) & Programing Assignments (PA) – (due date)	
Aug 29-Sep 2	Overview of Class, Algorithms in Computing (Ch1), and Getting started with Algorithms (Ch2)		
Sep 5-9	Sep 5: (<u>Labor Day – No classes</u> , Video Class will be posted for Ch3 on Canvas) – <u>5150-06</u> Sep 7: Growth of Functions (Ch3) – <u>5150-05</u>	HW1 (09/16/2022)	
Sep 12-16	Divide and Conquer (Ch4)		
Sep 19-23	Divide and Conquer (cont.)	HW2 & PA1 (09/30/2022)	
Sep 26-30	Dynamic Programming (Ch15)		
Oct 3-7	Dynamic Programming (cont.)	HW3 & PA2 (10/14/2022)	
Oct 10-14	Sorting in Linear Time (Ch8)	HW4 (10/21/2022)	
Oct 17-21	Mid-Term Exam Mo (10/17) – <u>5150-06</u> & We (10/19) – <u>5150-05</u>		
Oct 24-28	Greedy Algorithms (Ch16)	HW5 & PA3 (11/04/2022)	
Oct 31-Nov 4	Elementary Graph Algorithms (Ch22), and Minimum Spanning Trees (Ch23)		
Nov 7-11	Single-Source Shortest Paths (Ch24)	HW6 & PA4 (11/18/2022)	
Nov 14-18	All-Pairs Shortest Paths (Ch25)		
Nov 21-25	Nov 21: NP-Completeness & Approximation Algorithms (Ch34 & Ch35) – <u>5150-06</u> Nov 23: (<u>Thanksqiving – No classes</u> , Video Class will be posted for Ch34 & Ch35 on Canvas) – <u>5150-05</u>	HW7 (12/02/2022)	
Nov 28-Dec 2	Ch32 – String Matching Algorithms		
Dec 5-9	Review week		
Dec 10-16	Final Exam: Saturday, Dec. 10, 2022, available from 1:15 pm to 3:45 pm – 5150-005 (MW 4:00-6:50PM) Monday, Dec. 12, 2022, available from 5:30 pm to 8:00 pm – 5150-006 (MW 5:30-8:20PM) Important note: Since this time is based on the university registrar schedule for the final on Fall/2022, no excuse will be accepted for any conflict, and if the students have any conflict, they need to contact the other faculty to resolve their conflicts.		