Day 54

1. Opener

a) A rectangle is cut twice - once horizontally and once vertically. The four smaller rectangles have area $45,25,15$, and x. Find x.
b) Sketch a coordinate plane and connect the points:
$(-2,3),(5,-2),(3,5),(0,-4)$.
What kind of quadrilateral is this?
How would you prove it?

c) A new student has joined our class. What advice do you have for him or her about this class?
d) Which is closer to our school? HI or NY?

distance between cities

Day 58

A rectangle is cut twice - once horizontally and once vertically. The four smaller rectangles have area 45, 25, 15, and x. Find X.

Day 58

A rectangle is cut twice - once horizontally and once vertically. The four smaller rectangles have area 45, 25, 15, and x. Find X.

Day 58

A rectangle is cut twice - once horizontally and once vertically. The four smaller rectangles have area 45, 25, 15, and x. Find x.

Day 58

A rectangle is cut twice - once horizontally and once vertically. The four smaller rectangles have area 45, 25, 15, and x. Find X.

3. How We Work - A Review

The Two Largest Rules

1. Respect the speaker.
2. Always participate.

The increase of detention from 30 sec . to 1 min . is respectful. I respect their capacity to learn and retain and, after a semester, they know the rules. They now decide whether or not to work within them.

4. Final Grade Results

30.0

The increase of detention from 30 sec . to 1 min . is respectful. I respect their capacity to learn and retain and, after a semester, they know the rules. They now decide whether or not to work within them.

5. The Feltron Project

The increase of detention from 30 sec . to 1 min . is respectful. I respect their capacity to learn and retain and, after a semester, they know the rules. They now decide whether or not to work within them.

5. The Feltron Project

1. Track Four (4) Variables.

Where I've Been
Text Messages I've Sent / Received
Movies I've Watched
Whom I've Watched Them With
Coffee Drinks I've Purchased
Where I've Purchased Them
2. Illustrate Them Mathematically

5. The Feltron Project

1. Interesting-ness of Tracked Variables
2. Mathematical Correctness
3. Graphic Design

Ask Them How We Grade This Weekly Checkup Make Notebook
6. Break
7. Show and Tell

8. Notes

Rigid Transformations

"Can anyone now define: rigid transformation?"

8. Notes

Non-Rigid Transformations

8. Notes

Rigid Transformations

Non-Rigid Transformations

Definition
Rigid Transformation
A transformation that preserves the and of a figure.

8. Notes

What kind of transformation is this?

8. Notes

What kind of transformation is this?

8. Notes

Three kinds of rigid transformation.

Translation:

8. Notes

Three kinds of rigid transformation.

Rotational Symmetry:

8. Notes

Three kinds of rigid transformation.

Reflectional Symmetery:

8. Notes

What kind of symmetry does the letter D have?

8. Notes

What kind of symmetry does the letter X have?

9. Classwork

a) Write the following letters.
b) Describe their symmetry -- rotational, reflectional, or neither
c) If they are reflectional, how many lines do they contain?

1. A reflectional, 1
2. B reflectional, 1
3. F none
4. H rotational and reflectional, 2
5. K reflectional, 1
6. N rotational
7. O rotational and reflectional, infinite
8. Q
9. T reflectional, 1
10. Z rotational

Day 55

1. Opener

a) List the symmetries of the letters: G, M, and I
b) List the coordinates of each of the triangle's vertices.
c) Triangle $A B C$ is isosceles with a vertex angle A of 50°. If D is on $A C$, E is on $B C$, and $D E$ is parallel to $A B$, what is the measure of angle ADE?

d) The Zimbabwean government recently released a $\$ 10,000,000$ note. How much is it worth in US dollars?

2. The Feltron Project - Checkpoint 1

What are your four variables?

Ask them to describe it in words -- it's moved up and right -- and then convert that to coordinates.

3. Notes - Describing Translations

How would you describe the following translation?

Original
(x, y)

New

$$
(x+10, y+4)
$$

Ask them to describe it in words -- it's moved up and right -- and then convert that to coordinates.

3. Notes - Describing Translations

How would you describe the following translation?

Original
(x, y)

New

$$
(x+8, y-2)
$$

No matter how ugly the figure, the translation is as simple.

3. Notes - Describing Translations

Draw the figures and apply the transformations.

$$
\begin{aligned}
& (x, y) \longrightarrow(x-7, y+1) \\
& (x, y) \longrightarrow(x,-y) \\
& (x, y) \longrightarrow(-x, y) \\
& (x, y) \longrightarrow(-x,-y)
\end{aligned}
$$

Black: just take every point one at a time and move them 7 left and 1 up.
Red: Take every y and reverse the sign. What will it look like?

4. Classwork

pg. 370 // \#1-5, 7, 8
pg. 362 // \#1-4, 6, 11
5. Break
6. Show and Tell

7. Tessellations

Does a regular triangle tessellate the plane?

Ask someone to draw it at the board.

7. Tessellations

Does a regular quadrilateral tessellate the plane?

Ask someone to draw it at the board.

7. Tessellations

Does a regular hexagon tessellate the plane?

Ask someone to draw it at the board. Discuss why triangles, squares, and hexagons work but pentagons don't.

8. Classwork - Tessellation Activity

a) Can any triangle tessellate the plane?
b) Can any quadrilateral tessellate the plane?

Tessellation handout. Devise a method for tessellating triangles and quadrilaterals.

8. Classwork - Tessellation Activity

a) Can any triangle tessellate the plane?
b) Can any quadrilateral tessellate the plane?

8. Classwork - Tessellation Activity

a) Can any triangle tessellate the plane?
b) Can any quadrilateral tessellate the plane?

Day 56

1. Opener

a) Re-draw the following figure rotated 90° clockwise across its axis.
b) Why can you tessellate a square and a hexagon, but not a pentagon?
c) A rectangle is cut twice -- once vertically and once horizontally. The four smaller rectangles have areas $45,25,15$, and x. Find x.

d) What is the percent probability a dollarbill has trace amounts of cocaine on it?

2. Notes - Carving Translations

Thus far we've only investigated the boring tessellations. All squares. Hoo-ray.

2. Notes - Carving Translations

Chuckles the Happy Two-Legged Elephant

He has friends!

3. Tessellation Assignment \#1-Squares

Give the assignment. Discuss how it should look.

Day 57

1. Opener

a) Sketch the figure after applying the translation:
$(x, y) \longrightarrow(x-4,-y)$
b) Describe the translation between A and A^{\prime}
c) Put a square on each edge of an equilateral triangle and connect the outside vertices of adjacent squares to form a hexagon. Is this hexagon equilateral, equiangular, both, or neither?
d) What percent of car accidents are caused by sleep deprivation?

2. Notes - Carving Tessellations from Hexagons

2. Notes - Carving Tessellations from Hexagons

Show how to make the cuts.

2. Notes - Carving Tessellations from Hexagons

2. Notes - Carving Tessellations from Hexagons

The Angry Wolf That Lives Under Your Bed

 And Waits For You To Fall Asleep

He's got friends.

Do you see the hexagons?

3. Tessellation Assignment \#2-Hexagons

Introduce the second part of the project.
4. Break
5. Show and Tell

6. Notes - Area

Rectangle Area

The area of a rectangle with base \mathbf{b} and height \mathbf{h} is
 we're just going to review.

6. Notes - Area

Parallelogram Area

The area of a parallelogram with base \mathbf{b} and height \mathbf{h} is

Show them how to build a rectangle from the pieces.

6. Notes - Area

Triangle Area

The area of a triangle with base \mathbf{b} and height \mathbf{h} is

Show them how to double the triangle to make a rectangle.

6. Notes - Area

Rectangle

Triangle
Parallelogram

$A=24$

$A=31.5$

See revisions.

7. Classwork

pg. 413 // \#1-14, 17, 23, 24

