Department of Engineering Technology ### ENGR 2301 – Statics ## Section 001 – Summer 2018 Syllabus – Subject to Change **Meeting Times:** Mon./Wed.: 12:30 pm - 2:20 pm Meeting Room: NTDP F185 | INSTRUCTOR | Aloysius (Al) Attah, P.E. | EVALUATION | | |--------------------------------------|---------------------------|----------------|------| | OFFICE | NTDP F115G | Exercises | 20% | | PHONE | (940) 565-2022 | Assignments | 20% | | OFFICE HOURS | | Midterm Exam 1 | 15% | | Monday and Wednesday: by appointment | | Midterm Exam 2 | 15% | | | | Final Exam | 30% | | E-MAIL: aloysius.attah@unt.edu | | TOTAL | 100% | #### **COURSE OBJECTIVES:** #### At the conclusion of this course, you should be able to: - *identify, formulate*, and *solve* problems dealing with resultant forces and force balancing. - *perform* analysis of simple static structures (frames, trusses and machines). - *apply* concepts of moments of inertia and friction to solve statics-related problems. #### **COURSE POLICY/GRADING:** #### Assignments: - Each assignment will be due on the date specified in the outline below, unless otherwise stated by the instructor. - Only one late assignment will be accepted during the course. It may be submitted any time before the beginning of the last class session, and will be graded with a 50% penalty. No other late assignments will be accepted without consent of the instructor. - Please observe the following items in completing your assignment: - Place no more than one problem on each page (you may use more than one page for a problem, if necessary). - O You must have a proper "given" and "required" statement. - Example: Given: Enter all known information. Be brief and concise. Do <u>not</u> restate the problem. e.g. P = 1500 lbs., L = 10 ft., A = 43 in². Required: State clearly and concisely what is to be done. e.g. Calculate reactions. - O Set up all work in a neat, orderly and logical manner. All steps must appear from the top of the sheet down in the sequence in which each was performed. - \circ Every force has an identifying symbol. If it does not, assign it one, then use that symbol in all calculations to identify that force and its components. e.g. The symbol A_x identifies the horizontal component of force A. B_v is the vertical component of force B. - O Draw all sketches at the proper slopes and proportions. Use the grids on your paper for working sketches. Use proper scales for graphical solutions. Include all dimensions and related information. - O Show sign convention on each solution for algebraic summations. - Express every force or component completely. There <u>must</u> be magnitude, sense, direction, and point of application. - o State the equations used in their original form. Show the source of the equation. e.g. (Eq 3-11) - o Include dimensions of all values as you enter them in your computation. - O Check your work for dimensional accuracy. e.g. Pounds÷inches squared should result in an answer expressed in pounds per square inch. - o Check the accuracy of your answers by alternate methods or by approximation of quantities. - O Show a proper scale for all graphical solutions. e.g. 1 inch = 200 lbs. - O Use method of similar triangles to solve for components or distances whenever possible. Only use trigonometry when you do not have adequate information for setting up proportions. - O Present all work in a neat manner. - o Do not crowd your work. - O State the answer clearly and enclose it with a box. - O Place your name, the course number, and the assignment number at the top of each page. - o Number all pages in the upper right-hand corner as 1 of 2 or 1/2. ### Exams: - All exams are open-book and open notes. - The two midterm exams. - The first midterm exam will be given in Week 5 (see outline below for date). - o It will include all material up through Week 4, including Assignment #3. - The second midterm exam will be given at the end of Week 8 (see outline below for date). - o It will include all material through Week 7, including Assignment #6. - The final exam will be given at the end of the last class session. It will be cumulative, covering all topics including: - o All presentations and any topics discussed in class - o Any chapters of the text noted in the outline - o Any work carried out to complete assignments and exercises #### In-class exercises: - There will be 20 exercises. - Read materials to be covered in class ahead of the scheduled presentations. Some of the in-class exercises may cover materials to be covered that day. - These are short sets of problems/questions intended to allow reinforcement of topics scheduled for that day. - These will be carried out in small groups, with all group members receiving the same grade. - o If a student misses any exercise for any reason, she/he will receive a grade of zero for that exercise. #### Other Policies: - This course will adhere to UNT academic policies, including those for academic integrity (http://vpaa.unt.edu/academic-integrity.htm) and overall conduct (http://deanofstudents.unt.edu/conduct). It is your responsibility as a UNT student to be familiar with these policies, but feel free to ask the instructor any questions pertaining to these. - Any accommodations for differing abilities will be made for this course as per the policies and determination of the Office of Disability Accommodation: http://disability.unt.edu/ - This syllabus is subject to change at the discretion of the instructor. Students will be notified of any change. #### **COURSE MATERIALS:** - Engineering Mechanics: Statics (8th Edition) by J.L. Meriam, L.G. Kraige, and J.N. Bolton (Wiley, 2015, ISBN 978-1118807330) available at the bookstore, online, etc. - Additional materials to be provided in class/on website, including excerpts from manuals, etc. # COURSE OUTLINE: Subject to Change | WK-DATE | TOPIC | WORK
DUE | MATERIALS | |--------------|---|--------------------------|----------------------------| | 1 – June 4 | Introduction to course. Presentation #1: Introduction to mechanics, units, etc. Presentation #2: Vectors in two dimensions. | | Ch. 1
Ch. 2.1-2.2 | | 1 – June 6 | Presentation #2: (cont'd) Presentation #3: Equilibrium in two dimensions. | Ex. #1 | Ch. 3.1-3.2 | | 2 – June 11 | Presentation #3: (cont'd) Presentation #4: Forces and equilibrium in three dimensions. | Ex. #2
Assign. #1 | Ch. 2.7 | | 2 – June 13 | Review of Assignment #1 Presentation #4: (cont'd) Presentation #5: Vector combination of forces. | Ex. #3 | N/A | | 3 – June 18 | Presentation #5: (cont'd) Presentation #6: Point moments. | Assign. #2
Ex. #4 | Ch. 2.4; 2.8 | | 3 – June 20 | Review of Assignment #2 Presentation #6: (cont'd) Presentation #7: Vector combinations, moment about an axis. | Ex. #5 | Ch. 2.8 | | 4 – June 25 | Presentation #7: (cont'd) | Ex. #6 | | | 4 – June 27 | Presentation #8: Moment of a couple. | Assign #3 | Ch. 2.5; 2.8 | | 5 – July 2 | Review of Assignment #3 / Review for Midterm Exam 1. MIDTERM EXAM 1 | | | | 5 – July 4 | NO CLASS | | | | 6 – July 9 | Review of Midterm Exam 1. Presentation #8: (cont'd) Presentation #9: Force systems. | Ex. #7 | Ch. 2.6; 2.9 | | 6 – July 11 | Presentation #10: Equilibrium in two dimensions. | Assign. #4
Ex. #8/9 | Ch. 3.1-3.3 | | 7 – July 16 | Review of Assignment #4 Presentation #11: Equilibrium of two- and three-force bodies. Presentation #12: Equilibrium in three dimensions. | Ex. #10 | Ch. 3.3
Ch. 3.4 | | 7 – July 18 | Presentation #13: Centroids and centers of mass/gravity. | Assign. #5
Ex. #11/12 | Ch. 5.1-5.4 | | 8 – July 23 | Review of Assignment #5 Presentation #14: Centroid determination. Presentation #15: 3-D centroids and centers of mass/gravity. | Ex. #13
Ex. #14 | Ch. 5.1-5.5
Ch. 5.1-5.4 | | 8 – July 25 | Review of Assignment #6 / Review for Midterm Exam 2. MIDTERM EXAM 2 | Assign. #6 | | | 9 – July 30 | Review of Midterm Exam 2. Presentation #16: Analysis of structures – method of joints. Presentation #17: Analysis of structures – method of sections. | Ex. #15 | Ch. 4.1-4.3
Ch. 4.4 | | 9 – Aug. 1 | Presentation #18: Analysis of structures – frames/machines. Presentation #19: Friction – basic friction, friction devices. | Assign. #7
Ex. #16/17 | Ch. 4.6
Ch. 6.1-6.4 | | 10 – Aug. 6 | Review of Assignment #7. Presentation #19: (cont'd) Presentation #20: Friction – screw and belt friction. | Ex. #18 | Ch. 6.5; 6.8 | | 10 – Aug. 8 | Presentation #20: (cont'd) Presentation #21: Moments of inertia. | Assign. #8
Ex. #19/20 | N/A | | 10 – Aug. 10 | Review of Assignment #8 / Review for Final Exam.
FINAL EXAM | | |