
CSCE	
  1040	
  Computer	
  Science	
  II	
  
	
  
Instructor:	
  David	
  Keathly	
   	
   Semester:	
  Fall	
  2015	
  
Office:	
  NTDP	
  F202	
   	
   	
   Times:	
  Section	
  001	
  TTh	
  11:30	
  –	
  12:20	
  NTDP	
  B140	
  
	
   	
   	
   	
   	
   Section	
  002	
  TTh	
  2:30	
  pm	
  –	
  3:20	
  pm	
  NTDP	
  B155	
  
	
   	
   	
   	
   	
   Section	
  003	
  TTh	
  4:00	
  –	
  4:50	
  NTDP	
  D201	
  
	
  
Office	
  Hours:	
  TTh	
  10:00	
  am	
  –	
  11:00	
  am	
  	
   Lab	
  is	
  in	
  NTDP	
  F270,	
  F218	
  or	
  F222	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  W	
  	
  10:00	
  am	
  –	
  3:00	
  pm	
  
	
  
Phone:	
  940-­‐565-­‐4801	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
Email:	
  david.keathly@unt.edu	
  
	
  
	
  
Course	
  Catalog	
  Description	
  
	
  

CSCE 1040, the second course in the introductory sequence, focuses on more advanced C 
programming, designing and implementing larger software projects, introduction to 
dynamic data structures, and a beginning exploration of Object Oriented paradigms using 
C++ . The main focus is on developing students’ software development skills. 
 

Course	
  Outcomes	
  
	
  

Course	
  outcomes	
  are	
  measurable	
  achievements	
  to	
  be	
  accomplished	
  by	
  the	
  
completion	
  of	
  a	
  course.	
  These	
  outcomes	
  are	
  evaluated	
  as	
  part	
  of	
  our	
  ABET	
  
accreditation	
  process.	
  	
  

1. Write readable, efficient, and correct C++ programs for all programming constructs defined 
for Programming Fundamentals I plus dynamic memory allocation, bit manipulation 
operators, exceptions, classes and inheritance.	
  

2. Design and implement recursive algorithms in C/C++.	
  
3. Use common data structures and techniques such as stacks, queues, linked  

lists, trees and hashing	
  
4. Create programs using the Standard Template Library.	
  
5. Use a symbolic debugger to find and fix runtime and logical errors in C  

software.	
  
6. Using a software process model, design and implement a significant  

software application in C++. Significant software in this context means  
a software application with at least five files, ten functions and a make file.	
  

7. Implement, compile and run C++ programs that includes classes,  
inheritance, virtual functions, function overloading and overriding, as well as other 
aspects of Polymorphism. 
 

	
  



Textbook:	
  
	
  
Walter Savitch, Problem Solving with C++, 9th Edition, Addison-Wesley 
 ISBN-10: 0133591743  ISBN-13: 978-0133591743 
	
  
Prerequisites	
  	
  
	
  
Completion	
  of	
  CSCE	
  1030	
  with	
  a	
  grade	
  of	
  C	
  or	
  better.	
  
	
  
Course	
  Requirements:	
  
	
  
Attendance:	
   Highly	
   recommended	
   as	
   student	
   is	
   responsible	
   for	
   all	
  materials	
   covered	
   in	
  

lecture	
  and	
  class	
  discussion	
  
Exams:	
   Two	
  
Assignments:	
  There	
   will	
   be	
   some	
   larger	
   programming	
   assignments,	
   quizzes,	
   exams	
   and	
  

laboratory	
  exercises	
  to	
  complete	
  
	
  
	
  
For	
  More	
  information	
  
	
  
Faculty	
  Webpage:	
   	
   www.cse.unt.edu/~dkeathly	
  
Class	
  Web	
  Page:	
   	
   http://learn.unt.edu	
  
 
	
  
Course	
  Plan	
  
	
  
My	
  plan	
   this	
  semester	
   is	
   that	
  beginning	
   in	
  Week	
  3	
  we	
  will	
  be	
  “Fipping	
   the	
  Classroom”	
  at	
  
least	
  one	
  lecture	
  period	
  each	
  week.	
  This	
  means	
  that	
  many	
  lectures	
  will	
  be	
  recorded	
  videos	
  
that	
   you	
   will	
   watch	
   as	
   homework.	
   Class	
   time	
   will	
   be	
   spent	
   working	
   trough	
   example	
  
programming	
   problems	
   as	
   a	
   group,	
   in	
   smaller	
   groups	
   and	
   working	
   on	
   your	
   homework	
  
assignments	
  with	
   assistance	
   from	
  Graders,	
   Peer	
  Mentors	
   and	
   the	
   instructor.	
   This	
  means	
  
you	
   should	
  be	
  able	
   to	
  begin	
  working	
  on	
  homework	
  early	
   and	
  get	
  most	
  of	
   it	
   done	
  during	
  
class	
   time.	
   You	
   can	
   also	
   get	
   additional	
   help	
   during	
   office	
   hours	
   and	
  during	
   lab	
   after	
   you	
  
complete	
  the	
  lab	
  assignments.	
  If	
  your	
  classes	
  does	
  not	
  meet	
  in	
  a	
  room	
  with	
  computers,	
  you	
  
will	
  need	
  to	
  bring	
  a	
  laptop	
  to	
  class	
  to	
  maximize	
  the	
  effectiveness	
  of	
  these	
  class	
  periods	
  for	
  
you.	
  
	
  
This	
  means	
  it	
  is	
  imperative	
  that	
  you	
  watch	
  the	
  weekly	
  lessons	
  before	
  you	
  come	
  to	
  class	
  so	
  
that	
  you	
  can	
  ask	
  questions	
  and	
  apply	
  the	
  lessons.	
  A	
  typical	
  class	
  period,	
  beginning	
  in	
  week	
  
3,	
  will	
  look	
  like	
  this:	
  
	
  
Announcements	
  and	
  Questions	
  	
  	
   	
   10	
  minutes	
  
Review	
  of	
  assignments	
   	
   	
   10	
  minutes	
  
Work	
  on	
  group	
  example	
  or	
  homework	
   30	
  minutes	
  
Total	
   	
   	
   	
   	
   	
   50	
  minutes	
  
	
  



More	
  details	
  will	
  be	
  provided	
  in	
  class.	
  
	
  
	
  
Course	
  Calendar	
  (subject	
  to	
  change)	
  
	
  
	
  
Week	
   Topics	
   Readings	
  and	
  Materials	
  

Week	
  1	
  

Class	
  Overview	
  
Programming	
  Review	
  	
  
C	
  and	
  C++	
  I/O	
  
	
  
Structures	
  and	
  Unions	
  (review)	
  
Lab	
  0	
  (optional)	
  

Chapter	
  2,	
  3,	
  4.1,4.2,	
  4.3,	
  10.1	
  

Week	
  2	
  

File	
  I/O,	
  Command	
  Line	
  Args	
  (review)	
  
Pointers	
  (review)	
  	
  
Storage	
  Classes	
  
	
  
Lab	
  1	
  (structures)	
  
	
  

Chapter	
   4.5	
   and	
   lecture	
   notes	
  
Chapter	
  9.1	
  and	
  lecture	
  notes	
  

Week	
  3	
  

Recursion,	
  Hash	
  Tables	
  
Stacks	
  and	
  Queues	
  	
  
Makefiles	
  
	
  
Lab	
  2	
  (pointers)	
  
Hwk	
  1	
  due	
  

Chapter	
  13,14	
  
	
  

Week	
  4	
  

Lists	
  and	
  Trees	
  
Bit/Byte	
  Manipulation	
  
Lab	
  3	
  (recursion	
  and	
  hashing)	
  
	
  

Chapter	
  13	
  and	
  lecture	
  notes 

Week	
  5	
  

Developing	
  Large	
  Programs	
  
Debugging	
  
Lab	
  4	
  (Lists	
  and	
  Bit/Byte	
  Manip)	
  
Hwk	
  2	
  due	
  

	
  

Week	
  6	
  

Thinking	
  in	
  a	
  new	
  Paradigm	
  
Objects	
  and	
  Classes	
  (OOAD)	
  	
  
Lab	
  5	
  (Debugging/Develop	
  Lg	
  Pgms)	
  
Hwk	
  3	
  due	
  

Chapter	
  1,	
  5.5,	
  12	
  
	
  

Week	
  7	
  

What’s	
  new	
  in	
  C++	
  (non-­‐OO)	
  
OO	
  Design	
  and	
  UML	
  
Lab	
  6	
  (Lab	
  Exam)	
  
Hwk	
  4	
  due	
  

Chapter	
  10	
  

Week	
  8	
   Implementing	
  Classes	
   	
  



Exam	
  Review	
  
Exam	
  1	
  
	
  

Week	
  9	
  

Working	
  in	
  C++	
  
Design	
  patterns	
  and	
  Design	
  Practices	
  	
  
Lab	
  7	
  (OO	
  Design)	
  
Hwk	
  5	
  due	
  

Chapter	
  8,9	
  

Week	
  
10	
  

Inheritance	
  and	
  Polymorphism	
  
Public/Private/Protected	
  and	
  Friends	
  	
  
Lab	
  8	
  (Function	
  Overloading)	
  
	
  

Chapter	
  9	
  

Week	
  
11	
  

Inheritance	
  and	
  Polymorphism	
  continued	
  
	
  
Lab	
  9	
  (C++	
  I/O)	
  
Hwk	
  6	
  due	
  

Chapter	
  13,,	
  Internet	
  Resources	
  and	
  
notes	
  

Week	
  
12	
  

Deep	
  Copying	
  and	
  Copy	
  Constructors	
  
Lab	
  10	
  (Classes	
  and	
  Objects)	
  
	
  

Chapter	
  11	
  

Week	
  
13	
  

Additional	
  OO	
  /C++	
  Topics	
  
Lab	
  11	
  (Dynamic	
  Memory	
  and	
  encapsulation)	
  
Hw	
  7	
  due	
  

Chapter	
   15,	
   Internet	
  Resources	
   and	
  
notes	
  

Week	
  
14	
  

Additional	
  OO	
  /C++	
  Topics	
  
Lab	
  12	
  (inheritance)	
  

Chapter	
   15,	
   Internet	
  Resources	
   and	
  
notes	
  

Week	
  
15	
  

Additional	
  OO	
  /C++	
  Topics	
  
Hwk	
  8	
  due	
  

Chapter	
   16,	
   17,	
   18,	
   Internet	
  
Resources	
  and	
  notes	
  

Week	
  
16	
   Final	
  Exams	
  (Exam	
  2)	
   	
  

	
  
	
  
Grading	
  Policy	
  	
  
	
  
The various components of your grade are weighted as follows:  
  
Lab Programs (12 drop 1) 
Quizzes (6-9 drop 1) in class unannouced 

30% 
10% 

Larger Programming Assignments (7-8 drop 1) 40%  
Exams (2, 10% each) 20% 
	
  
	
  
Course	
  Policies:	
  	
  
	
  

• On programs do your own work. Do NOT work with other students on shared program 



solutions. Do NOT get help with algorithms or coding from anyone other than your instructor 
or the TAs. Do NOT use even partial program solutions from the internet. Failure to adhere 
to these strict standards will be cause for disciplinary action that could be as severe as 
expulsion from the university. 

• It IS permissible to obtain help from whoever you wish to fix syntax errors. We will be 
discussing in class the different types of errors that occur in programs so there will be ample 
opportunity for you to learn the difference between syntax and other errors. But remember, 
for anything but syntax errors, getting programming assistance from any source other than 
your instructor or the Class TAs will be considered cheating and dealt with harshly. 

• You need to do your own work on quizzes and exams as well. Here there should be no 
ambiguity at all. 

• In case the above description, and in-class discussion of my views on appropriate and 
inappropriate collaboration does not answer all of your questions, please look at the 
university Student Rights and Responsibilities web page. 

• There will be no make-up exams, quizzes, or programs given in this class. However, for 
documented excused absences* or emergencies* additional time for homework or an 
alternate lab date may be granted. Exam makeups or substitutions may be granted as well 
depending on the situation. Note these exceptions are only in the case of documented excused 
absences or emergencies. In most cases you should contact the instructor before the absence 
to make proper arrangements. 

• You are responsible for the information covered in class, whether you attend class or not. 
Individualized lectures will not be given. Please check with other class members for any 
notes that might have been missed during an absence. Except for the start of the term, 
attendance will not be taken in lecture. However, your attendance is strongly recommended 
to improve your opportunity to meet course objectives. 

• Weekly quizzes will be completed online via the class webpage. 

• Students should expect an "in-lab" program each week in lab. The program will be 
submitted before that lab session is complete. You must make arrangements in advance if 
you are going to miss your assigned lab section. All labs must be completed within the 
calendar week they are assigned. All work will be completed in lab unless otherwise 
instructed by your lab TA. 

• There is no curve grading in this class. However the instructor does maintain a “fuzzy 
borders” policy at the end of the semester for students who complete every lab, 
homework assignment, quiz and exam. This means that grades that are close to a border 
(e.g. 87.5 – 89.4) might round up to the next higher grade if students have completed all 
assignments and have maintained good performance on homework and labs, but perhaps 
fallen a bit on quizzes or exams. Details of this policy will be discussed during the first 
class period. 



 
• All non-lab programming assignments are due at 11:59pm on the due date. 

Programming assignments will be accepted up to 24 hours late and late 
programming assignments will be assessed a 50% grade reduction penalty.  After 24 
(exactly!) hours, late programming assignments will receive a grade of zero.  Partial 
credit will be given for programs which compile but which are not complete.  Starting 
early on programming projects is strongly encouraged.  Students typically have great 
difficulty completing their projects in one night the day before they are due.  Students are 
allowed to discuss program design and other high level issues with each other.  Students 
are also allowed to help each other understand specific compiler or run time error 
messages.  Copying all or part of another person's program is strictly prohibited and will 
result in a grade of zero.  Supplying printed or electronic copies of your homework to 
other classmates will also result in a grade of zero.  All programs will be submitted 
through the class website. 
 

• The instructor, peer mentors and TAs require a current copy of the program when a student is 
asking a question about a program.  

• All pertinent information about the class (assignments, exam reviews, sample code, written 
topic discussions, and day-to-day event schedule) is available via the class webpage. If there 
is ever a question as to when something is due, or an additional copy of a course document is 
needed, ALWAYS check the class webpage. If you feel there is incorrect or there is missing 
information on the class website, email the instructor about the problem immediately. 
Electronic mail (email) will be a major means of communication with the instructor outside 
of actual classroom discussions. 

• Please keep this information sheet handy during the semester and always periodically check 
the class homepage for any course information, including scheduling of programming 
assignments, exams, and exam reviews.	
  

	
  
* Excused Absences: ���Students are expected to schedule routine appointments and activities so as not 
to conflict with attending class. However, some absences cannot be prevented. In the event of a 
medical emergency or family death, students must request an excused absence as quickly as feasible 
following the emergency. Use common sense. Students must provide documentation that verifies an 
emergency arose. 

* Emergencies: ��� By definition, emergencies cannot be planned for. Your instructor attempts to make 
accommodations in these instances that allow for making up missed work and completion of the 
course in a timely manner. Among these emergencies are: 

• A death in your immediate family. 
• An accident or illness requiring immediate medical treatment and where a doctor has indicated 

attending class is impossible or inadvisable. 
• Employees who are on call 24/7 fall in this category but must document that they were called 

during a scheduled class. 
	
  
 



 
 
Student Evaluation of Teaching Effectiveness (SETE) 
 
The Student Evaluation of Teaching Effectiveness (SETE) is a requirement for all organized 
classes at UNT. This short survey will be made available to you at the end of the semester, 
providing you a chance to comment on how this class is taught.  I am very interested in the 
feedback I get from students, as I work to continually improve my teaching. I consider the SETE 
to be an important part of your participation in this class 
	
  
ADA:	
  
	
  
UNT	
   complies	
   with	
   all	
   federal	
   and	
   state	
   laws	
   and	
   regulations	
   regarding	
   discrimination	
  
including	
  the	
  Americans	
  with	
  Disability	
  Act	
  of	
  1990	
  (ADA).	
  If	
  you	
  have	
  a	
  disability	
  and	
  need	
  
a	
  reasonable	
  accommodation	
   for	
  equal	
  access	
   to	
  education	
  or	
  services	
  please	
  contact	
   the	
  
Office	
  of	
  Disability	
  Accommodation.	
  	
  
	
  
	
  	
  
	
  	
  
	
  	
  


