INTRODUCTION

Micrometals 200C Series™ of magnetic alloy materials are specifically designed for severe environment applications where cores are exposed to or generate elevated temperatures. These cost-competitive core materials are not subject to thermal aging for operating temperatures up to +200 °C. Revision C of this catalog introduces 2 new materials to the 60 series of materials. The -63 Material offers excellent high frequency properties while the -66 Material offers core losses that are well suited from 100kHz to 500kHz.

FINISH

The toroidal cores are provided with a protective coating. The T16 and T20 sizes are coated with Parylene C. The larger cores are coated with a two color code finish that is UL approved for Flame Class UL94V-0 per file #E140098(S).

AVAILABILITY

Part numbers which appear in bold print are considered stock items and will be most available. Other items are available on a build-to-order basis.

SAMPLES & ENGINEERING KITS

Micrometals will gladly extend sample cores and design assistance to aid in your core selection. Contact the factory regarding available engineering kits.

WARRANTY

Parts are warranted to conform to the specifications in the latest issue of this catalog. Micrometals’ liability is limited to return of parts and repayment of price; or replacement of nonconforming parts. Notice of nonconformance must be made within 30 days after delivery. Before using these products, buyer agrees to determine suitability of the product for their intended use or application. Micrometals shall not be liable for any other loss or damage, including but not limited to incidental or consequential damages.
GENERAL MATERIAL PROPERTIES

<table>
<thead>
<tr>
<th>Material Mix No.</th>
<th>Reference Permeability (μ_0)</th>
<th>Material Density (g/cm3)</th>
<th>Relative Cost</th>
<th>Color Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>-60</td>
<td>55</td>
<td>6.1</td>
<td>2.2</td>
<td>Brown/Black</td>
</tr>
<tr>
<td>-61</td>
<td>35</td>
<td>6.1</td>
<td>2.2</td>
<td>Brown/Gray</td>
</tr>
<tr>
<td>-63</td>
<td>35</td>
<td>5.9</td>
<td>3.7</td>
<td>Brown/Beige</td>
</tr>
<tr>
<td>-66</td>
<td>66</td>
<td>6.2</td>
<td>2.9</td>
<td>Brown/Brown</td>
</tr>
<tr>
<td>-70</td>
<td>100</td>
<td>7.4</td>
<td>14</td>
<td>Beige/Black</td>
</tr>
<tr>
<td>-M125</td>
<td>125</td>
<td>7.7</td>
<td>15</td>
<td>Lt Blue/Lt. Blue</td>
</tr>
</tbody>
</table>

CORE LOSS COMPARISON (mW/cm3)

<table>
<thead>
<tr>
<th>Material Mix No.</th>
<th>60Hz @500G</th>
<th>1kHz @1500G</th>
<th>10kHz @500G</th>
<th>50kHz @225G</th>
<th>100kHz @140G</th>
<th>500kHz @50G</th>
<th>1MHz @40G</th>
<th>DC = 50 Oersteds</th>
</tr>
</thead>
<tbody>
<tr>
<td>-60</td>
<td>43</td>
<td>72</td>
<td>76</td>
<td>70</td>
<td>52</td>
<td>38</td>
<td>68</td>
<td>74</td>
</tr>
<tr>
<td>-61</td>
<td>80</td>
<td>118</td>
<td>113</td>
<td>97</td>
<td>69</td>
<td>43</td>
<td>72</td>
<td>87</td>
</tr>
<tr>
<td>-63</td>
<td>74</td>
<td>77</td>
<td>60</td>
<td>47</td>
<td>31</td>
<td>15</td>
<td>20</td>
<td>92</td>
</tr>
<tr>
<td>-66</td>
<td>48</td>
<td>69</td>
<td>48</td>
<td>29</td>
<td>17</td>
<td>14</td>
<td>31</td>
<td>63</td>
</tr>
<tr>
<td>-70</td>
<td>5.8</td>
<td>9.0</td>
<td>9.6</td>
<td>13</td>
<td>13</td>
<td>28</td>
<td>70</td>
<td>50</td>
</tr>
<tr>
<td>-M125</td>
<td>5.3</td>
<td>6.3</td>
<td>6.2</td>
<td>10</td>
<td>13</td>
<td>34</td>
<td>86</td>
<td>44</td>
</tr>
</tbody>
</table>

PERM. WITH DC BIAS

<table>
<thead>
<tr>
<th>Material Mix No.</th>
<th>60Hz @500G</th>
<th>1kHz @1500G</th>
<th>10kHz @500G</th>
<th>50kHz @225G</th>
<th>100kHz @140G</th>
<th>500kHz @50G</th>
<th>1MHz @40G</th>
<th>DC = 50 Oersteds</th>
</tr>
</thead>
<tbody>
<tr>
<td>-60</td>
<td>43</td>
<td>72</td>
<td>76</td>
<td>70</td>
<td>52</td>
<td>38</td>
<td>68</td>
<td>74</td>
</tr>
<tr>
<td>-61</td>
<td>80</td>
<td>118</td>
<td>113</td>
<td>97</td>
<td>69</td>
<td>43</td>
<td>72</td>
<td>87</td>
</tr>
<tr>
<td>-63</td>
<td>74</td>
<td>77</td>
<td>60</td>
<td>47</td>
<td>31</td>
<td>15</td>
<td>20</td>
<td>92</td>
</tr>
<tr>
<td>-66</td>
<td>48</td>
<td>69</td>
<td>48</td>
<td>29</td>
<td>17</td>
<td>14</td>
<td>31</td>
<td>63</td>
</tr>
<tr>
<td>-70</td>
<td>5.8</td>
<td>9.0</td>
<td>9.6</td>
<td>13</td>
<td>13</td>
<td>28</td>
<td>70</td>
<td>50</td>
</tr>
<tr>
<td>-M125</td>
<td>5.3</td>
<td>6.3</td>
<td>6.2</td>
<td>10</td>
<td>13</td>
<td>34</td>
<td>86</td>
<td>44</td>
</tr>
</tbody>
</table>

MAGNETIC TOLERANCE & DIMENSIONAL TOLERANCE (inches)

<table>
<thead>
<tr>
<th>MATERIAL MIX NO.</th>
<th>-60, -61, -63 & -66 Materials</th>
<th>-70 Material</th>
<th>-M125 Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>A tolerance</td>
<td>±10%</td>
<td>±10%</td>
<td>±10%</td>
</tr>
</tbody>
</table>

TOROIDS*

<table>
<thead>
<tr>
<th>OD</th>
<th>ID</th>
<th>HT</th>
<th>OD</th>
<th>ID</th>
<th>HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>T14 - T20</td>
<td>±.010</td>
<td>±.010</td>
<td>±.010</td>
<td>T150 - T225</td>
<td>±.025</td>
</tr>
<tr>
<td>T22 - T38</td>
<td>±.015</td>
<td>±.015</td>
<td>±.020</td>
<td>T249 - T400</td>
<td>±.030</td>
</tr>
<tr>
<td>T40 - T72</td>
<td>±.020</td>
<td>±.020</td>
<td>±.020</td>
<td>T520 - T650</td>
<td>±.050</td>
</tr>
<tr>
<td>T80 - T141</td>
<td>±.020</td>
<td>±.020</td>
<td>±.025</td>
<td>T80 - T141</td>
<td>±.020</td>
</tr>
</tbody>
</table>

E-CORES

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>G</th>
<th>Max. Gap**</th>
</tr>
</thead>
<tbody>
<tr>
<td>E49 - E118</td>
<td>±.010</td>
<td>±.010</td>
<td>±.005</td>
<td>±.007</td>
<td>±.007</td>
<td>.007</td>
</tr>
<tr>
<td>E125 - E162</td>
<td>±.015</td>
<td>±.015</td>
<td>±.007</td>
<td>±.010</td>
<td>±.007</td>
<td>±.010</td>
</tr>
<tr>
<td>E168 - E225</td>
<td>±.015</td>
<td>±.015</td>
<td>±.010</td>
<td>±.007</td>
<td>±.010</td>
<td>±.010</td>
</tr>
<tr>
<td>E305 - E450</td>
<td>±.030</td>
<td>±.030</td>
<td>±.015</td>
<td>±.020</td>
<td>±.015</td>
<td>±.020</td>
</tr>
<tr>
<td>E610</td>
<td>±.040</td>
<td>±.040</td>
<td>±.025</td>
<td>±.030</td>
<td>±.025</td>
<td>±.030</td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

60 Series: The 60 series of materials are cost effective magnetic powder alloy materials available in a wide range of properties with permeabilities ranging from 35 to 66. The -63 Material has excellent high frequency properties and can be utilized past 10MHz. The -66 Material has the best performance in the 100kHz to 500kHz range.

70 Series: The 70 series is a magnetic powder alloy including nickel. The -70 Material has higher permeability then the 60 series with excellent losses up to 400kHz. The -70 Material is a relatively expensive material, most competitively priced in smaller sizes.

M Series: The M series is a moly-permalloy powder material and will have the highest permeability and lowest losses below 200kHz. Similar to the -70 Material in cost, the –M125 Material will be most competitively priced in physically small sizes.
TOROIDAL CORES

COLOR CODE
- 60 Brown/Black
- 61 Brown/Gray
- 63 Brown/Beige
- 66 Brown/Brown
- 70 Beige/Black
- M125 Lt. Blue/Lt. Blue

TYPICAL PART NO.

OD in 100th inches
Micrometals Mix No.
Letter indicates Alternate Height
Code Area For Other Characteristics

Refer to page 1 for tolerances.

<table>
<thead>
<tr>
<th>MICROMETALS</th>
<th>A<sub>nH/N</sub></th>
<th>OD in/mm</th>
<th>ID in/mm</th>
<th>Ht in/mm</th>
<th>ℓ cm</th>
<th>A cm<sup>2</sup></th>
<th>V cm<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>T20-60</td>
<td>13.0</td>
<td>.200/5.08</td>
<td>.088/2.24</td>
<td>.070/1.78</td>
<td>1.15</td>
<td>.023</td>
<td>.026</td>
</tr>
<tr>
<td>T20-63</td>
<td>7.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T20-66</td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T20-70</td>
<td>22.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25-60</td>
<td>17.0</td>
<td>.255/6.48</td>
<td>.120/3.05</td>
<td>.096/2.44</td>
<td>1.50</td>
<td>.037</td>
<td>.055</td>
</tr>
<tr>
<td>T25-63</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25-66</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25-70</td>
<td>31.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T30-60</td>
<td>22.0</td>
<td>.307/7.80</td>
<td>.151/3.84</td>
<td>.128/3.25</td>
<td>1.84</td>
<td>.060</td>
<td>.110</td>
</tr>
<tr>
<td>T30-63</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T30-66</td>
<td>26.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T30-70</td>
<td>40.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T30-M125</td>
<td>52.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T30-M125E</td>
<td>64.0</td>
<td>.310/7.87</td>
<td>.156/3.96</td>
<td>.156/3.96</td>
<td>1.84</td>
<td>.073</td>
<td>.134</td>
</tr>
<tr>
<td>T37-60</td>
<td>19.0</td>
<td>.375/9.53</td>
<td>.205/5.21</td>
<td>.128/3.25</td>
<td>2.31</td>
<td>.064</td>
<td>.147</td>
</tr>
<tr>
<td>T37-63</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T37-66</td>
<td>22.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T37-70</td>
<td>34.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T38-60</td>
<td>36.0</td>
<td>.375/9.53</td>
<td>.175/4.45</td>
<td>.190/4.83</td>
<td>2.18</td>
<td>.114</td>
<td>.248</td>
</tr>
<tr>
<td>T38-63</td>
<td>22.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T38-66</td>
<td>43.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T38-70</td>
<td>65.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T39-M125</td>
<td>53.3</td>
<td>.380/9.65</td>
<td>.188/4.78</td>
<td>.125/3.18</td>
<td>2.27</td>
<td>.072</td>
<td>.164</td>
</tr>
<tr>
<td>T40-66</td>
<td>31.5</td>
<td>.400/10.20</td>
<td>.200/5.08</td>
<td>.156/3.96</td>
<td>2.39</td>
<td>.096</td>
<td>.229</td>
</tr>
<tr>
<td>T40-M125</td>
<td>66.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T44-60</td>
<td>25.5</td>
<td>.440/11.20</td>
<td>.229/5.82</td>
<td>.159/4.04</td>
<td>2.68</td>
<td>.099</td>
<td>.266</td>
</tr>
<tr>
<td>T44-63</td>
<td>16.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T44-66</td>
<td>30.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T44-70</td>
<td>46.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T45-63B</td>
<td>18.0</td>
<td>.440/11.20</td>
<td>.250/6.35</td>
<td>.190/4.83</td>
<td>2.75</td>
<td>.135</td>
<td>.370</td>
</tr>
<tr>
<td>T45-66B</td>
<td>34.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T45-M125C</td>
<td>53.0</td>
<td>.440/11.20</td>
<td>.250/6.35</td>
<td>.156/3.96</td>
<td>2.75</td>
<td>.091</td>
<td>.250</td>
</tr>
</tbody>
</table>
COLOR CODE
-60 Brown/Black
-61 Brown/Gray
-63 Brown/Beige
-66 Brown/Brown
-70 Beige/Black
-M125 Lt. Blue/Lt. Blue

TYPICAL PART NO.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>A₁ N²</th>
<th>OD in/mm</th>
<th>ID in/mm</th>
<th>Ht in/mm</th>
<th>l cm</th>
<th>A cm²</th>
<th>V cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>T50-60</td>
<td>24.0</td>
<td>.500/12.7</td>
<td>.303/7.70</td>
<td>.190/4.83</td>
<td>3.19</td>
<td>.112</td>
<td>.358</td>
</tr>
<tr>
<td>T50-63</td>
<td>15.5</td>
<td>.500/12.7</td>
<td>.303/7.70</td>
<td>.190/4.83</td>
<td>3.19</td>
<td>.112</td>
<td>.358</td>
</tr>
<tr>
<td>T50-66</td>
<td>29.0</td>
<td>.500/12.7</td>
<td>.303/7.70</td>
<td>.190/4.83</td>
<td>3.19</td>
<td>.112</td>
<td>.358</td>
</tr>
<tr>
<td>T50-70</td>
<td>44.0</td>
<td>.500/12.7</td>
<td>.303/7.70</td>
<td>.190/4.83</td>
<td>3.19</td>
<td>.112</td>
<td>.358</td>
</tr>
<tr>
<td>T50-M125</td>
<td>56.0</td>
<td>.500/12.7</td>
<td>.303/7.70</td>
<td>.190/4.83</td>
<td>3.19</td>
<td>.112</td>
<td>.358</td>
</tr>
<tr>
<td>T50-60B</td>
<td>32.0</td>
<td>.500/12.7</td>
<td>.303/7.70</td>
<td>.250/6.35</td>
<td>3.19</td>
<td>.148</td>
<td>.471</td>
</tr>
<tr>
<td>T50-63B</td>
<td>20.0</td>
<td>.500/12.7</td>
<td>.303/7.70</td>
<td>.250/6.35</td>
<td>3.19</td>
<td>.148</td>
<td>.471</td>
</tr>
<tr>
<td>T50-66B</td>
<td>38.0</td>
<td>.500/12.7</td>
<td>.303/7.70</td>
<td>.250/6.35</td>
<td>3.19</td>
<td>.148</td>
<td>.471</td>
</tr>
<tr>
<td>T50-70B</td>
<td>58.0</td>
<td>.500/12.7</td>
<td>.303/7.70</td>
<td>.250/6.35</td>
<td>3.19</td>
<td>.148</td>
<td>.471</td>
</tr>
<tr>
<td>T50-63C</td>
<td>27.5</td>
<td>.500/12.7</td>
<td>.303/7.70</td>
<td>.335/8.51</td>
<td>3.19</td>
<td>.200</td>
<td>.637</td>
</tr>
<tr>
<td>T50-66C</td>
<td>51.0</td>
<td>.500/12.7</td>
<td>.303/7.70</td>
<td>.335/8.51</td>
<td>3.19</td>
<td>.200</td>
<td>.637</td>
</tr>
<tr>
<td>T50-66D</td>
<td>57.0</td>
<td>.500/12.7</td>
<td>.303/7.70</td>
<td>.375/9.53</td>
<td>3.19</td>
<td>.223</td>
<td>.711</td>
</tr>
<tr>
<td>T50-70D</td>
<td>88.0</td>
<td>.500/12.7</td>
<td>.303/7.70</td>
<td>.375/9.53</td>
<td>3.19</td>
<td>.223</td>
<td>.711</td>
</tr>
<tr>
<td>T60-60</td>
<td>34.5</td>
<td>.600/15.2</td>
<td>.336/8.53</td>
<td>.234/5.94</td>
<td>3.74</td>
<td>.187</td>
<td>.699</td>
</tr>
<tr>
<td>T60-63</td>
<td>21.5</td>
<td>.600/15.2</td>
<td>.336/8.53</td>
<td>.234/5.94</td>
<td>3.74</td>
<td>.187</td>
<td>.699</td>
</tr>
<tr>
<td>T60-66</td>
<td>41.0</td>
<td>.600/15.2</td>
<td>.336/8.53</td>
<td>.234/5.94</td>
<td>3.74</td>
<td>.187</td>
<td>.699</td>
</tr>
<tr>
<td>T60-70</td>
<td>62.0</td>
<td>.600/15.2</td>
<td>.336/8.53</td>
<td>.234/5.94</td>
<td>3.74</td>
<td>.187</td>
<td>.699</td>
</tr>
<tr>
<td>T66-M125</td>
<td>72.0</td>
<td>.650/16.5</td>
<td>.400/10.2</td>
<td>.250/6.35</td>
<td>4.19</td>
<td>.192</td>
<td>.803</td>
</tr>
<tr>
<td>T68-60</td>
<td>29.0</td>
<td>.690/17.5</td>
<td>.370/9.40</td>
<td>.190/4.83</td>
<td>4.23</td>
<td>.179</td>
<td>.759</td>
</tr>
<tr>
<td>T68-63</td>
<td>18.5</td>
<td>.690/17.5</td>
<td>.370/9.40</td>
<td>.190/4.83</td>
<td>4.23</td>
<td>.179</td>
<td>.759</td>
</tr>
<tr>
<td>T68-66</td>
<td>35.0</td>
<td>.690/17.5</td>
<td>.370/9.40</td>
<td>.190/4.83</td>
<td>4.23</td>
<td>.179</td>
<td>.759</td>
</tr>
<tr>
<td>T68-70</td>
<td>53.0</td>
<td>.690/17.5</td>
<td>.370/9.40</td>
<td>.190/4.83</td>
<td>4.23</td>
<td>.179</td>
<td>.759</td>
</tr>
<tr>
<td>T68-60A</td>
<td>39.5</td>
<td>.690/17.5</td>
<td>.370/9.40</td>
<td>.250/6.35</td>
<td>4.23</td>
<td>.242</td>
<td>1.03</td>
</tr>
<tr>
<td>T68-63A</td>
<td>25.0</td>
<td>.690/17.5</td>
<td>.370/9.40</td>
<td>.250/6.35</td>
<td>4.23</td>
<td>.242</td>
<td>1.03</td>
</tr>
<tr>
<td>T68-66A</td>
<td>47.0</td>
<td>.690/17.5</td>
<td>.370/9.40</td>
<td>.250/6.35</td>
<td>4.23</td>
<td>.242</td>
<td>1.03</td>
</tr>
<tr>
<td>T68-70A</td>
<td>71.0</td>
<td>.690/17.5</td>
<td>.370/9.40</td>
<td>.250/6.35</td>
<td>4.23</td>
<td>.242</td>
<td>1.03</td>
</tr>
<tr>
<td>T80-60</td>
<td>31.0</td>
<td>.795/20.2</td>
<td>.495/12.6</td>
<td>.250/6.35</td>
<td>5.14</td>
<td>.231</td>
<td>1.19</td>
</tr>
<tr>
<td>T80-63</td>
<td>19.5</td>
<td>.795/20.2</td>
<td>.495/12.6</td>
<td>.250/6.35</td>
<td>5.14</td>
<td>.231</td>
<td>1.19</td>
</tr>
<tr>
<td>T80-66</td>
<td>37.0</td>
<td>.795/20.2</td>
<td>.495/12.6</td>
<td>.250/6.35</td>
<td>5.14</td>
<td>.231</td>
<td>1.19</td>
</tr>
<tr>
<td>T80-70</td>
<td>56.0</td>
<td>.795/20.2</td>
<td>.495/12.6</td>
<td>.250/6.35</td>
<td>5.14</td>
<td>.231</td>
<td>1.19</td>
</tr>
<tr>
<td>T80-M125</td>
<td>68.0</td>
<td>.795/20.2</td>
<td>.495/12.6</td>
<td>.250/6.35</td>
<td>5.14</td>
<td>.231</td>
<td>1.19</td>
</tr>
<tr>
<td>T80-60B</td>
<td>46.5</td>
<td>.795/20.2</td>
<td>.495/12.6</td>
<td>.375/9.53</td>
<td>5.14</td>
<td>.347</td>
<td>1.78</td>
</tr>
<tr>
<td>T80-63B</td>
<td>29.0</td>
<td>.795/20.2</td>
<td>.495/12.6</td>
<td>.375/9.53</td>
<td>5.14</td>
<td>.347</td>
<td>1.78</td>
</tr>
<tr>
<td>T80-66B</td>
<td>55.0</td>
<td>.795/20.2</td>
<td>.495/12.6</td>
<td>.375/9.53</td>
<td>5.14</td>
<td>.347</td>
<td>1.78</td>
</tr>
<tr>
<td>T80-70B</td>
<td>84.0</td>
<td>.795/20.2</td>
<td>.495/12.6</td>
<td>.375/9.53</td>
<td>5.14</td>
<td>.347</td>
<td>1.78</td>
</tr>
</tbody>
</table>

Refer to page 1 for tolerances.
TOROIDAL CORES

COLOR CODE
- 60 Brown/Black
- 61 Brown/Gray
- 63 Brown/Beige
- 66 Brown/Brown
- 70 Beige/Black
- M125 Lt. Blue/Lt. Blue

TYPICAL PART NO.

<table>
<thead>
<tr>
<th>MICROMETALS Part No.</th>
<th>A<sub>nH/N<sup>2</sup></th>
<th>OD in/mm</th>
<th>ID in/mm</th>
<th>Ht in/mm</th>
<th>(\ell) cm</th>
<th>A cm<sup>2</sup></th>
<th>V cm<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>T90-60</td>
<td>47.0</td>
<td>0.900/22.9</td>
<td>0.550/14.0</td>
<td>0.375/9.53</td>
<td>5.78</td>
<td>0.395</td>
<td>2.28</td>
</tr>
<tr>
<td>T90-66</td>
<td>56.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T90-70</td>
<td>85.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T90-M125E</td>
<td>90.0</td>
<td>0.900/22.9</td>
<td>0.550/14.0</td>
<td>0.300/7.62</td>
<td>5.78</td>
<td>0.320</td>
<td>1.85</td>
</tr>
<tr>
<td>T93-M125</td>
<td>105.0</td>
<td>0.928/23.6</td>
<td>0.567/14.4</td>
<td>0.350/8.89</td>
<td>5.96</td>
<td>0.389</td>
<td>2.32</td>
</tr>
<tr>
<td>T94-60</td>
<td>42.0</td>
<td>0.942/23.9</td>
<td>0.560/14.2</td>
<td>0.312/7.92</td>
<td>5.97</td>
<td>0.362</td>
<td>2.16</td>
</tr>
<tr>
<td>T94-63</td>
<td>26.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T94-66</td>
<td>50.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T94-70</td>
<td>76.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T106-60</td>
<td>70.0</td>
<td>1.060/26.9</td>
<td>0.570/14.5</td>
<td>0.437/11.1</td>
<td>6.49</td>
<td>0.659</td>
<td>4.28</td>
</tr>
<tr>
<td>T106-63</td>
<td>44.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T106-66</td>
<td>84.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T106-70</td>
<td>125.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T106-M125</td>
<td>157.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T106-60B</td>
<td>91.0</td>
<td>1.060/26.9</td>
<td>0.570/14.5</td>
<td>0.575/14.6</td>
<td>6.49</td>
<td>0.858</td>
<td>5.57</td>
</tr>
<tr>
<td>T106-63B</td>
<td>57.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T106-66B</td>
<td>109.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T130-60</td>
<td>58.0</td>
<td>1.300/33.0</td>
<td>0.780/19.8</td>
<td>0.437/11.1</td>
<td>8.28</td>
<td>0.698</td>
<td>5.78</td>
</tr>
<tr>
<td>T130-63</td>
<td>36.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T130-66</td>
<td>69.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T130-70</td>
<td>105.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T150-60</td>
<td>65.0</td>
<td>1.510/38.4</td>
<td>0.845/21.5</td>
<td>0.437/11.1</td>
<td>9.38</td>
<td>0.887</td>
<td>8.31</td>
</tr>
<tr>
<td>T150-63</td>
<td>41.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T150-66</td>
<td>78.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T150-70</td>
<td>118.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T157-60</td>
<td>73.0</td>
<td>1.570/39.9</td>
<td>0.950/24.1</td>
<td>0.570/14.5</td>
<td>10.1</td>
<td>1.06</td>
<td>10.7</td>
</tr>
<tr>
<td>T157-63</td>
<td>45.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T157-66</td>
<td>87.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T157-70</td>
<td>130.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T175-60</td>
<td>82.0</td>
<td>1.750/44.5</td>
<td>1.070/27.2</td>
<td>0.650/16.5</td>
<td>11.2</td>
<td>1.34</td>
<td>15.0</td>
</tr>
<tr>
<td>T175-66</td>
<td>97.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T184-60</td>
<td>116.0</td>
<td>1.840/46.7</td>
<td>0.950/24.1</td>
<td>0.710/18.0</td>
<td>11.2</td>
<td>1.88</td>
<td>21.0</td>
</tr>
<tr>
<td>T184-63</td>
<td>72.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T184-66</td>
<td>139.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TOROIDAL CORES

COLOR CODE
- 60 Brown/Black
- 61 Brown/Gray
- 63 Brown/Beige
- 66 Brown/Brown
- 70 Beige/Black
- M125 Lt. Blue/Lt. Blue

TYPICAL PART NO.

Refer to page 1 for tolerances.

<table>
<thead>
<tr>
<th>MICROMETALS Part No.</th>
<th>A_{1} \text{nH/N}^{2}</th>
<th>OD in/mm</th>
<th>ID in/mm</th>
<th>Ht in/mm</th>
<th>\ell cm</th>
<th>A \text{cm}^{2}</th>
<th>V \text{cm}^{3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>T200-60</td>
<td>67.0</td>
<td>2.000/50.8</td>
<td>1.250/31.8</td>
<td>.550/14.0</td>
<td>13.0</td>
<td>1.27</td>
<td>16.4</td>
</tr>
<tr>
<td>T200-66</td>
<td>80.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T200-60B</td>
<td>120.0</td>
<td>2.000/50.8</td>
<td>1.250/31.8</td>
<td>1.000/25.4</td>
<td>13.0</td>
<td>2.32</td>
<td>30.0</td>
</tr>
<tr>
<td>T200-66B</td>
<td>145.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T225-60</td>
<td>67.0</td>
<td>2.250/57.2</td>
<td>1.405/35.7</td>
<td>.550/14.0</td>
<td>14.6</td>
<td>1.42</td>
<td>20.7</td>
</tr>
<tr>
<td>T225-61</td>
<td>42.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T225-63</td>
<td>42.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T225-60B</td>
<td>120.0</td>
<td>2.250/57.2</td>
<td>1.405/35.7</td>
<td>1.000/25.4</td>
<td>14.6</td>
<td>2.59</td>
<td>37.8</td>
</tr>
<tr>
<td>T225-66B</td>
<td>145.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T250-60</td>
<td>177.0</td>
<td>2.500/63.5</td>
<td>1.250/31.8</td>
<td>1.000/25.4</td>
<td>15.0</td>
<td>3.84</td>
<td>57.4</td>
</tr>
<tr>
<td>T250-61</td>
<td>113.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T250-63</td>
<td>113.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T250-66</td>
<td>210.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T250-61A</td>
<td>56.0</td>
<td>2.500/63.5</td>
<td>1.250/31.8</td>
<td>.500/12.7</td>
<td>15.0</td>
<td>1.92</td>
<td>28.7</td>
</tr>
<tr>
<td>T300-60</td>
<td>58.0</td>
<td>3.040/77.2</td>
<td>1.930/49.0</td>
<td>.500/12.7</td>
<td>19.8</td>
<td>1.68</td>
<td>33.4</td>
</tr>
<tr>
<td>T300-61</td>
<td>37.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T300-66</td>
<td>70.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T300-60D</td>
<td>116.0</td>
<td>3.040/77.2</td>
<td>1.930/49.0</td>
<td>1.000/25.4</td>
<td>19.8</td>
<td>3.38</td>
<td>67.0</td>
</tr>
<tr>
<td>T300-63D</td>
<td>74.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T300-66D</td>
<td>140.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T400-60</td>
<td>96.0</td>
<td>4.000/102</td>
<td>2.250/57.2</td>
<td>.650/16.5</td>
<td>25.0</td>
<td>3.46</td>
<td>86.4</td>
</tr>
<tr>
<td>T400-66</td>
<td>114.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T400-60D</td>
<td>192.0</td>
<td>4.000/102</td>
<td>2.250/57.2</td>
<td>1.300/33.0</td>
<td>25.0</td>
<td>6.85</td>
<td>171</td>
</tr>
<tr>
<td>T400-61D</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T400-63D</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T400-66D</td>
<td>228.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T520-63</td>
<td>68.0</td>
<td>5.200/132</td>
<td>3.080/78.2</td>
<td>.800/20.3</td>
<td>33.1</td>
<td>5.24</td>
<td>173</td>
</tr>
<tr>
<td>T520-66</td>
<td>130.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T650-63</td>
<td>200.0</td>
<td>6.500/165</td>
<td>3.500/88.9</td>
<td>2.000/50.8</td>
<td>39.9</td>
<td>18.4</td>
<td>734</td>
</tr>
<tr>
<td>T650-66</td>
<td>380.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MICROMETALS

COLOR CODE
- 60 Brown/Black
- 66 Brown/Brown
- 70 Beige/Black

![Diagram of a bobbin with dimensions labeled A, B, C, D, F, and G.]

E49-E100 Not Color Coded
Refer to page 1 for tolerances.

TYPICAL PART NO.

<table>
<thead>
<tr>
<th>MICROMETALS</th>
<th>A, nH/N^2</th>
<th>Part No.</th>
<th>E</th>
<th>TYPICAL DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(BOBBIN)</td>
<td>(REF. SIZE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E49-70</td>
<td>45.0</td>
<td>(US LAM: EE-28-29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E75-60</td>
<td>50.0</td>
<td>.750/19.1</td>
<td>.635/16.1</td>
<td>.187/4.75</td>
</tr>
<tr>
<td>E75-70</td>
<td>72.0</td>
<td>(US LAM: EI-187)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E100-60</td>
<td>75.0</td>
<td>1.000/25.4</td>
<td>.750/19.1</td>
<td>.250/6.35</td>
</tr>
<tr>
<td>E100-60</td>
<td>75.0</td>
<td>(US LAM: EE-24-25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E137-60</td>
<td>100.0</td>
<td>1.375/34.9</td>
<td>1.145/29.1</td>
<td>.375/9.53</td>
</tr>
<tr>
<td>E137-66</td>
<td>113.0</td>
<td>(US LAM: EI-375)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E162-66</td>
<td>168.0</td>
<td>1.625/41.3</td>
<td>1.342/34.1</td>
<td>.500/12.7</td>
</tr>
<tr>
<td>E162-66</td>
<td>168.0</td>
<td>(US LAM: EI-21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E168-60</td>
<td>135.0</td>
<td>1.685/42.8</td>
<td>1.660/42.2</td>
<td>.590/15.0</td>
</tr>
<tr>
<td>E168-66</td>
<td>155.0</td>
<td>(DIN: 42/15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E168-66A</td>
<td>190.0</td>
<td>1.685/42.8</td>
<td>1.660/42.2</td>
<td>.787/20.0</td>
</tr>
<tr>
<td>E168-66A</td>
<td>190.0</td>
<td>(DIN: 42/20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E220-60</td>
<td>196.0</td>
<td>2.210/56.1</td>
<td>2.180/55.4</td>
<td>.820/20.8</td>
</tr>
<tr>
<td>E220-66</td>
<td>220.0</td>
<td>(DIN: 55/21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E305-60</td>
<td>222.0</td>
<td>3.051/77.5</td>
<td>3.051/77.5</td>
<td>.933/23.7</td>
</tr>
<tr>
<td>E305-66</td>
<td>250.0</td>
<td>(PB305 or PB305/VO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E305-60A</td>
<td>280.0</td>
<td>3.051/77.5</td>
<td>3.051/77.5</td>
<td>1.244/31.6</td>
</tr>
<tr>
<td>E305-60A</td>
<td>280.0</td>
<td>(PB305A or PB305AV0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E450-60</td>
<td>400.0</td>
<td>4.500/114</td>
<td>3.636/92.4</td>
<td>1.375/34.9</td>
</tr>
<tr>
<td>E450-66</td>
<td>460.0</td>
<td>(PB450/V0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E610-66</td>
<td>500.0</td>
<td>6.102/155</td>
<td>6.102/155</td>
<td>1.866/47.4</td>
</tr>
</tbody>
</table>
Magnetic Characteristics

Percent Permeability vs DC Magnetizing Force

Formula: \[\%\mu_0 = \left(\frac{a+cH+eH^2}{1+bH+dH^2}\right)^{1/2} \]

Where: \(\%\mu_0 \) = Percentage (i.e. 90% = 90)

\(H \) = DC Magnetizing Force (oersteds)

<table>
<thead>
<tr>
<th>Material</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>-60</td>
<td>10140</td>
<td>6.06x10^{-1}</td>
<td>-0.570</td>
<td>2.24x10^{-4}</td>
<td>0.0304</td>
</tr>
<tr>
<td>-61</td>
<td>10050</td>
<td>2.12x10^{-1}</td>
<td>-0.362</td>
<td>8.82x10^{-5}</td>
<td>0.0137</td>
</tr>
<tr>
<td>-63</td>
<td>10000</td>
<td>-6.28x10^{-5}</td>
<td>-7.41</td>
<td>6.16x10^{-5}</td>
<td>0.0168</td>
</tr>
<tr>
<td>-66</td>
<td>10000</td>
<td>8.67x10^{-3}</td>
<td>-5.72</td>
<td>4.66x10^{-4}</td>
<td>0.0315</td>
</tr>
<tr>
<td>-70</td>
<td>10040</td>
<td>-4.41x10^{-3}</td>
<td>-83.5</td>
<td>7.40x10^{-4}</td>
<td>0.2220</td>
</tr>
<tr>
<td>-M125</td>
<td>9900</td>
<td>-1.60x10^{-2}</td>
<td>-88.6</td>
<td>1.11x10^{-3}</td>
<td>0.2260</td>
</tr>
</tbody>
</table>

Percent Permeability vs Peak AC Flux Density

Formula: \[\%\mu_0 = \left(\frac{a+cB+eB^2}{1+bB+dB^2}\right)^{1/2} \]

Where: \(\%\mu_0 \) = Percentage (i.e. 90% = 90)

\(B \) = Peak AC Flux Density (gauss)

<table>
<thead>
<tr>
<th>Material</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>-60</td>
<td>9800</td>
<td>1.66x10^{-3}</td>
<td>27.7</td>
<td>1.04x10^{-6}</td>
<td>-1.33x10^{-3}</td>
</tr>
<tr>
<td>-61</td>
<td>9970</td>
<td>4.95x10^{-4}</td>
<td>11.5</td>
<td>6.54x10^{-10}</td>
<td>-8.78x10^{-4}</td>
</tr>
<tr>
<td>-63</td>
<td>10000</td>
<td>-3.41x10^{-5}</td>
<td>3.08</td>
<td>4.63x10^{-8}</td>
<td>-7.36x10^{-5}</td>
</tr>
<tr>
<td>-66</td>
<td>10000</td>
<td>4.64x10^{-5}</td>
<td>12.1</td>
<td>3.27x10^{-6}</td>
<td>-1.01x10^{-3}</td>
</tr>
<tr>
<td>-70</td>
<td>10120</td>
<td>8.81x10^{-4}</td>
<td>11.4</td>
<td>8.82x10^{-9}</td>
<td>-8.29x10^{-4}</td>
</tr>
<tr>
<td>-M125</td>
<td>10120</td>
<td>8.81x10^{-4}</td>
<td>11.4</td>
<td>8.82x10^{-9}</td>
<td>-8.29x10^{-4}</td>
</tr>
</tbody>
</table>

Core Loss vs Peak AC Flux Density

Formula: \[CL(mW/cm^3) = \frac{a}{B^3} + \frac{b}{B^{2.3}} + \frac{c}{B^{1.65}} + (df^2B^2) \]

Where: \(CL \) = Core Loss (mW/cm³)

\(B \) = Peak AC Flux Density (gauss)

\(f \) = Frequency (hertz)

<table>
<thead>
<tr>
<th>Material</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>-60</td>
<td>5.3x10^{8}</td>
<td>1.4x10^{8}</td>
<td>1.2x10^{6}</td>
<td>2.7x10^{-14}</td>
</tr>
<tr>
<td>-61</td>
<td>4.0x10^{8}</td>
<td>1.1x10^{8}</td>
<td>5.1x10^{5}</td>
<td>2.4x10^{-14}</td>
</tr>
<tr>
<td>-63</td>
<td>9.9x10^{8}</td>
<td>2.6x10^{8}</td>
<td>1.0x10^{4}</td>
<td>3.3x10^{-15}</td>
</tr>
<tr>
<td>-66</td>
<td>1.7x10^{10}</td>
<td>5.0x10^{7}</td>
<td>1.2x10^{6}</td>
<td>1.7x10^{-14}</td>
</tr>
<tr>
<td>-70</td>
<td>1.0x10^{10}</td>
<td>1.3x10^{9}</td>
<td>7.9x10^{6}</td>
<td>4.2x10^{-14}</td>
</tr>
<tr>
<td>-M125</td>
<td>3.1x10^{10}</td>
<td>2.7x10^{9}</td>
<td>3.3x10^{6}</td>
<td>5.3x10^{-14}</td>
</tr>
</tbody>
</table>

*Curve fit formula valid only for ranges shown on graph

The magnetic characteristic curves shown on pages 8 and 9 have a typical tolerance of +20%, -10%.

The core loss curves on pages 10 to 12 have a typical tolerance of ±15%.
MAGNETIC CHARACTERISTICS

Percent Initial Permeability (%μ₀)
vs
Peak AC Flux Density

\[B_{pk} = \frac{E_{rms}}{4.44 ANf} \]

\[E_{rms} = RMS \text{ Sinewave Voltage (volts)} \]
\[A = \text{Cross Section Area (cm}^2) \]
\[N = \text{Number of Turns} \]
\[f = \text{Frequency (hertz)} \]

Effective Permeability
vs
Frequency

\[μ_e = \frac{\mu_{0}}{1 + \\frac{2f}{f_c}} \]

\[f_c = \frac{1}{2\pi\sqrt{L/C}} \]

\[L = \text{Inductance} \]
\[C = \text{Capacitance} \]
CORE LOSS

-60 Material μ=55
Core Loss
vs
Peak AC Flux Density

-61 Material μ=35
Core Loss
vs
Peak AC Flux Density

NOTE: 1 tesla = 10,000 gauss
CORE LOSS

-63 Material $\mu_0 = 35$
Core Loss vs Peak AC Flux Density

-66 Material $\mu_0 = 66$
Core Loss vs Peak AC Flux Density

Bpk - Peak AC Flux Density (gauss) NOTE: 1 tesla = 10,000 gauss
-70 Material μ=100
Core Loss vs Peak AC Flux Density

NOTE: 1 tesla = 10,000 gauss

- M125 Material μ=125
Core Loss vs Peak AC Flux Density

NOTE: 1 tesla = 10,000 gauss
DISTRIBUTION WAREHOUSES AND SALES REPRESENTATIVES

WORLDWIDE STOCKING WAREHOUSES

Hong Kong:
P.Leo & Company Ltd.
Hong Kong
Phone: +852-2604-8222
Fax: +852-2693-2093

Germany:
BFI Optilas
Dietzenbach, Germany
Phone: +49-6074-4098-0
Fax: +49-6074-4098-10

WORLDWIDE STOCKING WAREHOUSES

East Coast:
CT, RI, MA, NH, VT & ME:
Dave Miller - Anchor Engineering
Phone: 508-898-2724
Fax: 508-870-0573

NJ & NY-Long Island:
Fred Strauss - Kahgan/Brody Associates
Phone: 516-599-4025
Fax: 516-599-2412

PA, WV & NY - Upstate
Rob West - West-Tech
Phone: 412-561-4764
Fax: 412-561-4765

MD, VA, NC & SC:
Trip Kreger - A.B. Kreger Co.
Phone: 540-989-4780
Fax: 540-772-2984

MidWest:
IL, IN, MO, KS Mi & OH:
Carson Atwater - Atwater & Assoc.
Phone: 630-668-2303
Fax: 630-668-2371

MN, ND, SD & IA:
Kevin Sonsalla - Atwater & Assoc.
Phone: 952-942-5252
Fax: 952-942-5252

WI:
Clark Atwater - Atwater & Assoc.
Phone: 815-356-5075
Fax: 815-356-5065

South:
TX, OK & AR:
Joe Stanfield - Southwest Electronics
Phone: 972-690-9881
Fax: 501-325-8989

WORLDWIDE REPRESENTATIVES

Australia:
Gary Kilbride - Magcore P/L
Phone: +61 (3) 9720 6406
Fax: +61 (3) 9738 0722

Austria:
Claudia Duft - BFI Optilas
Phone: +49-6074-4098-0
Fax: +49-6074-4098-10

Belgium:
Piot Van der Kuijl - BFI Optilas
Phone: +31 (0) 172-44 60 60
Fax: +31 (0) 172-44 34 14

Brazil:
Alessandro Martinez - ACG Tecnology
Phone: +55-11-6169-3200
Fax: +55-11-215-6297

Canada (Ontario & Quebec):
Rob West - West-Tech
Phone: 412-561-4764
Fax: 412-561-4765

Denmark:
Andreas Olsson - BFI Optilas
Phone: +46-18-565830
Fax: +46-18-696666

Finland:
Andreas Olsson - BFI Optilas
Phone: +46-18-565830
Fax: +46-18-696666

France:
Marc Brinque - BFI Optilas
Phone: +33-1-6079-5900
Fax: +33-1-6079-8901

Germany:
Claudia Duft - BFI Optilas
Phone: +49-6074-4098-0
Fax: +49-6074-4098-10

Hong Kong:
Peter Wong - P.Leo & Company
Phone: +852-2604-8222
Fax: +852-2693-2093

India:
Sashu Tatikola - MAM Inc.
Phone: +1-908-398-2571
Fax: +1-908-448-6580

Indonesia:
Desmond Decker - Infantron Pte Ltd.
Phone: +65-338-7317
Fax: +65-338-0914

Israel:
Chaim Messer - Phoenix Electronic
Phone: +972-9-7644800
Fax: +972-9-7644801

Italy:
Raimondo Castellani - BFI Optilas
Phone: +39-02-53583-218
Fax: +39-02-53583-201

Japan:
Nisshin International
Phone: +81-3-3226-5055
Fax: +81-3-3226-5230

Korea:
S.C. Yang - Kyung Il Corp.
Phone: +82-2-785-1445
Fax: +82-2-785-1447

Malaysia:
Desmond Decker - Infantron Pte Ltd.
Phone: +65-299-3900
Fax: +65-299-3955

The Netherlands:
Piet Van der Kuijl - BFI Optilas
Phone: +31-172-446060
Fax: +31-172-443141

Norway:
Andreas Olsson - BFI Optilas
Phone: +46-18-565830
Fax: +46-18-696666

Portugal:
Salvador Pons - BFI Optilas
Phone: +34-91-358 8611
Fax: +34-91-358-9271

Singapore:
Desmond Decker - Infantron Pte Ltd.
Phone: +65-299-3900
Fax: +65-299-3955

South Africa:
Richard Sidney - Avnet Kopp
Phone: +27-11-444-2333
Fax: +27-11-444-1706

Spain:
Salvador Pons - BFI Optilas
Phone: +34-91-358 8611
Fax: +34-91-358-9271

Sweden:
Andreas Olsson - BFI Optilas
Phone: +46-18-565830
Fax: +46-18-696666

Switzerland:
Dani Assaf - Dantronic AG
Phone: +41-1-931 2233
Fax: +41-1-931 2200

Taiwan:
Paula Mann - Power Magnetics
Phone: +886-2-2925-2071
Fax: +886-2-2921-6983

Thailand:
Desmond Decker - Infantron Pte Ltd.
Phone: +65-338-7317
Fax: +65-338-0914

United Kingdom:
Peter Rawlins - BFI Optilas
Phone: +44(0)1908-326326
Fax: +44(0)1908-221110