
Synergy Language Tools

Version 9.3

Printed: December 2009

The information contained in this document is subject to change without notice and should not be construed
as a commitment by Synergex. Synergex assumes no responsibility for any errors that may appear in this
document.

The software described in this document is the proprietary property of Synergex and is protected by
copyright and trade secret. It is furnished only under license. This manual and the described software may be
used only in accordance with the terms and conditions of said license. Use of the described software without
proper licensing is illegal and subject to prosecution.

© Copyright 2006 – 2009 by Synergex

Synergex, Synergy, Synergy/DE, and all Synergy/DE product names are trademarks of Synergex.

ActiveX, Windows, Windows Vista, Windows Server, and Win32 are registered trademarks of Microsoft
Corporation.

Adobe, Acrobat, and Reader are registered trademarks of Adobe Systems Incorporated.

All other product and company names mentioned in this document are trademarks of their respective
holders.

DCN ST-01-9301

Synergex
2330 Gold Meadow Way
Gold River, CA 95670 USA

http://www.synergex.com
phone 916.635.7300
fax 916.635.6549

http://www.synergex.com

Synergy Language Tools 9.3 (12/09) iii

Contents

Preface

About this manual ix
Manual conventions ix
Other useful publications x
Product support information x
Synergex Professional Services Group x
Comments and suggestions xi

1 Building and Running Synergy Language Programs

Creating and Running Synergy Language Programs 1-2

Methods for invoking commands on Windows 1-2
Input/Output redirection 1-5
Filenames on Windows 1-5
Filenames on UNIX 1-6

Compiling a Synergy Language Routine 1-7

Invoking the compiler 1-7
Redirecting compiler commands from a file 1-23
Listing object file contents 1-24

Creating and Using Libraries 1-25

About object and executable libraries 1-25
Creating executable libraries 1-27
Creating object libraries 1-28
Invoking the librarian 1-28
Redirecting librarian commands from a file 1-32

Building Shared Images 1-33

Linking Object Modules 1-37

Invoking the linker on Windows and UNIX 1-37
Redirecting linker commands from a file 1-44
Expanding the Synergy Language stack through the linker 1-45

Contents

iv Synergy Language Tools 9.3 (12/09)

Listing executable programs 1-45
Listing ELBs 1-47
Invoking the linker on OpenVMS 1-48

Running Synergy Language Programs 1-50

Running programs on Windows and UNIX 1-50
Running programs on OpenVMS 1-51
The service runtimes 1-52
Using dbr or dbs as a scheduled task 1-55

2 Debugging Your Synergy Programs

Introduction to the Debugger 2-3

Debugger Commands 2-11

Command recall and editing 2-11
BREAK – Set a program breakpoint 2-12
CANCEL – Cancel watchpoints and breakpoints 2-17
DELETE – Delete a program breakpoint 2-19
DEPOSIT – Assign a value to a variable 2-21
EXAMINE – Examine the contents of a variable or address 2-22
EXIT – Exit the current program with traceback 2-27
GO – Continue program execution 2-28
HELP – Provide command help information 2-30
LIST – Display lines of source code 2-31
LOGGING – Log the debugging session to a file 2-32
OPENELB – Make an ELB’s subroutines available to debugger 2-33
QUIT – Quit the current program without traceback 2-34
SAVE – Save current debugger settings 2-35
SCREEN – Update the Synergy windowing system 2-36
SEARCH – Search the source for a string 2-37
SET – Set debugger options 2-38
SHOW – Examine debugger options and program state information 2-40
STEP – Step to the next Synergy Language statement 2-43
TRACE – Display the current traceback 2-44
VIEW – Display lines around a debug entry 2-45
WATCH – Set a watchpoint 2-46
WINDBG – Invoke the UI Toolkit debugger 2-49

Contents

Synergy Language Tools 9.3 (12/09) v

@ – Process an indirect command file 2-50
! – Execute system commands 2-51

Sample Debugging Session 2-52

3 Synergy DBMS

Synergy File Types 3-2

Synergy ISAM files 3-2
Synergy relative files 3-17
Synergy sequential files 3-21
Synergy stream files 3-23
Synergy block file I/O 3-26

Synergy DBMS Utilities 3-29

Parameter and XDL files 3-30
bldism – Create an ISAM file 3-33
chklock – Report file lock information 3-42
fcompare – Compare database files to system catalog or repository 3-44
fconvert – Convert database files to other file types 3-50
ipar – Generate parameter file descriptions 3-56
irecovr – Recover Revision 1–3 ISAM files 3-59
isload – Load, unload, or clear an ISAM file 3-62
ismvfy – Verify structure of a Revision 1–3 ISAM file 3-66
isutl – Verify, recover, and optimize Revision 4 and higher ISAM files 3-70
status – Report the status of an ISAM file 3-79

ISAM Definition Language 3-81

XDL keywords 3-81
XDL syntax checker utility 3-90

Moving Database Files to Other Systems 3-91

4 General Utilities

The Synergy Control Panel 4-3

Before you begin 4-3
Making minor changes: Editing messages interactively 4-4
Making major changes: Unloading messages to an ASCII file 4-6
Creating your own text message files 4-7
Modifying messages at the command line 4-8

Contents

vi Synergy Language Tools 9.3 (12/09)

The Synergy Language Profiler 4-12

Enabling profiling 4-12
Decoding the profile.dat or lines.dat file 4-13
Keep in mind… 4-14

The Synckini Utility 4-15

The Servstat Program 4-16

Function of the program 4-16
Running servstat with command line arguments 4-17
Servstat options 4-18

The Monitor Utility for Windows 4-22

The Monitor Utility for UNIX 4-24

Monitoring Synergy/DE xfServer 4-24
When to use the Monitor 4-24
Running the Monitor 4-24
Displaying Monitor information 4-26
Sample output from the Monitor Utility 4-27

The ActiveX Diagnostic Utility 4-32

Registering an ActiveX control 4-32
Testing an ActiveX control 4-33

The Synbackup Utility 4-35

Synbackup on Windows 4-36
Synbackup on UNIX 4-37

The Synergy Prototype Utility 4-39

The Variable Usage Utility 4-44

Sample output 4-45

The Gennet Utility 4-46

The dbl2xml Utility 4-51

5 Error Messages

About Synergy Language Errors 5-2

Trapping runtime errors 5-2
Fatal errors 5-3
Using error literals instead of numbers 5-3
The Synergy Control Panel 5-3

Contents

Synergy Language Tools 9.3 (12/09) vii

Runtime Errors 5-4

Runtime error messages 5-4
Informational error messages 5-33
Fatal error messages 5-41
Success message 5-43
Debugging log messages 5-43
Window error messages 5-44

Compiler Errors 5-47

Nonfatal error messages 5-47
Informational error messages 5-85
Fatal error messages 5-87
Warning error messages 5-90

Linker Errors 5-99

Fatal error messages 5-99
Informational error messages 5-104
Warning error messages 5-104

Librarian Errors 5-107

Fatal error messages 5-107
Warning error messages 5-109

Synergy DBMS Errors 5-110

List of Runtime Error Numbers 5-114

Appendix A: Compiler Listings

Sample Compiler Listing A-2

An explanation of the compiler listing A-3

Compiler Listing Tables A-5

Sample listing tables A-5
An explanation of the compiler listing table A-9

Index

Synergy Language Tools 9.3 (12/09) ix

Preface

About this manual
This manual is your guide to the programming tools that are used with Synergy Language. It
documents the compiler, linker, librarian, and runtime; the debugger; the Synergy™ DBMS file
management system; general utilities; and error messages.

Manual conventions
Throughout this manual, we use the following conventions:

In code syntax, text that you type is in Courier typeface. Variables that either represent or
should be replaced with specific data are in italic type.

Optional arguments are enclosed in [italic square brackets]. If an argument is omitted and the
comma is outside the brackets, a comma must be used as a placeholder, unless the omitted
argument is the last argument in a subroutine. If the comma is inside the brackets and an
argument is omitted, the comma may also be omitted.

Arguments that can be repeated one or more times are followed by an ellipsis…

A vertical bar (|) in syntax means to choose between the arguments on each side of the bar.

Data types are boldface. The data type in parentheses at the end of an argument description
(for example, (n)) documents how the argument will be treated within the routine. An a
represents alpha, a d represents decimal or implied-decimal, an i represents integer, and an n
represents numeric (which means the type can be d or i).

WIN
Items or discussions that pertain only to a specific operating system or environment are called
out with the name of the operating system.

Preface

x Synergy Language Tools 9.3 (12/09)

Other useful publications
Synergy Language release notes (REL_DBL.TXT)

Synergy Language Reference Manual

Environment Variables and System Options

Getting Started with Synergy/DE

Professional Series Portability Guide

Product support information
If you cannot find the information you need in this manual or in the publications listed above, you
can call the Synergy/DE™ Developer Support department at (800) 366-3472 (in North America) or
(916) 635-7300. To purchase Developer Support services, contact your Synergy/DE account
manager at the above phone numbers.

Before you contact us, make sure you have the following information:

The version of the Synergy/DE product(s) you are running.

The name and version of the operating system you are running.

The hardware platform you are using.

The error mnemonic and any associated error text (if you need help with a Synergy/DE error).

The statement at which the error occurred.

The exact steps that preceded the problem.

What changed (for example, code, data, hardware) before this problem occurred.

Whether the problem happens every time, and whether it is reproducible in a small test
program.

Whether your program terminates with a traceback, or whether you are trapping and
interpreting the error.

Synergex Professional Services Group
If you would like assistance implementing new technology or would like to bring in additional
experienced resources to complete a project or customize a solution, Synergex™ Professional
Services Group (PSG) can help. PSG provides comprehensive technical training and consulting
services to help you take advantage of Synergex’s current and emerging technologies. For
information and pricing, contact your Synergy/DE account manager at (800) 366-3472 (in North
America) or (916) 635-7300.

Preface

Synergy Language Tools 9.3 (12/09) xi

Comments and suggestions
We welcome your comments and suggestions for improving this manual. Send your comments,
suggestions, and queries, as well as any errors or omissions you’ve discovered, to
doc@synergex.com.

mailto:doc@synergex.com

1-1

1
Building and Running
Synergy Language Programs

This chapter provides an overview and instructions for building and running executable
Synergy Language programs.

Creating and Running Synergy Language Programs 1-2

Summarizes the commands used to create and run a Synergy Language program on Windows,
UNIX, and OpenVMS.

Compiling a Synergy Language Routine 1-7

Describes how to compile your Synergy Language source code files into object files.

Creating and Using Libraries 1-25

Gives you instructions for creating object libraries using the Synergy librarian. Also explains the
difference between object libraries and executable libraries and how they can be used by your
compiled Synergy Language routines. This section is for Windows and UNIX environments.
OpenVMS libraries are discussed in “Building Shared Images.”

Building Shared Images 1-33

Describes how to build shared executable images on OpenVMS.

Linking Object Modules 1-37

Describes how to use the Synergy linker to combine object files into a single, executable program.

Running Synergy Language Programs 1-50

Describes how to use the Synergy runtime to execute your programs.

Building and Running Synergy Language Programs
Creating and Running Synergy Language Programs

1-2 Synergy Language Tools 9.3 (12/09)

Creating and Running Synergy Language Programs
To create and run a Synergy Language program, you must follow these basic steps:

Detailed instructions for compiling, linking, creating libraries, and running Synergy Language
programs are provided throughout the remainder of this chapter.

Methods for invoking commands on Windows
In a Microsoft Windows environment, you can invoke the development tools and runtime from any
of the following locations:

The Command Prompt window

The Run dialog box in Explorer

Professional Series Workbench

The SynergyDE folder on the Start menu (runtime only)

Most of these methods require you to use the appropriate command syntax. The commands and
syntax for the development tools and runtime are discussed later in this chapter.

To create icons that run the development tools with previously specified options or to create an icon
to run your application, refer to your Microsoft Windows documentation

Invoking commands from the Command Prompt window
In the Command Prompt window, you can do any of the following:

Enter the tool name and press ENTER. At the TOOLNAME prompt, you can enter the rest of
the command line.

Enter the full command lines. For example:

dblink -o util sub1 sub2 sub3 sub4 sub5

Step
WIN or UNIX
command

OpenVMS
command

1. Compile the Synergy Language source files into object files.
(On OpenVMS this is user-definable at installation time.)

dbl DIBOL

2. Link the generated objects into an executable program. dblink LINK

3. (optional) Create libraries. dblibr LIBRARY

4. Run the executable program. dbr RUN

Building and Running Synergy Language Programs
Creating and Running Synergy Language Programs

Synergy Language Tools 9.3 (12/09) 1-3

Enter a command line that redirects additional commands from a file. For example:

dblink <link.inp

Enter the name of a batch file that contains the command lines. For example:

dblink> <link.inp

Invoking commands from the Run dialog box
To use the Run dialog box, select Run from the Start menu.

At the Open: field, you can do either of the following:

Enter the full command line. For example:

dblink -o util sub1 sub2 sub3 sub4 sub5

Enter a command line that redirects additional commands from a file. For example:

dblink <link.inp

Invoking commands from Professional Series Workbench
If you are using Professional Series Workbench to develop your applications, you can compile,
link, and run your project file directly from Workbench by selecting one of the following
commands from the Project menu:

Figure 1-1. The Run dialog box.

To invoke the Select

Compiler Compile

Linker Build

Runtime Execute

Building and Running Synergy Language Programs
Creating and Running Synergy Language Programs

1-4 Synergy Language Tools 9.3 (12/09)

Refer to the “Developing Your Application in Workbench” chapter in Getting Started with
Synergy/DE for more information about Workbench. See “Compiling, Building, and Running” in
that same chapter for instructions on customizing the compile, link, and run commands.

Invoking the runtime from the Start menu
Only the runtime can be accessed from the Start menu. To invoke the runtime,

select Run from the SynergyDE folder on the Start menu.

The Synergy Runtime dialog box is displayed, prompting you to select the executable program to
run. (See figure 1-2.)

If the file you want to run isn’t contained in the current drive and directory, you can

use the mouse to change to the correct location.

type a full path specification into the File name: field. The path specification can include
logicals defined in the environment or in the synergy.ini file.

Some programs allow command line options. When you select one of these icons, it will display its
own utility-specific dialog box asking for arguments.

Figure 1-2. The Synergy Runtime dialog box.

Building and Running Synergy Language Programs
Creating and Running Synergy Language Programs

Synergy Language Tools 9.3 (12/09) 1-5

Input/Output redirection
Your Windows and UNIX runtimes and utilities redirect input and output as follows:

The UPPERCASE option is used with input.

CTRL+G is directed to the runtime as input.

%RDTRM will return the proper character.

When output is redirected to a file, traceback information and stop messages will go to the
output file instead of appearing in a message box on the screen.

Filenames on Windows
The Windows file system supports both upper and lowercase filenames, and the filenames are case
insensitive. Thus, the filenames test.dbl and TesT.Dbl refer to the same file. However, the
operating system stores each filename in the manner in which it was created. In a file listing of
Explorer, you may see uppercase, lowercase, and mixed-case filenames. Synergy Language lets the
user determine the case of filenames. When a program creates a file, the OPEN statement specifies
the filename case. Utility programs, such as the compiler (dbl.exe) and the linker (dblink.exe),
create filenames spelled as they are on the command line. If not specified, the filename extensions
default to lowercase.

You can control filename cases via the environment variable DBLCASE. With DBLCASE =u, all
filenames are created in uppercase, regardless of the case used on the command line or in an OPEN
statement. With DBLCASE =l, all filenames are created in lowercase. In Windows environments,
DBLCASE has the same syntax as on UNIX. However, because environment variables are case
insensitive under Windows, the “u” and “l” for logicals are ignored.

For example, if DBLCASE is not set:

dbl Test will create the object file Test.dbo, regardless of what case is used for test.dbl.

dbl -o TEST Test will create the object file TEST.dbo.

dbl -o TEST.Dbo Test will create the object file TEST.Dbo.

If DBLCASE =u:

dbl Test, dbl -o TEST Test, and dbl -o TEST.Dbo Test will create the object file
TEST.DBO.

If DBLCASE =1:

dbl Test, dbl -o TEST Test, and dbl -o TEST.Dbo Test will create the object file test.dbo.

Building and Running Synergy Language Programs
Creating and Running Synergy Language Programs

1-6 Synergy Language Tools 9.3 (12/09)

Filenames on UNIX
Filenames on UNIX are case sensitive. The case of the first letter of a filename is assumed to be the
case for the extension if the extension is not specified. For example, if the first letter of a filename
is uppercase, utility programs such as the compiler (dbl.exe) and the linker (dblink.exe) will look
for that file with an uppercase extension. Thus, if a file is named Test.dbl, the only way to compile
it is to specify the entire filename, including the extension, in the compile command. Otherwise, the
compiler will assume that the file is named Test.DBL, and an error will be generated. Do not use
the DBLCASE environment variable with this type of filename; if you do, you will not be able to
open the file.

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

Synergy Language Tools 9.3 (12/09) 1-7

Compiling a Synergy Language Routine
After creating your Synergy Language source code files, your next step is to compile these files
into object files. The object files are then used by the linker to create an executable program.

Invoking the compiler

WIN, UNIX
dbl [options] [list_options] [--] source_1 […source_n]

Additional ways to run the compiler in a Windows environment are explained in “Methods for
invoking commands on Windows” on page 1-2.

VMS
The compiler verb is selected at install time. Here we are using “DIBOL” as an example.

DIBOL [options] source_1 [options]

or

DIBOL [options] source_1 [+…source_n][options]

Arguments
source_1

The first source file to be compiled. The default filename extension is .dbl.

source_n

(optional) Represents additional source files to be compiled in the order listed. The default
filename extension is .dbl.

The version 9 compiler is not available on SCO OpenServer. On these platforms, the
compiler that we distribute is the same as the compiler distributed as dbl8 on other
platforms. (Refer to the version 9.1 release notes for more information on dbl8.)

When compiling code that contains classes, do not compile classes that don’t have
methods, as there will be nothing to compile.

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

1-8 Synergy Language Tools 9.3 (12/09)

WIN, UNIX
options

(optional) One or more compiler options and their arguments, shown in the table starting on
page 1-9. You can either precede a group of options with a minus sign (-), or precede each
option with a minus sign. (For example, -acdr, -ac -dr, and -a -c -d -r are all valid.)

If an option requires an argument and that argument does not follow the option or option group
immediately, Synergy Language assumes that the option’s argument is the next undefined
element on the line. For example, the following dbl commands are equivalent:

dbl -ab bind_name -l list_file src_file

and

dbl -abl bind_name list_file src_file

In both cases, the bind_name argument goes with the b option and the list_file argument goes
with the l option. The Discussion section explains what happens if an argument is omitted.

list_options

(optional) One or more of the following options, which control program listings and may
override compilation flags set by the .START, .LIST, or .NOLIST compiler directives. (See
the Discussion section below.)

+[no]list

+[no]cond

+[no]summary

+[no]offsets

--

(optional) Separates options and list_options from the source file list.

In Windows environments, if system option #34 is set, you must use a forward slash (/) instead of a
minus sign (-) before each compiler option or group of options.

VMS
options

(optional) One or more compiler options and their arguments, shown in the table starting on
page 1-9. You must precede each option with a slash (/). If an option requires an argument and
that argument is not specified, Synergy Language assumes that the option’s argument is the
same as the main filename.

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

Synergy Language Tools 9.3 (12/09) 1-9

Compiler options
A complete list of the compiler options for Windows, UNIX, and OpenVMS follows.

Compiler Options

Name Description WIN/UNIX option OpenVMS option

Align data on
system
boundaries

Align all integer types on native boundaries and align
alpha types in unnamed records whose size is
greater than or equal to 64 bytes to a native int
boundary. In addition, all other records and global
commons are aligned to a native int boundary.

-qalign /ALIGN

Alternate IF Use the alternate, non–ANS DIBOL form of the IF
statement, which specifies that the THEN is optional
and the ELSE belongs to the last IF statement. (The
ANS DIBOL form of the IF statement specifies that
each ELSE belongs to the most recent THEN in the
same lexical level.) For more information, see IF-
THEN-ELSE in the “Synergy Language Statements”
chapter of the Synergy Language Reference
Manual.

-a
or
-q[no]altif

/ALTIF

Alternate
store

Support VAX DIBOL-compatible zoned stores by
translating spaces to zeros during alpha-to-numeric
and decimal-to-decimal stores. By default, Synergy
Language ignores spaces and performs no
translations during store operations. (The alternate
store is significantly slower than the default.)

-V
or
-q[no]altstore

/ALTSTORE

Array size ^SIZE (or %SIZE) of a real or pseudo array returns
the size of the whole array. By default, Synergy
Language returns the size of one array element. See
“Array size” in the Discussion for more information.

-s
or
-q[no]decscope

/DECSCOPE

Bind Bind the specified name to an executable routine as
a secondary main routine. If bind_name is not
specified, the compiler uses the first source name
without an extension.

-b [bind_name] /BIND
[=SECONDARY]

Bind primary Compile main as the primary (entry) routine for a
bound program. The default main routine name is
the name of the first source name without an
extension.

-p main /BIND=PRIMARY

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

1-10 Synergy Language Tools 9.3 (12/09)

Bounds
checking

Enable bounds checking to enforce array
dimensions and string sizes to prevent subscripting
off the end of an array or string. The -qcheck option
converts all pseudo arrays to real arrays, converts all
arguments to real arrays, and checks all subscript
ranging and dimension access to make sure it does
not exceed the descriptor of the variable passed. On
OpenVMS, the default is /CHECK=NOBOUNDS.

-B
or
-q[no]check

/CHECK=BOUNDS

Common
suffix

By default a dollar sign ($) is appended to the end of
common variables. This switch causes a dollar sign
not to be appended to common variable names. On
OpenVMS, the default is /COMMON=SUFFIX.

-A
or
-q[no]suffix

/COMMON=NOSUFFIX

Conditionals Exclude conditional compiler directives and source
code in false conditional blocks from the program
listing. On OpenVMS, the default is /SHOW=
CONDITIONALS.

-C /SHOW=
NOCONDITIONALS

Debug Emit debugging information. Level can be one of the
following:
0 Emit line number information. (default)

1 Emit line number information, create a
symbolic access table for all variables in the
file, and provide source file relationship
information for use by the debugger.

Setting either level allows stepping in the debugger
and provides line numbers in error traceback and
XCALL ERROR. The -d option is equivalent to
-qdebug=1, and /DEBUG is equivalent to
/DEBUG=1.
If you don’t compile and link with this option, or if you
set -qnodebug, the compiler will not emit debugging
information. On OpenVMS, the default is
/NODEBUG.

-d
or
-q[no]debug[=level]

/DEBUG[=level]

Expand
macros

Include the expanded form of lines containing
macros in the listing file (following the regular listing
line).

-qexpand /EXPAND

Compiler Options (Continued)

Name Description WIN/UNIX option OpenVMS option

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

Synergy Language Tools 9.3 (12/09) 1-11

External
Common

Treat COMMON statements in the main routine that
don’t specify GLOBAL or EXTERNAL modifiers as
external commons instead of global commons, which
is the default.

-c
or
-qexternal

/COMMON=
EXTERNAL

FIND lock FIND statements default to locking found records. By
default, Synergy Language does not lock the record
unless the LOCK qualifier is specified. On
OpenVMS, the default is /NOFIND_LOCK.

-F /FIND_LOCK

Form feed Form feed immediately after the data division in the
program listing. (Also see the -P option, which
performs the same task.) On OpenVMS, the default
is /SHOW=NONEWPAGE.

-f /SHOW=NEWPAGE

Global
Common

Treat COMMON statements that don’t specify
GLOBAL or EXTERNAL modifiers as global
commons instead of external commons.

-G
or
-qglobal

/COMMON=GLOBAL
(default)

Global
definitions

Don’t make global definitions that are built into the
compiler available to this Synergy Language
program. (Refer to “Built-in compiler definitions” on
page 1-21 for more information.) On OpenVMS, the
default is /GBLDEFS.

-g /NOGBLDEFS

Header Exclude page headers and footers from the program
listing. This is particularly useful when directing
program listings to the screen. On OpenVMS, the
default is /SHOW= HEADERS.

-h /SHOW= NOHEADERS

Import
directories
for
prototyping

Specify the import directories that the IMPORT
statement should search. On Windows and UNIX
you can specify multiple directory locations (or
logicals that contain a directory location), which will
be searched in the order they appear on the
command line. On OpenVMS, you can specify a
single string containing a comma-delimited directory
search path list (or logical list).

-qimpdir=import_dir
[...]

/IMPDIR="import_dir[,...]"

List Generate a program listing named list_file. If list_file
is not specified, the default filename is the first
source file with the extension .lis. On OpenVMS, the
default is /NOLISTING.

-l [list_file] /LISTING[=filename]

Compiler Options (Continued)

Name Description WIN/UNIX option OpenVMS option

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

1-12 Synergy Language Tools 9.3 (12/09)

Local record Change the default behavior of unqualified RECORD
statements to LOCAL.

-qlocal /LOCAL

.NET
compiler
warnings

Turn on .NET compiler warnings for items that will
not be supported in Synergy .NET. These include
deprecated data types, syntax, APIs, compiler
options, and alignment warnings. Warnings are
output to standard error.

-qnet /NET

No n
argument
optimization

Relax integer optimization of n type arguments that
are used in CASE and USING statements. Implied
values passed to n arguments are treated as their
full implied value.

-qnoargnopt /NOARGNOPT

No object file Check syntax but do not create an object file. On
OpenVMS, the default is /OBJECT.

-n
or
-qnoobject

/NOOBJECT

Numeric
argument

Convert all decimal type arguments to numeric type.
On OpenVMS, the default is /NODECARGS.

-N
or
-q[no]decargs

/DECARGS

Object Name the object file object_file. If object_file is not
specified, the default filename is the first source file
with the extension .dbo. On OpenVMS, the default
file name is the first source file with the default
extension .OBJ. If you don’t want to specify an object
filename, you must specify /NOOBJECT.

-o [object_file]
or
-qobject
[=object_file]

/OBJECT[=object_file]
(default)

Offsets Compiler generated list of offsets into symbol table
for each symbol referenced. (Compiling with -d or
/DEBUG will include unreferenced symbols as well.)

-i /OFFSETS

Optimize Turn optimizations on or off, where level is one of the
following:
0 Optimizations will not occur.

1 Base optimizations will occur. (default)

-qnooptimize is equivalent to -qoptimize=0, and
/NOOPTIMIZE is equivalent to /OPTIMIZE=0.

-q[no]optimize
[=level]

/[NO]OPTIMIZE[=level]

Compiler Options (Continued)

Name Description WIN/UNIX option OpenVMS option

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

Synergy Language Tools 9.3 (12/09) 1-13

Page break Page break immediately after the data division in the
program listing. (Also see the -f option, which
performs the same task.) On OpenVMS, the default
is /SHOW=NONEWPAGE.

-P /SHOW=NEWPAGE

Page length Set the length of each listing page equal to length.
By default, the program listing will contain 60 lines.

-L length /PAGE_SIZE=length

Profiling Enable profiling of specific routines in the files being
compiled. You must also set system option #40, #41,
or #52, depending on what you want to profile. (You
do not need to use this option if you want to profile all
routines and have set system option #42.)

-u
or
-q[no]profile

/PROFILE

Recursion All routines in the files being compiled can be
re-entered. (You can also specify the REENTRANT
modifier on the FUNCTION and SUBROUTINE
statements for those routines.)

-E
or
-q[no]reentrant

/REENTRANT

Refresh Refresh data from the disk between invocations of
each routine. On OpenVMS, the default is
/NOREFRESH.

-r
or
 -q[no]refresh

/REFRESH

Compiler Options (Continued)

Name Description WIN/UNIX option OpenVMS option

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

1-14 Synergy Language Tools 9.3 (12/09)

Relax strong
prototyping
and error
checking

Relax strong prototype validation. You can control
which additional compiler checks are relaxed with
one or more of the following options:
deprecate Allow this deprecated syntax to pass:

implied-decimal, implied-numeric, or
implied-packed data types on a
channel and function calls that begin
with $.

end Change behavior of END statement to
clear .DEFINEs at the end of the
routine instead of at the end of the file.

extf Don’t check external function
declarations against the return type of
the function.

interop Compile classes generated by the
gennet utility. Identifiers longer than 30
characters are truncated instead of
generating a warning.

local Relax error reporting on local routine
prototype checking.

param Relax parameter passing validation in
local and Synergex-supplied routines.
(Allow passing type a to an output n
and d to an input or unspecified a.)

path Help with ambiguous paths.

When no options are specified, -qrelaxed allows
alphanumerics in unary plus operations, sizes larger
than the maximum on decimal and implied-decimal
fields, and EXITE to exist without a RETURN. As
options are added, they add to this default relaxation.

-qrelaxed[:option[:...]]

(Each option must be
preceded by a colon.)

/RELAXED[=(option,...)]
(Multiple options must be
separated by commas.
The parentheses are
optional if only one option
is specified.)

Compiler Options (Continued)

Name Description WIN/UNIX option OpenVMS option

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

Synergy Language Tools 9.3 (12/09) 1-15

Show
information

Generate extra information to the listing file. By
default, the listing file contains source lines,
conditional compiler directives, source lines in false
conditional blocks, and page headers and footers. To
exclude one or more of these items, see the
“Conditionals” and “Form feed” options in this table.

-C-f-h-m
or
-C-P-h-m

/SHOW
or
/SHOW=ALL
(default)

Stack record Make STACK the default behavior of unqualified
RECORD statements.

-qstack /STACK

Static record Make STATIC the default behavior of unqualified
RECORD statements.

-qstatic /STATIC

Stream file When a file is opened for output with no submode,
create a stream file instead of a sequential file.

N/A /STREAM

Strict Enforce strict bounds checking on real array access. -qstrict /STRICT

Trim Trim trailing null arguments from a subroutine or
function call.

-T /TRIM

Truncate Truncate subroutine, function, and variable names
after the sixth character and ignore any remaining
characters.

-t N/A

Undefined
functions

Automatically define undefined functions as ^VAL
functions.

-X
or
-qimplicit_functions

/IMPLICIT

Variable
usage

Generate a file (named file) that reports unused
variables. The default filename is the name of the
primary source file with a .unu extension.

-qvar_review[=file] /VAR_REVIEW[=file]

Compiler Options (Continued)

Name Description WIN/UNIX option OpenVMS option

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

1-16 Synergy Language Tools 9.3 (12/09)

Variable
usage level

Specify the level of variable usage reporting. Number
is the sum of the following bit flags that determine
what is listed in the output file:
0 Unused local variables in each routine. (default)
1 Unused global and local variables.
2 Unused labels and local variables.
4 Unused include files and local variables.
8 Unused local variables in primary source file

only.
You can add these bit flags together for additional
combinations of reported information. For example, a
value of 3 provides unused labels and unused global
and local variables. See “The Variable Usage Utility”
on page 4-44 for more detailed information.

-qreview_level
=number

/REVIEW_LEVEL
=number

Variant Define the value of the ^VARIANT data reference
operation. The default variant value is 0.

-v value
or
-qvariant=value

/VARIANT=[value]

Warnings Control warnings, where option is one of the
following:
0 Don’t generate any warnings.

1 Don’t display warning levels higher than 1.

2 Don’t display warning levels higher than 2.

3 Don’t display warning levels higher than 3.
(default)

4 Display all warnings. (Note that you may want
to increase the value of DBLMAXERR.)

The level of each compiler warning is specified in
“Warning error messages” on page 5-90.

-W[option] /NOWARNINGS
or
/WARNINGS=option

Compiler Options (Continued)

Name Description WIN/UNIX option OpenVMS option

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

Synergy Language Tools 9.3 (12/09) 1-17

Discussion
On Windows and UNIX, the Synergy compiler creates an object file that has the same name as the
first source file with the extension .dbo, unless the -o option is used to specify a different name. All
source files are included in a single object file in the order in which they are listed on the dbl
command line.

Also on Windows and UNIX, filenames that are used as arguments to compiler options cannot
begin with a minus sign (-).

On OpenVMS, if you specify more than one source file to be compiled, you must separate each
filename with a plus sign (+), which causes the source files to be concatenated and compiled as one
file. The result is a single object file that has the same name and location as the first source file
listed, with the extension .OBJ, unless the /OBJECT compiler option is used to specify a different
name. If you don’t specify directories for the object and listing files, those files will be placed in the
current directory, even if the source file is not in the current directory.

Also on OpenVMS, you can append one or more compiler options either to the DIBOL command
or to individual source files. If you append compiler options to the DIBOL command, all of the
source files listed in the command line will be affected. However, if you append compiler options
to one or more source filenames, only the specified files will be affected.

Warnings
disabled

Disable the specified warnings. Multiple warning
numbers must be separated by commas.

-WD=error_num[,...] /DISWARN=(error_num
[,...])
The parentheses are
optional if only one option
is specified.

Warnings to
errors

Turn compiler warnings into errors. -qerrwarn /ERRWARN

Width Set the width of the program listing equal to
list_width, in columns. The default width is 132
columns.

-w list_width /WIDTH_SIZE =list_width

Compiler Options (Continued)

Name Description WIN/UNIX option OpenVMS option

The -q options are case insensitive and may be abbreviated to the shortest unambiguous
string. For example, -qalti may be used for an Alternate IF or -qalts for Alternate store.
Since profiling is the only -q switch starting with a p, you can use just -qp. The other
options are case sensitive on Windows and UNIX but case insensitive on OpenVMS.

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

1-18 Synergy Language Tools 9.3 (12/09)

WIN, UNIX

Omitted arguments

If a compiler option requires an argument and no argument immediately follows the option, the
compiler will use the next undefined element on the line as the argument. (Compiler options or
groups of options and the “--” separator are considered to be “defined” elements, whereas source
filenames or arguments to the compiler options are considered to be “undefined.”) When the
compiler encounters another compiler option group, it stops looking for the argument(s) to the
previous option(s). The default argument then becomes the name of the first source file, with the
appropriate extension. Once an element has been used as an argument to a compiler option, it
cannot be used as an argument to another compiler option.

For example, in the following command:

dbl -l srcfile

the list_file argument is omitted. The compiler will use srcfile as the list file and add a default
extension of .lis. As a result, no primary source file will be found, and this command will generate
a “No primary files specified” error (NULPR).

In the example below, the list_file argument is omitted. Since the next element on the line is another
compiler option, which is a defined element, the compiler will use srcfile.lis as the list file and use
srcfile.dbl as the primary source file.

dbl -l -c srcfile

In the following example, because the “--” separator indicates that there are no more compiler
options and anything that follows is a source file, srcfile.lis again will be the list file, and
srcfile.dbl will be the primary source file.

dbl -l -- srcfile

In the command below, both -l and -o require arguments. Since -o immediately follows the -l
specification, the compiler will use the first source filename as the list filename argument
(srcfile1.lis). Since the -o option has an undefined element immediately following it, the compiler
assumes this undefined element is the argument for -o and will name the object file object.dbo.
Srcfile1.dbl will be the primary source file, and srcfile2.dbl the second source file.

dbl -l -o object -- srcfile1 srcfile2

List options

On Windows and UNIX, if you specify more than one list_option, separate each option with a
blank space. Type out the entire list_option name. If no list_options are included on the dbl
command line, all compilation flags set by the .START, .LIST, and .NOLIST compiler directives
will be processed. For an explanation of each list option, see .START in the “Preprocessor and
Compiler Directives” chapter of the Synergy Language Reference Manual.

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

Synergy Language Tools 9.3 (12/09) 1-19

Binding

On Windows and UNIX, the -b and -p compiler options enable you to create bound programs.
Binding is a method of grouping more than one main routine into a single executable program. (See
“Bound programs” in the “Welcome to Synergy Language” chapter of the Synergy Language
Reference Manual.) You can create a bound application by following the steps below:

1. Compile the main routine at which the application will be entered with the -p compiler option.

2. Compile the other main routines with the -b compiler option.

3. Link all of the main routines together with their subroutines and any libraries that they use.

The example below creates a bound program named main1.dbr, which consists of a main routine
from main1.dbl, two other main routines (from main2.dbl and main3.dbl) that are treated as
subroutines, and whatever utility subroutines are linked into util.elb.

dbl -p main1 main1
dbl -b main2 main2
dbl -b main3 main3
dblink main1 main2 main3 util.elb

If you convert nonbound programs to bound programs, you might need to use the -r compiler
option. Otherwise, your record data won’t be refreshed upon re-entry.

Bounds checking

Bounds checking can help you find subscripting errors in your code. To turn bounds checking on,
specify -qcheck (Windows and UNIX) or /CHECK=BOUNDS (OpenVMS) on your compiler
command line. When you run your application, the runtime will report errors if your program
subscripts outside the bounds of a field. When bounds checking is specified, Synergy Language
converts all pseudo arrays (for example, 10d2) to real arrays (for example, [10]d2). If you subscript
array arguments, be sure to build the calling routine with bounds checking.

Keep in mind that bounds checking may also report “legal” subscripting errors. For example, the
following code samples will generate subscript errors if bounds checking is turned on, even though
the code is valid:

record
var ,[10]d2
.
.
.
var(1,20)="abcdef"

The above code is actually referencing var[1](1,20), the first element of the array, which has a
length of 2. Because you are trying to write 20 characters to the two-character field, the runtime
will report an error.

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

1-20 Synergy Language Tools 9.3 (12/09)

Suggestion: Put the array inside a group and reference the group name, or name the record and
reference the record.

record
var ,10d2
.
.
.
xcall subr(var)

subroutine subr
arg ,d2
.
.
.
arg(2) = 10

The reference above will report an error if the subroutine is compiled with bounds checking and the
calling module is not.

record name
ivar ,i4
i2var ,i4
.
.
.
clear ivar(1,8)

Suggestion: Use clear ^i(name).

record
var ,d2
var2 ,d2
.
.
.
var(1,4) = 1010

or

var(2) = 10

Suggestion: Use a group or name the record.

If you don’t want to modify your code, you can also use system option #54 to relax the bounds
checking rules (for Windows and UNIX) to only report an error if you subscript off the end of the
defined data space for a routine. Because this incurs a lot of overhead on each subscript, we do not
recommend using system option #54 for production code.

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

Synergy Language Tools 9.3 (12/09) 1-21

If you encounter “segmentation fault errors,” we expect you to run your application with bounds
checking on and then inspect the output to see if any reported problems are really problems. You
may even want to modify your code so it does not try to subscript past the end of your fields. Then,
when you run the bounds checking, all reported errors will be valid.

We suggest you turn bounds checking off before going to production.

Built-in compiler definitions

The compiler defines various symbols you may want to use in your programs. These include
operating system or environment symbols, such as D_GUI (Windows), OS_VMS, or OS_UNIX, so
you can conditionally compile your code based on the operating system on which you’re running. It
also includes numerous values for I/O qualifiers, such as Q_NOLOCK and Q_FIRST. (All of these
definitions are also specified in the dbl.def file, which is included in your Synergy/DE distribution
for reference purposes.) If you don’t want these built-in global definitions to be available to your
program, specify the -g compiler option (/NOGBLDEFS on OpenVMS).

Array size

The -s or -qdecscope options (/DECSCOPE on OpenVMS) affect the result of the ^SIZE
operation when used on an array. For example, let’s assume you have the following array
declarations:

array ,[10]d4
pseudo ,10d4

The effect of these options is as follows:

^SIZE reference No -s or no /decscope -s or /decscope

^size(array) 4 40

^size(array[]) 40 40

^size(array[1]) 4 4

^size(pseudo) 4 40

^size(pseudo[]) 40 40

^size(pseudo(1)) 4 4

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

1-22 Synergy Language Tools 9.3 (12/09)

VMS

Debugging

Due to limitations of the DECC READ statement, specifying the /DEBUG option on certain
combinations of stream file types produces incorrect line number information. If you’re using
/DEBUG and your line numbers for blank lines are incorrect, try converting the file to a sequential
file with carriage control set to CR/LF.

WIN, UNIX

Refreshing data from the disk

Note that the -r (or /REFRESH) option adds significant overhead to a routine because it has to
reread the original file from the disk as it refreshes the variables.

Examples

WIN, UNIX
In the example below, the main.dbl and util.dbl source files are compiled, and the resulting object
code is stored in main.dbo. A program listing is created and stored in the file listfile.lis. The +list
option causes the compiler to override any nolist compiler options in .START and .NOLIST
compiler directives in the source files. Therefore, all lines in the source files will be listed.

dbl -ld listfile +list main util

The following three examples do exactly the same thing: compile msmenu.dbl and generate a
program listing called msmenu.lis. Note that in the third example, the “--” indicates the end of the
option string and list options, so the compiler knows to use msmenu as the default argument to the
-l option, in addition to using it as the source file.

dbl -l msmenu msmenu
dbl -l msmenu --msmenu
dbl -l --msmenu

VMS
In the example below, the MAIN.DBL and UTIL.DBL source files are compiled and the resulting
object code is stored in MAIN.OBJ. A program listing is created and stored in the file
LISTFILE.LIS. A symbolic access table is created.

$ DIBOL /LISTING=LISTFILE/DEBUG MAIN+UTIL

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

Synergy Language Tools 9.3 (12/09) 1-23

Redirecting compiler commands from a file

WIN, UNIX
To redirect compiler commands from a file, use the following format:

dbl [-T] <file

Arguments
-T

(optional) Specifies that the command line(s) should be traced, or displayed, as they are
executed. If you don’t specify -T, the command lines will not be displayed.

file

The ASCII file that contains one or more command lines to be input to the compiler.

Discussion
The Synergy compiler supports continuation lines, which can make the files containing your
compiler commands easier to read.

If you need to continue a line to a new physical line, place the appropriate continuation character at
the end of the line to be continued. The standard continuation line character on Windows and UNIX
is the backslash (\). On Windows, if you set system option #34, use a minus sign (-) as the
continuation character.

The aggregate command line, including all continuation lines in the redirected input file, can be a
maximum of 128K and 4000 files for dbl and dblnet or 125 files for dblink and dblibr.

Examples
Assume the file main contains the following lines:

-d main util\
sub1\
sub2

If system option #34 is set on Windows, you would use the minus sign (-) as the continuation
character and the forward slash (/) as the switch character. The file would look like this:

/d main util-
sub1-
sub2

To input the required information into the Synergy compiler from main.com with tracing set, type

dbl -T <main.cmd

Building and Running Synergy Language Programs
Compiling a Synergy Language Routine

1-24 Synergy Language Tools 9.3 (12/09)

Listing object file contents

WIN, UNIX
Once your source code is compiled, you can use the listdbo utility to see the internal organization
of your object files. Object files are organized into object records, and listdbo displays the
information for each object record.

This utility has the following syntax:

listdbo [option] obj_file […]

Arguments
option

(optional) One of the following options:

obj_file

One or more object files for which you want to display information.

If you run listdbo without any options or filenames, a dialog box will display that allows you to
enter options and filenames.

VMS
The ANALYZE/OBJECT utility is equivalent to the listdbo utility.

Name Description Option

Dump contents List the object record display plus the contents of each record. -d

No verbose Turn off verbose mode and provide an abbreviated listing of the
object file’s contents.

-v

Building and Running Synergy Language Programs
Creating and Using Libraries

Synergy Language Tools 9.3 (12/09) 1-25

Creating and Using Libraries
This section is for Windows and UNIX only. For information on creating and using libraries on
OpenVMS, see “Building Shared Images” on page 1-33.

About object and executable libraries
Your compiled Synergy Language routines can be stored in one of the following:

Object libraries (OLBs)

Executable libraries (ELBs)

Object libraries (OLBs)
An object library is a collection of object modules. You use the Synergy librarian to create object
libraries. (See “Invoking the librarian” on page 1-28 for details about using the librarian.) Each
object library is a single file with an .olb extension.

Object libraries are linked into a Synergy Language executable file with the Synergy linker. If any
routine calls are unresolved, the linker looks for them in the libraries listed in the link command
line. When the linker builds the executable file, it puts a copy of the referenced OLB routines in the
executable file.

In the diagram below, util2 is unreferenced; therefore, it is not included in the executable.

Sources OLB Executable

main + util1 = main

sub1 util2 sub1

sub2 util3 sub2

… util1

utilx util3

…

utilx

Building and Running Synergy Language Programs
Creating and Using Libraries

1-26 Synergy Language Tools 9.3 (12/09)

Executable libraries (ELBs)
An executable library is a collection of executable modules. You use the Synergy linker to create
executable libraries. (See “Linking Object Modules” on page 1-37 for details on using the linker.)
Each executable library is a single file with an .elb extension.

Executable libraries are linked against a Synergy Language executable file with the Synergy linker.
If any routine calls are unresolved, the linker looks for them in the libraries listed in the link
command line. Only the executable library reference for the routines is put in the
Synergy Language executable file, not the code itself. During program execution (at runtime), the
executable library is opened and the routines are accessed directly from the library file.

In the diagram below, the arrows show references between routines.

An executable library can also include references to executable modules in other executable
libraries. When linking a Synergy Language executable file, if any routines are unresolved, the
linker looks for them in the libraries listed in the link command line and in the libraries linked
against those libraries. The diagram below assumes ELB1 is linked against ELB2. During program
execution (at runtime), both ELB1 and ELB2 are opened and routines are accessed from them.

Sources ELB Executable ELB

main + util1 = main util1

sub1 util2 sub1 util2

sub2 util3 sub2 util3

… …

utilx utilx

Sources ELB1 Executable ELB1 ELB2

main + util1 = main util1 func1

sub1 util2 sub1 util2 func2

sub2 util3 sub2 util3 func3

… … ...

utilx utilx funcx

Building and Running Synergy Language Programs
Creating and Using Libraries

Synergy Language Tools 9.3 (12/09) 1-27

OLBs vs. ELBs
When you use executable libraries you generate smaller executables than when you use object
libraries because there’s only one copy of the subroutines in the ELB instead of a copy of each
subroutine in every .dbr file. This feature has a multiplying effect on applications comprised of
many programs.

An ELB subroutine is independent of the executable files that access it. You may change ELB
subroutines without modifying the executable file and without relinking any programs that access
the subroutines in the ELB. If you change a subroutine in an object library, you must relink all
programs that use the object library to ensure they have the most recent code.

We recommend that you create ELBs when you have the choice.

Creating executable libraries
To create an executable library (ELB), use the Synergy linker, dblink, with the -l option. You can
link either object files (.dbo files), object libraries (.olb files), or other executable libraries (.elb
files) to create your ELB.

See the -l option in “Linking Object Modules” on page 1-37 if you want to create an ELB from
object files. Also see page 1-42 if you want to create an ELB from an OLB.

TIP
If you get a fatal “Cannot access external routine name” runtime error (RTNNF) and the line
reported by the runtime doesn’t actually call name, you may have a situation similar to the
following:

Program a.dbl contains a main routine.

Library b.elb is an executable library that contains subroutine B (which resides in
b.dbl).

You link a.dbo with b.elb to get a.dbr.

You modify b.dbl to reference routine C.

You link b.dbo to get b.elb.

You run a.dbr.

An RTNNF error is generated on the line in a.dbl that calls subroutine B.

You’ll get the error because routine C doesn’t exist; you aren’t linking a.dbr again (which
would give you an error in the linker).

We recommend that when you modify any ELB subroutine after linking the ELB with the
main program, you always take special care to include any newly referenced subroutines in
your ELB. If you specify the -r option, the linker will list any unresolved references when an
ELB is being created.

Building and Running Synergy Language Programs
Creating and Using Libraries

1-28 Synergy Language Tools 9.3 (12/09)

Creating object libraries
The dblibr command starts the librarian.

The librarian creates and maintains object libraries (OLBs). If you want to create an executable
library, see above.

VMS
Use the LIBRARIAN commands to create and maintain object libraries. See your OpenVMS
documentation set for more information.

The various methods you can use in a Windows environment to invoke the dblibr command are
explained starting on page 1-2.

Invoking the librarian
The librarian command (dblibr) uses the following format:

dblibr [options] [--] library [object_1 … object_n]

Arguments
options

(optional) One or more of the following librarian options. You can either precede a group of
options with a minus sign (-) or precede each option with a minus sign. (For example, -acdr
and -a -cdr are both valid.)

WIN
If system option #34 is set, you must use a forward slash (/) instead of a minus sign (-) before
each librarian option or group of options.

You cannot rebuild an ELB if it is in use by another program.

Also, be careful when changing the size of a global data section: If an ELB subroutine
increases the defined size of a global data section that’s owned externally, and no
programs are relinked against the ELB, executing those programs could cause memory
access violations. If you change the size of a global data section, all programs that use it
must be relinked.

Building and Running Synergy Language Programs
Creating and Using Libraries

Synergy Language Tools 9.3 (12/09) 1-29

The librarian options are as follows:

--

(optional) Included for consistency with other Synergy Language command lines but serves no
function here.

library

The name of the object library. The default extension is .olb.

Librarian Options

Name Description Option

Add Add the object modules from the specified object files to the library
file. If the modules already exist in the library, a warning message is
generated, and the new modules will not be added to the library.

-a

Create Create an object library named library. No warning message will be
generated if the file already exists.

-c

Delete Delete the specified object modules from the library file. -d

Extract Extract the specified object modules from the library. A separate
object file is created for each extracted module. It is assigned the
name of the module plus a .dbo extension.

-x

Information Provide additional system-specific information on some fatal librarian
errors.

-I

Replace Replace the object modules from the specified object files in the
library file. If a specified module is not found, a warning message will
be generated, and the object modules will be added to the library.

-r

Table Generate a list of the library’s contents to your screen in alphabetical
order. If you specify one or more object modules on the command
line, only those modules will be listed in the table of contents. If you
don’t specify any object modules on the command line, all modules in
the library will be listed.

-t

Verbose Provide a detailed description of the object library during processing.
Used in conjunction with the -t option, this option provides all
information about the files in the library.

-v

Warnings Don’t print warning messages. -w

Building and Running Synergy Language Programs
Creating and Using Libraries

1-30 Synergy Language Tools 9.3 (12/09)

object_1
object_n

(optional) One or more object files or object modules, depending on whether you’re adding to,
deleting from, replacing in, or extracting from the object library. The default extension is .dbo.
You can specify a maximum of 256 files.

Discussion
Libraries contain object modules, not object files. The object module name is the name of the
routine loaded in the object library. (This is the name defined with the SUBROUTINE or
FUNCTION statements.) When you’re using the add or replace librarian option (-a or -r), specify
the object file. When you’re using the extract or delete librarian option (-x or -d), specify the object
module.

When using the -tv option combination, each line of output will look something like this:

SXC_GLOBAL_DATA 218723 Thu Sep 06 09:06:38 2007

The number following the routine name (218723 in this example) is the size of the routine. (Note
that this number cannot be used to approximate the runtime memory size due to data compression
and other factors.)

The librarian detects and prevents duplicate routines from being added from another object library
and issues a warning. It also detects methods being added to an object library and removes all
existing methods from the object library that are from the same class.

Examples
The example below creates an object library file named screens.olb. It contains the object code for
all subroutines in the files scr1.dbo, scr2.dbo, and scr3.dbo.

dblibr -ca screens scr1 scr2 scr3

The following example displays a detailed table of contents of the file screens.olb to the screen.

dblibr -tv screens

The following example adds the object modules in scr4.dbo to the object library file, screens.olb,
and displays the modules added. Any duplicate modules will be replaced without a warning
message.

dblibr -awv screens scr4

You must specify the -a, -d, -r, or -x options on the command line unless the only other
options that you specify are -tv. The -c option will default to -a if neither -a nor -r is
specified.

Building and Running Synergy Language Programs
Creating and Using Libraries

Synergy Language Tools 9.3 (12/09) 1-31

The example below extracts the subroutine named clear from the object library screens.olb. The
Synergy librarian creates the file clear.dbo, which contains the extracted object module.

dblibr -x screens clear

The following example deletes the routine clear from the object library named screens.olb.

dblibr -d screens clear

Building and Running Synergy Language Programs
Creating and Using Libraries

1-32 Synergy Language Tools 9.3 (12/09)

Redirecting librarian commands from a file
To redirect librarian commands from a file, use the following format:

dblibr [-T] <file

Arguments
-T

(optional) Specifies that the command line(s) should be traced, or displayed, as they are
executed. If you don’t specify -T, the command lines will not be displayed.

file

The ASCII file that contains one or more command lines to be input to the librarian. It cannot
contain more than 2000 characters.

Discussion
If system option #34 is set, you must use a forward slash (/) instead of a minus sign (–) before the
trace flag option.

The Synergy librarian on Windows supports continuation lines in the input command file, which
can make this file easier to read. If you need to continue a line to a new physical line, place the
appropriate continuation character at the end of the line to be continued. The standard continuation
line character on Windows and UNIX is the backslash (\). On Windows, if you set system option
#34, use a minus sign (–) as the continuation character.

Examples
-ca screens scr1 scr2 scr3 util1 util2 util3 \
sutil1 sutil2

On Windows, if system option #34 is set, you would use the minus sign (–) as the continuation
character and the forward slash (/) as the switch character. The file would look like this:

/ca screens scr1 scr2 scr3 util1 util2 util3 -
sutil1 sutil2

To input the required information into the Synergy librarian from libr with tracing set, type

dblibr -T <libr

Building and Running Synergy Language Programs
Building Shared Images

Synergy Language Tools 9.3 (12/09) 1-33

Building Shared Images

VMS
This section describes how to build shared executable images. For additional information, see your
OpenVMS systems documentation.

Shared images are useful for storing commonly used subroutines or data in applications and
environments. Typically, the common subroutines used for all applications are compiled into a
shared image and then applications are linked to these images. This method provides two
advantages: the subroutines are “shared,” and they can be maintained without rebuilding the
applications. This concept is similar to the ELBs used in Synergy Language on other platforms.

Consider the following two modules of example code, which include a sample Synergy Language
main routine that writes to a global data section and a common variable, and a Synergy Language
subroutine which owns the global data section (because of the ,INIT) and the common (because it is
declared GLOBAL).

Note that the subroutine in the shared image, sharesub, is called two ways: by direct reference
(XCALL), which necessitates linking the main routine to the shared image using the options file,
and by XSUBR, which causes the image to be loaded and the name resolved at runtime and
therefore does not need the image to be linked to the shared image.

SHAREMAIN.DBL
.main sharemain
global data section general_data
record
 name ,a10
 ,a19990 ;Spare space!
endglobal
external common
 chan ,d2

.proc
 xcall flags(7000000, 1)
 open(1, o, 'tt:')
 chan = 1
 name = "Test!!!!!!"

Only the filename component of the elb_spec passed to the OPENELB subroutine is
significant. The device, directory, and file type field in the elb_spec argument are ignored.

By default, OpenVMS attempts to locate the ELB in SYS$SHARE: unless the elb_spec is a
logical. The only way to use an ELB that is not in SYS$SHARE is by assigning a logical to
refer to it, and using that logical name in the call to OPENELB.

Building and Running Synergy Language Programs
Building Shared Images

1-34 Synergy Language Tools 9.3 (12/09)

 xcall sharesub
 xcall openelb("nigel")
 xcall xsubr("sharesub")
 stop
.end

SHARESUB.DBL
.subroutine sharesub
global data section general_data, init
record
 name ,a10

,a19990 ;Spare space!
endglobal
global common
 chan ,d2

.proc
 writes(chan, name)
 xreturn
.end

Compilers group object code into different program sections called psects. Each object module will
contain a contribution to several psects. These psects are then collected by the linker, and the
contributions from each included module are (depending on their compiler-defined characteristics)
either concatenated together, or overlaid to create a program section in the final image. The
following table shows the psects that Synergy Language generates:

Psect Contents Read only Read/write Shared

$_MDB_0 Module name information Y N N

$_MDB_1 Module name information Y N N

$_MDB_2 Module name information Y N N

ABS External linker constants N/A N/A N/A

$CODE$ Alpha or I64 start-up code Y N Y

DBG Debug information Y N Y

$DBL_ADDR LABEL information Y N Y

$DBL_CODE Interpretive code Y N Y

$DBL_COMMON Common data N Y N

$DBL_DATA Data division N Y N

Building and Running Synergy Language Programs
Building Shared Images

Synergy Language Tools 9.3 (12/09) 1-35

The values of externally visible symbols (universal symbols that may be read by the linker, or the
image loader) whether definitions of data, or executable code, must not change when a shared
image is updated, to allow programs that were linked to previous versions to continue to function
without relinking.

For this reason, subroutines in a shared image should be presented in the form of a transfer vector
table in which the address of the routine is “aliased” to a fixed position in the image which will
never move, and a jump takes place from there to the real subroutine address which is then free to
move anywhere as subroutines are revised or added.

The location of the transfer vector table and shared data psects must not change in an OpenVMS
shared image. For this reason, the vector table must always go first, with extra space set aside for
new entries in the table, and the data psects must always follow the vector table. The transfer vector
is created by instructions to the linker. See page 1-48 for details.

COMMON data and GLOBAL DATA sections are implemented as universal symbols; therefore,
you cannot add a field to a common record (except in spare space at the end) or change the length of
a global data section without relinking every image that is linked with the shared image.

$DBL_DESCR Variable descriptors Y N N

$DBL_FXD4CTL Control information Y N N (Alpha)
Y (I64)

$DBL_FXDCTL Control information Y N N

$DBL_LINCTL Line number information Y N Y

$DBL_LITERAL Literals Y N Y

$DBLTRNSF_CODE Transfer vectors Y N Y

$DBLTRNSF_LINK Transfer vectors Y N N

EXT LINK information for external literals Y N N

$LINK$ Linkage psect Y N N

$SYMVECT Linker symbol vectors N Y N

We recommend that you update the linker options files to include the following line:

PSECT_ATTR=$DBL_FXD4CTL,SHR

Currently on OpenVMS Alpha, the $DBL_FXD4CTL psect is not created sharable, but
there is no reason that it cannot be sharable. Adding this line makes the attributes on the
psect sharable, thereby improving overall application sharability.

Psect Contents Read only Read/write Shared

Building and Running Synergy Language Programs
Building Shared Images

1-36 Synergy Language Tools 9.3 (12/09)

Building a Synergy Language shared image
We use the linker SYMBOL_VECTOR command to create a vector table containing universal
symbol definitions. There is no initial CLUSTER command. Note the spare added to the symbol
vector definition to allow for future addition of modules.

Remember that data lines drawn from a command file such as those input to the linker must not
begin with a dollar sign. You must indent with a space if you are wrapping an element onto the next
line that begins with a dollar. (See the third COLLECT command and the SYMBOL_VECTOR
command.)

$ DBL SHARESUB
$ LINK/NOTRACE/SHARE/EXE=SYS$SHARE:NIGEL SYS$INPUT/OPT
COLLECT = SHR_DATA,$DBL_COMMON,$DBL_DATA,$$GENERAL_DATA,CHAN$
! Above is data that the shared image shares with the outside world
! so the sizes of these psects must never change. The psects below only
! define symbols which are referenced internally to the image, so they may
! change size and move at any time.
COLLECT = SHR_ADDRS,$DBL_DESCR,$DBL_FXDCTL,EXT,$LINK$
COLLECT = SHR_SHARE,$DBL_CODE,$DBL_LITERAL,$CODE, -
 $DBLTRNSF_CODE,$DBL_LINCTL,DBG,$DBL_ADDR
SHARESUB
SYS$SHARE:DBLTLIB/LIB
SYS$SHARE:SYNRTL/SHARE
SYMBOL_VECTOR = (-
 SHARESUB = PROCEDURE, -
 SPARE, -
 SPARE, -
 SPARE, -
 SPARE, -
 SPARE, -
 SPARE, -
 $$GENERAL_DATA = DATA, -
 CHAN$ = DATA)
GSMATCH = LEQUAL, 1, 0
$ EOD
$
$ DBL SHAREMAIN
$ LINK/NOTRACE SHAREMAIN,SYS$INPUT/OPT
SYS$SHARE:NIGEL/SHARE
SYS$SHARE:DBLTLIB/LIB
SYS$SHARE:SYNRTL/SHARE
$ EOD

Building and Running Synergy Language Programs
Linking Object Modules

Synergy Language Tools 9.3 (12/09) 1-37

Linking Object Modules
After you’ve compiled the source files for your program, you must combine the resulting object
files into a single module that can be executed by the Synergy runtime. This step is accomplished
using the Synergy linker.

WIN, UNIX
The dblink command starts the linker.

Additional methods you can use in a Windows environment to invoke the dblink command are
explained on page 1-2.

VMS
Use the OpenVMS LINK command to link your object files. “Invoking the linker on OpenVMS”
on page 1-48 explains how to use this command in greater detail.

Invoking the linker on Windows and UNIX
dblink [options] [--] input_1 […input_n]

Arguments
options

(optional) One or more linker options and their arguments, shown on page 1-38. You can either
precede a group of options with a minus sign (-) or precede each option with a minus sign. (For
example, -eos and -e -o -s are both valid.) If an option requires an argument and that argument
does not follow the option or option group immediately, Synergy Language assumes that the
option’s argument is the next undefined element on the line. For example, the following dblink
commands are equivalent:

dblink -e lib_mod -s 8192 input_file
dblink -es lib_mod 8192 input_file

In both cases, the lib_mod argument goes with the -e option and the 8192 argument goes with
the -s option. The Discussion section explains what happens if a required argument is omitted.

WIN
If system option #34 is set, you must use a forward slash (/) instead of a minus sign (-) before
each linker option or group of options.

Building and Running Synergy Language Programs
Linking Object Modules

1-38 Synergy Language Tools 9.3 (12/09)

The linker options are as follows:

Linker Options

Name Description Option

Debug Incorporate symbolic access table information in the .dbo file into the .dbr
file for use by the debugger. If you don’t compile and link with this option,
symbolic information won’t be available to the debugger at runtime.

-d

Extract Extract the object module mod from object library lib for use as a main
routine in the current program. The default library name extension is .olb.

-e lib mod

Information Provide additional system-specific information to resolve the link problem
if an internal error occurs.

-I
(uppercase I)

Library file Create an executable subroutine library named library_file. The default
filename extension is .elb.

-l library_file
(lowercase L)

Map file Create an allocation map file named map_file. If map_file is not specified,
the linker uses the name of the first input file plus the extension .map.

-m [map_file]

No output Do not create an output file. -n

Output file Name the output file output_file. If output_file is not specified, the linker
uses the name of the first input file plus the extension .dbr.

-o [output_file]

Unresolved
references
only

Only include the routines from the specified object library (olb_file) that
are necessary to resolve the routines in the executable library being
created. This option is used in conjunction with -l (lowercase L).

-R olb_file

Reference
check

Do not allow unresolved references to subroutines in an executable
library. This option is used in conjunction with -l (lowercase L).

-r

Stack size Set the internal operations area equal to stack_size. The default stack
size is 256K. For more information about increasing the size of the
internal operations area, see “Expanding the Synergy Language stack
through the linker” on page 1-45.

-s stack_size

Building and Running Synergy Language Programs
Linking Object Modules

Synergy Language Tools 9.3 (12/09) 1-39

--

(optional) Separates options from the input file list.

input_1

The first input file to be linked. The default filename extension is .dbo.

input_n

(optional) Represents additional input files to be linked. The default filename extension is
.dbo. You can specify a maximum of 256 files.

Discussion
The dblink command can be used to create an executable program file or an executable subroutine
library.

If you are creating an executable program file, the linker creates the executable file with the same
name as the first input file listed with the extension .dbr, unless the -o option (output file) is used to
specify a different name.

To create an executable subroutine library, use the -l library_file option. The linker will create the
library with the name you specify. The default extension for an executable subroutine library is .elb.
Note that -l can be used to link additional, existing ELBs against the ELB being created (the
primary ELB), so they can be opened automatically when the primary ELB is opened. Once
dependent ELBs have been linked against the primary ELB, you only need to list the primary ELB
on the command line when creating an executable program. To link ELBs, list the ELBs as input
files according to the specifications in “Input files” on page 1-40.

Warning Allow unresolved references to subroutines in an executable program. If
you don’t use the warning option when linking a Synergy Language
program and there are unresolved XCALLs, the linker aborts and won’t
create an executable file. If you do use this option, the linker creates an
executable file and maps all unresolved XCALLs to an internal XCALL,
which generates a “Referenced undefined XCALL” error
($ERR_NOXCAL) when accessed at runtime.

-W

Warning
disabled

Disable linker warnings. -wd or -w 0

Linker Options

Name Description Option

Building and Running Synergy Language Programs
Linking Object Modules

1-40 Synergy Language Tools 9.3 (12/09)

Omitted arguments

If a linker option requires an argument and no argument immediately follows the option, the linker
will use the next undefined element on the line as the argument. (Linker options and the “--”
separator are considered to be “defined” elements, whereas filenames or arguments to the compiler
options are considered to be “undefined.”) When the linker encounters another linker option group,
it stops looking for the argument(s) to the previous option(s). The default argument then becomes
the name of the first input file, with the appropriate extension. Once an element has been used as an
argument to a linker option, it cannot be used as an argument to another linker option.

For example, in the following command:

dblink -el libA modA libB fileA

the arguments libA (with a default extension of .olb) and modA are used by the -e option. The
argument libB (with an extension of .elb) is used by the -l option. The linker uses fileA (with an
extension of .dbo) as the first input file.

Input files

The input file list can include any combination of the following types of files:

Synergy Language object files (.dbo)

Synergy Language object libraries (.olb)

Synergy Language executable subroutine libraries (.elb)

Input filename extensions always default to .dbo. If you’re specifying object or executable libraries,
you must specify the .olb or .elb extension.

Synergy Language will use the ELB filename exactly as specified on the dblink command line
when attempting to open the ELB at runtime. For example, let’s assume you build a program called
script with the following dblink command:

dblink -o script script misc utils.elb

All ELBs specified on the dblink command line (as well as all ELBs linked to those ELBs)
are automatically opened when the program is started. A maximum of 256 ELBs can be
open at any one time.

The maximum length of an ELB file specification on the dblink command line is 31
characters.

Building and Running Synergy Language Programs
Linking Object Modules

Synergy Language Tools 9.3 (12/09) 1-41

At runtime, Synergy Language will expect utils.elb to be in the current directory. Therefore, you
should include a logical that defines the location of utils.elb. For example:

dblink -o script script misc UTL:utils.elb

Link procedure for .dbrs

The Synergy linker follows the steps below when linking executable programs (.dbr):

1. Link all object files. All object files are included in the output file in the order in which they are
listed on the dblink command line.

2. Process all ELB files in the order in which they are listed on the dblink command line. If an ELB
references other ELBs, those ELBs are processed and added to the list of ELB files in the header of
the output file as they are referenced.

3. Add all ELB routines to the list of resolved routine names. The linker allows duplicate routine
names across linked ELBs; the routines are linked in the order they are specified in the ELB.

4. Look at each OLB in order of reference. Do not start processing the next OLB until no more routine
names can be resolved in the current OLB.

5. Resolve any remaining unresolved routine names from the system-supplied subroutine library,
dlib.lib.

6. If any unresolved routine names still exist, generate an “Undefined XCALL references”
(XUNDEF) error. If -W is specified, the undefined references are listed as warnings instead of fatal
errors.

TIP
We recommend that you always include a logical when specifying ELBs.

Using logicals will help avoid two potential problems:

Your user moves the ELB to a different directory. If you use logicals, your users can
move their libraries to other directories and assign their own search paths to the new
locations.

You have a long path specification that causes the entire file specification (path and
filename) to exceed 31 characters. For example, Synergy Language will not allow you
to specify the following:

/usr/fredrina/toolkit/common/utils.elb

The above file specification has 38 characters, which is too long. If the path is defined as a
logical (TKUTL, for example), a shorter file specification can be used (TKUTL:utils.elb).

The linker gives ELB routines precedence over OLB routines: if a subroutine is contained in
both an ELB and an OLB and both libraries are linked with a program, the subroutine will be
taken from the ELB.

Building and Running Synergy Language Programs
Linking Object Modules

1-42 Synergy Language Tools 9.3 (12/09)

Link procedure for .elbs

The Synergy linker follows the steps below when linking executable libraries (.elb):

1. Link all object files. All object files are included in the output file in the order in which they are
listed on the dblink command line.

2. Link all object libraries. All routines from each object library are included in the output file in the
order in which they are listed on the dblink command line.

3. Process all ELB files in the order in which they are listed on the dblink command line. If an ELB
references other ELBs, those ELBs are processed and added to the list of ELB files in the header of
the output file as they are referenced.

4. Resolve referenced routine names from the OBJ and OLB files.

5. Add all ELB routines to the list of resolved routine names. The linker allows duplicate routine
names across linked ELBs; the routines are linked in the order they are specified in the ELB.

6. Resolve any remaining unresolved routine names from the ELB files in the order in which they
were processed.

7. Resolve any remaining unresolved routine names from the system-supplied subroutine library,
dlib.lib.

8. When -r is specified, if any unresolved routine names still exist, generate an “Undefined XCALL
references” (XUNDEF) error.

Unresolved references

When creating an executable program file, by default the linker does not allow unresolved external
references. To override this default and allow unresolved references, use -W.

When creating an executable subroutine library, by default the linker allows unresolved external
references. To override this default and require all references in the ELB to be resolved, use -r. If
there are unresolved XCALLs, the linker will abort and won’t create an executable file. This option
can be useful if you are planning to use the ELB with xfServerPlus.

The -W and -r options are mutually exclusive.

Creating an ELB from an OLB

On Windows and UNIX, dblink can be used to create an ELB from an OLB. For example, the
following command will link all routines in the object library mylib.olb into the executable
subroutine library mylib.elb:

dblink -l mylib.elb mylib.olb

Building and Running Synergy Language Programs
Linking Object Modules

Synergy Language Tools 9.3 (12/09) 1-43

All routines in the specified object library are included in the ELB regardless of whether the
references are resolved or unresolved. To include only routines that resolve an unresolved reference
when creating an ELB, link with the -R option. This option is especially useful if the object libary
contains many routines, because it allows you to include only the routines that are necessary to
resolve references, instead of including all routines from the object library.

Examples
In the example below, the dblink command line links the object files main.dbo and util.dbo, and
any referenced subroutines in the object library ulib.olb and the executable subroutine library
elib.elb. An allocation map named file.map is created, and the resulting executable program is
named main.dbr.

dblink -m file main util ulib.olb MYUTIL:elib.elb

In the example below, the command line creates an executable library named util.elb, which
contains all of the subroutines in the files sub1.dbo, sub2.dbo, and sub3.dbo.

dblink -l util sub1 sub2 sub3

The example below creates an executable library named mylib.elb that contains the routines sub1
and sub2 and is linked to the ELBs lib1.elb, lib2.elb, lib3.elb, and lib4.elb, and it checks for (and
disallows) any unresolved external references. (We recommend using the -r option if the ELBs are
being linked for use with xfServerPlus.)

dblink -l mylib -r sub1 sub2 lib1.elb lib2.elb lib3.elb lib4.elb

The following is true for the example below:

Test1.dbl has routines sub1, sub2, sub3, sub4, and sub5. Routine sub4 has an external
reference to sub4a. Routine sub5 has an external reference to sub5a. Test1.dbo contains the
routines from test1.dbl.

Test2.olb contains the routines from test2.dbl, which has routines sub4a, sub4b, sub4c, and
sub4d.

Test3.olb contains the routines from test3.dbl, which has routines sub5a, sub5b, sub5c, and
sub5d.

The example below creates the ELB containing all of the routines from test1.dbo, sub4a from
test2.olb, and sub5a from test3.olb. The rest of the routines from test2.olb and test3.olb are not
included in the ELB.

dblink -l test1.elb -R test2.olb -R test3.olb test1.dbo

Building and Running Synergy Language Programs
Linking Object Modules

1-44 Synergy Language Tools 9.3 (12/09)

Redirecting linker commands from a file

WIN, UNIX
To redirect linker commands from a file, use the following format:

dblink [-T] <file

Arguments
-T

(optional) Specifies that the command line(s) should be traced, or displayed, as they are
executed. If you don’t specify -T, the command lines will not be displayed.

file

The ASCII file that contains one or more command lines to be input to the linker. It cannot
contain more than 2,000 characters.

Discussion
Synergy Language on Windows and UNIX supports continuation lines in the input command file,
which can make this file easier to read. If you need to continue a line to a new physical line, place
the appropriate continuation character at the end of the line to be continued. The standard
continuation line character on Windows and UNIX is the backslash (\). In Windows environments,
if you set system option #34, use a minus sign (-) as the continuation character.

Examples
-o EXE:main sub1 sub2 sub3 sub4 sub5 sub6 sub7 \
sub8 ulib.olb elib.elb

If system option #34 is set in a Windows environment, you would use the minus sign (-) as the
continuation character and the file would look like this:

/o EXE:main sub1 sub2 sub3 sub4 sub5 sub6 sub7 -
sub8 ulib.olb elib.elb

To input the required information into the Synergy linker from link.cmd (without tracing), type

dblink <link.cmd

Building and Running Synergy Language Programs
Linking Object Modules

Synergy Language Tools 9.3 (12/09) 1-45

Expanding the Synergy Language stack through the linker

WIN, UNIX
The Synergy Language stack is an allocated area used by the runtime to process arithmetic
expressions, subroutine arguments, and invocation controls. By default, the size of the
Synergy Language stack is 256K, which should be sufficient for most programs. The minimum
stack size on UNIX is 8,192 bytes. We do not recommend lowering the stack size below its default.
If the Synergy Language stack is not large enough, the runtime will generate a “Runtime stack
overflow” error (STKOVR).

You can increase the size of the Synergy Language stack on Windows and UNIX when you link
your Synergy Language program using the -s linker option. For example, the following command
will set the size of the internal operations area equal to 40,000 bytes and link recipe.dbo,
index.dbo, and the Synergy Language object library ulib.olb to create the executable
Synergy Language program recipe.dbr:

dblink -s 40000 recipe index ulib.olb

Listing executable programs

WIN, UNIX
The listdbr utility displays information about the routines and global data (including initial
contents) in the specified executable program(s). It also displays the names of external routines and
global data referenced by each of those routines. Listdbr also displays the same information for
each of the ELBs linked to the specified executable program(s) and any ELBs linked to those ELBs.
Listdbr has the following syntax:

listdbr [option] exec_file […]

Arguments
option

(optional) One or more of the following options:

Name Description Option

ELBs only Display the list of ELB names only. -e

Extra ELBs Include list of additional ELBs on the command line. Listdbr loads every
module in the main routine and the specified ELBS (including any ELBs
linked to those ELBs) to see if any modules are undefined, which would
cause an error at runtime if the module were dynamically loaded.

-x

Building and Running Synergy Language Programs
Linking Object Modules

1-46 Synergy Language Tools 9.3 (12/09)

exec_file

One or more executable programs for which you want to display information. If the -x option is
specified, you can specify one executable program followed by one or more ELBs.

The listdbr utility returns an exit status of 0 if there are no undefined subroutines or global data in
the executable or in any ELBs accessed by that executable. It returns a nonzero exit status if some
routine or global data item is undefined.

You can use the -x option to find out if your ELB would have runtime failures with xfServerPlus.
For example:

listdbr -v -x xfpl.dbr xfpl_api.elb myelb.elb

Global data Dump global data. This option is the default and is the same as not
specifying any options. It will be removed in Synergy/DE 9.

-g

Module Show module descriptor block of each routine. (The module descriptor
block contains descriptive information about the routine, such as the
routine name, program section offsets, and program section lengths.)

-m

Verbose Turn off verbose mode. Provide an abbreviated listing of the executable
file’s contents.

-v

Version Display the version of the linker used to create the .dbr file in the file’s
header.

-i

Name Description Option

Building and Running Synergy Language Programs
Linking Object Modules

Synergy Language Tools 9.3 (12/09) 1-47

Listing ELBs

WIN, UNIX
The listelb utility displays information about the routines and global data (including initial
contents) contained in the specified executable library or libraries. It also displays the names of
external routines and global data referenced by each of those routines. Listelb can also display the
same information for each of the ELBs linked to the specified ELB by using the -l option. Listelb
has the following syntax:

listelb [option] elb_file […]

Arguments
option

(optional) One or more of the following options:

elb_file

One or more .elb files for which you want to display information.

VMS
The ANALYZE/IMAGE utility is equivalent to the listelb utility.

Name Description Option

ELBs only Display the list of ELB names only. -e

Linked ELBs Include information for each of the ELBs linked to the specified ELB. -l

Verbose Turn off verbose mode. Provide an abbreviated listing of the ELB’s
contents.

-v

Version Display the version of the linker used to create the ELB file in the
file’s header.

-i

Building and Running Synergy Language Programs
Linking Object Modules

1-48 Synergy Language Tools 9.3 (12/09)

Invoking the linker on OpenVMS
To link your object files, use the OpenVMS LINK command. To link a Synergy Language program,
use the following syntax:

LINK [/EXE=exe_name]object_1[,object_n,…], option_file/OPT

Arguments
exe_name

(optional) The name you want to use for the resulting executable file. If you don’t specify
exe_name, the linker creates an executable file with the same name as the first object file listed,
with the extension .EXE.

object_1

The first object file or object library to be linked. If you specify an object library, you must
append /LIB to the library name. The default filename extension for object files is .OBJ. The
default extension for object libraries is .OLB.

object_n

(optional) Represents additional object files or object libraries to be linked. If you specify an
object library, you must append /LIB to the library name. The default filename extension for
object files is .OBJ. The default extension for object libraries is .OLB.

option_file

A file that contains special directions to the linker. A template option file for the Synergy
runtime, SYNRTL.OPT, is located in SYS$SHARE.

Discussion
The SYS$SHARE:SYNRTL.OPT file is a template linker options file that enables you to link
programs against the Synergy runtime library. (You must use a linker options file when linking
against shared images.)

Input files

The input file list can include any combination of the following types of files:

Synergy Language object files (.OBJ)

Synergy Language object libraries (.OLB)

Other language object files or object libraries

Option files, which can contain other libraries, shared images, and symbol tables

Input object filename extensions always default to .OBJ. Input object library extensions always
default to .OLB. /LIB must be appended to each library file specification.

Building and Running Synergy Language Programs
Linking Object Modules

Synergy Language Tools 9.3 (12/09) 1-49

Link procedures

Refer to your OpenVMS linker manual for a description of the linker algorithms.

Break points

You can set debugger break points in modules inside shared images. Before you do so, add the
following line to the linker options file:

$ELB_DBG=data

In addition, when you link the shared image, include the module DBLDIR:ELB.OBJ.

See SET on page 2-38 for more information about setting break points.

Examples
The following example links the object file FRED and the object library WND:APLIB into an
executable file named FRED.EXE.

$ LINK FRED,WND:APLIB/LIB,SYS$SHARE:SYNRTL/OPT

The next example links the object file DBLSORT into an executable file named
SYS$SYSTEM:DBLSORT, with the library DBLTLIB and shared images SORTSHR and
SYNRTL.

$ LINK /EXE=SYS$SYSTEM:DBLSORT DBLSORT,SYS$INPUT:/OPT
SYS$SHARE:DBLTLIB/LIB
SYS$SHARE:SORTSHR/SHARE
SYS$SHARE:SYNRTL/SHARE

Building and Running Synergy Language Programs
Running Synergy Language Programs

1-50 Synergy Language Tools 9.3 (12/09)

Running Synergy Language Programs

Running programs on Windows and UNIX
After you’ve compiled the sources and linked them into one executable file, use the Synergy
runtime to execute your program. The dbr command starts the Synergy runtime. (Additional
methods you can use in a Windows environment to invoke the dbr command are explained on
page 1-2.)

The dbr command has the following format:

dbr [options] [--] program [<input_file] [>output_file]

Arguments
options

(optional) One or more of the following runtime options. You must precede each individual
option with a minus sign (for example, -d -n). In Windows environments, if system option #34
is set, you must use a slash (/) instead of a minus sign before each runtime option or group of
options.

--

(optional) Included for consistency with other Synergy Language command lines but serves no
function here.

Name Description Option

Debug Debug program while running. -d

Detached status The terminal number associated with this job will have
a detached status (TNMBR= -1). The program will not
display message boxes on Windows systems.

-n

Remote debug Debug program in a client/server configuration, where
port is the port number on which the debug server will
listen as a Telnet server for the debug client. Valid
values are 1024 to 65535. Timeout is the number of
seconds that the debug server will wait for a
connection from the debug client. The default is 120.

-rd port[:timeout]

Terminal settings (UNIX only) Do not change terminal (stty) settings. -r

Terminal settings
(program startup)

(UNIX only) Do not change terminal (stty) settings on
program startup only.

-x

Building and Running Synergy Language Programs
Running Synergy Language Programs

Synergy Language Tools 9.3 (12/09) 1-51

program

The name of the compiled and linked Synergy Language program. The default filename
extension is .dbr.

input_file

The name of the file from which input will be redirected.

output_file

The name of the file to which output, including any error messages, will be redirected.

Discussion
The runtime executes the program you specify.

See chapter 2, “Debugging Your Synergy Programs,” for more information about the debugger.

WIN
Input from input_file is not available using the Synergy windowing API (W_) or Toolkit routines.
READS and ACCEPT do work. If both input and output are redirected, the application runs as if
XSHOW=hide is specified.

Running applications that require elevated privileges
If you have Synergy programs that require elevated privileges because they write to protected
locations, such as Program Files or the registry, you must use the dbrpriv runtime. (If you’re using
a service runtime, use dbspriv; see “The dbspriv service runtime” on page 1-54.) This version of
the runtime has the correct embedded manifest, which will prompt for UAC elevation as required.

The dbrpriv command has the same format as dbr. See page 1-50 for syntax.

Running programs on OpenVMS
After compiling the sources, and linking them into one executable file, there are several ways to
execute the file.

1. Use the DCL RUN command:

$ RUN filename

2. On OpenVMS 6.2 and above, include the location of the program in the DCL$PATH logical. For
example, if the program executable is in your home directory (SYS$LOGIN), you could run the
program as follows:

$ DEFINE DCL$PATH DBLDIR:,SYS$LOGIN:,SYS$DISK:[],UTILS:
$ filename

Note that SYS$DISK:[] always refers to the current working directory.

Building and Running Synergy Language Programs
Running Synergy Language Programs

1-52 Synergy Language Tools 9.3 (12/09)

3. Define a DCL global symbol to be a foreign command to invoke the program. You must prefix the
program name with a dollar sign ($), even if the disk name used as part of the full program
specification already begins with a dollar sign.

$ MYCOM*MAND:=="SYSLOGIN:filename"
$ mycom

Note that an asterisk in the definition of a foreign command indicates the shortest possible
abbreviation of that command.

4. Use a command definition file to define a DCL verb to invoke the program. See your OpenVMS
documentation set for information about command definition language.

The service runtimes
Synergy Language provides three service runtimes on Windows (dbs, dbssvc, and dbspriv) and
one service runtime on UNIX (dbs).

The dbs service runtime

WIN, UNIX
The dbs service runtime is a reduced-size runtime intended for detached programs (including
xfServerPlus services). This runtime starts up faster due to the minimizing of those functions
needed to control the display of the application and debugging capabilities, which by nature are
only available to an interactive session.

The dbs command has the following format:

dbs [options] [--] program [<input_file] [>output_file]

See page 1-50 for a description of the arguments. The -n option (detached status) is set by default.
The -rd option is not available to the service runtime.

See “Functionality limitations of the service runtimes” on page 1-54 for a list of functions that are
unavailable or limited in the dbs service runtime.

To display version information, press ENTER at the dbs> prompt.

Utility programs that take their parameters from the command line must be executed
without the RUN command, which means that method 1 cannot be used.

Building and Running Synergy Language Programs
Running Synergy Language Programs

Synergy Language Tools 9.3 (12/09) 1-53

The dbssvc service runtime

WIN
The dbssvc service runtime is a reduced-size runtime intended for Synergy programs run as
services. This runtime starts up faster due to the minimizing of those functions needed to control
the display of the application and debugging capabilities, which by nature are only available to an
interactive session.

The dbssvc command has the following format:

dbssvc option

option

One of the following options:

The service name appears as a registry key in the Windows registry. The display name will appear
in the Services dialog box. The Synergy program to be run must reside on a local drive, not a
mapped drive, a UNC path, or a drive that has been mapped via subst.

See “Functionality limitations of the service runtimes” below for a list of functions that are
unavailable or limited in the dbssvc service runtime.

Name Description Option

Register
service

Register a new service named
service_name, where display_name is
the display name associated with the
service name, program is the path and
filename of the Synergy program to be
run when the service is started (in
quotation marks if the path contains
spaces), and program_args are any
arguments to program. If the optional s
option is specified, the new service will
be started after it is registered.

-r[s] -c service_name [-d display_name]
program [program_args]

Stop
service

Stop the specified service. -q -c service_name

Remove
service

Remove the specified service. -x -c service_name

Help Print the help screen. -h

Version Display the current version. -v

Building and Running Synergy Language Programs
Running Synergy Language Programs

1-54 Synergy Language Tools 9.3 (12/09)

If you want to register a routine to be called when the program executed by dbssvc is stopped, use
the %SYN_ATEXIT function. (See %SYN_ATEXIT in the “System-Supplied Subroutines,
Functions, and Classes” chapter of the Synergy Language Reference Manual for details.)

The dbspriv service runtime

WIN
If you’re running applications that require elevated privileges, use the dbspriv runtime. Dbspriv
has the same format as dbs. (See “The dbs service runtime” on page 1-52 for syntax.) This version
of the service runtime has the correct embedded manifest, which will prompt for UAC elevation as
required.

Functionality limitations of the service runtimes
The following functions are unavailable or limited in the service runtimes, which implement
limited I/O. If you need to use these functions with xfServerPlus, set the XFPL_DBR environment
variable. This causes xfServerPlus to use dbr instead of dbs. See XFPL_DBR in the “Environment
Variables” chapter of Environment Variables and System Options for more information.

Dbssvc checks for the existence of the Synergy License Manager service. If it exists, the
services running under dbssvc will be made dependent on the License Manager service. If
the machine is no longer a license server or if the License Manager service is not started,
the services must be re-registered or they will not start.

Function Additional information

Message SEND/RECV

Terminal I/O Only very minimal terminal I/O is available (ACCEPT, DISPLAY, READS,
and WRITES to stdin/stdout for limited debugging).

Synergy debugger

MASK qualifier MASK will not work on a detached program.

TNMBR routine The terminal number is always -1.

TTSTS routine TTSTS on TT: is not available.

WAIT routine WAIT will not work on a detached program.

W_ routines

Building and Running Synergy Language Programs
Running Synergy Language Programs

Synergy Language Tools 9.3 (12/09) 1-55

Using dbr or dbs as a scheduled task

WIN
You can use dbr or dbs as a scheduled task to emulate a batch job.

Scheduled tasks using dbr that are run while a user is logged in will operate and display windows
as if run from a command prompt. To disable this behavior, set XSHOW=hide in your batch file.

Scheduled tasks that are run while no user is logged in will operate as if the TNMBR environment
variable is set to -1 (detached). In this mode there is no user interface, and UI Toolkit user interface
calls should not be made. You can test for %TNMBR.lt.0 to detect this condition.

If you use a scheduled task and want to review any error log that is output when the user is not
logged in, redirect stdout to a file. For example:

dbr my_prog > my_out.log

Synergy Language Profiler Profiling of code is not available.

UI Toolkit Use of Toolkit is limited to U_START, U_OPEN, U_FINISH, and similar
routines that perform no terminal I/O and do not create or use windows.

synergy.ini file Read only when SFWINIPATH is set.

synuser.ini file The synuser.ini file is never read.

Function Additional information

2-1

2
Debugging Your Synergy Programs

The information in this chapter applies to Synergy standard only. You will use the Visual Studio
.NET debugger when using Synergy .NET.

Introduction to the Debugger 2-3

Describes how to invoke the debugger, create a symbolic access table, control the debugger
indirectly using a command file, specify variables within the debugger, and use the debugger
remotely.

Debugger Commands 2-11

Specifies recall and editing commands and documents the following debugger commands:

BREAK – Set a program breakpoint ..2-12

CANCEL – Cancel watchpoints and breakpoints ..2-17

DELETE – Delete a program breakpoint ...2-19

DEPOSIT – Assign a value to a variable..2-21

EXAMINE – Examine the contents of a variable or address ...2-22

EXIT – Exit the current program with traceback ...2-27

GO – Continue program execution...2-28

HELP – Provide command help information ...2-30

LIST – Display lines of source code...2-31

LOGGING – Log the debugging session to a file ..2-32

OPENELB – Make an ELB’s subroutines available to debugger ..2-33

QUIT – Quit the current program without traceback ...2-34

SAVE – Save current debugger settings...2-35

SCREEN – Update the Synergy windowing system ..2-36

SEARCH – Search the source for a string..2-37

SET – Set debugger options ...2-38

SHOW – Examine debugger options and program state information ..2-40

STEP – Step to the next Synergy Language statement...2-43

TRACE – Display the current traceback ..2-44

Debugging Your Synergy Programs

2-2 Synergy Language Tools 9.3 (12/09)

VIEW – Display lines around a debug entry ... 2-45

WATCH – Set a watchpoint .. 2-46

WINDBG – Invoke the UI Toolkit debugger .. 2-49

@ – Process an indirect command file... 2-50

! – Execute system commands ... 2-51

Sample Debugging Session 2-52

Provides an example scenario using the debugger.

Debugging Your Synergy Programs
Introduction to the Debugger

Synergy Language Tools 9.3 (12/09) 2-3

Introduction to the Debugger
The Synergy Language source-level debugger enables you to run your Synergy Language programs
in debug mode so you can control and examine the execution environment. The debugger supports
line numbers, source display, breakpoints, watchpoints, examination by offset, .INCLUDEd
routines, dimensioned variables, and named access to fields, including complete variable path
specifications.

If you want to be able to perform source displays and look up variables by their names, you must
create a symbolic access table. If you don’t, you will not have access to the symbolic information
when debugging. To create a symbolic access table,

To invoke the debugger, enter the appropriate command for your operating system,where program
is the name of your compiled and linked Synergy Language program:

On Do this

Windows and UNIX Use the debug option (-d) both when you compile and when you link. For
example:
dbl -d source_file
dblink -d input_file

OpenVMS Use the debug option (/DEBUG) when you compile, and then link normally. For
example:
dbl /debug source_file or dibol /debug source_file
dblink source_file

On OpenVMS, the main routine must also be compiled with the /DEBUG switch
for the program to start up in debug mode.

On Enter

Windows and UNIX dbr -d program

or
dbr -rd port[:timeout] program

(See “Debugging remotely” on page 2-8 for more information about the
second format.)

OpenVMS run program

Debugging Your Synergy Programs
Introduction to the Debugger

2-4 Synergy Language Tools 9.3 (12/09)

Your command line prompt is

DBG>

(or DblDbg> on OpenVMS systems) and you can enter any of the debugger commands described
in “Debugger Commands” on page 2-11.

VMS
If system option #49 is set, the runtime does not enter the debugger when you run programs built
with the /DEBUG compiler option.

If you’re running your program in the debugger and a fatal error is encountered, the debugger
generates the fatal error message and its traceback and break at the line that caused the fatal error.
This feature enables you to investigate the circumstances that surround the error.

Online help for the debugger is available by typing

help [command]

where command is the command for which you want more information.

Using the debugger on Windows
When you are debugging a Synergy application on Windows, the debugger output appears in a
separate window. Debugger commands can be entered in this window at the prompt.

You can specify the initial size and placement of the Synergy debugger window in the synergy.ini
file using the initialization settings DBG_HEIGHT, DBG_WIDTH, DBG_X, and DBG_Y. If the
window fits on the desktop, it appears without scroll bars. If the window is resized to be smaller
than the originally created size, it displays scroll bars on the window borders, which you can then
move with the mouse to view the rest of the screen.

You can specify the font used in the debugger window using the FONT_DEBUG initialization
setting. Refer to “Using Fonts on Windows” in the “Customizing UI Toolkit” chapter of the
UI Toolkit Reference Manual for the defaulting hierarchy used when FONT_DEBUG is not
specified. We recommend using a fixed font for the debugger.

See the “Environment Variables” chapter of Environment Variables and System Options for more
information about the above settings.

If you move a source file and a .dbr file from Windows to UNIX or vice versa, you must
move the files in binary mode if you want to view the source code correctly in the debugger.
If you move the source file in ASCII mode (via FTP), the LF or CR-LF line terminators will
not be preserved.

Debugging Your Synergy Programs
Introduction to the Debugger

Synergy Language Tools 9.3 (12/09) 2-5

Indirect command file processing
You can control the debugger indirectly using a command file. If an “at” sign (@) is the first
character on an input line, the remainder of the line is assumed to be the name of a text file that
contains debug commands to be executed.

When you specify a command file, a new command file level is activated until the last line in the
file is executed. If one of the lines executed is another indirect command file specification, another
level is activated until the lines in that file are executed. Up to eight levels can be activated in the
debugger.

The default filename extension for a command file is .cmd, and full Synergy Language–style
logical name translation occurs.

VMS
You can use the DBG$INPUT and DBG$OUTPUT logical names to redirect debugger input and
output. See DBG$INPUT and DBG$OUTPUT in the “Environment Variables” chapter of
Environment Variables and System Options for more information.

Initialization file processing
You can also control the debugger using an initialization file. If you set the environment variable
DBG_INIT to the name of your initialization file, the debugger reads the file and executes the
debugger commands within it.

The default filename extension for an initialization file is .cmd (.com on OpenVMS).

Specifying variables
A variable specification can be a simple variable, a variable path, or a field belonging to an object
instance. In fact, any variable specification that is valid during compilation is valid in the debugger,
except that you can only specify a maximum of 12 elements within a given path specification. Like
the compiler, the debugger requires that each variable path be unique.

A variable specification has any of the following formats:

term

routine:term

object.field

record.field

group.field

where term is any simple variable or path specification, routine is the name of a routine in the
current calling chain, object is an object instance variable name, field is a field name, record is a
record name, and group is a group name.

Debugging Your Synergy Programs
Introduction to the Debugger

2-6 Synergy Language Tools 9.3 (12/09)

For example, the following are all valid variable specifications:

v(1)
v(1:3)
rout:v(2,5)
grp1.fld
test:grp1[2].grp2[8].fld
myclass.myfield
(myclass)x.myfield
ns1.ns2.myclass.myfield

If you want, you can specify variables in symbol table offset form (as opposed to symbolic, or
name-oriented, form). To use the offset form, substitute

@offset_code

for each variable name in either form of the variable specification syntax above, where offset_code
is a decimal literal index code. (Look at a compiler listing that was created using the symbol table
offsets or list compiler options; see page A-5 for a sample compiler listing with symbol table
offsets.)

For example, if you have the following variable specification in the test routine:

a[12].b[17]

and a has a symbol table offset of 5 and b has an offset of 10, you can reference the specification
like this:

@5[12].@10[17]

You cannot mix symbolic and offset entries; entries at the same level of a variable specification
must be either all symbolic or all offset. For example, let’s assume we have the following data
division:

record
 group grp,[5]a
 fld1 ,a3
 fld2 ,a3
 endgroup

Assuming that the symbol table offsets are as follows:

grp 2
fld1 1

you can access fld1 as

grp[3].fld1 or @2[3].@1

You cannot access it as

grp[3].@1 or @2[3].fld1

Debugging Your Synergy Programs
Introduction to the Debugger

Synergy Language Tools 9.3 (12/09) 2-7

If you use the offset form, the debugger assumes that your path specification is valid. If an element
is invalid, the result is undefined. You cannot specify a variable that is not in the calling chain.

To reference arguments, use

@-index

where index is the argument number.

To reference an object instance’s field value, specify the object instance variable name and field
name. For example,

x.myfield

To reference an object instance’s field value from an ancestor class, you can cast the object instance
variable to any of the ancestors of the created class. Use one of the following syntaxes:

(class_path)handle
(class_path)handle.field
(class_path)(handle_path).field

where class_path is namespace.class and handle_path is record.group.handle. For example,

(myclass)x.myfield

and

(myclass)(x.y).myfield

To cast a boxed object, use one of the following syntaxes:

(@structure_path)handle
(@structure_path)handle.field
(@structure_path)(handle_path)
(@structure_path)(handle_path).field
(@boxed_type)handle
(@boxed_type)(handle_path)

where structure_path is namespace.structure; handle_path is record.group.handle; and boxed_type
is a, d, or i.

You can reference a field value for the current object instance from within an instance method by
supplying the field name, or you can specify the this keyword. For example,

this.myfield

The path for a static field in a class is made up of two parts: the class path and the field path. The
class path is made up of namespace and class identifiers which may be abbreviated on the left side
as long as the path is unique, but the specified identifiers must be an exact path without any missing
identifiers. The field path must be a path to a static field in the specified class but may have

Debugging Your Synergy Programs
Introduction to the Debugger

2-8 Synergy Language Tools 9.3 (12/09)

unspecified identifiers as long as it is unique. When in a method, the static field paths may be
specified without the class path as long as the static field is a member of the same class as the
method. For example,

myclass.myfield

or

ns1.ns2.myclass.myfield

You cannot reference a complex path that includes an indexer, method call, or property.

Debugging remotely

WIN, UNIX
The Synergy Language debugger can also run in a client/server configuration, where dbr acts as the
debug server and the debug client is any program that is capable of acting as a Telnet client.
Running the debugger remotely has several benefits:

It is useful when the runtime is running noninteractively—for example, as a service or
scheduled task on Windows, as a detached process on UNIX, under xfServerPlus, or with an
HTTP server application. (If you are debugging a service that is normally started with dbs or
dbssvc, you will need to start it with dbr instead. However, it is still running as a service, in
that it doesn’t interact with the desktop and it runs under the same user profile as it does in
normal [nondebug] mode.)

It can also be useful in instances where the application is highly user-interactive and using the
debugger causes the program you are trying to debug to behave differently. If an application
has a problem with the way a field receives focus or if an application is run with input
redirected, you probably don’t want the debugger window to pop up and receive focus. Let’s
say, for example, that you have an ActiveX event procedure hooked to the OnFocus event for
the container. If you break in that routine in the regular debugger, the debugger will steal focus,
so that when you continue program execution with GO, the OnFocus event will be invoked
again and you will get another break. Running the debugger remotely from a separate
workstation will alleviate this problem.

It can be helpful for cell-based debugging. When debugging a Toolkit application, the
window-system displays and the debugger displays get mixed together, and you end up doing a
lot of “screen redraw” commands to see what is going on. By running the debugger remotely,
you can run the application on one terminal (or terminal emulator) and debug it on another.

Debugging Your Synergy Programs
Introduction to the Debugger

Synergy Language Tools 9.3 (12/09) 2-9

Running the debugger remotely requires the following:

The machines on which the debug client and debug server are running must be capable of
communicating via Telnet. (Dbr acts as the Telnet server.) Both debug client and debug server
can be on the same machine, or they can be on separate machines.

TCP/IP must be configured.

If there is a firewall between the debug client and the debug server, the firewall must be
configured to allow Telnet access on the debug port number. (Most firewalls are configured to
prohibit Telnet access.)

You must have access to the machine running the debug server (dbr) as well as access to the
external trigger that initiates events within the program (if the program is noninteractive).

To run the debugger remotely, do the following:

1. (Recommended) Compile and link with the -d option.

2. Start the program to be debugged with dbr -rd on the command line:

dbr -rd port[:timeout] program

where port is the port number on which the debug server will listen as a Telnet server for the debug
client (1024 to 65535, inclusive), timeout is the number of seconds the debug server will wait for a
connection from the debug client (the default is 100), and program is the name of your compiled
and linked Synergy Language program. If you include the timeout, there cannot be a space on either
side of the colon. Make sure timeout is lower than your client connection timeout value.

3. Start a Telnet session and connect to the debug server. (The Telnet application may be on the same
machine as the debug server or on a separate machine.) Specify the IP address or host name of the
debug server (or localhost if you are on the same machine as the debug server) and the port number
you specified with the -rd option.

Once a connection is established, the debug session displays in the Telnet session window on the
debug client machine.

Telnet is a TCP/IP protocol for accessing remote computers. You can use whatever
Telnet application you prefer (for example, the basic telnet.exe program that comes
with Windows, the shareware QVT/Term application, or something else).

(Windows) If your program is a service that is normally started with dbs or dbssvc, your
environment may change, because dbr always reads the synergy.ini file, whereas dbs
and dbssvc read it only when SFWINIPATH is set. We recommend that you use
SFWINIPATH to point to the location of your synergy.ini file and thereby avoid potential
problems. For more information on dbs and dbssvc, see “The service runtimes” on
page 1-52.

Debugging Your Synergy Programs
Introduction to the Debugger

2-10 Synergy Language Tools 9.3 (12/09)

4. Debug your program. (Remember that your source files must be accessible by the debug server
machine if you want to view source code within the debugger.)

The debug commands WINDBG (invoke the Toolkit window debugger) and ! (invoke a shell
command) are not supported by the debug server. If either command is used, an error is generated.

5. Once debugging is complete, let the program finish running; the runtime will exit, and the Telnet
session will close automatically. Optionally, you can close the session in one of the following ways:

Shut down the Telnet session. All breakpoints and watchpoints will be canceled, and the
program will continue running in normal mode.

Use the debugger QUIT or EXIT command to stop the runtime and exit the program. The
Telnet session will close automatically.

For more information and specific instructions for debugging when xfServerPlus is involved, see
“Debugging Your Remote Synergy Routines” in the “Configuring and Running xfServerPlus”
chapter of the Developing Distributed Synergy Applications manual.

Timeouts or other failures are logged to a file named rd.log, which is created in the DBLDIR
directory (or the TEMP directory on Windows Vista/2008 and higher) when the first entry in the
file is logged. This file contains the process ID of the instance of the runtime that logged entries, the
date and time entries were logged, and specific messages. If you are having a problem debugging
remotely, check this file first.

VMS
To set remote debugging,

1. Compile with the /DEBUG option.

2. Link the program as usual

3. Define the DBG_RMT logical. See DBG_RMT in the “Environment Variables” chapter of
Environment Variables and System Options for more information.

Most Telnet applications support paging and scrolling in the window. This provides a
scrollable debug display and enables you to see more of what you are working on than in
the normal Synergy debugger window.

TIP
When using remote debugging with xfServerPlus on Windows Vista/2008 and higher, we
recommend that you explicitly set TEMP in the Synrc node in the Windows registry, or else
rsynd will put the log file in a system-determined location (most likely somewhere in the
C:\Users path).

Debugging Your Synergy Programs
Debugger Commands

Synergy Language Tools 9.3 (12/09) 2-11

Debugger Commands
You can abbreviate any of the debugger commands or their options to one or more unique
characters (for example, B for BREAK, DEL for DELETE, and SH for SHOW). There are also
some exceptions (D and DE for DEPOSIT, S for STEP, SE for SET, and W and WA for WATCH),
due to the evolution of the command set. If the first token on a debug command line is a semicolon
(;), the rest of the line is ignored.

Command recall and editing
You can recall and edit debugger commands using the following control characters:

CTRL+P Recall previous command.

CTRL+N Recall next command.

CTRL+B Move backward within the line.

CTRL+F Move forward within the line.

CTRL+H Delete previous character within the line.

CTRL+K Delete current character within the line.

CTRL+U Delete to the beginning of the line.

CTRL+E Delete to the end of the line.

On a PC or VTxxx terminal, the UP ARROW and DOWN ARROW keys recall the previous command
and the next command, respectively. The LEFT ARROW and RIGHT ARROW keys and the REMOVE key
are automatically mapped to the backward, forward, and delete current character functions,
respectively.

The command recall buffer handles 240 characters. The length of your commands determines how
many commands the recall buffer can hold.

Debugging Your Synergy Programs
BREAK

2-12 Synergy Language Tools 9.3 (12/09)

BREAK – Set a program breakpoint

BREAK routine
BREAK line
BREAK routine:line
BREAK label [/LABEL]
BREAK .
BREAK method
BREAK method:line
BREAK method#id
BREAK method#id:line
BREAK method#ALL
BREAK method(signature)

VMS
BREAK image/routine

Arguments
routine

Sets a breakpoint on entry to the specified routine.

line

Sets a breakpoint at the specified source line in the current routine.

routine:line

Sets a breakpoint at the specified source line in the specified routine.

label [/LABEL]

Sets a breakpoint at the specified label in the current routine.

.

(period) Sets a breakpoint at the current line in the current routine.

method

Sets a breakpoint on entry to the specified method.

method:line

Sets a breakpoint at the specified source line in the specified method.

method#id

Sets a breakpoint on entry to the specified implementation of the specified method.

Debugging Your Synergy Programs
BREAK

Synergy Language Tools 9.3 (12/09) 2-13

method#id:line

Sets a breakpoint at the specified source line in the specified implementation of the specified
method.

method#ALL

Sets a breakpoint on entry to all implementations of the specified method.

method(signature)

Sets a breakpoint on entry to an explicit method.

image/routine

Sets a breakpoint on entry to the specified routine that is inside the specified shared image.

Discussion
The BREAK command sets a program breakpoint, which is a point at which your program stops
and goes into the debugger.

You can specify two kinds of breakpoints: entry breakpoints and specific breakpoints. An entry
breakpoint causes the program to break upon entering a routine. You can set a break at the entry to
a routine using the BREAK routine syntax, and to a method using the BREAK method syntax. A
specific breakpoint causes the program to break at a specific line in a routine or method. You can
set a specific breakpoint using the BREAK line, BREAK routine:line, BREAK label, BREAK .,
BREAK method:line, or BREAK method#id:line syntax.

When a breakpoint occurs, the break line has not yet been executed.

When specifying a line number with the BREAK routine or BREAK method syntax, the colon can
be replaced with a space.

You can specify more than one breakpoint, separated by commas. If routine is not specified, the
break specification is assumed to be for the current routine.

You can set breakpoints in routines that are .INCLUDEd into another routine. To do so, specify
each one in the form

source_file#.line#

You can determine the source file number by viewing a listing file.

The maximum number of breakpoints is 32.

If you try to set a breakpoint in a method whose name is overloaded within the class or whose
specified name matches methods in more than one class, the debugger presents a numbered
selection list that includes the method name and its parameter types to allow you to select which
method should have the breakpoint.

Debugging Your Synergy Programs
BREAK

2-14 Synergy Language Tools 9.3 (12/09)

For example,

DBG> break testdrive
Found multiple matches:
1: BREAKMETH.CAR.TESTDRIVE()
2: BREAKMETH.CAR.TESTDRIVE(A)
3: BREAKMETH.CAR.TESTDRIVE(A,A,I)
*** Choose which breakpoint to set
DBG> break testdrive #2
DBG> show break
BREAKMETH.CAR.TESTDRIVE(A) on entry

You can either set the breakpoint using one of the unique identifiers, as shown above in the line

DBG> break testdrive #2

or you can set the breakpoint for all of them, like this:

DBG> break testdrive #all

You can use the method#id syntax at any time to set a breakpoint to a particular method, even
without a set break attempt generating the list of overloaded methods.

You can alternatively specify an overloaded method by specifying the signature, or parameter list,
enclosed in parentheses. (A method does not have to be overloaded to use this syntax, although the
signature is not required for a nonoverloaded method.) For example,

break mymethod(i, i)

or

break myclass.mymethod(a, @Class1)

The parameter list is a comma-delimited list of one or more of the following parameter
specifications:

Parameter specification Description

A Parameter is of type alpha

D Parameter is of type decimal

I Parameter is of type integer

$struct Parameter is a structure

@class Parameter is a class handle

^VAL Parameter is passed by value

^REF Parameter is passed by reference

Debugging Your Synergy Programs
BREAK

Synergy Language Tools 9.3 (12/09) 2-15

Except for ^VAL and ^REF, each parameter specification can optionally be preceded by a
dimension specification.

A method signature that has a real array parameter must specify it by a left square bracket ([)
followed by the number of dimensions. A method signature that has a dynamic array parameter
must specify it by a left curly brace ({) followed by the number of dimensions. In either case, if the
number of dimensions is one, the number of dimensions may be omitted.

For example,

method mthd
arg1, [*]a
arg2, [*,*]d
arg3, [#]@cls
arg4, [#,#][#]@cls
proc
 mreturn
end

BREAK ns.cls.mthd([A,[2D,{1@cls,{2{@cls)

If the signature doesn’t match a single method implementation exactly, the debugger displays a list
of one or more choices, all having the same number of arguments as the signature you specified.

VMS
You can also set breakpoints in routines inside a shared image using the BREAK image/routine
syntax above. To do so, you must have done the following when linking the shared image file:

Included $ELB_DBG=DATA within the “SYMBOL_VECTOR=” line of the options file used

Included DBLDIR:elb.doj

Only one shared image at a time can be built in this manner.

@$struct Parameter is a boxed structure

@A Parameter is a boxed alpha

@D Parameter is a boxed decimal

@ID Parameter is a boxed implied-decimal

@P Parameter is a boxed packed

@IP Parameter is a boxed implied-packed

@I Parameter is a boxed integer

Parameter specification Description

Debugging Your Synergy Programs
BREAK

2-16 Synergy Language Tools 9.3 (12/09)

The logical used to reference the shared image must be used as the image part of the image/routine
break specification.

Examples
The following example sets a breakpoint at lines 7 and 10 in the current routine and also at line 5 in
routine ABC.

BREAK 7, abc 5, 10

The following OpenVMS example sets a breakpoint at the entry of the post_data routine in the
shared image referenced by the MCBA_LIB logical.

BREAK MCBA_LIB/post_data

The example below shows a breakpoint being set in a .INCLUDEd routine.

Break at 4 in MYFILE (myfile.dbl) on entry
 4> xcall flags(1001010, 1)
DBG> set break 2.2
DBG> go
Break at 2.2 in MYFILE (MYFILEA.DBL)
 2.2> nop
DBG> step
Step to 2.3 in MYFILE (MYFILEA.DBL)
 2.3> writes(1, "Exiting include file")

The example below breaks at line 14 within the method mynamespace.myclass.mymethod.

break mynamespace.myclass.mymethod:14

The following example breaks in the third method of myclass at line 53.

BREAK myclass#3:1.53

Debugging Your Synergy Programs
CANCEL

Synergy Language Tools 9.3 (12/09) 2-17

CANCEL – Cancel watchpoints and breakpoints

CANCEL/ALL
CANCEL WATCH [/ALL|variable|address|index]
CANCEL BREAK [/ALL|line|routine|.|routine line]

Arguments
/ALL

(optional) Cancels all watchpoints and breakpoints (in the CANCEL/ALL syntax), all
watchpoints (in the CANCEL WATCH/ALL syntax), or all breakpoints (in the CANCEL
BREAK/ALL syntax).

variable

(optional) Cancels a watchpoint for the specified variable. See “Specifying variables” on
page 2-5 for more information about variable specifications.

address

(optional) Cancels a watchpoint for the specified address.

index

(optional) Cancels a watchpoint for the specified index code (or offset code). (For example, if
you set three watchpoints, you can cancel the third using 3 as the index.)

line

Cancels a breakpoint at the specified source line in the current routine.

routine

Cancels a breakpoint on entry to the specified routine.

.

(period) Cancels a breakpoint at the current line in the current routine.

routine:line

Cancels a breakpoint at the specified source line in the specified routine.

Discussion
The CANCEL command cancels one or more existing program watchpoints or breakpoints.

The watchpoint that you specify must already exist. Use the SHOW WATCH command to get a list
of existing watchpoints.

Debugging Your Synergy Programs
CANCEL

2-18 Synergy Language Tools 9.3 (12/09)

Examples
The following example cancels a watchpoint on the dvar variable.

CANCEL WATCH dvar

The example below cancels all breakpoints.

CANCEL BREAK /all

Debugging Your Synergy Programs
DELETE

Synergy Language Tools 9.3 (12/09) 2-19

DELETE – Delete a program breakpoint

DELETE/ALL
DELETE routine
DELETE line
DELETE routine line
DELETE label [/LABEL]
DELETE .

VMS
DELETE image/routine

Arguments
/ALL

Deletes all breakpoints.

routine

Deletes a breakpoint at the entry to the specified routine.

line

Deletes a breakpoint at the specified source line in the current routine.

routine line

Deletes a breakpoint at the specified source line in the specified routine.

label [/LABEL]

Deletes a breakpoint at the specified label in the current routine.

.

(period) Deletes a breakpoint at the current line in the current routine.

image/routine

Deletes a breakpoint on entry to the specified routine that is inside the specified shared image.

Discussion
The DELETE command deletes one or more existing program breakpoints.

The breakpoint that you specify must already exist. Use the SHOW BREAK command to get a list
of existing breakpoints.

Debugging Your Synergy Programs
DELETE

2-20 Synergy Language Tools 9.3 (12/09)

You can specify more than one breakpoint for deletion, separated by commas. If routine is not
specified, the break specification is assumed to be for the routine most recently specified on the
command line.

Examples
The following example deletes the breakpoint at the entry to the MAINT routine as well as the
breakpoints at lines 12 and 19 of the ADD routine.

DELETE maint, add 12, 19

Debugging Your Synergy Programs
DEPOSIT

Synergy Language Tools 9.3 (12/09) 2-21

DEPOSIT – Assign a value to a variable

DEPOSIT variable=value

Arguments
variable

A variable specification to which a value is assigned. See “Specifying variables” on page 2-5
for more information about variable specifications.

value

Either a literal or variable to assign to variable.

Discussion
The DEPOSIT command assigns a value to a variable.

You must be able to read or write to a variable specification, but a data specification can be
read-only (in other words, a literal).

You can specify more than one variable=value assignment, separated by commas. When you
specify more than one assignment, they’ll be processed from left to right.

If variable is a field in an object instance, the field must be accessible and writable.

Examples
The following example assigns the value 15 to the expression a(b) in the xyz routine. (Remember,
xyz must be in the current calling chain.)

DEPOSIT xyz:a(b)=15

In the example below, i is set to 15 and x(15) is set to 12.

DEPOSIT i=15, x(i)=12

The example below deposits a nonobject value into a static field by specifying a fully qualified
name.

deposit ns1.ns2.myclass.myfield = value

^VAL routine arguments cannot be deposited.

Debugging Your Synergy Programs
EXAMINE

2-22 Synergy Language Tools 9.3 (12/09)

EXAMINE – Examine the contents of a variable or address

EXAMINE [/PAGE] variable [/X] [display_option] [object_option] [variable ...]
EXAMINE [/PAGE] address [display_option] [address ...]
EXAMINE [/PAGE] /OBJECT_ID object_id [object_option] [object_id ...]
EXAMINE [/PAGE] /STATIC class_name [class_name ...]

Arguments
/PAGE

(optional) Stops the output every 24 lines and waits for input (CR to get the next page and
<EOF> to terminate input). On Windows, the output will vary based on the values of
DBG_HEIGHT and DBG_WIDTH. (/PAGE can alternatively be placed at the end of the line.)

variable

A variable specification whose contents will be displayed. See “Specifying variables” on
page 2-5 for more information about variable specifications. Variable can also be a
^M(struct_fld, handle) specification.

/X

(optional) Displays the variable’s address.

display_option

(optional) These qualifiers display the contents of the variable (or the address) as the specified
data type.

/[n]I[size] Integer or integer of length size, where size is 1, 2, 4, or 8 and n is the
number of I[size] fields.

/Dsize[.prec] Decimal or implied-decimal of size bytes and the specified precision.

/Asize Alphanumeric of size bytes.

/HEX or /H Hexadecimal. (This does not apply to handles.)

object_option

(optional) One or more of the following options:

/INFORMATION Display detailed information.

/LINES Display the first referencing source line.

/REFERENCES Display all other references to the object.

/SCOPE Display all accessed (active) handles within the object’s scope. (This
does not apply to object IDs, only handles.)

Debugging Your Synergy Programs
EXAMINE

Synergy Language Tools 9.3 (12/09) 2-23

address

An address specification whose contents will be displayed.

/OBJECT_ID

Indicates that an object identifier follows.

object_id

An object identifier obtained from the SHOW CLASSES /OBJECTS command.

/STATIC

Display all static fields within the specified class.

class_name

(optional) A class name path.

Discussion
The EXAMINE command displays the contents of a variable, address, object, or class, depending
on which syntax is used. You can specify more than one variable, address, object, or class by
separating them (along with their options) with commas or spaces.

Depending on what is being examined, the debugger displays the name of each “outer” field in the
record, group, or structure, along with its data type, size, and contents. For example, if rec is
examined below, the fields rfld1, grp, and rfld2 will be displayed. None of the fields inside grp
(fld1, fld2, or fld3) will be displayed.

record rec
 rfld1 ,a4
 group grp
 fld1 ,a4
 fld2 ,a4
 fld3 ,a4
 endgroup
 rfld2 ,a4

For records, groups, structures, and object instances, any array fields display the data for each
element of the array. Any group fields display the data in the format of the data type of the group. If
variable is an object instance, the debugger displays each field in the object instance with its data.
The class name is displayed first, followed by the data in alpha format if an object has been
instantiated, or the word “^NULL” if an object has not been instantiated.

Unnamed fields will not be displayed.

If you examine a variable that is longer than one line (80 characters), the variable is displayed on
multiple lines. Any nonprinting characters are displayed as periods (.). On Windows, the output will
vary based on the values of DBG_HEIGHT and DBG_WIDTH.

Debugging Your Synergy Programs
EXAMINE

2-24 Synergy Language Tools 9.3 (12/09)

To examine an argument, use

@-index

where index is the argument number. Arguments are displayed as their passed data type unless
overridden.

When specified in conjunction with an object variable, the /INFORMATION option displays the
following information about the specified object variable:

The handle ID and class of the object variable

The object ID and class of the instantiated object (if instantiated)

The number of references to the object (if instantiated)

Any circular references

When specified in conjunction with an object_id, the /INFORMATION option displays the
following information about the specified object:

The class of the object

The number of references to the object

Any circular references

Examples
The following example displays the contents of the variable ab.

EXAMINE ab

Given the following definition:

class c1
 c1_fld1 ,a4
 c1_fld2 ,a4
 c1_fld3 ,a4
endclass
class c2
 record crec
 c2_fld1 ,a4
 c2_fld2 ,a4
 c2_fld3 ,a4
endclass
record
 hnd1 ,@c1
 hnd2 ,@c2

Debugging Your Synergy Programs
EXAMINE

Synergy Language Tools 9.3 (12/09) 2-25

The command

DBG> examine hnd1

displays the fields c1_fld1, c1_fld2, and c1_fld3, while

DBG> examine hnd2

displays only crec.

The example below examines the contents of an address.

DBG> examine fld1
1234
DBG> examine fld1/X
12542980
DBG> examine 12542980
1234
DBG> examine 12542980/I
875770417
DBG> examine 12542980/I/H
^x(34333231)

The example below examines an object ID.

DBG> examine /object_id 1
Object id 1, class objid.car, refs 1

DBG> examine /object_id 1 /REFERENCES
Object id 1, class objid.car, refs 1
Other referencing handles:

Handle id 2, class objid.car
DBG> examine /object_id 1 /LINES

Object id 1, class objid.car, refs 1, def at line 45 in CD_MAIN
(exam_objid.dbl)
DBG> examine /object_id 1 /INFORMATION

Object id 1, class objid.car, refs 1

The example below examines an object variable.

DBG> examine ford
cartyp, a22, "Mustang b...0400000000"
price, d6.2, 8800.00
limit, i4, 600
DBG> examine ford /lines

Handle id 2, class objid.car, set at line 45 in CD_MAIN (exam_objid.dbl)
Object id 1, class objid.car, refs 1, def at line 45 in CD_MAIN

(exam_objid.dbl)
DBG> examine ford /ref

Handle id 2, class objid.car
Object id 1, class objid.car, refs 1

Debugging Your Synergy Programs
EXAMINE

2-26 Synergy Language Tools 9.3 (12/09)

DBG> examine ford /scope
Handle id 2, class objid.car
Object id 1, class objid.car, refs 1
No active handles within object’s scope

DBG> examine ford /info
Handle id 2, class objid.car
Object id 1, class objid.car, refs 1

Debugging Your Synergy Programs
EXIT

Synergy Language Tools 9.3 (12/09) 2-27

EXIT – Exit the current program with traceback

EXIT

Discussion
The EXIT command exits the current program with traceback information and returns you to the
operating system prompt. On exit, all FINALLY blocks and object destructors are called before the
runtime exits. Any breakpoints in these code sections will operate normally.

Debugging Your Synergy Programs
GO

2-28 Synergy Language Tools 9.3 (12/09)

GO – Continue program execution

GO
GO/option
GO routine
GO line
GO routine line
GO .

Arguments
option

One of the following options:

COUNT Continue execution through count breaks, displaying each.

DEBUG Continue execution until the next routine that is compiled in debug
mode is entered.

EXIT Continue execution until the current function or subroutine is exited.

NEXT Continue execution until the next function or subroutine is entered.

NODEBUG Cancel debugging and continue execution as if the program had never
entered the debugger. This option cancels all breakpoints and
watchpoints.

RETURN Continue execution until a RETURN is executed for the current CALL.

routine

Continues execution until the specified routine is entered.

line

Continues execution until the specified source line in the current routine is reached.

routine line

Continues execution until the specified source line in the specified routine is reached.

.
(period) Continues execution until the current source line in the current routine is reached
again.

Debugging Your Synergy Programs
GO

Synergy Language Tools 9.3 (12/09) 2-29

Discussion
Except for the GO/NODEBUG form, all of the forms of GO automatically continue execution until
either the specified condition or one of the following circumstances occurs:

The program reaches a breakpoint or watchpoint.

The program chains to another program.

The program returns control to the monitor.

If you reach a breakpoint before the specified condition is met, the specified condition is cancelled.

GO without any arguments merely continues program execution.

Examples
The example below continues program execution until the program enters the next function or
subroutine.

GO/NEXT

Debugging Your Synergy Programs
HELP

2-30 Synergy Language Tools 9.3 (12/09)

HELP – Provide command help information

HELP [command] [/PAGE]

Arguments
command

(optional) Any valid debugger command or unique command abbreviation.

/PAGE

(optional) Stops the output every 24 lines and waits for input (CR to get the next page and
<EOF> to terminate input). On Windows, the output will vary based on the values of
DBG_HEIGHT and DBG_WIDTH.

Discussion
The HELP command gives more detailed information about the specified debugger command. If no
arguments are present, general help is displayed.

Examples
The example below displays help information about the GO command.

DBG> HELP GO

The following appears:

Continue program execution:

 GO - Continue execution
 GO /DEBUG - Continue execution until entering routine compiled
 with debug
 GO /NODEBUG - Cancel debugging and continue execution
 GO /NEXT - Continue until the next function or subroutine entry
 GO /EXIT - Continue until the current function or subroutine
 exits
 GO /RETURN - Continue until a RETURN from the current CALL
 GO /nnn - Continue through nnn breaks, each break will be
 displayed
 GO rtn - Continue until the routine <rtn> is entered
 GO ln - Continue to line <ln> in the current routine
 GO rtn ln - Continue to line <ln> in routine <rtn>
 GO . - Continue until current line reached again

Note that, with the exception of GO/NODEBUG, all of the qualified forms
will also suspend execution whenever a breakpoint or watchpoint is
encountered.

Debugging Your Synergy Programs
LIST

Synergy Language Tools 9.3 (12/09) 2-31

LIST – Display lines of source code

LIST
LIST line#
LIST line# count
LIST/ALL

Arguments
line#

Sets the current source line to the specified line number and displays 12 lines of code. Line#
can either be the number of a source line or a period (.), which indicates the current line.

line# count

Sets the current source line to the specified line number and displays the number of lines of
code specified by count. Line# can either be the number of a source line or a period (.), which
indicates the current line.

/ALL

Displays all source lines within the current routine.

Discussion
The LIST command displays lines of code beginning at the current source line. If you don’t specify
any arguments, LIST displays 12 lines.

The current source line is the line at which the debugger was entered. If you specify a line number
rather than a period for the line# argument, the specified line becomes the current line. The current
debug line is marked with a right angle bracket (>) in the display.

All nonprinting alpha field data is displayed as periods (.), except BS, HT, LF, VT, FF, and CR.

You cannot list any lines that come before the start of a routine or after the end of the routine.
Therefore, the command

LIST 1

always lists from the beginning of the routine, even if the first line in the routine is line number
1255, for example. Likewise, the following command always lists the last line of the routine, even
if 99999 is outside of the possible range of line numbers:

LIST 99999

Program routines that are .INCLUDEd display the line number in the form source_file#.line#.

Examples
The following example lists five lines beginning at the current line.

LIST . 5

Debugging Your Synergy Programs
LOGGING

2-32 Synergy Language Tools 9.3 (12/09)

LOGGING – Log the debugging session to a file

LOGGING START[/APPEND] filename
LOGGING STOP

Arguments
/APPEND

Appends the logging output to the end of the specified file.

filename

The name of the file to log to.

Discussion
The LOGGING START command writes all debugger commands and command output to the
specified log file. By default, a new log file is created unless the /APPEND option is present. If
/APPEND is specified, the debugger opens the file in append mode and starts writing at the end of
the file.

The LOGGING STOP command stops logging and closes the file. If the debugger is exited before
this command is issued, an implied LOGGING STOP is performed to close the log file.

Debugging Your Synergy Programs
OPENELB

Synergy Language Tools 9.3 (12/09) 2-33

OPENELB – Make an ELB’s subroutines available to debugger

OPENELB elb_spec

Arguments
elb_spec

The file specification of the ELB to attach to.

Discussion
The OPENELB command attaches to the specified ELB. The ELB’s subroutines are made available
to the debugger and the executing program exactly as if the OPENELB system-supplied subroutine
had been called prior to the line number of the break at which the command was entered. You can
then set breakpoints in routines within that ELB.

Each OPENELB command opens the specified ELB and any ELBs that are linked to it. See
OPENELB in the “System-Supplied Subroutines, Functions, and Classes” chapter of the Synergy
Language Reference Manual for restrictions on elb_spec. Any elb_spec that is valid for the
OPENELB subroutine is valid for this command as well.

The OPENELB command can be used for client/server or regular debugging. When running the
debugger in a client/server configuration with xfServerPlus, you will need to use OPENELB to
open the ELBs containing your Synergy routines before setting a breakpoint in one of those
routines.

If the specified ELB cannot be located or successfully attached, an error message is generated.

Examples
The example below opens the ELB WND:tklib.elb.

OPENELB WND:tklib

Debugging Your Synergy Programs
QUIT

2-34 Synergy Language Tools 9.3 (12/09)

QUIT – Quit the current program without traceback

QUIT

Discussion
The QUIT command exits the current program without displaying any traceback information and
returns to the operating system prompt. The program stops immediately; no FINALLY blocks or
destructors are executed.

Debugging Your Synergy Programs
SAVE

Synergy Language Tools 9.3 (12/09) 2-35

SAVE – Save current debugger settings

SAVE filename

Arguments
filename

The name of the file that will contain the debugger settings.

Discussion
The SAVE command enables you to save the current debugger state to a file. The debugger state
includes breakpoints, watchpoints, option settings, and ELB names. The name of each ELB that is
opened via the OPENELB debugger command is written to the file before any other debugger
commands.

Once you’ve saved your debugger settings to a file, you can specify the name of this file as the
initialization file for the debugger, which enables you to associate a set of debugger commands with
a project and invoke those commands every time you restart the debugging session.

If you don’t specify a filename extension, the default extension is .cmd on Windows and UNIX or
.com on OpenVMS. The saved file contains all debugger commands for the current setting state in
the debugger, including the WATCH, BREAK, and SET commands.

You can restore the saved debugger commands by executing the @filename debugger command or
setting the DBG_INIT environment variable to the name of the file before invoking the debugger.

Debugging Your Synergy Programs
SCREEN

2-36 Synergy Language Tools 9.3 (12/09)

SCREEN – Update the Synergy windowing system

SCREEN option

Arguments
option

One or more of the following options:

CLEAR Clear the screen.

REDRAW Redraw the current windowing system screen.

ROW row Reposition the cursor to the first column of the specified row.

TOP Reposition the cursor to the first row on the screen.

UPDATE Update a windowing system screen to its current state.

WAIT Wait for a character to be typed before continuing.

Discussion
If you are using the Synergy windowing API or UI Toolkit, the SCREEN command updates the
screen and/or windowing system.

The SCREEN command serves as an interface to the windowing API. It enables you to establish
small macros (using a combination of the SAVE and @ commands) so you can look at intermediate
states of the screen that you wouldn’t ordinarily get to see.

You can place more than one option, separated by spaces and/or commas, on the same line.
Specifying WAIT as the last option gives you a chance to examine the current state of the screen
before the next debug prompt covers it up.

Examples
The following example redraws the windowing system screen, leaves the screen displayed until you
enter a character, and then clears the screen before accepting any more debugger commands.

SCREEN REDRAW, WAIT, CLEAR

Debugging Your Synergy Programs
SEARCH

Synergy Language Tools 9.3 (12/09) 2-37

SEARCH – Search the source for a string

SEARCH string
SEARCH string line# count
SEARCH/ALL string

Arguments
string

Searches from the current line for string.

string line# count

Searches count lines for string, starting with source line line#.

/ALL string

Searches all lines within the module for string.

Discussion
The SEARCH command searches the current source module for the specified string.

If line# is “>”, the current debug entry line is used. If line# is “.”, the current source line is used.
Only lines within the current module are searched, so a line# of 1 searches from the module’s first
line and a large line# searches the last line. After listing, the current source line is set to the next
line to be listed. The current source line is set to the entry line on each debug entry.

Examples
The following example searches the current module for the string “var1.” All source lines that
contain “var1” are displayed.

SEARCH var1

Debugging Your Synergy Programs
SET

2-38 Synergy Language Tools 9.3 (12/09)

SET – Set debugger options

SET option

Arguments
option

One of the following options:

DBGSRC path Set the DBGSRC environment variable to the specified path.

STEP OVER Set the default mode for the STEP command to step over a
routine.

STEP INTO Set the default mode for the STEP command to step into an
external subroutine. (default)

TRAP ON Break whenever a program traps an error.

TRAP OFF Do not break when an error is trapped. (default)

TYPEAHEAD ON Allow the debugger to use characters that are typed ahead in
the application. (default)

TYPEAHEAD OFF Prevent the debugger from using characters that are typed
ahead in the application.

UNINITIALIZED BREAK Set a program breakpoint when uninitialized stack records and
^M memory is accessed.

UNINITIALIZED ON Turn on debugger messages when uninitialized stack records
and ^M memory is accessed.

UNINITIALIZED OFF Turn off uninitialized memory debugger messages and
program breaking.

VIEW count Set the default number of source lines that will be displayed
immediately preceding and following the current line when the
VIEW debugger command is specified without the optional
count value. The default count for the VIEW command is 4.

Discussion
The SET command lets you customize debugger behavior by setting various debugger options.

The DBGSRC environment variable is appended to the beginning of source filenames before
source files are opened in the debugger if the file cannot be found through the path to the file
defined at compile time. It tells the debugger where the source file is located. You can either set
DBGSRC in the environment, before you begin your debugging session, or you can set it with the

Debugging Your Synergy Programs
SET

Synergy Language Tools 9.3 (12/09) 2-39

SET command. If you set DBGSRC with the SET command, it overrides any DBGSRC path that
you set previously at the environment level. If you are debugging remotely, make sure path is
accessible from the server.

Detection for INITIALIZED ON or INITIALIZED BREAK occurs on assignment and IF tests.

STEP INTO only applies to external subroutines, not functions. (To step into a function, you need
to either set a breakpoint or use the GO command to go to that function name.)

If you don’t set TRAP ON, when an error is trapped, the program begins executing at the
ONERROR label, without any warning that program control has changed. Setting TRAP ON
causes the program to break when an error is trapped, and you get a message that tells you where
the error occurred and what line will be executed next.

The SET UNINITIALIZED debugger feature is designed to help track down random problems at
runtime due to variables in ^M and stack records not being initialized before use. Both
%MEM_PROC(DM_ALLOC…) and stack records are random value unless preinitialized. When
SET UNINITIALIZED debugger options are set, %MEM_PROC memory is initialized to a series
of 0xFA bytes, and stack memory is set to a series of 0xFB bytes. When an IF test or assignment
statement is encountered, the data is scanned for a series of four or more FA or FB bytes, and the
appropriate action is taken if found. It is possible for false positives to occur if integer fields that
happen to have exactly the same values are used.

When the break occurs, the line reported is the next line that would be executed after the error
statement, and this is the module where the uninitialized data is detected. In many cases, this is not
the module defining the data, but the module using the data, which was most likely passed in via
arguments. For example, many times a UI Toolkit list processing routine uses stack data passed in
several levels up the call stack via the user data argument. However, this is a bug in the user code,
not a bug in Toolkit.

Examples
The example below sets the default STEP mode to STEP OVER. If no arguments are specified on
the STEP command, STEP steps over a routine.

SET STEP OVER

If the default step mode is STEP OVER, the debugger steps into any external subroutine
that has a function as one of its arguments.

Debugging Your Synergy Programs
SHOW

2-40 Synergy Language Tools 9.3 (12/09)

SHOW – Examine debugger options and program state
information

SHOW [/PAGE] [option]
SHOW [/PAGE] [option] [CLASSES [class_option] [class_name] [...]]

Arguments
/PAGE

(optional) Stops the output every 24 lines and waits for input (CR to get the next page and
<EOF> to terminate input). On Windows, the output will vary based on the values of
DBG_HEIGHT and DBG_WIDTH. (/PAGE can alternatively be placed at the end of the line.)

option

(optional) One or more of the following options:

BREAK Display all current breakpoints.

CHANNELS Display all Synergy Language channels that are currently open, along
with their open mode, submode, and filename. If no channels are
opened, you get a message to that effect.

DBGSRC Display the path to which the DBGSRC environment variable is
currently set.

WIN

DLL Display all open DLL handles and the complete filename of the
associated DLL, in the order in which they were opened. The same DLL
is listed more than once if it was opened more than once.

DYNMEM Display all dynamic memory segments that are currently in use.

ELB Display all ELBs that are currently open.

ERROR Display the error that caused the current error trap.

MEMORY Display current Synergy Language memory usage as well as the number
of segment reclamations that occurred during program execution.

OPTIONS Display Synergy compiler/runtime options and flags.

STACK Display the current Synergy Language stack parameters: the size of the
stack, how much of the stack is currently in use, and the maximum
number of bytes that have been used.

STEP Display the current mode for the STEP command (STEP OVER or
STEP INTO).

Debugging Your Synergy Programs
SHOW

Synergy Language Tools 9.3 (12/09) 2-41

TRACE Display the current CALL or XCALL traceback. (This option displays
the same information as the TRACE command.)

TRAP Display the current error trap mode (TRAP ON or TRAP OFF) as set by
the SET command.

UNINITIALIZED Display the current UNINITIALIZED state as set by the SET command.

VARIABLE var_list Display the type and size of one or more variables. If present,
VARIABLE must be the last keyword on the SHOW command line,
followed by one or more variable names separated by spaces and/or
commas.

WATCH Display any watchpoints.

class_option

(optional) One or more of the following options:

/ALL Display class information for all classes that have (or at one time had)
instantiation.

/OBJECTS Display object information.

/LINES Display the first referencing source line or creation line.

/WARNINGS Display only objects with circular references.

class_name

(optional) A class name path.

Discussion
The SHOW command displays the current values for the debugger options set with the SET
command, as well as a variety of program state information.

If you don’t specify any options, the SHOW command displays all of the current debugger options
and program state information. You can place more than one option, separated by spaces and/or
commas, on the same line.

If the amount of output is large, you can use the /PAGE option to page the output.

If CLASSES is specified, information is displayed about the currently instantiated classes. If no
class names are specified, all classes that have current instantiations will be included. This
information will include the name and the number of instantiated objects for each class.

If you want to use the SHOW DYNMEM command and you are using UI Toolkit, we
recommend that you use SHOW DYNMEM after calling the U_FINISH routine, since Toolkit
also uses dynamic memory.

Debugging Your Synergy Programs
SHOW

2-42 Synergy Language Tools 9.3 (12/09)

If CLASSES is specified in conjunction with other SHOW options, CLASSES must be the last
option specified on the line. If CLASSES is not the last option on the line, any option that follows
CLASSES will be interpreted as a class_name.

You can specify more than one class by separating them (along with their class options) with
commas or spaces.

Examples
The following example shows the current breakpoints, STEP mode, error trap mode, and
Synergy Language stack parameters.

SHOW BREAK, STEP, TRAP, STACK

The example below displays information about each class and the number of instantiated objects
for each class.

DBG> show classes /all

Class cmdtest.b : 0 instances
Class cmdtest.d : 1 instance
Class cmdtest.e : 1 instance
Class cmdtest.loon : 1 instance

The following example displays the object ID, the number of references, and any circular
references.

DBG> show classes /obj cmdtest.d

Class cmdtest.d : 1 instance
Object id 1, refs 2 (circular!)

The example below displays the creation line for the object.

DBG> show classes /lines cmdtest.d

Class cmdtest.d : 1 instance : 1st ref at line 92 in TD2 (objcmds.dbl)

The example below indicates that a circular reference exists.

DBG> show classes /warn cmdtest.d

Class cmdtest.d : 1 instance
Object id 1, refs 2 (circular!)

Debugging Your Synergy Programs
STEP

Synergy Language Tools 9.3 (12/09) 2-43

STEP – Step to the next Synergy Language statement

STEP [count]
STEP option

Arguments
count

(optional) Steps through count statements in the current step mode.

option

One of the following options:

INTO Step into, or enter, a routine.

OVER Step over, or skip, a routine.

Discussion
The STEP command steps to the next Synergy Language statement.

If no arguments are specified, STEP steps in the current step mode, as set by the SET command.
You can check the current step mode with the SHOW command.

You can only STEP into an XCALL, not a function; to step into a function, use the GO/NEXT
command.

Examples
The following example steps to the next Synergy Language statement. If the next statement is an
XCALL statement, the debugger either steps over or into the routine, depending on the mode that
was set by the SET command. If no STEP mode was set, this command will STEP INTO the
routine by default.

STEP

Debugging Your Synergy Programs
TRACE

2-44 Synergy Language Tools 9.3 (12/09)

TRACE – Display the current traceback

TRACE

Discussion
The TRACE command displays the CALL, XCALL, and function traceback to the line at which the
debugger currently has control.

The TRACE command is equivalent to the SHOW TRACE command.

Debugging Your Synergy Programs
VIEW

Synergy Language Tools 9.3 (12/09) 2-45

VIEW – Display lines around a debug entry

VIEW [count]

Arguments
count

(optional) The number of lines to display around the current breakpoint.

Discussion
The VIEW command displays the current debug entry and the lines that immediately precede and
follow it.

If you don’t specify any arguments, the four lines that precede the current debug line, the current
debug line, and the four lines that follow it are displayed.

Examples
The following example displays the six lines that precede the current debug line, the current debug
line, and the six lines that follow the current debug line.

VIEW 6

Debugging Your Synergy Programs
WATCH

2-46 Synergy Language Tools 9.3 (12/09)

WATCH – Set a watchpoint

WATCH variable [option]
WATCH variable rel_operator value
WATCH address [option]

Arguments
variable

Sets a watchpoint on the specified variable. See “Specifying variables” on page 2-5 for more
information about variable specifications. Variable can also be a ^M(struct_fld, handle)
specification.

option

(optional) The type and size of the variable or address to watch. It must be one of the
following:

/An Alpha of size n

/In Integer of size n

rel_operator

One of the following relational operators:

.GT. Greater than

.LT. Less than

.GE. Greater than or equal to

.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

value

The numeric value to which variable will be compared.

address

Sets an i4 watchpoint at the specified address.

Discussion
The WATCH command sets a watchpoint on the specified variable or address. This means that
when the contents of the variable have changed or the expression variable rel_operator value is
true, the debugger is invoked and the contents are displayed. If you watch a variable that is longer

Debugging Your Synergy Programs
WATCH

Synergy Language Tools 9.3 (12/09) 2-47

than one line (80 characters), the variable’s contents are displayed on multiple lines. Any
nonprinting characters are displayed as periods (.). The debugger breaks on the line that changes
the variable.

The maximum number of watchpoints is 32.

Variable is a variable specification identical to data division variable specifications. Any variable or
address being watched can be cast by the option qualifier. For example, you can watch the center
three bytes of a d5 variable as alpha using the following command:

SET WATCH dvar(2:3)/a3

You can also watch two successive records by spanning across both. For example, given the
following data division:

record a
 avar1 ,a10
 avar2 ,a10

record b
 bvar1 ,d10
 bvar2 ,d10

you could specify the following SET WATCH commands:

SET WATCH a/a40

or

SET WATCH a and SET WATCH b/d20

The relational operators below can be used to watch a variable in relation to another value or in
relation to another variable. In the second case, the value of the second variable will be saved at the
time the watchpoint is set, and the value of the first variable will be compared against that value. A
relational watchpoint will be deleted after the watchpoint has triggered.

.GT. or >

.LT. or <

.GE. or >=

.LE. or <=

.EQ. or ==

.NE. or !=

For example, the following breaks when var1 becomes less than the value of var2 (that is, the value
of var2 when the watchpoint was set):

WATCH var1 .LT. var2

Debugging Your Synergy Programs

2-48 Synergy Language Tools 9.3 (12/09)

Watching object handles

A simple, nonrelational watchpoint on a handle saves the current handle reference and breaks when
that reference changes. For relational watchpoints on handles, only .EQ. and .NE. are permitted.
These are interpreted as “Do these handles now reference the same object?” and “Do these handles
now reference different objects?” respectively. Handles can be compared against each other or
against the value ^NULL, which indicates that no object is referenced.

Watching string objects

Watchpoints on string objects behave the same as watchpoints on alpha variables, with the
additional option of comparing the string handle to ^NULL using the .EQ. or .NE. operator.

Examples
The following example breaks when the first four characters of the variable ab have changed.

WATCH ab

The next example breaks when the contents of x are greater than or equal to 0.

WATCH x .ge. 0

The example below breaks when the contents of the alpha variable id equals “A327”.

WATCH id/A4 .eq. "A327"

The following example breaks when the contents of the class field myfld is less than 12.

WATCH myclass.myfld .lt. 12

The example below breaks when the object handle objhnd changes to reference a different object
or changes to or from ^NULL.

WATCH objhnd

This example breaks when objhnd1 no longer references the same object as objhnd2.

WATCH objhnd1 .NE. objhnd2

This example breaks when the string handle becomes ^NULL.

WATCH stringvar .EQ. ^NULL

This example breaks when the content of the string variable exceeds “ABC”.

WATCH stringvar .GT. "ABC"

Custom implementation of the op_Equality or op_Inequality operator methods will not be
recognized by the debugger.

Debugging Your Synergy Programs
WINDBG

Synergy Language Tools 9.3 (12/09) 2-49

WINDBG – Invoke the UI Toolkit debugger

WINDBG

Discussion
The WINDBG command invokes the UI Toolkit window debugger.

The WINDBG command is not supported by the debug server if you are debugging remotely.

Debugging Your Synergy Programs
@ Command

2-50 Synergy Language Tools 9.3 (12/09)

@ – Process an indirect command file

@ filename

Arguments
filename

The file from which to process debugger commands.

Discussion
When you specify a command file, a new command file level is activated until the last line in the
file is executed. If one of the lines executed is another indirect command file specification, another
level is activated until the lines in that file are executed. Up to eight levels can be activated within
the debugger.

The default filename extension for a command file is .cmd (.com on OpenVMS), and full
Synergy Language–style logical name translation occurs.

Debugging Your Synergy Programs
! Command

Synergy Language Tools 9.3 (12/09) 2-51

! – Execute system commands

! [command]

Arguments
command

(optional) The command in a shell to be executed.

Discussion
The ! command takes you to the operating system prompt, which enables you to execute a system
command without exiting the debugger.

If no arguments are specified, ! places you at the operating system’s command level prompt. On
UNIX, this means executing a UNIX shell without executing any commands. On OpenVMS, !
spawns a subprocess.

The ! command is not supported by the debug server if you are debugging remotely.

Examples
For example, in a UNIX environment whose shell prompt is a $, the following sequence of
commands exits to a shell, renames a.b to x.y, deletes test, and returns to the debugger:

dbg> !
$ mv a.b x.y
$ rm test
$ exit

Debugging Your Synergy Programs
Sample Debugging Session

2-52 Synergy Language Tools 9.3 (12/09)

Sample Debugging Session
We’ve used a Synergy Language program called badship.dbl in our sample debugging session.
Badship.dbl creates a report of bad shipments with the specified starting and ending dates. The
user can also specify the customer’s ID number and the output device that should be used to report
the results.

We know that the badship.dbl program has three problems:

When a customer’s ID number is specified, badship.dbl doesn’t find anything, even if it
should.

The starting date for the search doesn’t work correctly.

The “No bad records…” message is not sent to the screen even if no bad records exist.

First, we’ll compile, link, and run the program with the debug option. (Note that these commands
do not apply to OpenVMS systems. See chapter 1, “Building and Running Synergy Language
Programs,” for the correct compile, link, and run commands for OpenVMS.)

$ dbl -d badship
$ dblink -d badship
$ dbr -d badship
*** DEBUG 8.3.1 ***
Break at 121 in BADSHIP (badship.dbl)
 *121: xcall flags(7004020, 1)

Now that we’re in the debugger, we’ll use the HELP command to list all available debugger
commands.

DBG> help

 Help is available on:

 BREAK - Set a program breakpoint
 CANCEL - Cancel program breakpoints and watchpoints
 DEPOSIT - Modify variables
 DELETE - Delete program breakpoints
 EXAMINE - Examine variables
 GO - Continue program execution
 LIST - List source lines
 OPENELB - Open the specified ELB or shared image
 SAVE - Save the current debugger context
 SCREEN - Do screen manipulation
 SEARCH - Search source
 SET - Set debug options
 SHOW - Display debug options and program state information
 STEP - Step to the next Synergy Language instruction
 TRACE - Display current traceback

Debugging Your Synergy Programs
Sample Debugging Session

Synergy Language Tools 9.3 (12/09) 2-53

 VIEW - View Synergy Language source around the debug entry
 WATCH - Set a watchpoint
 WINDBG - Invoke the Toolkit window debugger

 Cmd_Inp - Command recall and editing
 @ - Process an indirect command file
 ! - Execute a shell command

We’ll view the source lines that surround the debug entry and then set the default mode for the STEP
command, set the debugger to break whenever the program traps an error, and examine all debugger
parameters.

DBG> view
 117: ,a2
 118: rep ,a5
 119:
 120: proc
 121> xcall flags(7004020, 1)
 122: open(TT_CH, i, "tt:")
 123: display(TT_CH, $scr_clr(SCREEN), "Create bad shiplist.",10,13)
 124: do
 125: begin
DBG> set step into
DBG> set trap on
DBG> show

The debugger wasn't entered in an error state.

No breakpoints are set.

Default step mode is "INTO"

%DBR-I-ATLINE, at line 120 in routine MAIN$BADSHIP (badship.dbl)

A trapped DBL error will cause a break.

DBL stack size 4096 bytes; now using 32; maximum used 0.

No DBL channels opened.

DBGSRC not set

Now we’ll list 140 lines beginning at line 120 so we can determine possible problem spots.

DBG> list 120 140
 120: proc
 121> xcall flags(7004020, 1)
 122: open(TT_CH, i, "tt:")

Debugging Your Synergy Programs
Sample Debugging Session

2-54 Synergy Language Tools 9.3 (12/09)

 123: display(TT_CH, $scr_clr(SCREEN), "Create bad ship list.",10,13)
 124: do
 125: begin
 126: display(TT_CH, $scr_pos(2,0),"For a specific customer? ")
 127: reads(TT_CH, ans)
 128: end
 129: until ((ans.eq."y").or.(ans.eq."n"))
 130: if ((ans.eq."Y").or.(ans.eq."y"))
 131: begin
 132: display(TT_CH, $scr_pos(3,0),"Enter Customer ID: ")
 133: reads(TT_CH, cust_id)
 134: cmp_id(1,4) = cust_id
 135: do
 136: begin
 137: display(TT_CH, $scr_pos(4,0),"Want a total history? ")
 138: reads(TT_CH, history)
 139: end
 140: until ((history.eq."y").or.(history.eq."n"))
 141: end
 142: if ((history.eq."Y").or.(history.eq."y")) then
 143: begin
 144: predate = 19760101
 145: postdate = 30000000
 146: end
 147: else
 148: begin
 149: do
 150: begin
 151: first, display(TT_CH, $scr_pos(5,0), "Start: (MM/DD/YYYY) ")
 152: reads(TT_CH, entdate)
 153: end
 154: until (%rdlen.eq.10)
 155: dday=entday
 156: dmon=entmonth
 157: dyr=dyr
 158: predate=date
 159: do
 160: begin
 161: display(TT_CH, $scr_pos(6,0), "End: (MM/DD/YYYY) ")
 162: reads(TT_CH, entdate)
 163: end
 164: until (%rdlen.eq.10)
 165: dday=entday
 166: dmon=entmonth
 167: dyr=entyear
 168: postdate=date
 169: end

Debugging Your Synergy Programs
Sample Debugging Session

Synergy Language Tools 9.3 (12/09) 2-55

 170:
 171: do
 172: begin
 173: display(TT_CH, $scr_pos(7,0),
 174: & "Print the report to the (S)creen or (F)ile? ")
 175: reads(TT_CH, out_flg)
 176: end
 177: until ((out_flg.eq."s").or.(out_flg.eq."f"))
 178: if ((out_flg.eq."F").or.(out_flg.eq."f"))
 179: begin
 180: do
 181: begin
 182: display(TT_CH, $scr_pos(8,0),
 183: & "Should output be sent to the printer? (Y/N)")
 184: reads(TT_CH, printer_flg)
 185: end
 186: until ((printer_flg.eq."y").or.(printer_flg.eq."n"))
 187: end
 188: if (printer_flg.eq."n")
 189: begin
 190: display(TT_CH, $scr_pos(9,0),
 191: & "Output will be placed in file: ", BADFILE,10,13)
 192: end
 193: display(TT_CH, "Press return to continue or ^D to exit",10,13)
 194: reads(TT_CH, incode) [eof=exit]
 195: if (incode.eq.' ')
 196: incode = "BAD"
 197: open(CLNT_CH, i:i, "sclnt")
 198: open(FACT_CH, i:i, "sfact")
 199: open(FOLD_CH, i:i, "sfhdr")
 200: open(OUT_CH, o, BADFILE)
 201: if ((out_flg.eq."S").or.(out_flg.eq."s")) then
 202: begin
 203: date=predate
 204: display(TT_CH, "BAD Ship list for ",dmon,"/",dday," ",dyr)
 205: date=postdate
 206: display(TT_CH, " - ",dmon,"/",dday,"/",dyr)
 207: forms(TT_CH, 2)
 208: end
 209: else
 210: begin
 211: date=predate
 212: display(OUT_CH,"BAD Ship list for ",dmon,"/",dday,"/",dyr)
 213: date=postdate
 214: display(OUT_CH, " - ",dmon,"/",dday,"/",dyr)
 215: forms(OUT_CH, 2)
 216: end

Debugging Your Synergy Programs
Sample Debugging Session

2-56 Synergy Language Tools 9.3 (12/09)

 217: isam_pre=predate
 218: read(FACT_CH, cmfact, isam_pre, KRF=2) [err=next]
 219: next, while (cadate.ge.predate) .and. (cadate.le.postdate) do
 220: begin
 221: if ((caactc.eq.incode(1,%trim(incode))).and.(ans.eq."n"))
 222: begin
 223: chcomp = cacomp
 224: chclnt = caclnt
 225: chfldr = cafldr
 226: read(FOLD_CH, cmfhdr, chkey) [err=skip]
 227: if (chftyp.ne."WISH" .and. chclos.eq.0)
 228: call dumpit
 229: end
 230: if ((caactc.eq.incode(1,%trim(incode))).and.
 231: & (ans.eq."y").and.(cmp_id.eq.caclnt))
 232: begin
 233: chcomp = cacomp
 234: chclnt = caclnt
 235: chfldr = cafldr
 236: read(FOLD_CH, cmfhdr, chkey) [err=skip]
 237: if (chftyp.ne."WISH" .and. chclos.eq.0) ;Is it open?
 238: call dumpit
 239: end
 240: skip,
 241: reads(FACT_CH, cmfact) [eof=done]
 242: end
 243: done, if (.not.find_flg)
 244: begin
 245: if (out_flg.eq."S") then
 246: writes(TT_CH, "No bad records were located in query.")
 247: else
 248: writes(OUT_CH, "No bad records were located in query.")
 249: end
 250: close CLNT_CH
 251: close FACT_CH
 252: close TT_CH
 253: close OUT_CH
 254: if ((printer_flg.eq."Y").or.(printer_flg.eq."y"))
 255: begin
 256: lpque(BADFILE, LPNUM:"conan")
 257: xcall delet(OUT_CH, BADFILE)
 258: end
 259: exit, stop

Debugging Your Synergy Programs
Sample Debugging Session

Synergy Language Tools 9.3 (12/09) 2-57

From the listing, we can see that cmp_id in line 134 is loaded with cust_id. Since cmp_id is used for
the search, we’ll want to see if it is loaded correctly in line 134. The second problem in the program
involves the starting date. From the listing, we can see that predate is loaded at line 158. The third
problem involves the “No bad records…” message, which is located around line 243.

DBG> trace

%DBR-I-ATLINE, at line 120 in routine MAIN$BADSHIP (badship.dbl)

We’ll use the HELP command to see what our BREAK options are.

DBG> help break

 Set program breakpoints:

 BREAK rtn - Set a break at the entry to routine <rtn>
 BREAK ln - Set a break at line <ln> in the current routine
 BREAK rtn ln - Set a break at line <ln> in routine <rtn>
 BREAK lbl [/LABEL]
 - Set a break at <lbl> in the current routine
 BREAK . - Set a break at the current line and routine

Multiple breaks may be specified, separated by commas, with the "current
routine" the last <rtn> encountered.

DBG> break 132
DBG> show breaks

MAIN$BADSHIP: 132

DBG> go
Generate bad shipment list.
Generate for a specific customer? y
Break at 132 in BADSHIP (badship.dbl)
 132> display(TT_CH, $scr_pos(3,0), "Enter Customer ID: ")
DBG> step
Enter Customer ID: Step to 133 in BADSHIP (badship.dbl)
 133> reads(TT_CH, cust_id)
DBG> step over
3040
Step to 134 in BADSHIP (badship.dbl)
 134> cmp_id(1,4) = cust_id
DBG> examine cust_id
3040
DBG> examine cmp_id
000000
DBG> step
Step to 3 in BADSHIP (badship.dbl)

Debugging Your Synergy Programs
Sample Debugging Session

2-58 Synergy Language Tools 9.3 (12/09)

 137> display(TT_CH, $scr_pos(4,0),"Want a total history? ")
DBG> examine cmp_id
304000

Here we learn that cmp_id isn’t loaded correctly: cmp_id(1,4)=cust_id should be changed to
cmp_id(3,6)=cust_id.

Now we’ll jump to the next possible problem area.

DBG> go 150
Want a total history? n
Break at 151 in BADSHIP (badship.dbl)
 151> first, display(TT_CH, $scr_pos(5,0), "Start: (MM/DD/YYYY) ")

We’ll do a TRACE command to see where the last command was executed.

DBG> trace

%DBR-I-ATLINE, at line 147 in routine MAIN$BADSHIP

DBG> step
Start: (MM/DD/YYYY) Step to 152 in BADSHIP (badship.dbl)
 152> reads(TT_CH, entdate)
DBG> step 5
05/22/1986
step to 154 in BADSHIP (badship.dbl)
 154> until (%rdlen.eq.10)
DBG> view
 150: begin
 151: first, display(TT_CH, $scr_pos(5,0), "Start: (MM/DD/YYYY) ")
 152: reads(TT_CH, entdate)
 153: end
 154> until (%rdlen.eq.10)
 155: dday=entday
 156: dmon=entmonth
 157: dyr=dyr
 158: predate=date
DBG> step
Step to 155 in BADSHIP (badship.dbl)
 155> dday=entday
DBG> step
Step to 156 in BADSHIP (badship.dbl)
 156> dmon=entmonth
DBG> examine dday
22
DBG> step
Step to 157 in BADSHIP (badship.dbl)
 157> dyr=dyr
DBG> examine dmon

Debugging Your Synergy Programs
Sample Debugging Session

Synergy Language Tools 9.3 (12/09) 2-59

05
DBG> step
Step to 158 in BADSHIP (badship.dbl)
 158> predate=date
DBG> examine dyr

Dyr should have contained 1986, not a blank. Instead of dyr=dyr, line 157 should be dyr=entyear.

DBG> step
Step to 161 in BADSHIP (badship.dbl)
 161> display(TT_CH, $scr_pos(6,0), "End: (MM/DD/YYYY) ")
DBG> examine predate
522

This predate value of 522 verifies the above problem. Predate should have contained 19860522.

DBG> go 244
End: (MM/DD/YYYY) 01/01/1992
Print the report to the (S)creen or (F)ile? s
Press return to continue or ^D to exit

BAD Ship list for 5/22/ - 01/01/1992

DBL error trapped at 218 in BADSHIP (badship.dbl), jumping to line 219
 218> read(FACT_CH, cmfact, isam_pre, KRF=2) [err=next]

The error we expected was trapped.

DBG> go 244
DBL error trapped at 241 in BADSHIP (badship.dbl), jumping to line 243

Again, the expected error was trapped.

 241> reads(FACT_CH, cmfact) [eof=done]
DBG> go 244
break at 245 in BADSHIP (badship.dbl)
 *245: if (out_flg.eq."S") then
DBG> view
 241: reads(FACT_CH, cmfact) [eof=done]
 242: end
 243: done, if (.not.find_flg)
 244: begin
 245: if (out_flg.eq."S") then
 246: writes(TT_CH, "No bad records were located in query.")
 247: else
 248: writes(OUT_CH, "No bad records were located in query.")
 249: end
DBG> examine out_flg

Debugging Your Synergy Programs
Sample Debugging Session

2-60 Synergy Language Tools 9.3 (12/09)

The IF statement checks for uppercase “S” above, but because out_flg is lowercase “s,” it never
allows output to be sent to the console. To check this theory, we’ll put uppercase “S” into out_flg.

DBG> deposit out_flg = 'S'
DBG> examine out_flg
S
DBG> step
Step to 246 in BADSHIP (badship.dbl)
 246> writes(TT_CH "No bad records were located in query.")

This fixed the problem, which means that the IF statement in line 245 should be changed to check
for a lowercase “s.”

DBG> step
No bad records were located in query.
Step to 250 in BADSHIP (badship.dbl)
 250> close CLNT_CH
DBG> st

Notice that you can abbreviate the STEP command.

Step to 251 in BADSHIP (badship.dbl)
 251> close FACT_CH
DBG> s
Step to 252 in BADSHIP (badship.dbl)
 252> close TT_CH
DBG> go

%DBR-S-STPMSG, STOP
%DBR-I-ATLINE, at line 259 in routine BADSHIP (badship.dbl)
$

3-1

3
Synergy DBMS

Synergy DBMS is the file management system for Synergy/DE.

Synergy File Types 3-2

Describes the four types of Synergy database files: Synergy ISAM (or RMS on OpenVMS),
relative, sequential, and stream. Each section discusses file structure and concepts, file types, record
access, and the I/O statements and system-supplied routines that enable you to manipulate each
type of file. The ISAM section also describes keys and how they are used in ISAM files and
discusses file and data corruption and the options and strategies for recovery.

Synergy DBMS Utilities 3-29

Describes how to use the following Synergy DBMS utility programs:

bldism – Create an ISAM file...3-33

chklock – Report file lock information...3-42

fcompare – Compare database files to system catalog or repository..3-44

fconvert – Convert database files to other file types ..3-50

ipar – Generate parameter file descriptions ..3-56

irecovr – Recover Revision 1–3 ISAM files..3-59

isload – Load, unload, or clear an ISAM file ...3-62

ismvfy – Verify structure of a Revision 1–3 ISAM file ..3-66

isutl – Verify, recover, and optimize Revision 4 and higher ISAM files3-70

status – Report the status of an ISAM file..3-79

ISAM Definition Language 3-81

Defines all keywords in the ISAM definition language (XDL), specifies the syntax for an XDL file,
and describes the xdlchk utility.

Moving Database Files to Other Systems 3-91

Describes how to move your database files to other platforms.

Synergy DBMS
Synergy File Types

3-2 Synergy Language Tools 9.3 (12/09)

Synergy File Types

Synergy ISAM files

VMS
We use RMS ISAM on OpenVMS for native compatibility. All other systems use Synergy ISAM.
See Part 3 of your Professional Series Portability Guide for information about Synergy ISAM
features that are not compatible with RMS ISAM. See the OpenVMS Record Management Services
Reference Manual for information on how to use RMS ISAM.

A Synergy ISAM file is used for high-speed, keyed access and ordered sequential access. As your
file grows, high-speed, keyed access is maintained. Your ISAM file’s size can grow to fit the need
of your application, given the physical limitations of your disk. For example, we can have an ISAM
file that contains a record for each of our customers. A record in an ISAM file consists of a set of
fields. Each field stores a specific item of data, such as a customer number, a first and last name, a
company name, a street address, a city, a ZIP Code, or a telephone number.

If we wanted to find a particular customer in a non-ISAM database file, such as customer number
125 or customer B. Jones, our program might have to search the entire file. Synergy ISAM,
however, provides an access method that uses an index. An index enables you to quickly find
specific records in a database file without having to search the entire file and without your program
having to look at extra records. This is called keyed access. It also enables you to define an order
for the sequential processing of a database file. This is called sequential access.

Each index in an ISAM file is defined by a key. A key is one or more fields or portions of fields
from a record that are used to locate that record. Keys are defined when the ISAM file is created.
For example, we can define a key for our customer number field that places customer numbers in
ascending order within the corresponding index.

An ISAM file’s index contains leaf entries, which are sequentially ordered key values that point to
corresponding data records. For example, the index defined by our customer number key contains
the customer numbers (key values) in ascending order for all customers in our ISAM file. These
customer number entries point to data records. The data records are in no particular order. The
index, however, is always in a specific order as defined by the key. In this case, the index is in
ascending order by customer number.

ISAM indexes are also structured hierarchically so that access to any particular record occurs with
a minimum of index reading. Access to any data record by a particular key requires the same
amount of index reads, provided the index doesn’t change. This number is determined by the index
depth. Keyed access requires one index READ for each level of the index. The number of levels
required for an index is universally proportional to key length. Large ISAM files (one million or
more records) with long keys (45 or more characters) have five or more levels of index depth.

Figure 3-1 shows how the structure of an index defined by our customer number key might look.

Synergy DBMS
Synergy File Types

Synergy Language Tools 9.3 (12/09) 3-3

Figure 3-1. Diagram of an ISAM file’s index.

377

65

52

90345

88339

84059

74991

65754

64858

55503

51067

43955

40002

37801

35699

31033

20645

20277

10578

10100

Root block

Separator blocks

Leaf blocks

60206

11

75

Synergy DBMS
Synergy File Types

3-4 Synergy Language Tools 9.3 (12/09)

As shown in the diagram, an ISAM file’s index is composed of blocks. A block is the smallest unit
of an index that can be read or written at one time. This index is three levels deep. The shaded
blocks are called separator blocks and, in this case, make up the first two levels of the index. Any
ISAM file with more than one index block has separator blocks. The third or last level is made up of
leaf blocks, which contain sorted key values (in this case, customer numbers) with a one-to-one
correspondence between each leaf entry and the data record to which it points. The separator blocks
exist as pathways to the leaf entries and are composed of pointers to lower-level index blocks and
separator values that narrow the range of key values. The root block is a special separator block that
is read first on any keyed access.

For example, let’s assume we want to access the data record for customer number 40002 by our
customer number key using the following statement:

read(ch, rec, "40002")

The ISAM support first reads the root block of the index shown in figure 3-1. Synergy ISAM will
determine that the first three numbers of our customer number (400) are greater than the value 377.
We therefore read the block indicated by the bold pointer in the diagram. Synergy ISAM will then
determine that the first two numbers of our customer number (40) are less than the value 52 in the
separator block. We therefore read the next block indicated by the bold pointer in the diagram.
Synergy ISAM will then find the entry 40002 within this block, which reads the data record for
customer number 40002. By structuring the index hierarchically, Synergy ISAM enables us to
access data records without having to read through the entire index. Also notice that reading any
record by key value requires the same number of index reads.

An ISAM file can have more than one index. For example, we can define an index for the customer
number field of our ISAM file and another index for the customer name field. These indexes enable
us to quickly access the record for customer number 125, or the record for customer B. Jones.

The keys of an ISAM file also define the sequential order in which the file may be processed. For
example, we can access our ISAM file sequentially by the customer number key, alphabetically by
the customer name key, geographically by the customer city key, or by any other key that we define.

You can create an ISAM file using the ISAMC subroutine, the OPEN statement, or the bldism
utility. See ISAMC in the “System-Supplied Subroutines, Functions, and Classes” chapter of the
Synergy Language Reference Manual, OPEN in the “Synergy Language Statements” chapter of the
Synergy Language Reference Manual, or page 3-33 of this manual for details.

Synergy DBMS
Synergy File Types

Synergy Language Tools 9.3 (12/09) 3-5

ISAM file structure
The physical representation of a Synergy ISAM file reflects two files: one contains the data records
and the other contains the indexes that point to the data. The index file has the default extension
.ism (for example customer.ism). The data file has the extension .is1 (for example, customer.is1).
The two files are always referenced together as one ISAM file with the extension .ism.

If you specify an ISAM filename with an extension other than .ism (for example, customer.dat),
the last character of the data file’s extension is replaced with a 1 (for example, customer.da1).
However, if the last character of the specified filename’s extension is already numeric (for example,
cust.ab1), the last character of the data file’s root filename is replaced with an underscore (for
example, cus_.ab1). In both cases, the index file (customer.dat or cust.ab1) and the data file
(customer.da1 or cus_.ab1) are always referenced by the name of the index file (customer.dat or
cust.ab1).

ISAM file types
When creating an ISAM file, you can specify one of three file types:

Fixed-length

Variable-length

Multiple fixed-length

If your ISAM file is used for only one data structure, you can use the fixed-length format. With this
file type, all data in the ISAM data partition is stored in the same length record, regardless of the
actual size of the data within the record.

If your ISAM file is used for a predefined group of different sized data structures, you can use the
multiple fixed-length record format. The size of the stored record is determined by the data passed
to the STORE statement. With this file type, you can’t change the record lengths, using the WRITE
statement, after the data has been stored. Multiple fixed-length files can have up to 32 different
record lengths. Using this file type enables you to reduce disk storage requirements and the number
of open files. This file type is more efficient in disk space usage than variable-length records for
cases where there are a limited number of different record sizes.

If your ISAM file is used to store different types of records and it has no set pattern to the record
size, or if the data length might change after the initial data is stored, you can use variable-length
records. Like multiple fixed-length records, the initial size of the stored data is determined by the
size of the data passed to the STORE statement. With variable-length records, however, you can
change the size of the record using the WRITE statement.

The isload and fconvert ISAM utilities recognize one additional file type called a counted file. The
isutl utility may also create a counted file in the form of an exception file, due to specific failures
encountered during the recovery process. Counted files are not supported by the OPEN statement.
Each record in a counted file starts with a two-byte length, which is the length of the record written
as a portable integer, followed by the record itself, padded out to an even number of bytes if the
length is odd. The final two bytes of the file are 0xFFFF, or integer -1.

Synergy DBMS
Synergy File Types

3-6 Synergy Language Tools 9.3 (12/09)

ISAM index density
Three forms of index density occur during file updates:

Natural fill or default density. Index blocks are always filled to maximum capacity and then
split in half (50/50).

Balanced fill. Index blocks are filled to maximum capacity, balanced by rotating key entries
between adjacent blocks to avoid splitting, and then split in half (50/50). Key rotation fills
adjacent blocks to the specified density first and then fills the current block to maximum
capacity before splitting.

Context fill. Index blocks are filled to maximum capacity, and sequential keys generate a split
at the specified density.

Natural fill is enabled by default (in other words, if you don’t specify the file or key density
options). Balanced and context fill are enabled for all keys when the file density option is specified,
or for the specified keys when the key density option is specified. Routine file updates (STORE,
WRITE, and DELETE) use the defined density form and pack indexes accordingly. In addition, the
isutl utility (-rp option) can be used to pack indexes to a desired density without changing the
defined density option.

Keys stored randomly using natural fill will typically fill to about 68 percent, while keys stored
sequentially will fill to 50 percent. Keys stored randomly using balanced fill will typically fill to
about 73 percent, while keys stored sequentially will fill to the defined density.

We believe natural fill is best for files that regularly have large volumes of file updates, and it
should be followed up by running isutl at regular intervals to optimize the indexes. For files that
normally have few updates, like window libraries, archives, and other read-only files, use the
natural fill and then use the isutl -rp option to pack the indices to 100 percent. This will reduce the
size of the file by compacting the indexes and improving read performance.

Keys that represent a sequence number or any continually increasing value that grows sequentially
(such as a key based on time) where insertions to the middle of the sequence are rare may be
candidates for context fill at 100 percent density. If these keys allow duplicates, make sure the
duplicates are inserted at the end. The STORE operations will maintain the index density at 100
percent. Keys of this nature take up half the space normally taken by keys with no specified density.

A split generates between 3 and (2 * index depth) + 1 file writes with almost certain file
extension. A rotation generates no more than 3 writes and no file size extension.

Synergy DBMS
Synergy File Types

Synergy Language Tools 9.3 (12/09) 3-7

File creation density options

File density

The file density designates the key density for each index when the file is created. If specified, each
index is populated with a matching key density, and then the file density is discarded from the file
options. The isutl utility (with the -qfile=density option) can be used to add or change the file
density option, which in turn adds or changes the key density option for each index.

Key density

The key density designates how a specific index will be packed during update operations.

Data compression
When creating an ISAM file, you can specify that you want your file to compress data. A repeated
string of characters can be compressed to a few bytes. Compression can save from 10 percent to 80
percent of your disk space requirements for the data portion of an ISAM file (.is1), with no program
changes. Records containing text fields are ideal candidates for compression. You can compress
fixed-length or variable-length files but not multiple fixed-length files.

Page size
You can control the size of each index page or block for each key in the index file by specifying a
file page size of 512, 1024, 2048, 4096, or 8192 in the ISAMC subroutine. The default page size is
1024, which is one of the more common I/O block sizes. If one or more keys are 60 bytes or longer,
the default page size is 2048. In addition to considering the operating system, the size of the largest
key should also determine what page size should be used. This enables more keys to fit in a single
block, thus reducing the overall depth of the key’s index. Keyed access is faster with a smaller
depth, and the file is smaller due to less index at the top. Also, very large files benefit most from
increased page size. For optimal keyed READ performance, try to keep the index depth around
3 or 4, even though the CPU time required to search the larger index is increased. In most cases,
the tradeoff is worth it, because CPU is faster than I/O.

If you require that your RFAs remain the same on WRITE operations, you must use static
RFAs. With data compression, your compressed data record size may change, causing the
RFA to change. Do not use data compression if you expect a record’s RFA to remain the
same after a WRITE, unless you build the file with static RFAs as well. (In other words, your
response to the bldism prompt “Enter name of the ISAM file to create:” would be
filename,compress,static_rfa.) This is especially true if you use manual locking.

If you use xfODBC and you use queries that have joins that do not use a default index (i.e.,
joins for which xfODBC must create temporary indexes), you must use static RFAs on your
files.

Synergy DBMS
Synergy File Types

3-8 Synergy Language Tools 9.3 (12/09)

When creating a file with a page size of 512 (PAGE=512), the maximum internal key size allowed
is 100 bytes. The internal key size is the specified key size plus 3 if the key allows duplicates (4 for
terabyte files). All keys defined for this file are limited to this maximum.

Data caching
When using ISAM files, you can enable caching of the indexes on all OPENs, or on selective
OPENs using the CACHE OPEN option. When caching is enabled, the Synergy runtime performs
three types of caching depending on how the file was opened.

Files opened with exclusive access get full cache (read and write). The file is not written to
disk until a CLOSE or FLUSH statement is processed.

Files opened with exclusive “allow readers” access get a write-through form of cache. No
WRITE operations are cached, but all READ operations attempt to come from cache which is
not fully cleared until a CLOSE or FLUSH statement is processed.

Files opened without exclusive access with system option 3 set get a write-through form of
cache. No WRITE operations are cached, but all READ operations attempt to come from cache
which is not fully cleared until the file is updated by another user, or a CLOSE or FLUSH
statement is processed without system option 3. READ and WRITE operations are not cached
without exclusive access.

System option #3 is used to control ISAM file caching. When using ISAM file caching, there is an
additional amount of memory and system resource required for each file OPEN.

See NUMBUFS in the “Environment Variables” chapter of Environment Variables and System
Options for information on cache tuning.

Data file record structure
Synergy Language supports terabyte (1024Gb) ISAM files on operating systems that support large
files (larger than 2Gb). To create a terabyte file, specify the TBYTE option in the ISAMC
subroutine. (See ISAMC in the “System-Supplied Subroutines, Functions, and Classes” chapter of
the Synergy Language Reference Manual for details.)

WIN
Terabyte files are only supported by Synergy and xfServer/xfServerPlus on Windows systems with
the NTFS file system. They are not supported on FAT or FAT32 file systems.

TIP
When defining a page size larger than 1024, consider also defining a higher density.
Maximum gain from larger page sizes can only be achieved in conjunction with higher
blocking factors. Ipar reports the current depth of a file, and isutl -v reports the actual
density.

Synergy DBMS
Synergy File Types

Synergy Language Tools 9.3 (12/09) 3-9

UNIX
Terabyte files are not supported on SCO OpenServer. Some operating systems require you to set a
large-file option on the file system being used. Some (AIX in particular) require this to be done
when the file system is first created, and others allow the option to be added later.

When creating an ISAM file on systems that do not support terabyte files, you can declare a
minimum record size of four bytes and a maximum of 65,535 bytes minus the following overhead:

Each duplicate key adds three bytes to the total record size.

All file types except fixed-length add two bytes to the total record size.

Using static RFAs on any file type except fixed-length adds six bytes to the total record size.

One delete byte is automatically added to the total record size of any given record.

When creating a terabyte file, you can declare a minimum record size of five bytes.

VMS
The maximum RMS record size is 32,234.

Portable storage format
Synergy ISAM storage format is the same on all Synergy Language systems (except OpenVMS);
therefore, you can copy ISAM files to any Windows or UNIX system and access them without
conversion. This portable storage format also enables you to access ISAM files across
heterogeneous networks.

Portable integer data can be stored in an ISAM file and retrieved portable across all platforms
except OpenVMS.

Keys in ISAM files
When you create an ISAM file, you must define at least one key (the primary key) by which to
access that file. You can define up to 255 keys: 1 primary key and 254 alternate keys.

A defined key can have the following attributes:

Named key of reference

Key type/segment types

Using integer data in your records may affect portability. Integer data is not universally
portable unless you define it using the I option in bldism or the ISAMC subroutine. If you
use the I option, files can be moved to other machines and accessed across heterogenous
networks without having to apply any conversion at the application layer.

Synergy DBMS
Synergy File Types

3-10 Synergy Language Tools 9.3 (12/09)

Duplicate

Modifiable

Segmented

Null value

Ascending or descending order per key or per segment

Specified density

The maximum overall length of a key may not exceed 254 bytes on Windows and UNIX (251 if the
key allows duplicates or 250 if the key allows duplicates and this is a terabyte file), or 255 bytes on
OpenVMS.

Named key of reference

When defining a key, you can specify an optional identifying string to be used in key-of-reference
specifications for Synergy ISAM file access.

Key type

Each key in an ISAM file may be made up of one or more segments of the following key types:

ALPHA (default)

Alphanumeric key. The standard ASCII character set is valid for each character of the key
(although the entire binary 0 to 255 range is allowed).

NOCASE

Case-insensitive alphanumeric key.

DECIMAL

Zoned decimal key (Synergy Language decimal data type). The valid range of values allowed
for a decimal key is the maximum negative value to the maximum positive value for the size of
the defined key. Implied-decimal values may also be used; however, the number of digits to the
right of the decimal point must be maintained by the application.

d1 = -9 to 9
d2 = -99 to 99
etc.

Case-sensitive keys cannot be used on OpenVMS nor for optimization with our ODBC
drivers.

Decimal keys cannot be used on OpenVMS.

Synergy DBMS
Synergy File Types

Synergy Language Tools 9.3 (12/09) 3-11

INTEGER

Native integer key (i1, i2, i4, or i8). The valid range of values allowed for an integer key is the
maximum negative value to the maximum positive value for the size of the defined key.

i1 = -128 to 127
i2 = -32768 to 32767
etc.

UNSIGNED

Native unsigned integer key (with the same restraints as integer). The valid range of values
allowed for an unsigned integer key is 0 to the maximum positive value for the size of the
defined key.

%unsigned(i1) = 0 to 255
%unsigned(i2) = 0 to 65535
etc.

Numeric keys or key segments may not overlap or be overlapped by any other key segment (alpha
or numeric). However, you may specify the same numeric key segment in more than one key.

Duplicate keys

A duplicate key is a key value found in more than one record of an ISAM file. If you don’t allow
duplicate key values in an index, each record in the file is uniquely identified by its key value. With
duplicate keys, for example, we can define our zip code field as a duplicate key so that many
different records can contain the same value for the zip code. However, if we also define a key for
our customer number field, we probably don’t want to allow duplicate keys, so that there will only
be one record in the index for each customer number.

When duplicate keys are allowed, you must also specify the order in which a set of duplicate key
values are stored within an index and retrieved from a file. Since duplicate keys are internally
unique, they are stored sequentially based on the order defined for duplicates. You can either insert
duplicate keys at the end of a list of records possessing the same key value or insert duplicates at the
front of such records. If you insert duplicate keys at the end, records are retrieved in the same order
that they were stored in the file: “first in, first out” (FIFO) order. If you insert duplicates at the front,
the first records retrieved are those stored most recently in the file: “last in, first out” (LIFO) order.
The default is to insert at the end (FIFO), which is the same as on OpenVMS.

VMS
Duplicate records are always inserted at the end.

Unsigned keys cannot be used for optimization with our ODBC drivers.

Synergy DBMS
Synergy File Types

3-12 Synergy Language Tools 9.3 (12/09)

For example, we can define our customer city field as a duplicate key with duplicates inserted at the
front of a list of matching records. If our customer ISAM file contains five customers from
Baltimore and we accessed that file by the customer city key, we’d retrieve the most recently stored
customers first, as shown below:

WIN, UNIX
Allowing duplicates adds 3 bytes (4 bytes for terabyte files) to the internal size of the key, which
cannot exceed a total of 254 bytes.

Modifiable keys

If a key is modifiable, Synergy ISAM allows your application to update an existing record and
change the value of the defined key using the WRITE statement.

For example, if we define our customer telephone field as a modifiable key, we can change the
value of this key using the WRITE statement if a customer’s phone number changes. However, we
probably don’t want to define our customer number field as a modifiable key, since this value
should not change during the life of the file. To change a nonmodifiable key, you must use the
DELETE and STORE statements.

Segmented keys

Keys can consist of up to eight segments. The total length of the key (up to 254 characters on
Windows and UNIX [251 if the key allows duplicates or 250 if the key allows duplicates and this is
a terabyte file], or 255 characters on OpenVMS) is equal to the sum of the lengths of the key
segments. Key segments usually correspond to fields in a record, but they do not have to be in any
particular order. Segments can be defined as different types and ordered ascending or descending.

 STORE order READS order

B. Jones L. Peterson

C. Smith R. Carey

A. Johnson A. Johnson

R. Carey C. Smith

L. Peterson B. Jones

The primary key cannot be a modifiable key.

Synergy DBMS
Synergy File Types

Synergy Language Tools 9.3 (12/09) 3-13

VMS
Due to an RMS limitation, multiple segments of a key must all have the same order.

For example, we can define a customer address key with four segments. The first segment can be 25
characters long and correspond to our street address field; the second can be 15 characters long and
correspond to our city field; the third can be 2 characters long and correspond to our state field; and
the fourth can be 5 characters long and correspond to our zip code field. The total length of this key
is 47 characters long.

Different alpha keys and key segments can overlap each other in a record. Numeric keys and key
segments cannot overlap any other key segments unless the segment types, starting positions, and
lengths are equal.

To access a segmented key, you must first construct that key by concatenating each segment
together. You can use the %KEYVAL intrinsic function to return the extracted key value from the
specified record. See %KEYVAL in the “System-Supplied Subroutines, Functions, and Classes”
chapter of the Synergy Language Reference Manual for more information.

WIN, UNIX
Partial key specifications on segmented keys are allowed when system option #45 is set.

Null keys

You can specify a null value for any key except the primary key. No entry is made in an index that
is defined to have a null value if the inserted record contains the null value for that key. Therefore,
when accessing a file by a null key, Synergy ISAM skips over records that contain the specified null
value.

Null keys can be useful in a record that contains an optional key field. When the field is blank or
contains a value of 0 (depending on the field’s data type), the field doesn’t occupy space in the
index. Thus, the use of null keys reduces the size of the index file as well as the overhead time
required to insert, delete, or modify a record with a null value. An index allowing null keys can only
be used for limited optimization with our ODBC drivers.

You can specify one of three different types of null keys:

Replicating

Nonreplicating (Windows and UNIX only)

Short (Windows and UNIX only)

A replicating null key’s value must be either a decimal character or its corresponding ASCII
character. This type of null key generates a null entry if every byte of that key matches the specified
null value.

Synergy DBMS
Synergy File Types

3-14 Synergy Language Tools 9.3 (12/09)

The following table shows some possible null values in decimal and ASCII form:

The null value for a numeric key defined as a replicating null key is always binary zero for unsigned
and integer keys and decimal zero for decimal keys. A specified null_value for this key type is
ignored. When defining a replicating null key on a key that has multiple segments of different
types, the null_value only refers to the alpha segment (if any). If there are no alpha segments and
null_value is specified, null_value is ignored.

A nonreplicating null key’s value is a string (quotes are optional). This type of null key generates a
null entry if the key matches the string for the length of the string starting at the beginning of the
key. Nonreplicating null keys can be defined for either alpha or numeric keys; however, the
allowable value depends on the type:

If the key is alpha, an alpha string is specified for the null key value. If that key is segmented,
the length of the alpha string must not cause the value to overlap a numeric segment.

If the key is numeric, a numeric value is specified for the null key. The key may not be
segmented. The allowable numeric values depend on the type and length of the key.

A short null key does not have a specified null value. This type of null key generates a null entry if
the record doesn’t include the entire key on a STORE or WRITE operation. Short null keys can
only be defined for ISAM files that are not fixed-length.

Ascending or descending keys

By default, Synergy ISAM sequentially retrieves keys in ascending order (lowest to highest). When
creating an ISAM file, however, you can specify that you want a particular key or segment retrieved
in descending order (highest to lowest).

Key density

You can define a specific density for an individual key or keys, while leaving the rest of the keys at
the default file density. See “ISAM index density” on page 3-6 for more information about density.

Null values for alpha keys

Zero Space Null

Decimal 48 32 0

ASCII “0” “ ” “\0”

Synergy DBMS
Synergy File Types

Synergy Language Tools 9.3 (12/09) 3-15

File corruption vs. data corruption
As it applies to ISAM files, file corruption occurs when the control information in an index file
doesn’t correspond to the records in the data file. Data corruption occurs when records in the data
file have been unexpectedly overwritten or inserted. File corruption can be detected by running the
isutl -v utility and corrected by running the isutl -r utility. When data corruption is detected, isutl
fails, usually with a BADSEG error, and the file remains undisturbed. You will be prompted to run
isutl again with the -a option. Any records that cannot be processed will be written to an exception
file with the extension .exc.

Recovery options and strategies

When recovering data from a corrupted ISAM file, we recommend you first make a copy of the
ISAM file (both .ism and .is1). Then, if recovery should fail with one method, you can try other
methods.

The file with the highest chances for recovery from data corruption is a file that employs data
compression. This is because the codes used to compress the data can also be used as a roadmap to
distinguish between good data and data corruption. If one or more data records near the beginning
of a file are corrupted, isutl can skip them (these bad record segments are automatically sent to the
exception file as they are found in the data file) and continue recovering the rest of the file. You may
be able to reconstruct the lost records by examining the exception file.

It is more difficult to attempt recovery from data corruption on files without data compression. Isutl
may detect data corruption in files with variable-length records, but the only thing it can do is to
write the rest of the data file to the exception file. If the index file is in good shape (with at least one
good key), you may recover more data by using fconvert to recover the file.

Files with fixed-length records and no data compression make detecting data corruption most
difficult. The data retrieved from the data file is whatever happens to be at the stored location. If one
record gets written with the wrong size, every record after it will be at the wrong file boundary. This
phenomenon has been know to happen during system crashes and other abnormal terminations.
Previous versions of Synergy ISAM continued storing records and making index links to new
records, and the file continued to operate as normal. Ismvfy detected the problem, but irecovr
wasn’t able to recover from it. The current version of Synergy ISAM checks record boundaries
before it writes data. If an invalid boundary is detected, an error is produced, and you cannot extend
the file by adding records to it until you recover the file using isutl.

The exception file is a counted file and the data written is a copy of the binary data segment
exactly as it was in the data file. You can use fconvert to convert the counted file to
something easier to work with.

When running isutl -v on a file with corrupted data, look for keys displaying fewer index
related errors or data pointer errors.

Synergy DBMS
Synergy File Types

3-16 Synergy Language Tools 9.3 (12/09)

ISAM limits
The following are the capacities and limits of Synergy ISAM.

ISAM input and output statements
The input and output (I/O) statements that can be used with ISAM files perform the following
functions:

CLOSE Close a channel.

DELETE Delete a record.

FIND Find a record.

Capacity Maximum Minimum

Keys defined per file 255 1

Segments defined per key 8 1

Length of key 254 (251 if the key allows duplicates or 250 if the key
allows duplicates and this is a terabyte file) on
Windows and UNIX
255 on OpenVMS

1

Length of key segment Same as defined key length —

Number of records per file Approximately 250,000,000 for nonterabyte files
The actual value varies depending on key size, index
density, and available disk space.

0

Record length 65,535 – (3 * number of keys allowing duplicates) – 2 if
variable or compressed – 6 if static RFA – 2 if static
RFA and variable or compressed – 1
The maximum record length on OpenVMS is 32,234.

4
(or 5 for
terabyte
files)

Size per disk file (.ism and .is1) 231

(or 240 for terabyte files)
—

Combined null key size per file 1K 0

Keys per duplicate key value 16,777,216
(or 4 billion for terabyte files)

—

Index depth per key 16 —

Static RFA reuse 127 —

Synergy DBMS
Synergy File Types

Synergy Language Tools 9.3 (12/09) 3-17

OPEN Open a channel.

READ Read a specified record.

READS Read the next sequential record.

STORE Store a record to an ISAM file.

UNLOCK Release a record lock.

WRITE Update a record.

The “Synergy Language Statements” chapter of the Synergy Language Reference Manual contains
the syntax, arguments, discussion, and examples for each of the I/O statements.

ISAM routines
The system-supplied ISAM subroutines and functions enable you to manipulate ISAM files from
within your applications:

FREE Release all locks on a specified channel.

ISAMC Create an ISAM file.

ISCLR Clear or empties an ISAM file.

%ISINFO Return ISAM file status and key information.

ISKEY Return information about a specified key in an ISAM file.

ISSTS Return the status of an ISAM file.

The “System-Supplied Subroutines, Functions, and Classes” chapter of the Synergy Language
Reference Manual contains the syntax, arguments, discussion, and examples for each of the ISAM
routines.

Synergy relative files
Synergy relative files are used to access records by relative record number. The physical file format
varies slightly on each operating system.

On Windows and UNIX, Synergy DBMS accesses records in relative files. Binary data can be in
the records because all records are assumed to be of the same length followed by the record
terminator, so the data is not scanned for the end of the record. If the record terminator is not found
in the correct location, an “Invalid relative record” error ($ERR_RELREC) is generated. The record
size can be specified either by the destination size on the first I/O statement or by the RECSIZ
qualifier on the OPEN statement.

Synergy DBMS
Synergy File Types

3-18 Synergy Language Tools 9.3 (12/09)

On OpenVMS, the RMS file system is used for native compatibility. Binary data can be in the
records because RMS knows the length of each record and does not depend on the record
terminator to separate each record. When the file is opened, the record length is automatically
retrieved. If the RECSIZ is specified, the value is compared against the actual record size and the
error generated is IRCSIZ if they do not match.

To support terabyte relative files, both the operating system and file system must be 64 bit.

Relative file structure
On Windows and UNIX, a relative file consists of a byte stream where the records all contain the
same number of bytes followed by the record terminator. On Windows, the record terminator is a
CR-LF (carriage return and line feed) byte pair. On UNIX, the record terminator is a single LF (line
feed) byte. Random record positioning is accomplished by multiplying the record number minus
one by the sum of the record size and the number of bytes in the record terminator to determine the
byte offset from the beginning of the file.

On OpenVMS, a relative file is a specific RMS file type. Each record consists of only the data
without record terminators. Each record is accessed by a record number index that ranges from 1
through 2147483647.

Relative file types
On Windows and UNIX, there is only one file type where all of the records are the same length.

On OpenVMS, relative files can either contain fixed-length records or variable-length records
depending on how the record format for the file was specified when it was created. The maximum
size for fixed-length records in a relative file is 32,255 bytes. The maximum size for variable-length
records is 32,253 bytes. For VFC (variable-length with fixed-length control field) records, the
maximum size is 32,253 bytes minus the size of the fixed-length control field, which may be up to
255 bytes long. The RECTYPE qualifier of the OPEN statement is used to specify the record
format.

To create a relative file, specify the mode as O:R or A:R in the OPEN statement. To open an
existing relative file, specify the mode as I:R, U:R, or A:R in the OPEN statement. The record size
can be specified in the OPEN statement using the RECSIZ qualifier. On OpenVMS, the record size
is stored in the file header, so if RECSIZ is specified, the record size is compared against the
RECSIZ value. If the RECSIZ qualifier is not specified on Windows or UNIX, the record size is
determined by the size of the destination area on the first I/O operation. If the RECSIZ qualifier is
specified as -1 on Windows or UNIX, the record size is determined by the size of the first record in
the file.

Record access
Records are accessed randomly by specifying the record number as a numeric field in the key field
of READ, FIND, and WRITE statements, or sequentially using the READS or WRITES
statements.

Synergy DBMS
Synergy File Types

Synergy Language Tools 9.3 (12/09) 3-19

Relative record input and output statements
This section lists the primary input and output statements and describes how their use affects
relative files. System-specific differences are also listed. See the “Synergy Language Statements”
chapter of the Synergy Language Reference Manual for more information about other statement
qualifiers that are not specific to relative file access.

READ statement

read(channel, record, record_number)

You can use the READ statement to retrieve a record from the file by specifying the record number.
To specify the first or last record in the file, replace the record number with ^FIRST or ^LAST,
respectively. The POSITION qualifier can replace ^FIRST or ^LAST.

On Windows or UNIX, a READ of an unwritten record returns data of indeterminate contents. If
the record terminator is not found in the file at the end of the fixed number of bytes, an “Invalid
relative record” error ($ERR_RELREC) is generated.

On OpenVMS, a READ of an unwritten record results in a “Record not found” error ($ERR_RNF).

FIND statement

find(channel, record, record_number)

The FIND statement positions to the record specified by record_number. To specify positioning to
the first or last record in the file, replace the record number with ^FIRST or ^LAST, respectively.
To specify positioning to the beginning of the file (before the first record) or end of the file (after
the last record), replace the record number with ^BOF or ^EOF, respectively. The POSITION
qualifier can replace ^FIRST, ^LAST, ^BOF, or ^EOF.

On Windows or UNIX, a FIND to an unwritten record proceeds without error, as positioning in the
file is all that occurs.

On OpenVMS, a FIND to an unwritten record results in a “Record not found” error ($ERR_RNF).

WRITE statement

write(channel, record, record_number)

The WRITE statement updates a record in the file or adds the specified record to the file. To specify
the first or last record in the file, replace the record number with ^FIRST or ^LAST, respectively.
The POSITION qualifier can replace ^FIRST or ^LAST.

On Windows or UNIX, if a WRITE statement specifies a record number beyond the last record
written to the file when it was opened in append or output mode, the file is extended by the size
required to encompass the unwritten records. The contents of these unwritten records are
undefined.

Synergy DBMS
Synergy File Types

3-20 Synergy Language Tools 9.3 (12/09)

On OpenVMS, if a WRITE statement specifies a record number beyond the last record written to
the file when it was opened in append or output mode, the specified record is written to the file and
the unwritten records between the previous last record and the record just written are left as “holes”
in the file.

READS statement

reads(channel, record, eof_label [, DIRECTION=Q_REVERSE])

The READS statement retrieves the record that is sequentially next in the file. When
DIRECTION=Q_REVERSE is specified, the previous sequential record is retrieved.

On Windows or UNIX, a READS of an unwritten record returns data of indeterminate contents. If
the record terminator is not found in the file at the end of the fixed number of bytes, an “Invalid
relative record” error ($ERR_RELREC) is generated.

On OpenVMS, a READS statement skips unwritten records and retrieves the next record in the file
without error.

WRITES statement

writes(channel, record)

The WRITES statement updates the record that is sequentially next in the file. If the file is opened
in append or output mode, the operation adds the next sequential record to the file.

DELETE statement

delete(channel)

The DELETE statement is only available for use on relative files on OpenVMS, because RMS
allows “holes” of unwritten records to exist in relative files.

UNLOCK statement

unlock channel[, RFA:match_rfa]

The UNLOCK statement unlocks any records that have automatic locks. If RFA:match_rfa is
specified, the specified record with the manual lock is the only record unlocked. The
RFA:match_rfa qualifier is ignored on Windows and UNIX.

%RDLEN function

length = %rdlen

The %RDLEN function returns the length of the last record read, excluding the record terminator.
The returned value is for the last operation, regardless of the channel used.

Synergy DBMS
Synergy File Types

Synergy Language Tools 9.3 (12/09) 3-21

%RDTERM function

value = %rdterm

For READ and READS operations, %RDTERM returns the record terminator of the last operation,
regardless of the channel used.

%RECNUM function

number = %RECNUM(channel)

The %RECNUM function returns the relative record number of the last accessed record.

Record locking
When a relative file is opened in update or output mode, record locking is in effect by default unless
the LOCK:Q_NO_LOCK option is specified on the OPEN statement. The FIND, READ, and
READS statements unlock any previously locked record. READ and READS also lock the
specified record.

Synergy sequential files
Synergy sequential files are used to access records sequentially from the beginning of the file to the
end of the file. Records are not accessed randomly. The physical file format varies slightly on each
operating system.

On Windows and UNIX, Synergy DBMS accesses records in sequential files. We do not
recommend placing binary data in the records, as the size of each record is determined by the
placement of the record terminator and the binary data can be mistaken for the record terminator.

On OpenVMS, the RMS file system is used for native compatibility. The records can contain binary
data because RMS knows the length of each record and does not depend on the record terminator to
separate each record. When the file is opened, the record type is automatically retrieved.

To support terabyte sequential files, both the operating system and file system must be 64 bit.

Sequential file structure
On Windows and UNIX, a sequential file consists of a byte stream where the end of each record is
defined by the location of the record terminator. On Windows, the record terminator is normally a
CR-LF (carriage return and line feed) byte pair but can also be a single LF byte. On UNIX, the
record terminator is a single LF (line feed) byte. On either system, a record terminator can also be a
VT (vertical tab) byte or an FF (form feed) byte.

On OpenVMS, a sequential file is a specific RMS file type. Each record consists of only the data
without record terminators.

Synergy DBMS
Synergy File Types

3-22 Synergy Language Tools 9.3 (12/09)

Sequential file types
On Windows and UNIX, there is only one sequential file type: a byte stream where the records are
defined by the placement of the record terminator.

On OpenVMS, sequential files can either contain fixed-length records or variable-length records
depending on how the record format for the file was specified when it was created. The maximum
size of a record in a sequential file is 65,535 bytes. The records in a sequential file are preceded by
two bytes that specify the length of the record, and if the record length is odd, a null byte follows
the record. RMS masks this physical format of the file so only the data is stored or retrieved.

To create a sequential file, specify the mode as O:S or A:S on the OPEN statement. On OpenVMS,
if the mode is specified as O or A without a submode, and the program was either not compiled
with the /STREAM switch or the OPTIONS=“/STREAM” qualifier was not specified, the file is
created as a sequential file. To open an existing sequential file, specify the mode as I:S, U:S, or A:S
on the OPEN statement.

Record access
Records are accessed sequentially from the first record through the end of the file.

Sequential record input and output statements
This section lists the primary input and output statements and describes how their use affects
sequential files. System-specific differences are also listed. See the “Synergy Language
Statements” chapter of the Synergy Language Reference Manual for more information about other
statement qualifiers that are not specific to sequential file access.

READS statement

reads(channel, record, eof_label)

The READS statement retrieves the next sequential record in the file.

On Windows or UNIX, a READS statement retrieves data from the file based on the size of the
destination field plus the size of a record terminator and then searches the data for the record
terminator. The data up to the record terminator is transferred to the destination field and
left-justified over blanks.

WRITES statement

writes(channel, record)

The WRITES statement writes the record plus the record terminator to the file at the current
location. If the file is opened in U:S mode, the WRITES statement can be used for updating the
record that was previously read.

Synergy DBMS
Synergy File Types

Synergy Language Tools 9.3 (12/09) 3-23

FIND statement

find(channel, , , POSITION:Q_BOF)

The FIND statement repositions to the beginning of the file.

%RDLEN function

length = %rdlen

The %RDLEN function returns the length of the last record read but does not include the record
terminator. The returned value is for the last operation, regardless of the channel used.

%RDTERM function

value = %rdterm

For READ and READS operations, %RDTERM returns the record terminator of the last operation,
regardless of the channel used.

Record locking
Record locking occurs by default if the file is opened in U:S mode unless the LOCK:Q_NO_LOCK
option is specified. The READS statement causes the previous record to be unlocked and the record
specified by the statement to be locked.

Synergy stream files
Synergy stream files are used to access records sequentially or by relative record number.

Stream file structure
A stream file consists of a byte stream where the end of each record is defined by the location of the
record terminator. On UNIX, the default record terminator is a single LF (line feed) byte. On
Windows and OpenVMS, the default record terminator is a LF CR (line feed and carriage return)
byte pair, but the record terminator can also be a single LF (line feed) byte. On all systems, a record
terminator can also be a VT (vertical tab) byte or a FF (form feed) byte.

Random record positioning is accomplished by multiplying the record number minus one by the
sum of the record size and the number of bytes in the default record terminator to determine the
byte offset from the beginning of the file.

Synergy DBMS
Synergy File Types

3-24 Synergy Language Tools 9.3 (12/09)

Stream file types
On Windows and UNIX, there is only one file type: a byte stream, where the records are defined by
the placement of the record terminator.

To create a stream file, specify the mode as O or A without a submode on the OPEN statement. On
OpenVMS, the OPTIONS=“/STREAM” qualifier must also be present or the file must have been
compiled with the /STREAM switch to create a stream file. To open an existing stream file, specify
the mode as I, U, or A without a submode on the OPEN statement.

Record access
Records are accessed randomly by specifying the record number as a numeric field in the key field
of a READ, FIND, or WRITE statement, or sequentially using the READS or WRITES statements.

Stream record input and output statements
This section lists the primary input and output statements and describes how their use affects stream
files. System-specific differences are also listed. See the “Synergy Language Statements” chapter
of the Synergy Language Reference Manual for more information about other statement qualifiers
that are not specific to stream file access.

READ statement

read(channel, record, record_number)

You can use the READ statement to retrieve a record from the file by specifying the relative record
number. To specify the first or last record in the file, replace the record number with ^FIRST or
^LAST, respectively. The POSITION qualifier can replace ^FIRST or ^LAST. READ returns the
data from the new file position to the next record terminator.

FIND statement

find(channel, record, record_number)

The FIND statement positions to the record specified by record_number. To specify the first or last
record in the file, replace the record number with ^FIRST or ^LAST, respectively. To specify the
beginning (before the first record) or end of the file (after the last record, replace the record number
with ^BOF or ^EOF, respectively. The POSITION qualifier can replace ^FIRST, ^LAST, ^BOF,
or ^EOF.

WRITE statement

write(channel, record, record_number)

You can use the WRITE statement to replace a record in the file or add a record at the end of the
file. You can extend a stream file opened in update mode by specifying the record at the current
end-of-file position. The WRITE statement writes the contents of the record plus the default record
terminator.

Synergy DBMS
Synergy File Types

Synergy Language Tools 9.3 (12/09) 3-25

READS statement

reads(channel, record, eof_label)

The READS statement retrieves the next sequential record in the file. It returns the data from the
current file position to the next record terminator.

WRITES statement

writes(channel, record)

The WRITES statement replaces the next sequential record in the file or adds a record at the end of
the file. You can extend a stream file opened in update mode by writing the record when positioned
at the current end-of-file position. The WRITES statement writes the contents of the record plus the
record terminators.

GET statement

get(channel, record, record_number)

The GET statement retrieves a record from the file by specifying the relative record number. It
returns the contents of the file from the new file position for the length of the record, regardless of
any record terminators.

GETS statement

gets(channel, record, eof_label)

The GETS statement retrieves the next sequential record in the file. It returns the contents of the file
from the current file position for the length of the record, regardless of any record terminators.

PUT statement

put(channel, record, record_number)

The PUT statement replaces a record in the file or adds a record at the end of the file. You can
extend a stream file opened in update mode by specifying the record at the current end-of-file
position. The PUT statement writes only the contents of the record; the default record terminator is
not written.

PUTS statement

puts(channel, record, eof_label)

The PUTS statement replaces the next sequential record in the file or adds a record at the end of the
file. You can extend a stream file opened in update mode by writing the record at the current
end-of-file position. The PUTS statement writes only the contents of the record; the default record
terminator is not written.

Synergy DBMS
Synergy File Types

3-26 Synergy Language Tools 9.3 (12/09)

UNLOCK statement

unlock(channel)

The UNLOCK statement unlocks any records with automatic locks. On OpenVMS, the blocks
encompassing the locked record are unlocked.

%RDLEN function

length = %rdlen

The %RDLEN function retrieves the length of the last record read but does not include the record
terminator. The returned value is for the last operation, regardless of the channel used.

%RDTERM function

value = %rdterm

For READ and READS operations, %RDTERM returns the record terminator of the last operation,
regardless of the channel used.

%RECNUM function

number = %recnum(channel)

The %RECNUM function returns the relative record number of the last accessed record.

Record locking
On Windows and UNIX, the bytes encompassing the record plus the record terminator are locked
when the READ or READS statement is used. When the GET or GETS statement is used, only the
bytes in the file for the length of the specified record are locked.

On OpenVMS, the blocks encompassing the record plus the record terminator are locked when the
READ or READS statement is used. When a GET or GETS statement is used, the blocks
encompassing the bytes in the file for the length of the specified record are locked. If the BUFSIZ
qualifier is specified in the OPEN statement, the number of locked blocks may be greater.

Synergy block file I/O
Synergy block file I/O is used to access files and block devices on a binary basis. All I/O is in
512-byte block units. This type of I/O bypasses the file organization and retrieves or writes the raw
data to and from the file or device.

Block file structure
The block submode is a way to bypass the native file organization to manipulate the binary data in a
file in 512-byte blocks. All I/O to or from the file must be in a multiple of 512-byte blocks.

Synergy DBMS
Synergy File Types

Synergy Language Tools 9.3 (12/09) 3-27

Block file types
There is no specific block file type on any system. Block file I/O is only a way to access the raw
data in a file.

You can create a file in block mode by specifying a mode of O:B or A:B in the OPEN statement. To
open an existing relative file, specify the mode as I:B, U:B, or A:B on the OPEN statement.

Data access
Data is accessed randomly if you specify the block number as a numeric field in the key field of
READ, FIND, and WRITE statements, or sequentially using the READS or WRITES statements.

Block mode input and output statements
This section lists the primary input and output statements and describes how their use affects block
I/O. See the “Synergy Language Statements” chapter of the Synergy Language Reference Manual
for information about other statement qualifiers that are not specific to block mode access.

READ statement

read(channel, block, block_number)

You can use the READ statement to retrieve records from the file by specifying block_number. To
specify the first or last record in the file, replace the block number in the READ statement with
^FIRST or ^LAST, respectively. The POSITION qualifier can replace ^FIRST or ^LAST.

FIND statement

find(channel, block, block_number)

The FIND statement positions to the block specified by block_number. To position to the first or
last block in the file, replace the block number in the FIND statement with ^FIRST or ^LAST. To
position to the beginning (before the first block) or end (after the last block) of the file, replace the
block number in the FIND statement with ^BOF or ^EOF, respectively. The POSITION qualifier
can replace ^FIRST, ^LAST, ^BOF, or ^EOF.

WRITE statement

write(channel, block, block_number)

You can use the WRITE statement to update blocks in the file or add blocks to the file by specifying
the block number. To specify the first or last block in the file, replace the block number in the
WRITE statement with ^FIRST or ^LAST, respectively. The POSITION qualifier can replace
^FIRST or ^LAST. You can extend a file opened in update mode by specifying the block at the
current end-of-file position.

Synergy DBMS
Synergy File Types

3-28 Synergy Language Tools 9.3 (12/09)

READS statement

reads(channel, block, eof_label)

The READS statement retrieves the next sequential block in the file.

WRITES statement

writes(channel, block)

The WRITES statement updates the next sequential block in the file. If the file is opened in append
or output mode, the operation adds the next sequential block to the file.

%RDLEN function

length = %rdlen

The %RDLEN function retrieves the length of the last block read. When the end-of-file block is
read, length is the actual number of bytes contained in that block. The value returned is for the last
operation, regardless of the channel used.

Synergy DBMS
Synergy DBMS Utilities

Synergy Language Tools 9.3 (12/09) 3-29

Synergy DBMS Utilities
Fconvert, bldism, isload, and status are Synergy Language utility programs intended to
manipulate ISAM files from outside your programs. You can use these utilities to create, clear,
load, and unload ISAM files and to retrieve ISAM file status. If you need to perform these functions
from within your existing programs, you can chain to these utilities. We suggest, however, that for
new development you follow these guidelines:

See the “System-Supplied Subroutines, Functions, and Classes” chapter of the Synergy Language
Reference Manual for more information about the ISAMC, ISCLR, %ISINFO, ISSTS, and ISKEY
routines.

The ipar utility is used to generate parameter file descriptions of existing ISAM files. These files
can be used by fconvert or as input to bldism to create new ISAM files. (See “Parameter and XDL
files” on page 3-30 for a discussion of using parameter or XDL files as an alternative method of
input for the bldism, isload, and status utilities.) Ipar can also be used to view attributes of an
existing ISAM file quickly.

In addition to loading files, the fconvert utility also converts database files from one file type to
another. Local or remote files can be specified using xfServer file specifications. This utility has
been optimized to attain the highest file load/unload performance.

The isutl utility verifies, reindexes, and performs maintenance on Revision 4 or higher ISAM files.
Maintenance includes recovery of corrupted files, reclamation of deleted record space, conversion
to compressed or static RFA file types, ordering of data by a particular key, and index packing. This
utility has been optimized to attain the highest file performance.

The ismvfy and irecovr utilities verify integrity and recover corruption of Revision 2 or 3 ISAM
files. If you have a live Revision 2 or 3 .ism file and you need to verify, recover, or tune it, you
should patch to Revision 5 and then use isutl on it. This will make recovery and optimization up to
100 times faster, depending on the file size.

To Use Instead of

Create ISAM files The ISAMC subroutine or the OPEN
statement with O:I and an XDL file

bldism

Clear ISAM files The ISCLR subroutine (not applicable)

Retrieve ISAM file status The ISINFO subroutine (or the ISSTS
and ISKEY subroutines)

status

Load files fconvert The STORE statement or isload

Synergy DBMS
Synergy DBMS Utilities

3-30 Synergy Language Tools 9.3 (12/09)

The fcompare utility compares database files to a system catalog or repository.

The chklock utility (Windows and UNIX only) reports information about locks on a file.

The most current version of select utilities may be available for download from the Downloads
section of http://www.synergex.com.

Parameter and XDL files
The bldism, isload, and status utilities can accept input either typed directly by a user or from a
parameter file that contains the input in the appropriate order. In addition, fconvert and bldism can
accept input from a file that contains a valid FDL or XDL description. (See “ISAM Definition
Language” on page 3-81 for additional information about XDL files.) Parameter and XDL files can
be useful when you’re creating an ISAM file or modifying the definitions of one; you simply
modify or create the records in your file and then run that file through the utility.

A parameter or XDL file can contain any of the file options available to bldism or the ISAMC
subroutine (record type, compression, terabyte, density, and so on). For a list of these options, run
bldism and enter “?” at the first prompt, or see “File specification” in the Discussion section for
ISAMC in the “System-Supplied Subroutines, Functions, and Classes” chapter of the Synergy
Language Reference Manual. For example, if you add “, TBYTE” to the file specification line (the
first uncommented line) in a parameter file and then run the fconvert utility on that file, the file will
be converted to a terabyte file. If conflicting qualifiers and settings are specified in a parameter file,
the last one takes precedence.

You can also include comments and descriptions in your parameter or XDL files by preceding them
with a semicolon; fconvert and bldism ignore all text following a semicolon.

To specify that input is from a parameter file, enter the name of the parameter file preceded by one
or two “at” signs (@) at the first prompt displayed by the utility.

If you enter one “at” sign, the utility program takes input directly from the parameter file and
doesn’t prompt further.

If you enter two “at” signs, the utility program takes input from the parameter file, but displays
a trace of the activity. This trace consists of the usual prompts along with the responses read
from the parameter file.

TIP
If you’re creating a file from scratch for a new ISAM file, we recommend you create an XDL
file rather than a parameter file. An XDL file is much easier to read and maintain, and the
order doesn’t matter.

http://www.synergex.com

Synergy DBMS
Synergy DBMS Utilities

Synergy Language Tools 9.3 (12/09) 3-31

To specify that input is from an XDL file, enter the name of the XDL file preceded by one “at” sign
(@) at the first prompt displayed by bldism. Input then comes directly from the XDL file, and
bldism doesn’t prompt further.

Below is a parameter file named cusmas.par that we can use to create the ISAM file cusmas.ism,
which we created using bldism on page 3-33. Remember, any text starting with a semicolon is
ignored.

; Parameter file cusmas.par used to create cusmas.ism
cusmas.ism, variable, compress ;ISAM filename
2000 ;record size
4 ;number of keys
name/segmented ;primary key

;total key size 30
2 ;number of segments
15 ;length of segment #1
16 ;start position
15 ;length of segment #2
1 ;start position
n ;duplicates allowed
a ;ascending
company ;first alternate key
30 ;key size
31 ;start position
y ;duplicates allowed
y ;insert at front
a ;ascending
address/segmented/modify ;second alternate key

;total key size 40
3 ;number of segments
20 ;length of segment #1
61 ;start position
10 ;length of segment #2
51 ;start position
10 ;length of segment #3
91 ;start position
y ;duplicates allowed
n ;insert at front
a ;ascending
act_code/null ;third alternate key
r ;replicating null key

Once you specify a parameter or XDL file, all subsequent input must come from that file.
Any errors that usually require resolution by the user cause the utility program to terminate.
Errors encountered from a parameter or XDL file are reported to you, but they cause
abnormal termination of the utility program.

Synergy DBMS
Synergy DBMS Utilities

3-32 Synergy Language Tools 9.3 (12/09)

32 ;null value
5 ;key size
101 ;start position
y ;duplicates allowed
y ;insert at front
a ;ascending

If we wanted to use this parameter file as input to bldism, we’d enter the filename preceded by one
or two “at” signs at the first prompt, as follows:

Enter name of the ISAM file to create: @cusmas.par

In our example, bldism uses the parameter file cusmas.par as its input and creates the ISAM file
cusmas.ism without displaying any further prompts.

WIN, UNIX
You can also redirect input from a parameter file as follows:

dbr DBLDIR:utility <filename

utility

One of the following utilities: bldism, isload, or status.

filename

The name of the parameter file from which you want to get your input.

In our example, we can use the following command

dbr DBLDIR:bldism <cusmas.par

to create the ISAM file cusmas.ism using the parameter file cusmas.par shown on page 3-31.

You can create a parameter or an XDL file that contains a description of an existing ISAM
file using the ipar utility. See page 3-56 for step-by-step instructions on using this utility
program.

Synergy DBMS
bldism

Synergy Language Tools 9.3 (12/09) 3-33

bldism – Create an ISAM file

The bldism utility enables you to create an ISAM file from outside your programs. It prompts you
to specify the name and type of ISAM file you want to create, and to define the length and key
structure of its records.

To run bldism,

Arguments
-K filename

(optional) Specifies that bldism should not prompt for input but should instead create an ISAM
file according to the XDL or FDL description in the specified file. Filename must be a
specification for a file that contains a valid XDL or FDL description.

Discussion
To find out what the valid input is at any prompt, enter a question mark character (?). To terminate
bldism at any time, type the end-of-file character for your operating system.

The bldism utility creates Revision 4 (Synergy Language 7) ISAM files by default. To create files
of a different revision, set the ISAMC_REV environment variable before running bldism. (See
ISAMC_REV in the “Environment Variables” chapter of Environment Variables and System
Options for more information.)

 Sample bldism
Enter name of the ISAM file to create: cusmas, v, c

What is the length of data records? (1-65534) 2000

How many different keys? (1-255) 5

On Enter this at the command line

Windows and UNIX dbr DBLDIR:bldism [-k filename]

OpenVMS run DBLDIR:bldism

Or, if you want to specify the -k option, set bldism up as a foreign command and
start it from a symbol:
$ bldism:==$DBLDIR:bldism
$ bldism -k filename

TIP
On OpenVMS, generating an FDL with the “EDIT/FDL” system command optimizes files.

Synergy DBMS
bldism

3-34 Synergy Language Tools 9.3 (12/09)

Primary key:

Enter name of the Key field: name/segment/type/order

How many different segments? (1-8) 2

What type is segment #1? (A, D, I, U, or N [/ALL]) A/ALL

How long is segment #1? (1-99) 15

Where does segment #1 start? (1-1986) 16

Segment order to be ascending or descending? (A/D) D

How long is segment #2? (1-85) 15

Where does segment #2 start? (1-1986) 1

Segment order to be ascending or descending? (A/D) D

Are duplicate keys to be permitted? (Y/N) N

1st alternate:

Enter name of the Key field: company/type/density

What type is the key? (A/D/I/U/N) A

How long is the key? (1-255) 30

Where does the key start? (1-1971) 31

Are duplicate keys to be permitted? (Y/N) Y

Insert duplicates at front? (Y/N) Y

Key order to be ascending or descending? (A/D) A

What is the key packing density? (50-100) 75

2nd alternate:

Enter name of the Key field: address/segment/modify/density

How many different segments? (1-8) 3

How long is segment #1? (1-98) 20

Where does segment #1 start? (1-1981) 61

How long is segment #2? (1-79) 10

Where does segment #2 start? (1-1991) 51

How long is segment #3? (1-70) 10

Where does segment #3 start? (1-1991) 91

Synergy DBMS
bldism

Synergy Language Tools 9.3 (12/09) 3-35

Are duplicate keys to be permitted? (Y/N) Y

Insert duplicates at front? (Y/N) N

Key order to be ascending or descending? (A/D) A

What is the key packing density? (50-100) 70

3rd alternate:

Enter name of the Key field: act_code/null

Replicating, Non-replicating, or Short null key? (R/N/S) R

Null value: 32

How long is the key? (1-255) 5

Where does the key start? (1-1986) 101

Are duplicate keys to be permitted? (Y/N) Y

Insert duplicates at front? (Y/N) Y

Key order to be ascending or descending? (A/D) A

4th alternate:

Enter name of the Key field: cust_number/density/type

What type is the key? (A/D/I/U/N) D

How long is the key? (1-255) 10

Where does the key start? (1-1986) 120

Are duplicate keys to be permitted? (Y/N) N

Key order to be ascending or descending? (A/D) A

What is the key packing density? (50-100) 90

ISAM file successfully initialized

Synergy DBMS
bldism

3-36 Synergy Language Tools 9.3 (12/09)

Running the bldism utility
To illustrate how to use bldism to create an ISAM file, let’s assume we want to create an ISAM file
that stores customer information, such as customer name, company, and address. The bldism utility
prompts us as follows for the information needed to create our ISAM file. (The example to which we
refer throughout this section is found on page 3-33.)

File prompts

Enter name of the ISAM file to create: Enter the name of the ISAM file you want to create
as follows:

filename[, record_type][, COMPRESS][, DENSITY=file_density][, I=pos:len[, …]]
[, PAGE=page_size][, STATIC_RFA][, TBYTE]

filename

The name of the ISAM file you want to create. The default extension is .ism.

record_type

(optional) One of the following types of ISAM files:

fixed Fixed-length records (default)

multiple Multiple fixed-length records (up to 32 record lengths per file)

variable Variable-length records

COMPRESS

(optional) Compresses the data of the specified ISAM file. You cannot specify this option
with a record type of multiple.

DENSITY

(optional) Indicates that the file density follows.

file_density

A number between 50 and 100 that represents the default density percentage for each key
in the file, which is the percentage each index block is filled. (See “ISAM index density”
on page 3-6 for more information and suggestions about setting the file density.)

I

(optional) Indicates that a portable integer definition follows. You can specify this option
more than once to define up to 255 portable integers per file.

pos

The starting position of nonkey integer data.

Synergy DBMS
bldism

Synergy Language Tools 9.3 (12/09) 3-37

len

The length of nonkey integer data. The following values are valid:

1
2
4
8

PAGE

(optional) Indicates that a specific page size follows.

page_size

The size of each index block in the ISAM file. The following values are valid:

512
1024 (default)
2048
4096
8192

(See “Page size” on page 3-7 for more information and suggestions about setting the page
size.)

STATIC_RFA

(optional) Ensures that a record retains the same RFA across WRITE operations. Static
RFA files aren’t fully self-reorganizing.

TBYTE

(optional) Specifies a 40-bit (terabyte) file.

In our example, we entered

cusmas, v, c

at this prompt to create an ISAM file named cusmas.ism that has variable-length records and
compressed data.

You can abbreviate any of the above options. However, to eliminate confusion with future
additions of options and for program clarity, you can also specify the full option name. See
“ISAM file types” on page 3-5 for a discussion about the different ISAM file types. Also see
“Static RFAs” in the “Synergy Language Statements” chapter of the Synergy Language
Reference Manual for more information about static RFAs and data compression.

Synergy DBMS
bldism

3-38 Synergy Language Tools 9.3 (12/09)

What is the length of data records? (1 - 65534) Enter the expected maximum size of any
data record (up to 65,534 characters long on Windows and UNIX or 32,234 characters on
OpenVMS). The minimum record size is 4. To determine the record size, remember to include
the key field, but don’t include space for record terminators; no record terminators are stored as
part of an ISAM file.

In our example, we entered 2000 at this prompt; therefore, the maximum size of any data
record within our ISAM file, cusmas.ism, is 2000 characters long.

How many different keys? (1 - 255) Enter the number of keys you want to specify (up to 255
keys). A separate index is created for each key, thereby enabling keyed access to records using
any one of the keys. Updating an ISAM file, however, modifies each key index. Remember that
for each key you specify, you increase update processing time and increase disk space usage.

In our example, we entered 4 at this prompt to specify four keys for our cusmas.ism file.

Key prompts

Primary key:
Enter name of the Key field: Enter a name for the primary key field of the specified ISAM
file, as follows:

[key_name][/SEGMENT][/MODIFY][/NULL][/TYPE][/ORDER][/DENSITY]

key_name

(optional) An alpha expression that represents the name of the key and is used in
key-of-reference specifications. The maximum key name length, including quotes, is 15
for Synergy ISAM. (RMS ISAM has no maximum length, but because the ISAMC
subroutine accepts a maximum of 32 characters, your key name shouldn’t be any longer
than 32 characters.)

/SEGMENT

(optional) Specifies that the key is segmented.

/MODIFY

(optional) Specifies that the key field is modifiable.

/NULL

(optional) Specifies that the key is a null key.

/TYPE

(optional) Indicates that you want to define a specific key type for each segment or for all
segments.

Synergy DBMS
bldism

Synergy Language Tools 9.3 (12/09) 3-39

/ORDER

(optional) Indicates that you want to define a specific key order for each segment. To
assign the same order to all segments, don’t specify this option as part of the key
specification; bldism prompts for the key order at the end of the key definition.

/DENSITY

(optional) Indicates that you want to define a specific density for this key.

You can abbreviate any of the above options; for example, /S for /SEGMENT, /M for
/MODIFY, and /N for /NULL.

In our example, we entered

name/segment/type/order

at this prompt to specify a segmented primary key called name.

Replicating, Non-replicating, or Short null key? (R/N/S) If you specified /NULL at the
previous prompt, enter R if you want the key to be a replicating null key, N if you want it to be
a nonreplicating null key, or S if you want it to be a short null key. If the key is not a null key,
this prompt doesn’t appear.

In our example, this prompt does not appear, because our primary key is not a null key.

Null value: Enter the value of the null key. If you specified a replicating null key, enter a value
representing a single character. If you specified a nonreplicating null key, enter a string as the
null value. If you specified a short null key or if this key is not a null key, this prompt doesn’t
appear.

In our example, this prompt does not appear, because our primary key is not a null key.

How many different segments? (1-8) Enter the number of segments you want assigned to
this key. You can specify up to eight segments. If this is not a segmented key, this prompt
doesn’t appear.

In our example, we entered 2 at this prompt to assign two segments to the primary key, name.

What type is segment #1? (A, D, I, U, or N[/ALL]) This prompt is displayed if you specified
/TYPE at the “Enter name of the Key field” prompt. Enter A for alpha, D for decimal, I for
integer, U for unsigned integer, or N for case-insensitive alpha. If you want to define the rest of
the segments as having the same type as the first without being prompted again, type /ALL
immediately following the A, D, I, U, or N.

In our example, we entered A/ALL at this prompt to specify that the type for both segments of
our primary key is alpha.

You can’t specify the /MODIFY or /NULL options on the primary key. See “Keys in
ISAM files” on page 3-9 for more details about segmented, modifiable, and null keys.

Synergy DBMS
bldism

3-40 Synergy Language Tools 9.3 (12/09)

How long is segment #1? (1-nnn) Enter the length of the first segment. The value nnn is
displayed as 255 or as the difference between 255 and the previously defined record length,
whichever is smaller. The length of the segment must not be greater than nnn.

In our example, we entered 15 at this prompt to specify that the length of the first segment of
our primary key is 15 characters long.

This prompt is repeated for each segment assigned to this key. If this is not a segmented key,
however, the following prompt appears:

How long is the key? (1-nnn)

to which you should respond with the length of the key field. Again, the length must not be
greater than nnn. (See the note above.)

Where does segment #1 start? (1-nnn) Enter the starting character position of the segment.
The value nnn is calculated from the defined record and segment lengths. The starting position
must not be larger than nnn.

In our example, we entered 16 at this prompt to specify that the first segment of our primary key
starts at position 16.

This prompt is repeated for each segment assigned to this key. If this is not a segmented key,
however, the following prompt appears:

Where does the key start? (1-nnn)

to which you should respond with the starting character position of the key field. Again, the
starting position must not be larger than nnn.

Segment order to be ascending or descending? (A/D) This prompt is displayed if you
specified /ORDER at the “Enter name of the Key field” prompt. Enter A to force the segment
into an ascending order or D to force it into a descending order. If you enter A, the READS
statement sequentially retrieves records starting with the lowest segment value and progressing
to the highest segment value. If you enter D, READS retrieves records from the highest to the
lowest segment values. Note that the order of segment values is based on the eight-bit ASCII
collating sequence.

In our example, we entered D at this prompt to specify that the first segment of our primary key
should be sorted in descending order.

An overall key length of 255 is only valid for OpenVMS files. A warning is displayed if
the overall key length exceeds 254 characters when bldism is run on a Windows or
UNIX machine. An error is generated at creation time if the destination of a file being
created with a key that exceeds 254 characters is Windows or UNIX. (The term overall
key length refers to the combined segment length if the key is segmented or the length
of the key if the key is not segmented, plus 3 bytes on Windows or UNIX if the key
allows duplicates, or 4 bytes for terabyte files.)

Synergy DBMS
bldism

Synergy Language Tools 9.3 (12/09) 3-41

See “Ascending or descending keys” on page 3-14 for more information about ascending and
descending keys.

Are duplicate keys to be permitted? (Y/N) Enter Y if you expect the file to contain multiple
records having the same key value. Enter N to ensure that no two records will ever have the
same key value. If you enter N, the STORE statement signals a “Duplicate key specified” error
($ERR_NODUPS) each time you attempt to store a record having a key value that is already
present in the file.

In our example, we entered N at this prompt to specify that the primary key should not allow
duplicate keys.

See “Duplicate keys” on page 3-11 for more information about duplicate keys.

Insert duplicates at front? (Y/N) This prompt appears only if you are allowing duplicate
keys for this key field. Enter Y if you want to insert duplicate keys at the front of records
possessing the same key value. Enter N if you want to insert duplicates at the end of such
records. If you enter Y, duplicate records are retrieved in last-in-first-out (LIFO) order. If you
enter N, duplicate records are retrieved in first-in-first-out (FIFO) order.

In our example, this prompt does not appear, because we did not allow duplicate keys for this
field.

VMS
You must answer N at this prompt; OpenVMS only allows duplicates to be inserted at the end of a
list of matching records.

Key order to be ascending or descending? (A/D) Enter A to force keys into an ascending
order or D to force them into a descending order.

In our example, this prompt does not appear, because we specified /ORDER in the key
specification and we were therefore prompted for the order of each segment individually.

See “Ascending or descending keys” on page 3-14 for more information about ascending and
descending keys.

What is the key packing density? (50-100) This prompt is displayed if you specified
/DENSITY at the “Enter name of the Key field” prompt. Enter a value between 50 and 100 to
specify the density percentage for this key.

In our example, this prompt does not appear, because we did not specify /DENSITY in the
specification for the primary key.

1st - 255th alternates: The bldism utility repeats the preceding key prompts for as many keys
as you specified for the ISAM file you want to create.

In our example, bldism prompted us to name and define four key fields (the primary key and
three alternate keys) because we specified four keys for our cusmas.ism file.

Synergy DBMS
chklock

3-42 Synergy Language Tools 9.3 (12/09)

chklock – Report file lock information

WIN, UNIX
The chklock utility reports information about locks on a file. To run the utility, type the following
at the command line:

chklock [options] filename

Arguments

UNIX
options

(optional) One or more of the following options:

-p Display the process ID that holds each lock, the byte position of each lock, and the
length (number of bytes) of each lock.

-r Display one of the following values:

WT_SHARE One or more processes have the file opened in update mode.

RD_SHARE One or more processes have the file opened in input mode.

-v Display both types of file locks on Sun Solaris. (See system option #33 in the “System
Options” chapter of Environment Variables and System Options.)

filename

The name of the file for which you want to retrieve locking information. For ISAM files, this
must be the name of the data file (usually *.is1).

Discussion
For ISAM files, Synergy Language locks the first byte of the record in the data file. For other file
types, Synergy Language locks the whole record.

If you run chklock without any options, it reports the position of the first byte of each locked record
in the file.

If a process has opened a file in exclusive mode (SHARE:0), chklock returns the message “File
locked.” On UNIX, the -p option indicates the process ID that has it locked. (See the last example
below.)

Examples
In the first example below, two records are locked. One starts at byte 1240 (in the ISAM data file),
while the other starts at byte 1535. In the second example, one record is locked starting at byte 129.

Synergy DBMS
chklock

Synergy Language Tools 9.3 (12/09) 3-43

$ chklock myfile.is1
1240 1535

$ chklock myfile.ddf
129

In the following example, one record in the file is locked by process ID number 3209. It starts at
byte 0 and it is 129 bytes long.

$ chklock -p myfile.ddf
3209: 0 - 129

The following example indicates that at least one process has opened the file in update mode.

$ chklock -pr myfile.ddf
3209: 0 - 129
WT_SHARE

In the following example, the file was opened in exclusive mode by process ID number 3209.

$ chklock -p myfile.ddf
3209: File locked

Synergy DBMS
fcompare

3-44 Synergy Language Tools 9.3 (12/09)

fcompare – Compare database files to system catalog or
repository

fcompare [-system_catalog_options]| [-repository_options] [-output_options]

Arguments
system_catalog_options

(optional) One or more of the following options, which cause fcompare to compare database
file definitions with system catalog definitions.

g connect_file Specify the name and path of the connect file.

t table Specify a system catalog table name to check.

repository_options

(optional) One or more of the following options, which cause fcompare to compare database
file definitions with repository file definitions.

r rpsmain rpstext Specify the repository main and text files to use when comparing
repository metadata against a database file.

f file_def_name Specify a specific repository file definition name to check. Fcompare
checks all structures assigned to the file described by that file definition.

c convert_setup_file Override the conversion setup file specified by the SODBC_CNVFIL
environment variable, and specify the name and path of the file to use in
its place.

output_options

(optional) One or more of the following options:

dv Turn on data verification mode to compare ISAM file data with system
catalog or repository metadata and generate verification output. This
option can only be used if -t or -f is also being used.

l log_file Specify the name of a log file that will contain the output from the
fcompare program.

i Generate error, warning, and informational messages. (Do not use
with -v.)

v Generate error and warning messages. (Do not use with -i.)

Synergy DBMS
fcompare

Synergy Language Tools 9.3 (12/09) 3-45

Discussion
The Synergy File Compare Utility (fcompare) can be used to debug synchronization problems
between repository or system catalog metadata and an ISAM, RMS, relative, or text file definition.
It can also compare ISAM, RMS, relative, or text file data against repository or system catalog
metadata. Fcompare does not compare metadata between a repository and a system catalog. For
relative files, fcompare verifies record size and number of records only.

When discrepancies are found, fcompare produces either an error or a warning (if -v is specified).
An error or warning indicates that the specified attribute, as defined in the repository or system
catalogs, doesn’t match the “actual” attribute of the database file. Both the defined and the actual
values are displayed, along with the name of the attribute being compared. Error messages are
designed to assist xfODBC users. If you are using fcompare to compare file definitions to a
repository, you should use the -v option to also output warning messages. See “Errors and
warnings” on page 3-47 for a list of possible discrepancies.

VMS
The fcompare utility is set up as a verb, which means you cannot pass more than eight parameters.
Each option counts as one parameter, and each path specification counts as one parameter. If you
have more than eight parameters, you must work around the limitation by enclosing the entire set of
parameters in double quotation marks.

For example:

fcompare "-r RPSDAT:rpsmain.ism RPSDAT:rpstext.ism -f customer -dv
-l compare.log -v"

If neither -g nor -r is specified, fcompare compares repository definitions with database files. If
both system_catalog_options and repository_options are specified, an error message is generated
and processing is terminated.

System catalog comparisons

You can perform a comparison of all tables in the system catalog by specifying -g without -t, or you
can limit the comparison to a single table by using the -t option. With the single table comparison,
you can request that the data in the database file be verified against the catalog definitions by using
the -dv option.

We recommend that ODBC users run fcompare using the repository option first, so that any
discrepancies can be resolved before the system catalogs are generated.

For fcompare to access the database files for the system catalog option, any logicals used must be
defined in the connect file or in the environment. If connect_file doesn’t include a path, fcompare
looks for the file in the directory specified by the GENESIS_HOME environment variable.

Synergy DBMS
fcompare

3-46 Synergy Language Tools 9.3 (12/09)

Repository comparisons

You can perform a comparison of all file definitions in the repository by specifying -r without -f, or
you can limit the comparison to a single file by using the -f option. (Keep in mind that -f expects a
specific repository file definition name, not the repository “open filename.”) With the single file
comparison, you can request that the data in the database file be verified against the definitions by
using the -dv option.

If -r is not specified (assuming -g is not specified either), fcompare uses the environment variables
RPSMFIL and RPSTFIL. If they are not set, fcompare looks for rpsmain.ism and rpstext.ism in
the directory specified by the environment variable RPSDAT.

Fcompare reads data logicals from the environment, the synergy.ini file, or an environment setup
file whose name and location are specified by the SODBC_INIFIL environment variable. Any
logicals used in the repository “open filename” must be defined in one of these places.

If a conversion setup file is being used to specify filenames during conversion to system catalogs,
fcompare can read the conversion setup file. When using the repository option (-r), set the
SODBC_CNVFIL environment variable to the location and name of the conversion setup file, and
fcompare will read the filenames from there. To use a different setup conversion file than that
specified by SODBC_CNVFIL, use the -c option and specify the path and file you want to use.

To eliminate the errors detected by fcompare, you must examine the repository and the database
file definition to resolve the discrepancies. The ipar utility (see ipar on page 3-56) can help you
view the definition of the database file. (On OpenVMS, you can use the Analyze Utility.)

Output options

The data verification option (-dv) must be used in combination with -t or -f. When data verification
mode is on, fcompare reads through all records in the database file and verifies that date and
decimal fields contain valid values for their field types—in other words, that the date fields contain
valid dates and the decimal fields contain numbers. (The SYNCENTURY environment variable is
used to determine the default century for two-digit years.) Using the -dv option significantly
increases the amount of time it takes to run fcompare, which is why its usage is limited to one file
or table at a time.

Output goes to the console unless the -l option is specified.

If you define a key as having two segments in the ISAM file but only set up the first segment
in your repository, fcompare will not report an error, just a warning.

If the file contains tag definitions, data verification is skipped.

Synergy DBMS
fcompare

Synergy Language Tools 9.3 (12/09) 3-47

Informational messages (for example, the record size and number of keys) are only displayed if you
specify the -i option. Warning messages are displayed if you specify -i or -v. Error messages are
displayed in all cases, even if no options are specified.

Errors and warnings

Errors indicate fixes necessary to prevent potentially incorrect data from being returned from
xfODBC. Warnings identify fixes required to prevent performance problems due to loss of
optimization opportunities. Synergex recommends that all errors and warnings be fixed. The
Synergy/DE Developer Support department will require that errors be fixed before providing
assistance with xfODBC optimization.

If fcompare finds discrepancies between repository or system catalog metadata and the ISAM,
RMS, relative, or text file definition, it generates one or more of the following errors to indicate
which attributes do not match and what the unmatched values are:

Error message Description

Cannot open file The database file for this table cannot be located.

Cannot retrieve information There is a problem retrieving column, index, or tag information
from the system catalogs. Contact Synergy/DE Developer
Support.

Cannot retrieve key information for krf The defined krf number doesn’t exist in the file.

Collation (seg n) defined as [x],
actual [x]

The sort direction (ascending/descending) of the key segment
does not match.

Defined date length is not [n] With the -dv option in use, the data length defined for the field
does not match the user-defined date specification.

Defined record length [n], bytes
read [n]

With the -dv option in use, a read of a variable-length record
exceeds the defined record size.

Defined segment collation does not
match actual segment collation

Fix the key definition.

Defined segment positions do not
match actual segment positions

Fix the key definition.

Duplicates defined as [x], actual [x] A key is defined as “unique,” but the file is not using a unique
key.

Foreign key All access keys must be defined before any foreign keys.

Synergy DBMS
fcompare

3-48 Synergy Language Tools 9.3 (12/09)

Hour field [n] is greater than 23 With the -dv option in use, a time field has an invalid hours
value.

Invalid date field value With the -dv option in use, a date field contains an invalid value.

Invalid decimal field value With the -dv option in use, a decimal field contains an invalid
character.

Invalid relative file The relative file record size does not match.

Key length (seg n) defined as [x],
actual [x]

The length of the field used as the key segment is larger than
the key on the file.

Key of reference number n used more
than once

The key of reference number is not unique.

Minute field [n] is greater than 59 With the -dv option in use, a time field has an invalid minutes
value.

Non-numerical data in date field With the -dv option in use, a date field contains nonnumeric
data.

Non-numerical data in time field With the -dv option in use, a time field contains nonnumeric
data.

Null defined as [x], actual [x]a For keys defined to allow null, the replication type (replicating,
nonreplicating, or short) does not match.

Number of access keys defined as [x],
actual [x]

More access keys are defined in the repository than on the
physical file. (Foreign keys are not included in the count.)

Offset (seg n) defined as [x], actual [x] The starting location of the field used as the key segment does
not match.

Record size The length of fixed-length records does not match.
Variable-length records are only checked with the -dv option.

Repository file not founda Fcompare could not find one or more repository files. See
“Repository comparisons” on page 3-46.

Unsigned field [x] contains signed data With the -dv option and either -r or -g in use, a field that is
designated as unsigned contains signed data.

a. With repository_options only.

Error message Description

Synergy DBMS
fcompare

Synergy Language Tools 9.3 (12/09) 3-49

If a verbose option (-v or -i) is specified, one or more of the following warnings may be generated:

Examples
The following example compares the database file cust (-f option) to its repository definition (-r
option), including verification of data (-dv option). Errors and warnings (-v option) are written to a
log file called compare.log (-l option).

fcompare -r RPSDAT:rpsmain RPSDAT:rpstext -f cust -dv -l compare.log -v

Using the database defined by the connect file sodbc_sa (-g option), the example below compares
the database file containing the table customers (-t option) to its system catalog definition,
including verification of the data (-dv option). The errors, warnings, and informational messages
(-i option) are written to the log file compare.log (-l option) in the location defined by RPSDAT.

fcompare -g sodbc_sa -t customers -dv -l RPSDAT:compare.log -i

Using the database defined by the connect file sodbc_sa (-g option), the example below compares
all database files to the system catalog definitions. Errors and warnings (-v option) are output to the
screen.

fcompare -g sodbc_sa -v

Warning message Description

Data type (seg n) defined as [x], actual [x] The data type of the field used as the key segment does not
match, or a signed decimal field without a positive range is
defined in the repository when the actual key in the ISAM
data file is defined as alpha.

Duplicates defined as [x], actual [x] The key is defined with duplicates. Better performance
occurs if the repository is changed to say duplicates not
allowed, as the file does.

Key n, Key length defined as [n] A key is defined smaller than the file’s physical key.

Modifiable defined as [x], actual [x]a

a. With repository_options only.

Whether keys are defined as modifiable or nonmodifiable
does not match.

No access keys defined for structure xa The structure definition has no access key defined. xfODBC
optimization is impossible!

Number of access keys defined as [x],
actual [x]

Fewer access keys are defined in the repository than on the
physical file. (Foreign keys are not included in the count.)

Synergy DBMS
fconvert

3-50 Synergy Language Tools 9.3 (12/09)

fconvert – Convert database files to other file types

WIN, UNIX
fconvert [-switches] infile_spec […] outfile_spec

Arguments
switches

(optional) An option string that determines general processing for fconvert. You can either
prefix the whole string with a minus sign (for example, -xsv exceptfile) or prefix each option
with a minus sign (for example, -x -s). The switches are as follows:

x [exceptfile] Create an exception file (for failed writes).

s Display a processing summary on completion of fconvert.

t temp_directory Create all temporary files in the specified directory.

v [count] Display in-progress count of records processed where count is the
record display multiple. The default count is 1. If fast load optimization
is occurring, an “Optimizing...” message is displayed.

% Display the completion status as a percentage for all file conversions.

h or ? Display the online help.

infile_spec

A specification for the files to be converted, transferred, or modified. See the Discussion for
syntax. You can specify more than one type of input file by specifying multiple infile_spec
specifications.

outfile_spec

A specification for the output file. See the Discussion for syntax.

Discussion
Fconvert converts, transfers, and modifies Synergy database files. In a client/server configuration,
fconvert transfers and converts files directly to a remote host. If a remote host employs a different
file structure from the client, fconvert automatically converts files to the host file structure.
Network transfers are cached automatically. Fconvert can also modify the parameters of existing
ISAM files.

Fconvert reads and writes data records to and from any of these file types (remote or local):

ISAM

Relative

Counted

Synergy DBMS
fconvert

Synergy Language Tools 9.3 (12/09) 3-51

Text (stream LF and stream CR/LF)

An infile_spec has the following syntax:

-infile_type [-infile_locking] [-infile_options] infiles

where

infile_type

Determines the file type of the input file or files that follow it.

ii ISAM file

ir Relative file

ic Counted file

it Text (native stream)

i1 Text (stream LF)

i2 Text (stream CR/LF)

infile_locking

(optional) An option that determines how the input files will be opened in fconvert. The
locking options are as follows:

l Open the file exclusively using Q_EXCL_RO. (default)

n Open the file with NO_LOCK set, so input-file locking does not occur.

infile_options

(optional) Options that determine how fconvert handles records in a specified input file. You
can either prefix the whole string with a minus sign (for example, -rt 50 for an input record
size of 50) or prefix each option with a minus sign (for example, -r 50 -t). The input record file
switches are as follows:

r recsize Specify input record size.

t Trim blanks from end of records until record size equals the output
record size.

8 Suppress “Binary data” warning on 8-bit characters for sequential input
files (infile_type of -it, -i1, or -i2). (Decimal values less than a space
[32], except CR, LF, HT, and FF, will still cause a “Binary data”
warning on an infile_type of -it.)

k krf Specify key of reference for ISAM (default 0).

Infile_type must precede infile_locking and infile_options, and all three must precede the
names of the files they define.

Synergy DBMS
fconvert

3-52 Synergy Language Tools 9.3 (12/09)

infiles

The name(s) of the file(s) of the same type to be converted, transferred, or modified by
fconvert. Separate multiple filenames with blanks.

An outfile_spec has the following syntax:

-outfile_type [-outfile_locking] [-outfile_options] outfile

where

outfile_type

Determines the type for the file created by fconvert. If o is the first character of outfile_type,
fconvert creates a file or replaces an existing file for output. If a is the first character of
outfile_type, fconvert appends output to an existing file. The output file types are as follows:

oi or ai ISAM file

or or ar Relative file

oc or ac Counted file

ot or at Text (native stream)

o1 or a1 Text (stream LF)

o2 or a2 Text (stream CR/LF)

outfile_locking

(optional) An option that determines whether the output file is opened with or without locking.
The locking options are as follows:

l Open the file exclusively using Q_EXCL_RO. (default)

n Open the file with NO_LOCK set, so output-file locking does not occur.
Fast load optimization is turned off.

outfile_options

(optional) Options that define the way fconvert handles the output file. These options do not
necessarily need to directly precede outfile.

f Force an existing output file to be overwritten.

r recsize Specify the output record size.

d descfile Specify a description file. To create an ISAM file, you must specify a
description file, which must either be a “parfile” (the output of the
ISAM utility ipar) or an XDL file.

outfile

The output filename.

Synergy DBMS
fconvert

Synergy Language Tools 9.3 (12/09) 3-53

Fconvert can fast-load all of these input file types into an empty ISAM file (or an ISAM file that is
being created). The fast-load operation is highly optimized for speed. If the output file is not empty,
normal processing occurs. The fast-load operation requires that several temporary work files be
created. These temporary files are created in the current directory by default. Use -t temp_directory
to alter the location where temporary files are created.

Make sure sufficient free disk space is available wherever temporary files are to be created.

ISAM files

To create an ISAM file from any file type other than ISAM, you must supply a description file.
When creating an ISAM file from another ISAM file (a remote file, for example), fconvert uses the
first input ISAM file structure by default. To override this default, use a description file; description
files can be used to change the parameters of ISAM files (number of keys, record size, key
characteristics, and so forth).

Relative files

To convert a variable-length text file or variable-length-record ISAM file to a relative file, use
-r recsize to specify the record size of the relative file (see outfile_options on page 3-52).

Counted files

The counted file is a derived file type; there is no equivalent Synergy Language OPEN submode for
counted files. You can, however, read or create a counted file using isload.

Text files (stream LF and stream CR/LF)

When specifying a text file, use the -it, -at, or -ot option for native stream files. To convert a
Windows text file to a UNIX text file from a UNIX system, specify -it for the Windows file and -o1
for the UNIX output file.

TIP
Writing temporary files to a secondary disk may improve overall performance of the
fast-load operation.

We don’t recommend using text files that contain binary data (such as records containing
integer fields or alpha fields that contain RFAs.) For example, when reading a record with
an integer field that contains the value 2600 (0x0A28 in hex), fconvert will terminate the
record when it encounters the 0x0A (LF) and start a new record with the next character.
Therefore, as a precaution, a “Binary data (n) detected in file at nn” warning is displayed if
binary data is encountered (excluding the CR, LF, HT, and FF line terminators).

Synergy DBMS
fconvert

3-54 Synergy Language Tools 9.3 (12/09)

Exception files

If the -x option is specified, an exception file is created if any records fail to convert due to an
“Illegal record size” or “No duplicates allowed” error. The exception file is a counted file. Use
fconvert to convert the records to another file format. The default name for the exception file is
infile.exc. To designate a different exception filename, specify the optional exceptfile argument to
the -x option. You cannot specify a name for an exception file if you are converting more than one
file. Fconvert will not run with an existing exception file.

8-bit characters

When processing sequential input files, fconvert will detect and warn of possible binary data. The
presence of binary data could cause premature record termination when the file is handled as a
sequential file. (Note: You may be able treat the file as a relative file if the record size is a fixed
length.) If you use 8-bit characters in your sequential files, you will want to specify the -8 option,
which suppresses the warning message on ASCII characters above 127. This option must be
specified for each input file for which message suppression is desired.

Examples
The example below converts the ISAM file file1 to a relative file named file2:

fconvert -ii file1 -or file2

The following is an example of an fconvert command to transfer the ISAM file file1 and the
relative file file2 to the ISAM file file3. If file3 does not exist, fconvert creates a file named file3
described by the parameter file file3.par. If file3 exists, fconvert overwrites it with a new file3.
Fconvert displays a counter of processed records and a summary on completion.

fconvert -sv -ii file1 -ir file2 -oif file3 -d file3.par

The example below transfers file1 to remote host server1. If the file exists, it is overwritten with the
new file. When the transfer is completed, a summary is displayed with statistics.

fconvert -s -ii file1 -oif file1@server1

In the following example, three similar sequential files named file1, file2, and file3 are loaded into
the new ISAM file file4. The temporary file created during fast-load processing is written on a
secondary disk E: in the work subdirectory. A completion percentage is displayed as the files are
processed, and a summary is displayed at the end.

fconvert -s%t e:\work -it file1 file2 file3 -oif file4 -d file4.par

The fconvert utility operates on Revision 2 or higher files. To convert files to a lower or
higher revision, set the ISAMC_REV environment variable before running fconvert. (See
ISAMC_REV in the “Environment Variables” chapter of Environment Variables and System
Options for more information.)

Synergy DBMS
fconvert

Synergy Language Tools 9.3 (12/09) 3-55

The example below loads the file isamfile.ism with records from file1.ddf and recognizes that there
may be valid 8-bit ASCII characters in the file.

fconvert -it8 file1 -ai isamfile

Synergy DBMS
ipar

3-56 Synergy Language Tools 9.3 (12/09)

ipar – Generate parameter file descriptions

WIN, UNIX
ipar [-option] filename[, …]

Arguments
option

(optional) One or more of the following options:

g Generate a parameter file (or an XDL/FDL file if the -x option is also specified) that
has the same name as each ISAM file for which you want a description but with the
extension .par (or .idl). If both -x and -g are specified, the filename extension is .xdl.

x Generate an XDL or FDL file to the terminal.

filename

The name of the ISAM file(s) for which you want to generate parameter file descriptions. The
default extension is .ism.

Discussion
The ipar utility generates parameter file descriptions of existing ISAM files, which you can then
use as input to bldism to rebuild the same files. These descriptions contain current content
information about the specified ISAM file in their comment lines.

If you don’t specify any option, ipar sends parameter information to the terminal by default.

If ipar detects an .is2 file, it generates a warning message but generates the file description anyway.

Examples
The following example generates a parameter file named file1.par for file1.ism and a file named
file2.par for file2.ism:

ipar -g file1 file2

The next example generates a parameter file with the extension .par for each of the ISAM files in
the current directory:

ipar -g *.ism

The ipar utility creates a parameter file for Revision 2, 3, and 4 files. Be aware that the ipar
utility that came with previous Synergy versions does not understand the Revision 4 ISAM
file structure and does not signal an error. Do not use the parameter file it produces.

Synergy DBMS
ipar

Synergy Language Tools 9.3 (12/09) 3-57

The following example generates parameter information for our ISAM file, cusmas.ism:

ipar cusmas

This example sends the following information to the terminal:

; Synergy ISAM PAR File created Fri Feb 12 17:36:23 1999
cusmas.ism, variable, compress
2000 ;Record size
5 ;Number of keys

;5ca5 magic, Revision 4, 14 byte record overhead
;Shared index cache allowed
;Creation version 7.1
;File created on Mon Feb 01 12:29:04 1999
;43 byte longest key
;0 free index blocks, 0x0 free list head
;100 records, 0 free

name/segment
;Primary alpha key
;30 key size

2 ;Number of segments
;Segment #1

15 ; Segment length
16 ; Start position

;Segment #2
15 ; Segment length
1 ; Start position
N ;Duplicates allowed
D ;Ascending/descending

;Root 0x800, index depth 1
;Minimum keys per block 14

company/density
;Alternate alpha key #1

30 ;Key size
31 ;Start position
Y ;Duplicates allowed
Y ;Insert at front
A ;Ascending/descending
75 ;Index density percentage

;Root 0xc00, index depth 1
;Qualifier offset 5
;Minimum keys per block 13

address/modify/segment/density
;Alternate alpha key #2
;40 key size

3 ;Number of segments
;Segment #1

20 ; Segment length

Synergy DBMS
ipar

3-58 Synergy Language Tools 9.3 (12/09)

61 ; Start position
;Segment #2

10 ; Segment length
51 ; Start position

;Segment #3
10 ; Segment length
91 ; Start position
Y ;Duplicates allowed
N ;Insert at front
A ;Ascending/descending
70 ;Index density percentage

;Root 0x1000, index depth 1
;Qualifier offset 8
;Minimum keys per block 10

act_code/null
;Alternate alpha key #3

R ;Replicating null key
32 ;Null value ' '
5 ;Key size
101 ;Start position
Y ;Duplicates allowed
Y ;Insert at front
A ;Ascending/descending

;Root 0x1400, index depth 1
;Qualifier offset 11
;Minimum keys per block 36

cust_number/density/type
;Alternate key #4

D ;Decimal type
10 ;Key size
120 ;Start position
N ;Duplicates allowed
A ;Ascending/descending
90 ;Index density percentage

;Root 0x1800, index depth 1
;Minimum keys per block 32

Synergy DBMS
irecovr

Synergy Language Tools 9.3 (12/09) 3-59

irecovr – Recover Revision 1–3 ISAM files

WIN, UNIX
irecovr [-options] filename[, …]

Arguments
options

(optional) One or more of the following options:

a Apply necessary changes or corrections to the original data that is
suspected of being corrupted.

c Compress data records. By default, the new file is not compressed. If
you specify this option and you use RFAs, you must also specify the -s
option to ensure that your RFAs will remain static. (This option is the
default for compressed files.)

f seqfile Fast load. Use cached loading to load a sequential file into an empty
ISAM file, where seqfile is a sequential file from which to load
nonbinary data.

k Load counted database files.

q Give no status messages (quiet mode).

s Use static RFAs. This option is required when using RFAs and
compressed records.

t interval Skip record counts. Users can specify a progress reporting interval
instead of having each record count displayed as the file is being
recovered.

v Display a more detailed account of processing (verbose mode).

The irecovr and ismvfy utilities are still available for users who have not yet converted their
Revision 2 and 3 files to a higher revision, because you cannot use isutl on pre-Revision 4
files. We strongly recommend, however, that you patch files to be Revision 5 and then use
isutl, instead of using irecovr. Isutl is up to 50 times faster on large files and produces a
better index that causes file access to improve.

Improper use of the -a option can result in loss of data. Read
the Discussion section below before using this option.

Synergy DBMS
irecovr

3-60 Synergy Language Tools 9.3 (12/09)

x exceptfile Specify exception filename. Create an exception file with the name
exceptfile if an error occurs.

% Display the percentage of the entire file that has been recovered.

filename

The name of the ISAM file(s) that you want to convert or recover. The default extension
is .ism.

Discussion
The irecovr utility recovers deleted file space or corrects corrupted ISAM files, retaining the
original ISAM revision level by default. By setting the ISAMC_REV environment variable, you
can also use irecovr to convert ISAM files either up to a higher revision level or down to a lower
revision level. If you don’t specify any of the options listed above, irecovr converts or recovers the
specified ISAM file and displays status messages.

If the file cannot be safely recovered due to a corrupted data file (.is1), irecovr will not attempt
recovery. An exception file is created if any records fail to recover due to an “Illegal record size” or
“No duplicates allowed” error. The exception file is a counted file, and each record in the file is
made up of contiguous bytes discarded between known records. The file may contain parts of one
or more actual records (including ISAM control information), or it may contain unrecognizable
garbage. The default name for an exception file is filename.exc, where filename is the name of the
ISAM file. To specify a different filename, run irecovr with the -x option. You cannot specify a
name for an exception file if you are recovering more than one file. The irecovr utility won’t run if
an exception file with the specified name (or the default name, if no file is specified) already exists.

Irecovr first copies the original data file to an .is2 extension. (Thus, if irecovr terminates
unexpectedly—due to a power outage or lack of disk space, for instance—the original data file is
untouched.) Irecovr uses the .is2 file as input and creates to a new index and data file. It then
removes the .is2 file upon completion.

If irecovr fails, the .is2 file may be left on the system. On a failed irecovr, the .ism and .is1 files are
unusable, and the .is2 file is the original .is1 data file. So, for example, if irecovr fails because there
is not enough disk space, you can rename the .is2 file to .is1, free the required amount of disk space
(the .ism file can be deleted if necessary), and run irecovr again. (Some types of problems may
require support intervention or restoring from backup.)

You cannot leave an .is2 file on your system indefinitely. If an .is2 file is detected, the following
utilities and statements fail or generate an error: ismvfy, irecovr, ipar, isutl, and the OPEN
statement (on ISAM files).

Irecovr can rebuild an index file, but it cannot restore data that has been overwritten in the data file.
If data has been corrupted in the data file, a BADSEG error is usually generated immediately after
irecovr or ismvfy is started. If your file has compressed records, there is a good chance you can
recover most of the data by using the -a option.

Synergy DBMS
irecovr

Synergy Language Tools 9.3 (12/09) 3-61

The -f option fast-loads a sequential file into an empty ISAM file, and -f -k fast-loads a counted file
into an empty ISAM file. However, these options are provided only for compatibility; fconvert and
isutl are the preferred ways to load and unload ISAM files.

Examples
The following example converts or recovers our sample ISAM file, cusmas.ism, without displaying
any status messages.

irecovr -q cusmas

The following example converts or recovers all the ISAM files in the current directory, compresses
their data records, and adds the attribute static RFAs.

irecovr -cs *.ism

The example below loads isamfile.ism with data from datafile.ddf, reporting progress every 50
records. In other words, the count is displayed as 50, 100, 150, …, instead of 1, 2, 3, ….

irecovr -vt 50 -f datafile.ddf isamfile.ism

The -a option causes irecovr to attempt to recover as much data as possible, but to do so,
it must manipulate the original data file. Irecovr suggests when the option should be used.
There may also be alternative methods of recovery. Therefore, only use -a when
necessary; do not automate this process.

If you do use -a, we suggest you make a copy of the .is1 file first, in case irecovr is not
successful.

If you use the irecovr utility to reorganize an ISAM file and reclaim deleted record space,
the static RFAs for that file are no longer valid.

TIP
If irecovr exits with the error message “No space on device,” it means your disk is full.
Before exiting, irecovr removed the partially built index and data files and left the original
copy of the data file (filename.is1, now named filename.is2). To fix the problem, free
enough disk space, rename filename.is2 to filename.is1, and rerun irecovr. (Irecovr does
not need the index file filename.ism to recover a file.)

To estimate the required disk requirements, multiply the size of the data file by two and add
the size of the index file. To account for index density, you should also add 50 percent of the
index file:

required free space = (data * 2) + index + (index * .5)

Synergy DBMS
isload

3-62 Synergy Language Tools 9.3 (12/09)

isload – Load, unload, or clear an ISAM file

The isload utility enables you to load or unload ISAM or relative files or to clear ISAM files from
outside your programs. It is primarily used to load ISAM files from text to sequential files.

To run isload,

To find out what the valid input is at any prompt, enter a question mark character (?). To terminate
isload at any time, type the end-of-file character for your operating system.

Sample isload
Option: unload

Enter name of ISAM file to be UNLOADed: cusmas,key=1

 Record length: 2000
 Number of keys 4

Enter name of sequential file into which to UNLOAD: secust
What progress reporting interval? 25

-–> Begin unloading ISAM to sequential (at 14:14:43)
at 14:14:43 25 in 25 out 0 errors
at 14:14:43 50 in 50 out 0 errors
at 14:14:43 75 in 75 out 0 errors
at 14:14:43 100 in 100 out 0 errors

… End of input file test

-–> Finish unloading ISAM to sequential (at 14:14:43, took 0 seconds)

Whenever possible, isload opens the ISAM file exclusively. Because this support may not
be available on all operating systems, please use isload with caution.

On Enter this at the command line

Windows and UNIX dbr DBLDIR:isload

OpenVMS run DBLDIR:isload

TIP
On Windows and UNIX we suggest using the fconvert utility (see page 3-50) for much
faster operation of loading and unloading files.

On OpenVMS we suggest using the system command CONVERT/FDL for much faster
operation of loading and optimizing files.

Synergy DBMS
isload

Synergy Language Tools 9.3 (12/09) 3-63

Records input: 100 Records output: 100 Errors detected: 0

… normal termination of ISLOAD

Running the isload utility
To illustrate how you use isload to unload a file, let’s assume we want to unload our ISAM file,
cusmas.ism. The isload utility prompts us as follows for the information needed to unload our
ISAM file. (The example to which we refer throughout this section is found on page 3-62.)

Option: Enter one of the following options:

UNLOAD Unloads the specified file to a sequential file without modifying the file.

LOAD Loads the specified file by adding new records to the existing records.

CLEAR Clears the specified ISAM file and restores it to its original empty state.

STOP Terminates the isload utility.

In our example, we entered the UNLOAD option to unload our ISAM file, cusmas.ism.

Enter name of ISAM file to be UNLOADed:

Enter name of ISAM file to be LOADed:

Enter name of ISAM file to be CLEARed:

Enter the specification for the ISAM file you want to unload, load, or clear as follows:

file_spec[, RELATIVE][, KEY=keynum]

file_spec

The specification for the file you want to load, unload, or clear. The default extension is
.ism. File_spec can be up to 100 characters long.

RELATIVE

(optional) Indicates that the file to load or unload is a relative file. You can abbreviate this
option to any number of characters (for example, R or REL).

The file you want to unload, load, or clear must already have been created using either
bldism or the ISAMC subroutine. You can abbreviate any of the above options; for
example, U for UNLOAD or L for LOAD.

Use CLEAR with extreme caution; clearing an ISAM file deletes all existing records.

The RELATIVE specification is valid for LOAD or UNLOAD operations only.

Synergy DBMS
isload

3-64 Synergy Language Tools 9.3 (12/09)

keynum

(optional) The number of the alternate key by which you want to unload the specified
ISAM file. By default, the file is unloaded in primary key order. Specifying the
KEY=keynum option enables you to unload a file by an alternate key.

In our example, we entered the filename cusmas,key=1 to unload our ISAM file by the first
alternate key. The isload utility then displayed a record length of 2000 and 4 keys for our
ISAM file, cusmas.ism.

After you enter a filename and press ENTER, the isload utility displays the maximum length of
records and the number of keys for the specified file. If you selected the clear option, the isload
utility now clears the specified ISAM file and terminates. If you selected the unload or load
option, isload displays the next prompt.

Enter name of sequential file from which to LOAD:

Enter name of sequential file into which to UNLOAD:

Enter the name of the sequential file into which you want to write records during the unload
operation or from which you want to read records during the load operation. The file
specification and corresponding qualifier list can be up to 100 characters long, as follows:

file_spec[, FIXED|COUNTED][, NOLOCK]

file_spec The specification for the sequential file into which you want to unload
records or from which you want to load records. The default extension is
.ddf. (TT: is recognized as the terminal.) File_spec can be up to 100
characters long, including any of the optional qualifiers listed below.

FIXED (optional) Specifies that the sequential file will contain fixed-length
records of the maximum length specified at creation.

COUNTED (optional) Specifies that the sequential file will contain variable-length
records. A counted file is used and recognized only by isload and
fconvert for the purpose of loading and unloading ISAM files.

NOLOCK (optional) Specifies that record locking will not occur. NOLOCK can
only be used when a file is being loaded; it is not valid with the
UNLOAD option.

During unload operations, if the specified output file fills up, isload displays an “Output file is
full” error ($ERR_FILFUL) and prompts you for the name of the continuation file into which
you want to write further output. If you type the end-of-file character at this prompt, isload
terminates without unloading all of the records from the specified ISAM file.

The KEY=keynum option is valid for UNLOAD operations only.

Synergy DBMS
isload

Synergy Language Tools 9.3 (12/09) 3-65

During load operations, if you encounter the end of the specified sequential file, isload
displays the message

End of input file filename

and prompts you for the name of the continuation file from which to continue reading records.
If you type the end-of-file character at this prompt, isload closes the specified ISAM file and
terminates.

In our example, we entered the filename secust to unload our cusmas.ism file to the sequential
file secust.ddf.

What progress reporting interval? Enter a number representing the frequency (in records)
with which you want isload to display the progress of the unload or load operation. Press
ENTER if you don’t want isload to display the progress.

If you enter a number of records at this prompt, the progress notification line displays the time
isload began loading or unloading, the number of records that isload has processed, and the
number of errors that occurred during that portion of the unload or load operation.

In our example, we entered the number 25 at this prompt and isload displayed a progress
notification line every 25 records.

During both load and unload operations, I/O errors might occur. Whenever an error is
encountered, isload displays an error message that identifies the file involved, the record
number, and the error detected. You can then either skip the record that triggered the error or
abort processing. If you abort, isload closes both the ISAM file and the sequential file,
retaining whatever it unloaded or loaded prior to the abort.

In our example, isload didn’t encounter any errors and terminated normally.

By default, the file is loaded from or unloaded to a sequential file. Because ISAM files
allow binary data, however, record terminators and end-of-file characters can be
embedded in records. Therefore, for ISAM files containing records that have binary
data or integer fields, use the optional FIXED or COUNTED options in the sequential
filename specification. (When isload unloads to a counted sequential file, it stores the
count in portable integer form. These counted sequential files are portable between
big-endian and little-endian machines.)

Synergy DBMS
ismvfy

3-66 Synergy Language Tools 9.3 (12/09)

ismvfy – Verify structure of a Revision 1–3 ISAM file

WIN, UNIX
ismvfy [-options] filename[, …]

Arguments
options

One or more of the following options:

a Report if the file recovery with irecovr is possible.

b Display bucket usage statistics. All file types except fixed-length, noncompressed
files have multiple free lists for different record sizes.

c Give approximate compression saving for noncompressed ISAM files. This option is
the default for compressed files.

f Report free list usage, unusable RFA space, data compression, and index statistics.

i Inquire for which index you want to verify.

l Don’t require exclusive access during verification. By default, the file being verified
is opened for exclusive access, and if another process also has the file open, a “File in
use by another user” error ($ERR_FINUSE) is generated.

n Verify the index only. By default, both the index and the data files are verified. This
option is primarily used for gathering statistics.

p Apply patches to the ISAM file. If you specify -p, all other options are ignored
except -v.

r Terminate after finding an error. The default is to resume verification after finding an
error.

v Print key values (verbose mode).

% Display the percentage that has been verified for each key.

filename

The name of the ISAM file(s) whose structure you want to verify. The default extension
is .ism.

The irecovr and ismvfy utilities are still available for users who have not yet converted their
Revision 2 and 3 files to a higher revision, because you cannot use isutl on pre-Revision 4
files. We strongly recommend, however, that you patch files to be Revision 5 and then use
isutl -v, instead of using ismvfy. Isutl is up to 50 times faster on large files and produces a
better index that causes file access to improve.

Synergy DBMS
ismvfy

Synergy Language Tools 9.3 (12/09) 3-67

Discussion
The ismvfy utility verifies several aspects of an ISAM file’s structure. If you experience a power
outage or your system gets rebooted while your applications are running, we suggest that you run
this utility to check the integrity of your ISAM files.

None of the above options are required to check the integrity of your ISAM files. When you run
ismvfy, it either stops at the end of the ISAM file and displays an index summary for each key, or it
finds an error.

If ismvfy encounters an error, it displays an error message. Below is a list of possible error
messages and their explanations. Each of the following errors is preceded by %ISMVFY (for
example, %ISMVFY-E-10-Index too deep).

Be cautious when using the -l option; a file may appear corrupted if another process
updates it during a verify operation. Also be careful when using -n; the result may indicate
that the file is fine when it really isn’t. Both the index and the data files should be verified to
ensure validity.

Error Explanation

Backup data file filename detected An .is2 file was detected. The presence of an .is2 file indicates
that the irecovr process failed, making the .ism and .is1 files
unusable. See page 3-60 for more information.

Cannot open index file or Cannot open
data file

The file was not found.

Data record error Corrupt ISAM data. Control values in the data file are invalid.
Total recovery is questionable.

Data record key mismatch with leaf Corrupt ISAM file. The key found in the data file is not the same
as thekey defined in the index file.

Disjoint leaf Corrupt ISAM file. The index block has an invalid link pointer.

Error in data freelist Corrupt ISAM file. The data freelist kept by the index file is
invalid.

Error in index freelist Corrupt ISAM file. The index freelist is invalid.

File control, record mismatch Corrupt ISAM file. This message indicates a difference between
the number of records known by the file and the number of
records actually found.

Index/data segment size mismatch Corrupt ISAM file. The index points to an invalid data record.

Synergy DBMS
ismvfy

3-68 Synergy Language Tools 9.3 (12/09)

Examples
The following example prompts for each key in our sample ISAM file, cusmas.ism, terminates
verification if an error is encountered, and reports the number of free list options in the file.

ismvfy -irf cusmas

The next example doesn’t specify any of the available options.

ismvfy cusmas

This example sends an index summary like the one shown below to the terminal.

Primary key, 8 blocks (7 leaf), 100 records.

 Index density 51%, leaf 55%, separator 23%

Alternate key #1, 9 blocks (8 leaf), 100 records.

 Index density 46%, leaf 48%, separator 26%

Index pointer out of range Corrupt ISAM file. An index file pointer references a block
outside the boundary of the file.

Index too deep The index file is too big for the ismvfy program. The problem is
probably caused by a corrupt ISAM file.

Invalid block code Corrupt ISAM file. The index tag byte is not 0 or FF.

Invalid first free in separator block Corrupt ISAM file. An index pointer referenced an invalid index
block.

ISAM file is empty No records exist. (This does not indicate a problem.)

Key to deleted record Corrupt ISAM file. A key was found whose data was marked as
deleted, but the entry in the index file was not deleted.

Negative index level Corrupt ISAM file. The index should always be positive.

Read block error Corrupt ISAM file. A bad index pointer was encountered.

Strings out of order Corrupt ISAM file. The keys are not stored in the defined order.

Unexpected null key Corrupt ISAM file. A key value that matches the defined null key
was encountered.

Unknown error code An unexpected error occurred. It could be caused by a corrupt
ISAM file or an internal failure in ismvfy.

Error Explanation

Synergy DBMS
ismvfy

Synergy Language Tools 9.3 (12/09) 3-69

Alternate key #2, 10 blocks, (9 leaf), 100 records.

 Index density 52%, leaf 54%, separator 38%

Alternate key #3, 3 blocks, (2 leaf), 100 records.

 Index density 47%, leaf 69%, separator 2%

Data compression 65%

Synergy DBMS
isutl

3-70 Synergy Language Tools 9.3 (12/09)

isutl – Verify, recover, and optimize Revision 4 and higher ISAM
files

isutl -r [-reload_options] [-other_options] filename[…]

or

isutl -v [-verify_options] [-other_options] filename[…]

or

isutl -f sequential_filename [-fastload_options] [-other_options] filename[…]

or

isutl -p [rev] [-patch_options] filename[…]

or

isutl -i filename

Arguments
-r Reload the index for the specified ISAM file.

reload_options

(optional) One or more of the following options for rebuilding the index:

a Apply suggested database file corrections.

o key# Order database file by the specified key during the reload operation.

p density Pack index blocks to the specified percentage for each defined key
during the reload operation. Note that -p does not change the file density
setting.

qfile=opt[,opt,...] Convert file using the specified options. Valid opt values are compress,
tbyte, static_rfa, page=page_size, and density=density. (See
Discussion below.)

s Convert file to use static RFAs.

-v Verify the specified ISAM file.

verify_options

(optional) One or more of the following options for verifying the ISAM file(s):

Improper use of the -a option can result in loss of data. Read
the Discussion section below before using this option.

Synergy DBMS
isutl

Synergy Language Tools 9.3 (12/09) 3-71

b Report bucket usage statistics and freelist usage.

i Launch the information advisor to provide a full analysis of file
organization and content. (See Discussion below.)

l Don’t lock or require exclusive access to the file. This option allows the
verify to be performed even while the file is in use by another process.

lx Use cooperative locking but don’t require exclusive access.

n Bypass use of the data file and verify only the index during the verify
operation. Do not use this option when file integrity is in question.

z Scan for all problems, rather than stopping at the first detected problem.

-f Fast-load a sequential file into an empty ISAM file. This operation is highly optimized for
speed.

sequential_filename

The name of the sequential file to load into the specified empty ISAM file.

fastload_options

(optional) One or more of the following options for fast-loading a sequential file:

k Identify the sequential file as a Synergy counted file.

p density Pack the index blocks to the specified percentage for each defined key
during the load operation.

-p Patch an existing ISAM file to a higher or lower revision.

rev

(optional) Revision to patch to. The default is 5.

patch_options

(optional) One of the following options:

qfile=[no]network_encrypt Set or unset the network encryption flag on the specified file.

-i Launch the information advisor.

other_options

(optional) One or more of the following options:

c Convert file to compressed data (when used with -r) or report expected
compression savings (when used with -v).

h or ? Display help screen.

Synergy DBMS
isutl

3-72 Synergy Language Tools 9.3 (12/09)

mlevel# Specify a message level that defines the amount of information
displayed during an operation, where level is a value from 0 to 3. (See
Discussion below.)

t directory Specify a temporary file directory.

% Display a running status (0 to 100) to indicate the percentage completed
by the operation.

filename

The name of the ISAM file(s) whose index structure you want to reload or verify, or into which
you want to load a sequential file. The default extension is .ism.

Discussion
The ISAM File Maintenance Utility (isutl) can perform one of five functions:

Rebuild an ISAM file

Verify the integrity of an ISAM file

Quickly load (fast-load) a sequential file into an existing, empty ISAM file

Patch a pre-Revision 4 ISAM file to Revision 5

Launch the information advisor

Rebuilding an ISAM file

Rebuilding an ISAM file (-r) can take several forms: re-indexing only, ordering data with re-index,
converting data with re-index, and recovering data with re-index.

Re-indexing causes index blocks to be packed and arranged adjacent to related index blocks to
enhance ISAM lookup performance. If index density is not defined, the following default packing
percentages are used:

If at least three key entries cannot fit into the space that’s left, the default percentage is reduced to
80% for all page sizes. If more (or less) empty index space is desired, specify the packing density
explicitly with -p or change the density setting for the file with -qfile=density=density. See “ISAM
index density” on page 3-6 for more information about density.

Page size Packing percentage

1024 80%

2048 90%

4096 95%

8192 97%

Synergy DBMS
isutl

Synergy Language Tools 9.3 (12/09) 3-73

In addition, the data file can be ordered by a preferred key to maximize sequential read
performance. As a file grows, the speed of sequential access to a primary key is greatly reduced due
to large file disk seeks. The -o option orders the data in key# order for high-speed sequential file
access of the key specified, making it significantly more efficient. Key# must be a valid key number
defined by the file.

The -c and -s options will convert ISAM data to compressed and/or static RFA respectively. Once
converted, these file attributes cannot be reversed using isutl. (To reverse the attributes, see fconvert
on page 3-50.) Subsequent use of these options on the same file is ignored. If the compressed data
option (-c), data reorganization option (-o key#), or data correction option (-a) is not specified, a
new index file is created without altering the existing data file.

When converting (-c or -s) or ordering (-o) data, all unused RFA space and free space due to record
deletions is reclaimed. To explicitly reclaim this space and reduce data file size, we suggest
ordering the data periodically.

If the index packing density option (-p density) is not specified, the density defined for that key (or
the default density if none is defined) is used.

The -qfile option enables you to set a string of file options in the format -qfile=opt[,opt,...], where
each opt is one of the following:

compress Convert file to compressed data. (This is identical to the -c option.)

tbyte Convert to a terabyte file.

static_rfa Convert file to use static RFAs. (This is identical to the -s option.)

page=page_size Change the file’s index page block size. Valid page_size values are 512,
1024, 2048, 4096, and 8192.

When ordering data (isutl -ro filename), isutl generates a sort temporary file called
filename_is1.257. (For example, if your .is1 file is named armast.ms1, the temporary file is
armast_ms1.257.) If this file is left on your system due to abnormal termination of isutl, do
not remove it. If isutl was in the process of writing data records to the .is1 file when
termination occurred, the .257 file is required to completely restore your data. All other
temporary files created by isutl (having the same filename with the extensions .000 – .256
or .258) are short-lived. Assuming these files are not in use, they can be removed without
consequences. To resume the sort, run isutl -r again.

xfODBC always assumes the primary key is the most optimal key by which to read the data.
Therefore, xfODBC performance is affected if you reorder your data on an alternate key.

Static RFAs for a file may no longer be valid after altering the ISAM data file. The following
reload options alter the data file: -c, -o, or -s.

Synergy DBMS
isutl

3-74 Synergy Language Tools 9.3 (12/09)

density=density Change the file density and pack the file, where density is the density
percentage. (This differs from the -p density option in that it
permanently sets the file density for all keys.)

Rebuilding an ISAM file always corrects existing index errors; however, errors in the data file may
not be completely recoverable. Use of the -a option may be useful in these situations.

Use of this utility on a pre-Revision 4 file generates an error, unless the patch (-p) option is used to
convert the file to Revision 5 first.

Verifying the integrity of an ISAM file

By default, the verify command (-v) uses the fastest optimized methods to assure file integrity. If
isutl detects something that would result in a Synergy data access failure, it generates an error and
stops the verify operation. By using the -z option, a more linear scan is performed and all errors are
displayed in context, which may reveal the entire severity. The -z option, however, can be more
time consuming, especially with very large nonoptimized files. In other words, regardless of how
many problems a file contains, isutl -v stops at the first problem detected and generates an error,
while isutl -vz detects all the problems that it can but might be somewhat slower.

The -l option turns off file locking and does not block file access, but it can result in a false failure
when the file is in use. The -lx option uses cooperative locking and does not require exclusive
access; however, all file operations (except input mode reads on UNIX) are blocked until
verification is complete.

Fast-loading a sequential file

The fast-load command (-f) quickly loads a sequential file or counted file into an empty ISAM file.
When loading an empty ISAM file with isutl -f, benchmark tests indicate performance is from two
to three times faster than irecovr -f and three to five times faster than the isload utility.

Isutl instructs you to use the -a option when necessary. This option causes isutl to recover
as much data as possible, but to do so, isutl must alter the original data file. Once -a is
performed, lost data cannot be recovered, so we highly recommend that you back up the
file before using it. There may also be alternative methods of recovery, such as fconvert or
irecovr. Unless you are prompted to do so, we do not advise using -a. An exception file
may be produced containing the unrecognized data removed from the file. Specifying
multiple filenames is not allowed. Do not automate this process.

TIP
We recommend running without -z first, and then using -z only on files that show problems.

See the fconvert utility for loading ISAM files. You can expect the same performance with
fewer file restrictions.

Synergy DBMS
isutl

Synergy Language Tools 9.3 (12/09) 3-75

Patching an ISAM file to another version

The patch command (-p) quickly patches any Revision 2 or 3 file to Revision 5. (A Revision 5 file
is a Revision 2 or 3 file structure in a Revision 4 format.) Once at Revision 5, the file can be used
with isutl. If you specify rev, isutl will attempt to patch the file to that revision. Currently, only
Revisions 2, 3, and 5 are supported for patching. Use irecovr to convert to other revisions.

When -p is specified with no patch_options, a revision-only patch (to rev or the default revision if
rev is not specified) occurs. When -p is specified with patch_options, a revision patch (if rev was
specified) occurs and then the patch_option is applied. If rev is not specified, the file revision is not
changed and the patch_option is applied.

Launching the information advisor

The information advisor command (-i) displays helpful advice based on file organization and
content. The identified file conditions can range from high-risk issues that may result in file failure
to low-risk, performance-related issues. If the file condition is correctable, the information advisor
will suggest corrective actions and/or ways to enhance performance.

Use isutl -i filename to quickly check static configuration information, or isutl -vi filename to
generate a full analysis based on content.

Isutl -i (or -vi) reports the following static conditions:

Duplicates exceed 80% full on one or more keys. Duplicates that exceed 100% will be
denied with an $ERR_FILFUL error.

Index freelist overflow. Performance during STORE operations may be suffering.

Invalid file organization for pre-7.3.1a versions. The potential for file corruption exists if
you’re using an old Synergy version.

Static RFA: High data segment re-use. This file may benefit from reorganization.

Static RFA: Large number of vectored segments. This file may benefit from reorganization.

Duplicates ordered at the beginning on one or more keys. Isutl performance may suffer.
Consider changing to ATEND unless absolutely necessary.

Index depth exceeds 3 on one or more keys. Increasing PAGE size may improve overall
performance.

A Revision 5 file can only be accessed by Synergy version 7.5 or higher. A file created as
Revision 5 with Revision 4 or greater file attributes cannot be patched to a lower revision.

The conditions reported are not errors. They simply provide helpful information to point out
things that may or may not be otherwise detectable and suggestions that you can choose to
ignore or act upon. Having one or more conditions be displayed for a file does not mean the
file is corrupted.

Synergy DBMS
isutl

3-76 Synergy Language Tools 9.3 (12/09)

Free space exceeds half. The percentage of free space is specified. Reducing file size may
improve performance.

The following conditions are only available with isutl -vi:

One or more keys exhibit excessive blank duplicates. Change to a replicating null key to
improve performance.

Index exhibits a low optimization level. Keyed and sequential file access may not be optimal.

Data exhibits a low optimization level. Sequential file access may not be optimal.

Existing data exhibits some compression benefit. Compressing data will reduce file size and
improve performance.

Static RFA: Vectored records exceed 1%. RFA record access performance may suffer.

Static RFA: Unusable data exceeds percentage. Specifies the percentage and number of data
bytes that are not usable.

Other options

The level# argument to the -m option can have one of the following values:

0 No output is generated. All errors generated are returned in the form of an exit value.

1 Only errors and necessary output is displayed. (default)

2 Process information is displayed, in addition to errors and necessary output.

3 Verbose key information is displayed if this message level is specified with the -v
option. (If -m3 is specified with -r or -f, the message level defaults to -m1.)

To measure the degree of a file’s optimization, specify the -m2 flag on the verify (-v) command. For
each key, a line will be displayed that indicates, as a percentage, the optimization level as well as
the sequential order of the data file. For example:

Primary key, 751406 blocks (728570 leaf), 19416428 records
 Index density 50%, leaf 50%, separator 50%
Optimization: index 44%, data 95%

The index percentage indicates the percentage of on-disk index blocks for the target key that can be
accessed quickly from a previous index block with the least amount of disk overhead. The data
percentage indicates the percentage of data records in a sorted order giving the least amount of disk
overhead when reading sequentially by that key. The effectiveness of these percentages vary

Synergy DBMS
isutl

Synergy Language Tools 9.3 (12/09) 3-77

depending on file size and hardware configuration. They tend to become more significant as the file
size exceeds the available file cache memory on a system. No additional overhead is consumed as a
result of getting this information.

The -t option specifies a directory for all temporary work files files and can be specified with either
the -r or -v command. The directory specification must be a valid path specification or logical that
references a local or network drive. An xfServer directory specification is not supported. The
default location for temporary files is the current directory.

The amount of disk space required for temporary files varies with the operation. In general, you can
assume the following:

When re-indexing only, the total disk space occupied (ISAM file plus temporary files) will not
exceed the original size of the ISAM file (unless the packing density is reduced).

TIP
To get this optimization information quickly and accurately on a large file, you can also
specify the -n verify flag. However, you shouldn’t rely on the verification results, because
only the index is verified.

TIP
Writing temporary files to a secondary disk may improve overall performance.

When processing large ISAM files, make sure sufficient disk space is available for the
temporary work files.

Operation Maximum temporary file size (approximate)

Re-index only (-r) 2 * (size of largest key * #records)

Order data (-ro) 1.2 * size of in-use data

Convert data (-rc or -rs) size of in-use data

Verify (-v) (overall index density * size of index file) + (size of largest key *
#records) or ~ 80% size of index file

Verify linear (-vz) No temporary files used

Patch (-p) No temporary files used

Synergy DBMS
isutl

3-78 Synergy Language Tools 9.3 (12/09)

The -% option can be specified with either the -r or -v command. When specified with -r, the
numbers displayed indicate the percentage of the overall reload operation completed for each file.
When specified with -v, the numbers displayed indicate the percentage of the overall verify
operation completed for each file. When message level 2 (-m2) is also specified, an individual
process percentage as well as a total overall percentage is displayed for each file.

Isutl generates an exit status, which can be especially useful if you’ve used the -m0 option.
Possible exit statuses are as follows:

If you use the -z option on a corrupted file, the exit status reflects the first error only.

When the file is successfully processed, the current date is written to the index control record to
indicate the last recover or verify. This information can be accessed using the ipar utility.

Isutl generates a log file named isutl.log that records its operations and results. Each log file entry
specifies the ISAM filename, the operation performed, the date and time the operation was
performed, the command line options supplied to isutl, the exit status, and the amount of time the
operation took. The log file is created either in the DBLDIR directory or in the TEMP directory on
Windows Vista/2008 and higher. (We recommend always using ISUTLLOG to specify the log file
location on these systems.) The maximum size of the log file defaults to 1 megabyte, unless the
ISLOGMAX environment variable defines a different maximum. To disable logging, set
ISLOGMAX to 0. (See ISUTLLOG and ISLOGMAX in the “Environment Variables” chapter of
Environment Variables and System Options for more information.)

This status Indicates

0 Isutl was successful.

A Synergy DBMS error
number

Isutl failed as a result of the specified error. (See “Synergy DBMS
Errors” on page 5-110 for the message text that maps to each error
number.)

-1 More than one file was specified on the command line, and at least one
file failure occurred.

Isutl does not support loading records with binary data from sequential files (excluding
counted files). Attempting to do so can cause some records to split into two records in the
ISAM file. To load a relative file that contains binary data into an ISAM file, use the fconvert
utility.

Synergy DBMS
status

Synergy Language Tools 9.3 (12/09) 3-79

status – Report the status of an ISAM file

The status utility generates a report that describes the organizational characteristics of a specified
ISAM file and indicates how many records are currently in the file.

To run status,

To find out what the valid input is at any prompt, enter a question mark character (?). To terminate
status at any time, type the end-of-file character for your operating system.

VMS
The status utility always returns 90,000,000 as the number of records in an RMS ISAM file, as it
relies on the ISSTS subroutine. There is no way to find this information on an RMS file unless you
read sequentially through the file.

 Sample status
The following example is run on UNIX.

Enter ISAM file name: cusmas

File to write status to: cusmas

Enter ISAM file name: ^D

… normal termination of STATUS

In our example, status writes the following information to a sequential file named cusmas.ddf:

The record length for this file is 2000 characters.
There are 5 keys.
There are currently 100 records in this ISAM file.

Primary key is name
The key is 30 characters long, segmented and is ordered in descending
sequence with no duplicates allowed.
This key may not be modified by WRITE.
 Segment #1 starts at 16 with length 15.
 Segment #2 starts at 1 with length 15.

On Enter this at the command line

Windows and UNIX dbr DBLDIR:status

OpenVMS run DBLDIR:status

Synergy DBMS
status

3-80 Synergy Language Tools 9.3 (12/09)

1st alternate is company
The key is 30 characters long, starting at position 31 within the record,
and is ordered in ascending sequence with duplicates allowed.
This key may not be modified by WRITE.

2nd alternate is address
The key is 40 characters long, segmented and is ordered in ascending
sequence with duplicates allowed.
This key may be modified by WRITE.
 Segment #1 starts at 61 with length 20.
 Segment #2 starts at 51 with length 10.
 Segment #3 starts at 91 with length 10.

3rd alternate is act_code
The key is 5 characters long, starting at position 101 within the record,
and is ordered in ascending sequence with duplicates allowed.
This key may not be modified by WRITE.

4th alternate is cust_number
The key is 10 characters long, starting at position 120 within the record,
and is ordered in ascending sequence with no duplicates allowed.
This key may not be modified by WRITE.

Running the status utility
To illustrate how you use status, let’s assume we want to report the status of our ISAM file,
cusmas.ism. The status utility prompts us as follows for the information needed to retrieve the
status of our ISAM file. (The example to which we refer throughout this section is found on
page 3-79.)

Enter ISAM file name: Enter the name of the ISAM file for which you want to report the
current status. The default extension is .ism.

In our example, we entered the filename cusmas to report the current status of our ISAM file,
cusmas.ism.

File to write status to: Enter the name of the output file to which you want to write the status
report of the specified ISAM file. The default extension is .ddf. If the specified file already
exists, status generates a “Cannot supersede existing file” error ($ERR_REPLAC) and
prompts you for another output file.

If you press ENTER at this prompt without specifying a filename, the status report is sent to the
terminal.

The status utility closes each output file at the conclusion of the status operation. After
sending the status report to the specified output file or terminal, status repeats the first prompt.
If you want to terminate status operations, type the end-of-file character.

In our example, we entered the filename cusmas to send the status report to a sequential file
named, cusmas.ddf, and then typed the end-of-file character to terminate the status utility.

Synergy DBMS
ISAM Definition Language

Synergy Language Tools 9.3 (12/09) 3-81

ISAM Definition Language
The bldism utility enables you to create an ISAM file outside your application by getting
information from keyboard input, from a parameter file (output from the ipar utility), or from an
ISAM definition language (XDL) keyword file. This section describes the ISAM definition
language file and the keywords required to create one.

The following rules apply to XDL keyword files:

The file must contain valid XDL keywords followed by their assigned values. (See “XDL
keywords” below.)

The file may contain comments, which must begin with an exclamation point. The rest of the
line following an exclamation point is ignored. Blank lines are also allowed.

An XDL description must contain one FILE and one SIZE keyword. In addition, each key
definition must contain exactly one LENGTH and one START keyword.

The file attribute section of the definition may not contain more than one FILE, NAME,
KEYS, ADDRESSING, PAGE_SIZE, RECORD, SIZE, COMPRESS_DATA, FORMAT, and
STATIC_RFA keyword.

A keyword and its value must be separated from other keywords and their assigned values by
either a carriage return or a semicolon.

All keywords and values may be abbreviated. However, they must not be abbreviated to the
point to where they cannot be distinguished from other keywords and values. For example, you
cannot abbreviate DENSITY to “D” because it cannot be distinguished from the
DUPLICATES keyword. Abbreviating DENSITY to “DE,” however, is valid. Similarly, TYPE
INTEGER can’t be abbreviated as “TYPE I,” because it cannot be distinguished from the FDL
keyword value TYPE INT2. We suggest that you use the full keywords and values for
readability.

XDL keywords
An XDL file must be composed of the following keywords and their values according to the rules
listed above:

FILE

Indicates the beginning of the XDL description. No value should be supplied.

NAME filename

The name of the ISAM file you want to create.

filename

This value is ignored when the XDL description comes from the OPEN statement. Instead, the
filename in the OPEN statement is used. However, this value is used when the XDL
description comes from bldism. The default extension is .ism.

Synergy DBMS
ISAM Definition Language

3-82 Synergy Language Tools 9.3 (12/09)

ADDRESSING file_size

(optional) The address length of the ISAM file.

file_size

Possible values are

32 32-bit signed file address for a maximum individual file size of 2Gb (default)

40 40-bit file address for a maximum individual file size of 1Tb

PAGE_SIZE page_size

(optional) The size of the index blocks.

page_size

The size, in bytes, of the index blocks. Possible values are

512
1024
2048
4096
8192

The default is 1024.

KEYS num_keys

(optional) The number of keys in the ISAM file.

num_keys

You can specify between 1 and 255 keys. If not specified, the number of keys is calculated by
counting the number of supplied key definitions.

DENSITY file_density

(optional) The packing density of the index blocks. If specified, the indexes are packed to the
specified file_density when possible.

file_density

The minimum value is 50. The maximum value is 100. The default value when DENSITY is
not specified is similar to the value of 50.

The packing density for all keys defaults to this file_density value unless a different density
value is specified on individual keys.

RECORD

Indicates the beginning of the record definition. No value should be supplied.

Synergy DBMS
ISAM Definition Language

Synergy Language Tools 9.3 (12/09) 3-83

SIZE rec_size

The size of the data records.

rec_size

Consult the table on page 3-16 for the minimum and maximum possible values.

FORMAT rec_format

(optional) Specifies the format of the records.

rec_format

Possible values are

fixed The records are of fixed length. (default)

variable The records are of variable length.

COMPRESS_DATA yes|no

(optional) Specifies whether the record data will be compressed. The default is no.

STATIC_RFA yes|no

(optional) Specifies whether the records have constant RFAs over the life of the specified
ISAM file. The default is no.

PORT_INT pos:len

(optional) Specify nonkey integer data within a record. One or more PORT_INT keywords and
their assigned values may be specified.

pos

The starting position of the nonkey integer data within the record.

len

The length of the nonkey integer data. Possible values are 1, 2, 4, and 8. The length may not
cause the data to overlap any other nonkey integer data sections or keys.

KEY n

Indicates the beginning of a key definition.

n

The key number. This number must start at 0, and the following key numbers must be
sequential.

Synergy DBMS
ISAM Definition Language

3-84 Synergy Language Tools 9.3 (12/09)

START pos_1[:pos_ n]

The position where the key begins. You can specify up to eight positions, separated by colons.
You must specify a start position for each segment defined.

pos_1

The starting position of the key or the first segment of the key.

pos_n

(optional) The starting position of additional key segments, if any exist.

LENGTH len_1[:len_ n]

The length of the key. You can specify up to eight lengths, separated by colons. You must
specify a length for each segment defined.

len_1

The length of the key or the first segment of the key. The key can be up to 254 characters long
on Windows and UNIX (251 if the key allows duplicates or 250 if the key allows duplicates
and this is a terabyte file), or 255 characters on OpenVMS.

len_n

(optional) The length of additional key segments, if any exist.

TYPE type_1[:type_n]

The type of the key. You can specify up to eight types, separated by colons. You may specify
only type_1 if all segments are the same type; otherwise, you must specify a type for each
segment defined.

type_1

The type of the key or the first segment of the key. Possible values are

alpha Alphanumeric type (default)

integer Native integer type

decimal Zoned decimal type

unsigned Native unsigned integer type

nocase Case-insensitive alphanumeric type

type_n

(optional) The type of additional key segments, if any exist.

Synergy DBMS
ISAM Definition Language

Synergy Language Tools 9.3 (12/09) 3-85

ORDER order_1[:order_n]

(optional) The sorting order of the key data. You can specify up to eight orders, separated by
colons. You may specify only order_1 if all segments have the same order; otherwise, you
must specify an order for each segment defined.

order_1

The sorting order of the key or the first segment of the key. Possible values are

ascending The sorting order is ascending. (default)

descending The sorting order is descending.

order_n

(optional) The sorting order of additional key segments, if any exist.

NAME key_name

(optional) The named key of reference for Synergy ISAM.

key_name

The name of the key. If the name contains spaces, it must be enclosed in quotation marks.

DUPLICATES yes|no

(optional) Specifies whether duplicate keys are allowed. The default is no.

MODIFIABLE yes|no

(optional) Specifies whether the key is modifiable. This is not allowed on the primary key. The
default is no.

DUPLICATE_ORDER dup_ord

(optional) Specifies whether records that contain duplicate keys will appear at the end or at the
beginning of a list of matching records.

dup_ord

Possible values are

fifo Newer records appear at the end of the list. (default)

lifo Newer records appear at the beginning of the list.

Synergy DBMS
ISAM Definition Language

3-86 Synergy Language Tools 9.3 (12/09)

NULL null_type

(optional) Specifies that the key is a null key. In this context, a null key means that when a
record is stored and the specified key matches the null key value, no entry is placed in the
index, thus saving file space, I/O, and processing. You can specify null keys on alternate keys
only, not on a primary key.

null_type

Possible values are

replicate Specifies that null_val is a single character and must match each byte of
the specified key. Numeric key segments always match on 0 (binary 0)
for unsigned and integer and “0” (decimal zero) for decimal.

noreplicate Specifies that null_val is a string that must match the key, from the
beginning of the key and for the length of the string. For numeric keys,
the string must represent a numeric value.

short Specifies that the key won’t be stored if the record does not include the
entire key on a STORE or WRITE. The file must be defined to have
variable-length records.

VALUE_NULL null_val

(optional) The null value for a null key.

null_val

The null value can be specified as either a single character or a string. If the null is replicating,
the value refers to alpha segments only. Numeric key segments are always defined as their null
or zero value and cannot be changed. If the key is specified as a nonreplicating null key, the
allowable value depends on the type of the key:

If the key is alphanumeric, an alpha string must be specified for the null value. If that key
is segmented, the length of the alpha string must not cause the value to overlap a numeric
segment.

If the key is numeric and noreplicate was specified, a string that represents a numeric
value is specified for the null value. The key may not be segmented. The allowable
numeric values depend on the type and length of the key.

DENSITY key_density

(optional) The index packing density for the current key.

key_density

The minimum value is 50. The maximum value is 100. The default value is similar to the value
of 50. This key_density value overrides the file_density value (for this key only) if specified.

NETWORK_ENCRYPT yes|no

Specifies whether the network encryption flag is enabled for this file. The default is no.

Synergy DBMS
ISAM Definition Language

Synergy Language Tools 9.3 (12/09) 3-87

Examples
! This is a sample file containing a valid XDL description

FILE
 NAME sample
 ADDRESSING 40
 PAGE_SIZE 512
 DENSITY 75
 KEYS 2

RECORD
 SIZE 100
 FORMAT fixed
 COMPRESS_DATA yes
 STATIC_RFA yes
 PORT_INT 100:4
 PORT_INT 104:4

KEY0
 START 1:16
 LENGTH 15:4
 TYPE alpha:integer
 ORDER ascending:descending
 NAME "Customer"
 DUPLICATES no
 MODIFIABLE no

KEY1
 START 31
 LENGTH 30
 TYPE nocase
 NAME "Name"
 DUPLICATES yes
 DUPLICATE_ORDER fifo
 MODIFIABLE no
 DENSITY 80

Here is the same XDL description in a string format appropriate for using in the OPEN statement.
Note that the keywords are separated by semicolons:

FILE; NAME sample, ADDRESSING 40; PAGE_SIZE 512; DENSITY 75; KEYS 2;
RECORD; SIZE 100; FORMAT fixed; COMPRESS_DATA yes; STATIC_RFA yes;
PORT_INT 100:4; PORT_INT 104:4; KEY0; START 1:16; LENGTH 15:15; TYPE
alpha:integer; ORDER ascending:descending; NAME Customer; DUPLICATES no;
MODIFIABLE no; KEY1; START 31; LENGTH 30; TYPE nocase; NAME Name;
DUPLICATES yes; DUPLICATE_ORDER fifo; MODIFIABLE no; DENSITY 80

Synergy DBMS
ISAM Definition Language

3-88 Synergy Language Tools 9.3 (12/09)

Correspondence to FDL keywords
The following table lists the XDL keywords and their corresponding FDL keywords.

Synergy ISAM (Windows and UNIX) recognizes both XDL and FDL forms. OpenVMS,
however, does not recognize the XDL forms.

XDL keyword FDL keyword

FILE FILE

NAME filename NAME filename

ADDRESSING file_size —

PAGE_SIZE page_size —

KEYS num_keys —

DENSITY file_density —

RECORD RECORD

SIZE rec_size SIZE rec_size

FORMAT rec_format FORMAT rec_format

COMPRESS_DATA yes|no DATA_RECORD_COMPRESSION yes|no

STATIC_RFA yes|no —

PORT_INT pos:len —

KEY key_num KEY key_num

START pos_1[:pos_n] POSITION fdl_pos(unsegmented)
or
SEG1_POSITION fdl_pos(segmented)
SEGn_POSITION fdl_pos
where fdl_pos is the starting position of the key or segment.

LENGTH len_1[:len_ n] LENGTH fdl_len(unsegmented)
or
SEG1_LENGTH fdl_len(segmented)
SEGn_LENGTH fdl_len
where fdl_len is the length of the key or segment.

Synergy DBMS
ISAM Definition Language

Synergy Language Tools 9.3 (12/09) 3-89

TYPE ALPHA
ORDER ASCENDING
TYPE ALPHA
ORDER DESCENDING
TYPE INTEGER
ORDER ASCENDING
LENGTH 2
LENGTH 4
LENGTH 8
TYPE INTEGER
ORDER DESCENDING
LENGTH 2
LENGTH 4
LENGTH 8
TYPE UNSIGNED
ORDER ASCENDING
LENGTH 2
LENGTH 4
LENGTH 8
TYPE UNSIGNED
ORDER DESCENDING
LENGTH 2
LENGTH 4
LENGTH 8
(There are no equivalents for the zoned
decimal and case-insensitive alphanumeric
types or multiple segment types.)

TYPE STRING

TYPE DSTRING

TYPE INT2
TYPE INT4
TYPE INT8

TYPE DINT2
TYPE DINT4
TYPE DINT8

TYPE BIN2
TYPE BIN4
TYPE BIN8

TYPE DBIN2
TYPE DBIN4
TYPE DBIN8

ORDER order_1[:order_n] —

NAME key_name NAME key_name

DUPLICATES yes|no DUPLICATES yes|no

MODIFIABLE yes|no CHANGES yes|no

DUPLICATE_ORDER dup_ord —

NULL null_type NULL_KEY yes|no
yes The key is null. The null type defaults to replicate.
no The key is not a null key.

XDL keyword FDL keyword

Synergy DBMS
ISAM Definition Language

3-90 Synergy Language Tools 9.3 (12/09)

XDL syntax checker utility
The xdlchk utility flags all unrecognized keywords. It was created because XDL processing must
ignore any keywords it doesn’t recognize, because they may be FDL keywords that aren’t part of
the XDL definition. However, if an unrecognized keyword is actually a misspelled XDL keyword,
the ISAM file may be created incorrectly. After you run xdlchk, it is your responsibility to
distinguish between valid FDL keywords and misspelled XDL keywords.

The xdlchk utility scans through the specified file and checks each keyword against the keywords
in the XDL definition. It has the syntax

xdlchk [-f] filename

Xdlchk runs in one of two modes, depending on whether or not the -f option is specified:

VALUE_NULL null_val NULL_VALUE null_val

DENSITY key_density INDEX_FILL key_density

NETWORK_ENCRYPT yes|no —

XDL keyword FDL keyword

If -f is xdlchk verifies that

Not
specified
(default)

The file is a valid XDL file. Any keyword that is not a valid XDL keyword (including keywords
in the defined subset of FDL keywords) generates a warning. You can use this mode to verify
that any unrecognized keywords are actually FDL keywords that are not in the XDL definition.

Specified An FDL file is a valid XDL file. This mode verifies only FDL keywords that are part of the XDL
definition. It generates an error if it finds any other XDL keyword. It ignores any keyword it
doesn’t recognize, assuming that it is an FDL keyword that is not part of the XDL definition.
You can use this mode to verify that an existing FDL file will pass through the XDL
processing without any errors.
Note: This mode only checks that you are not using XDL keywords; it does not validate an
FDL file! If you are going to share FDL files between OpenVMS RMS and Synergy ISAM, we
suggest that you first create the FDL file for use with RMS.

Synergy DBMS
Moving Database Files to Other Systems

Synergy Language Tools 9.3 (12/09) 3-91

Moving Database Files to Other Systems
Some of the sections below refer to endian type. If you do not know what endian type your machine
is, see “Big-endian and little-endian” in the “Synergy/DE on UNIX: The Basics” chapter of your
Professional Series Portability Guide.

Moving ISAM database files to an ISAM machine

Simply transfer the files between machines (in binary mode, if you’re using FTP).

If the machines have different endian types, you can only transfer files in this manner if your
records do not contain integer data. If your records contain integer data, see “Using integer data in
your records and moving between endian machines” below.

Moving files from RMS to ISAM

1. Unload your files to sequential files using isload or CONVERT/FDL.

2. Transfer them to the other machine.

3. Reload the file on the target machine using fconvert (on Windows and UNIX) or isload or
CONVERT/FDL (on OpenVMS).

Do not use FTP in binary mode on the sequential output files.

Using integer data in your records and moving from ISAM little endian to or
from RMS

1. Unload and then reload your files using fconvert (on Windows and UNIX) or isload or
CONVERT/FDL (on OpenVMS) and counted format on both your source and target machines.

2. Transfer the counted output file in binary mode.

Using integer data in your records and moving between endian machines

You must write the conversion routines yourself. See %CNV_IP and %CNV_PI in the
“System-Supplied Subroutines, Functions, and Classes” chapter of the Synergy Language
Reference Manual for subroutines that enable you to convert integer data to portable form and vice
versa.

4-1

4
General Utilities

This chapter describes the general utilities available for use with Synergy Language. Synergy
DBMS utilities are described in chapter 3, “Synergy DBMS.”

The Synergy Control Panel 4-3

Describes how to use the Synergy Control Panel to translate or modify message text.

The Synergy Language Profiler 4-12

Explains how to use the Synergy Language Profiler to profile routines in the files being compiled.

The Synckini Utility 4-15

Describes the synckini utility, which reports on the location of the synergy.ini and synuser.ini files
that will be used.

The Servstat Program 4-16

Describes the servstat program, which monitors the OpenVMS Synergy/DE xfServer.

The Monitor Utility for Windows 4-22

Describes the Windows Synergy/DE xfServer monitor feature.

The Monitor Utility for UNIX 4-24

Describes the UNIX Synergy/DE xfServer monitor feature.

The ActiveX Diagnostic Utility 4-32

Discusses the ActiveX Diagnostic utility, which tests ActiveX controls to see if they load properly.

The Synbackup Utility 4-35

Describes the synbackup utility, which provides a way for all cooperating processes to freeze
update I/O while Synergy databases are being backed up.

The Synergy Prototype Utility 4-39

Discusses the Synergy Prototype utility, which exports prototypes for classes and their member
subroutines, functions, properties, structures, and nested classes to header files.

General Utilities

4-2 Synergy Language Tools 9.3 (12/09)

The Variable Usage Utility 4-44

Describes the Variable Usage utility, which identifies unused variables or variables used by a local
routine.

The Gennet Utility 4-46

Describes the gennet utility, which generates Synergy classes that wrap the classes defined in a
.NET assembly.

The dbl2xml Utility 4-51

Discusses the dbl2xml utility, which processes Synergy Language source files that include
language attributes, parameter modifiers, and comments, and outputs an XML file containing
interfaces and methods.

General Utilities
The Synergy Control Panel

Synergy Language Tools 9.3 (12/09) 4-3

The Synergy Control Panel

The Synergy Control Panel (synctl) enables you to translate or otherwise modify message text in
Synergy/DE products. All Synergy/DE error and screen messages (including the information line
and application titles) reside in the file syntxt.ism. The only error message that is hard-coded into
the Synergy/DE system is the “No message file found” message, for obvious reasons.

You can modify messages in one of three ways:

Editing the messages interactively using the Synergy Control Panel’s “Interactive mode”

Unloading the messages to an ASCII file and then reloading them to an ISAM file

Using the Synergy Control Panel’s command line interface

Before you begin
Before using the Synergy Control Panel to change Synergy messages, make a copy of the
syntxt.ism and syntxt.is1 files.

We also recommend that you print a list of the messages in syntxt.ism before you translate or
modify anything, so you’ll have a reference of what you’re changing. To do so,

1. Follow steps 1 through 3 in “Making major changes: Unloading messages to an ASCII file” on
page 4-6.

2. Print the file that is created.

If you want to use syntxt.ism from a directory other than DBLDIR, set the SYNTXT environment
variable to the desired directory.

When customizing error and informational messages:

Do not remove any Synergy messages.

Be careful when changing messages that contain “%” followed by one or two
characters (for example, c, d, ld, s, or u). These specifiers are replaced when the
message is generated. If you plan to change any of these messages, do not remove
the “%” specifier. If there is more than one specifier, the order of the specifiers is fixed
and cannot be changed.

General Utilities
The Synergy Control Panel

4-4 Synergy Language Tools 9.3 (12/09)

Making minor changes: Editing messages interactively
For small changes, you can use the Modify messages function of the Synergy Control Panel to
interactively modify the text message file syntxt.ism. Run Synergy Control Panel as follows:

To modify one message at a time,

1. Print a list of messages as instructed in “Before you begin” on page 4-3.

2. From the Text messages menu, select Interactive mode.

3. At the Message Library prompt, enter the name of your text message library. (Synergy/DE
messages are in DBLDIR:syntxt, which is the default.)

4. From the Interactive menu, select Modify messages. (You can also add a new message or delete a
message by selecting Insert messages or Delete messages.)

A dialog box is displayed. See figure 4-1.

On Do this

Windows From your SynergyDE folder in the Start menu, select Utilities > Synergy Control Panel or
go to a command prompt and type dbr DBLDIR:synctl

UNIX Type dbr DBLDIR:synctl

OpenVMS Type run DBLDIR:synctl

Figure 4-1. Modifying text messages.

Enter the name of the facility in which
you want to change messages

Enter the number of the message
you want to change

Type your changes and press ENTER

Enter the message’s mnemonic

General Utilities
The Synergy Control Panel

Synergy Language Tools 9.3 (12/09) 4-5

5. Display the message you want to change in any of the following ways:

Use the Find, Last, Prev, and Next entries in the Search menu.

Enter the facility name in the Facility Name field and press the Find shortcut (CTRL+F). Press
F3 or F2 to page forwards or backwards through the messages until you find the one you want
to change. Synergy/DE messages have the following facility codes:

Look up the number of the message you want to modify on your printout of messages. Enter
the message facility in the Facility Name field and its number in the Message Number field,
and press CTRL+F.

Look up the mnemonic of the message you want to modify on your printout of messages. Enter
the name of the message facility in the Facility Name field, 0 in the Message Number field, and
the desired search string in the Mnemonic field. Then press CTRL+F.

6. Make your changes in the message that’s displayed in the Message Text field, and press ENTER.

Application Facility

UI Toolkit DTK

Proto PRO

Composer CPS

Repository RPS

ReportWriter RPT

Report Definition Language RDL

Compiler CMP

Linker LNK

Librarian LBR

Runtime RNT

General Utilities
The Synergy Control Panel

4-6 Synergy Language Tools 9.3 (12/09)

Making major changes: Unloading messages to an ASCII file
If you are making major changes or translating text into another language, you can make your
changes by unloading syntxt.ism to a sequential ASCII file, modifying the file, and then reloading
it to an ISAM file.

1. In Synergy Control Panel, select Unload messages from the Text messages menu.

2. From the Unloads menu, select Sequential file. (If you’re unloading Synergy Language messages—
Compiler, Linker, Librarian, or Runtime—select C header file from the Unloads menu.)

A dialog box is displayed. See figure 4-2.

3. Enter the desired information in each input field and press ENTER to unload the messages.

4. Using your favorite text editor (for example, Wordpad on Windows), open the data file that’s
created and modify the messages you want changed. Make sure you save the file as a text file.

5. In Synergy Control Panel, select Remove messages from the Text messages menu to clear messages
from the syntxt.ism file.

6. Enter the desired information in each input field in the displayed dialog box, and press ENTER to
remove the messages.

Don’t ever modify information in the first 18 bytes of the record.

Figure 4-2. Unloading messages.

Enter the name of the text message
library in which the messages are stored.
The default extension is .ddf for a
sequential file or .h for a C header file

Enter the name of the
sequential data file to
unload the messages to

Select whether you want to
specify a particular facility
(as opposed to all facilities)

Enter the name of the
facility you want to select

General Utilities
The Synergy Control Panel

Synergy Language Tools 9.3 (12/09) 4-7

7. To load syntxt.ism from your modified sequential ASCII file, select Load messages from the Text
messages menu.

8. From the Loads menu, select Sequential file.

9. Enter the desired information in each input field in the displayed dialog box, and press ENTER to
load the messages.

Creating your own text message files
If you want to create new messages, you can either add your messages to syntxt.ism or you can
create a new message library. To create and use your own text message library,

1. In Synergy Control Panel, select Create new library from the Text messages menu.

2. At the Message Library prompt, enter the name of the library file you’d like to create, and press
ENTER. The default extension is .ism.

3. Add messages to your new library either by inserting them interactively using the Interactive mode
and Insert messages commands or by loading an existing sequential file using the Load messages
command.

4. Generate your message definitions to a definition file by selecting Generate defines from the Text
messages menu.

A dialog box is displayed. See figure 4-3.

5. .INCLUDE the definition file in your application.

You can use the U_GETTXT subroutine to retrieve lines of text from the text message library. For
the subroutine syntax, see U_GETTXT in the “Utility Routines” chapter of the UI Toolkit
Reference Manual.

Your distribution includes the dtktxt.ddf, protxt.ddf, wdtxt.ddf, rpstxt.ddf, rpttxt.ddf, and
rdltxt.ddf files, which contain the unloaded Toolkit, Proto, Repository, ReportWriter, and
Report Definition Language text messages, respectively. If your syntxt.ism file becomes
corrupted, follow step 4 using these .ddf files as your sequential input files.

General Utilities
The Synergy Control Panel

4-8 Synergy Language Tools 9.3 (12/09)

Modifying messages at the command line
You can modify messages at the command line without invoking the Synergy Control Panel’s menu
interface by running synctl and specifying one or more options. For example, on Windows and
UNIX, you’d enter

dbr DBLDIR:synctl [option …]

VMS
On version 6.1 and above OpenVMS systems, you should add DBLDIR: to your DCL$PATH
search list logical, which is analogous to UNIX’s PATH. On pre–version 6.1 OpenVMS systems,
you must define the symbol

synctl:==$DBLDIR:synctl.exe

before running synctl as follows:

synctl [option …]

Figure 4-3. Generating definitions to an include file.

Enter the name of your
message library file. The
default extension is .ism

Enter the name of the
include file you want to
generate. The default
extensions are .def for
Synergy Language definition
files, .ddf for C definition
files, and .msg for OpenVMS
message files

Select whether you
want to generate
definitions from a
particular facility Enter a string that will be appended to

the beginning of the message mnemonic
in the definition statements

Enter the name of the facility
whose definitions you want to
generate (see page 4-5)

Select the desired
definition file format

General Utilities
The Synergy Control Panel

Synergy Language Tools 9.3 (12/09) 4-9

Arguments
option

(optional) One or more of the following command line options:

-? Display a help screen of valid command line options.

-a file Append unloaded messages or generated definitions to the end of an
existing sequential or C header file, where file is the name of the
existing output file. If specified, this option must precede the
specification of the output file.

-c library Create a message library, where library is the name of the library you
want to create.

-d library [-f facility]

Delete records in a message library, where library is the name of the
library from which you are deleting records and facility is an optional
code for the category of messages you are deleting.

-l library seq_file [-f facility]

Load the message library from a sequential file, where library is the
name of the library to which you are loading messages, seq_file is the
name of the sequential file from which the messages are being loaded,
and facility is an optional code for the category of messages you are
modifying.

-l library -h header_file [-f facility]

Load the message library from a C header file, where library is the name
of the library to which you are loading messages, header_file is the
name of the C header file from which messages are being loaded, and
facility is an optional code for the category of messages you are
modifying.

-u library seq_file [-f facility]

Unload messages from a library to a sequential file, here library is the
name of the library from which you are unloading messages, seq_file is
the name of the sequential file to which you are unloading messages,
and facility is an optional code for the category of messages you are
modifying.

General Utilities
The Synergy Control Panel

4-10 Synergy Language Tools 9.3 (12/09)

-u library -h header_file [-f facility]

Unload messages from a library to a C header file, where library is the
name of the library from which you are unloading messages, header_file
is the name of the C language header file to which you are unloading
messages, and facility is an optional code for the category of messages
you are modifying.

-g library definition_file [-f facility] [-p prefix]

Generate a Synergy Language definition file, where library is the name
of the library from which the message definitions are being extracted,
definition_file is the name of the Synergy Language definition file you
are generating, facility is an optional code for the category of messages
you are modifying, and prefix is an optional prefix for the message
mnemonic in the definition file.

-g library -h header_file [-f facility] [-p prefix]

Generate a C header file, where library is the name of the library from
which messages are being extracted, header_file is the name of the C
header file you are generating, facility is an optional code for the
category of messages you are modifying, and prefix is an optional prefix
for the message mnemonic in the header file.

Discussion
The default filename extensions for the different types of files specified above are as follows:

.ism Message libraries

.ddf Sequential files

.h C header files

.def Synergy Language definition files

The facility names for Synergy messages are listed in a table on page 4-5.

General Utilities
The Synergy Control Panel

Synergy Language Tools 9.3 (12/09) 4-11

VMS
Synergy Language does not use the Control Panel directly, and the syntxt.ism file distributed with
Synergy Language does not have the linker and librarian errors loaded into it. As a result, when
customizing those messages on OpenVMS, you must perform a few extra steps before your
changes are reflected. Enter the following at the command line:

$ synctl:==$dbldir:synctl.exe
$ synctl -g all_errors.msg -v DBLDIR:syntxt.ism
$ message/nosymbols/obj=all_errors.obj all_errors.msg
$ link/shareable=sys$message:dblmf.exe all_errors.obj
$ install replace sys$message:dblmf/open/header/share

Examples
The following example unloads the runtime messages from the Synergy message library,
syntxt.ism, into a sequential file named mymsg.ddf.

dbr synctl -u DBLDIR:syntxt mymsg -f RNT

The next example creates a message library named mytxt.ism, loads it with messages from the
sequential file mytxt.ddf, and generates the definition file mymsg.def. It specifies the facility DTK
and the prefix DTK_.

dbr synctl -c mytxt -l mytxt mytxt -g mytxt mymsg -f DTK -p DTK_

When combining operations as in this example, all the arguments for each option must be
respecified, or the default values are used. By default, all facilities are used, and no prefix is used.

General Utilities
The Synergy Language Profiler

4-12 Synergy Language Tools 9.3 (12/09)

The Synergy Language Profiler

By providing profiling information about the programs you have created, the Synergy Language
Profiler helps you to determine where and how you can best optimize them. A profiled routine
counts the CPU time it uses (in ticks), including any system calls (for example, XCALL ASCII),
and it counts the number of times the routine is XCALLed. It also shows I/O on Windows and both
I/O and page faults on OpenVMS.

Depending on which system options you’ve set, profiling can also include any Synergy Language
subroutines that are XCALLed by the current routine. In the latter case, the total CPU time for a
program can be counted many times, and the total CPU time is the time taken by the root module,
rather than the sum of all the modules.

On UNIX and OpenVMS, the profiler calculates accumulated CPU time. On Windows, you have a
choice of (low-granularity) accumulated CPU time or (high-granularity) elapsed CPU time.

To profile your routines,

1. If you are only profiling specific routines (rather than all routines), compile those routines using the
profiling compiler option (-u on Windows and UNIX or /profile on OpenVMS).

2. Compile.

3. Decode the profile.dat or lines.dat file that was created to get the profile results.

Enabling profiling
You can enable profiling in one of two ways.

To enable profiling for all routines, set system option #42.

or

To enable profiling for specific routines, set one of the following system options and specify
the profiling compiler option (-u on Windows and UNIX or /profile on OpenVMS) when you
compile your programs:

To profile Use this option

The current routine if the profiling compiler option is specified #40

The current routine and all routines XCALLed by the current routine if the
profiling compiler option is specified

#41

Synergy Language programs at the line level. (Note that you cannot specify
a list of routines to exclude when you use this option.)

#52

General Utilities
The Synergy Language Profiler

Synergy Language Tools 9.3 (12/09) 4-13

Running a program that was compiled with profiling enabled outputs a file called profile.dat (or
lines.dat if system option #52 is set). This file is the data file that is used to get the profile. (See
“Decoding the profile.dat or lines.dat file” below.) On OpenVMS, this file is written to
SYS$SCRATCH:. On other systems, it is written to the current directory.

Decoding the profile.dat or lines.dat file
Depending on which system option was set when you compiled, either profile.dat or lines.dat was
created.

To decode the profile.dat file, enter

dbr DBLDIR:profile [-x exclusion_file]

The profile program interprets profile.dat and outputs the results to a file called profile.lst. When
you run profile, you can specify an exclusion file that contains a list of routines to exclude from the
profile output. The routine names listed in this text file can be on one or more lines and must be
separated by commas. (Although the exclusion file option is available on all platforms, it provides
the greatest benefit on Windows, due to the granularity of the measurements.) If the -x option is not
specified, the profiler uses the default exclusion file, tkexclude.txt, which is distributed with
UI Toolkit in the directory pointed to by the WND environment variable. This file is provided
because when elapsed CPU time is profiled on Windows, Toolkit input routines such as
I_INPUT_P can consume a large amount of time. Excluding the Toolkit input routines enables you
to get a more accurate idea of how much CPU time is actually being used.

To decode the lines.dat file, enter

dbr DBLDIR:profline

The profline program interprets lines.dat and outputs the results to a file called lines.lst, which is
sorted according to which statements are used most often.

General Utilities
The Synergy Language Profiler

4-14 Synergy Language Tools 9.3 (12/09)

Keep in mind…
Routine profiling is only as accurate as the CPU times posted to your process by the operating
system. Especially on faster systems, misleading results can be generated. On a fast CPU, 10
millisecond ticks encompass a lot of Synergy Language instructions.

VMS
The DIO count includes any I/O required to write the profile.dat file, which can account for DIO
counts in routines in which no I/O occurs. In addition, the I/O is only updated every 10
milliseconds.

WIN
The Synergy Language profiler calculates elapsed CPU time according to the high-granularity
system clock. To calculate accumulated CPU time, which is only updated every 20 milliseconds, set
the PROFILE_PROCESSOR_TIME environment variable. (For more information, see
PROFILE_PROCESSOR_TIME in the “Environment Variables” chapter of Environment Variables
and System Options.) Note that on a very fast processor, accumulated CPU time results can be so
imprecise as to be almost meaningless, but may be advantageous when profiling significant
amounts of input or on a multi-processor or hyperthreaded CPU.

General Utilities
The Synckini Utility

Synergy Language Tools 9.3 (12/09) 4-15

The Synckini Utility

WIN

The synckini utility reports the setting of SFWINIPATH and the location of the synergy.ini and
synuser.ini files that Synergy/DE will access, and prompts you as to whether you want to edit one
or both files.

For example:

SFWINIPATH = c:\synergyde\dbl
Full path for synergy.ini is:
c:\synergyde\dbl\synergy.ini
file exists and can be opened
Edit c:\synergyde\dbl\synergy.ini (y/n)?

To edit the specified synergy.ini file, type y. The synckini utility launches the registered editor for
.ini files (Notepad by default) with the synergy.ini file loaded. It continues to report on synuser.ini.

For example:

Full path for synuser.ini is:
C:\WINDOWS\Application Data\Synergex\synuser.ini
file exists and can be opened
Edit C:\WINDOWS\Application Data\Synergex\synuser.ini (y/n)?

To edit the specified synuser.ini file, type y. The synckini utility launches a new occurrence of the
default editor with the synuser.ini file loaded.

You can edit the files in Notepad and then save your changes and close Notepad normally.

If the synergy.ini file cannot be located or opened, synckini reports an error. If the synuser.ini file
cannot be located or opened, synckini gives you the option to create the file by prompting

Create path\synuser.ini (y/n)?

where path is the Synergex subdirectory of your local application data directory (Documents and
Settings\username\Local Settings\Application Data).

For more information about synergy.ini or synuser.ini, see “Synergy initialization files” in the
“Environment Variables” chapter of Environment Variables and System Options.

General Utilities
The Servstat Program

4-16 Synergy Language Tools 9.3 (12/09)

The Servstat Program

VMS
The servstat program enables the system manager to start, stop, and modify parameters of
Synergy/DE xfServer and xfServerPlus on OpenVMS. The program may be run either on the
OpenVMS host machine or on a remote machine. You can either run it interactively, letting it
prompt you for options and values, or you can specify command line arguments (if it is set up as a
foreign symbol).

Servstat checks whether the server is running. If not, it asks whether to start the server. If the
answer is no, the program exits.

The servstat program checks for the existence of the connection manager by scanning all running
processes for process names of the form RSDMS$MGR_nnnn, where nnnn is the IP port on which
the server is listening. This allows more than one server to be running on the host. If more than one
connection manager is found, you are prompted for which one to use.

The servstat menu offers the following options:

[1] Display status
[2] Change free pool size
[3] Purge free pool
[4] Shut down server
[5] Show server global logicals
[6] Show session server logicals
[7] Change cull interval
[8] Change pool extend time
[9] Display xfServerPlus status
[10] Purge xfServerPlus free pool
[11] Cycle xfServerPlus log file

For more detailed information about these options and the information they display, see “Servstat
options” on page 4-18.

Typing the EOF key sequence or entering any invalid response exits the program.

Function of the program
Servstat allows the system manager to monitor the performance of the server in processing
incoming connections. If the peak number of pending servers (processes started but not yet
registered with the connection manager) is ever greater than the minimum free pool size, you may
want to expand the free pool at the startup command line in the command file
SYS$COMMON:[SYSMGR]SYNERGY_STARTUP.COM to speed up connections at peak
usage times. The server attempts to optimize the free pool size itself if there is a sudden onslaught
of connections. If the number of pending servers ever exceeds the current free pool size, the free
pool is enlarged by one process.

General Utilities
The Servstat Program

Synergy Language Tools 9.3 (12/09) 4-17

When the connection manger increases the free pool in this way, the free pool may stay elevated
above the minimum free pool size specified in SYNERGY_STARTUP.COM for the “free pool
extend time.” If no connections are processed in this time, the free pool is cut back by one server.
This happens until the free pool recedes back to the minimum free pool size. The frequency of free
pool size checks is determined by the “Cull interval” period. This defaults to one-fifth of the free
pool extend time (unless the free pool extend time is less than 15 minutes, in which case it is
one-half of that time).

The free pool extend time is changed using option 8. The cull interval is changed at the same time
according to the above rule. You can also change the cull interval using option 7.

Running servstat with command line arguments
The servstat program can accept command line arguments if it’s set up as a foreign symbol:

$ servstat :== $SYNERGYDE$ROOT:[SERVER]servstat

To run servstat using command line arguments, enter the same values that you would enter if you
were running servstat interactively. For example, if you want to change the pool extend time, enter

servstat 8 "time"

where time is the length of time the free pool is allowed to be elevated above the minimum free pool
size.

The following example, which includes output, runs servstat with option 5, to show server global
logicals:

$ servstat 5
Synergy server version 8.1.7
 PID Process name Image
20402E7C RSDMS$MGR_2331 2DKA0:[SYS0.SYSCOMMON.][SYSEXE]RSYND.EXE;1

Option> 5

(LNM$RSDMS$MGR_2331)

 "DBLDIR" = "_2DKA0:[SYNERGYDE.][DBL]"

You can enter up to two arguments at the command line. If multiple servers are running, you will
need to specify which of the servers are to be modified or inspected. In the following example, two
servers are running, and we select the first to do option 5:

$ servstat 1 5
Synergy server version 8.1.7
 PID Process name Image
2040034E RSDMS$MGR_2330 2DKA0:[SYS0.SYSCOMMON.][SYSEXE]RSYND.EXE;1
20402E7C RSDMS$MGR_2331 2DKA0:[SYS0.SYSCOMMON.][SYSEXE]RSYND.EXE;1

General Utilities
The Servstat Program

4-18 Synergy Language Tools 9.3 (12/09)

Which server (1-2) [1] 1

Option> 5

(LNM$RSDMS$MGR_2330)

 "DBLDIR" = "_2DKA0:[SYNERGYDE.][DBL]"

If multiple servers are running and the selected option requires a value, only the server number and
option can be specified on the command line, and the value must be specified at the prompt. For
example, you will get an error if you enter the following:

$ servstat 1 2 3
Too many command line arguments
Usage: servstat cmd
Usage: servstat cmd1 cmd2

The correct way to run servstat with these arguments is as follows:

$ servstat 1 2
Synergy server version 8.1.7
 PID Process name Image
20402E7C RSDMS$MGR_2331 2DKA0:[SYS0.SYSCOMMON.][SYSEXE]RSYND.EXE;1
20402E83 RSDMS$MGR_2330 2DKA0:[SYS0.SYSCOMMON.][SYSEXE]RSYND.EXE;1

Which server (1-2) [1] 1

Option> 2
New pool size: 3

Servstat options

[1] Display status
Option 1 displays the current status of the OpenVMS server system and the session server
processes as follows:

Synergy Server Manager Status at 27-MAR-2003 08:59:37.98
--
 Number of active servers: 4
 Peak # of active servers: 2
 Servers in use: 2
 Free pool: 2 - Free pool extend time: 0 00:30:00.0
 Minimum free pool: 2
 Free servers: 2
 Number pending servers: 0
 Peak # pending servers: 2
 Cull interval: 0 00:06:00.00
 Next cull: 27-MAR-2003 09:03:33.29

General Utilities
The Servstat Program

Synergy Language Tools 9.3 (12/09) 4-19

 Pid Status Time at that status User I.P. address

2D8003C5 Serving 0 01:03:05.75 NIGEL 204.33.190.108
2D8003C6 Serving 0 00:00:01:32 NIGEL 204:33:190.18
2D8003D1 Ready 0 01:03:05.66
2D80041D Ready 0 00:00:01.54

[2] Change free pool size
Option 2 manually changes the size of the free pool. When prompted, enter the new pool size as an
integer. If the new number is greater than the current number, the connection manger creates new
server processes. If the new number is less than the current number, the free pool is trimmed after
the free pool extend time has expired. To change the pool size from the command line, enter

servstat 2 pool_size

Assuming only one server is running, the following example changes the free pool size to 3:

servstat 2 3

[3] Purge free pool
Option 3 purges the free pool back down to the minimum free pool size.

[4] Shutdown server
Option 4 closes down the server. By default, serving processes close when their clients disconnect.

[5] Show server global logicals
Option 5 displays all logicals from the logical name table LNM$RSDMS$MGR_nnnn, where nnnn
is the port on which the connection manger is listening. This table is shared by all server processes
controlled by the connection manager and is used to resolve logical names after the process and job
name tables have been scanned. Logicals may be added to this table by setting them in the
command file DBLDIR:SERVER_INIT.COM. The server startup command file runs this
command file when the server process has been created. This is a more efficient way to set
server-specific logicals than putting definitions in SYNRC.COM. We advise using the server with
the /NOUSE_SYNRC qualifier in SYNERGY_STARTUP.COM.

[6] Show session server logicals
If the server is using SYNRC.COM, each session server processes SYNRC.COM in the default
directory of the connection user. The logicals defined in this directory are placed in the
process-private logical name table LNM$SYNSVR_xxxxxxxx, where xxxxxxxx is the PID of the
session server. This table is used to resolve logicals before the server-wide name table
LNM$RSDMS$MGR_nnnn.

General Utilities
The Servstat Program

4-20 Synergy Language Tools 9.3 (12/09)

[7] Change cull interval
Option 7 changes how often the free pool size is checked and trimmed. The time must be entered in
the form D HH:MM:SS. For instance, 0 00:29:59 equals 29 minutes and 59 seconds. The time must
be enclosed in quotation marks if you are running from the command line. For example, you would
enter the following to change the cull interval to 30 minutes from the command line:

servstat 7 "0 00:30:00"

[8] Change pool extend time
Option 8 changes how long the free pool is allowed to be elevated above the minimum free pool
size while no connections have been processed. The time must be entered in the form
D HH:MM:SS and must be in quotation marks if you are running from the command line.

[9] Display xfServerPlus status
Option 9 displays status information about xfServerPlus. It shows the PID for each xfServerPlus
process and specifies whether it is free or in use and by which IP. The output looks like this:

 Synergy xfServerPlus Manager Status at 27-MAR-2003 10:40:12.03
 --
 xfServerPlus is enabled on port 2356 as CSTEST
 xfServerPlus free pool: 2
 Number of active servers: 1
 Number of pending servers: 0
 Servers in use: 1
 Free pool: 2 - Free pool extend time: 0 00:30:00.00
 Minimum free pool: 2
 Free servers: 2
 Number pending servers: 0
 Peak # pending servers: 2
 Cull interval: 0 00:06:00.00
 Next cull: 27-MAR-2003 10:40:29.40

 Pid Status Time at that status Port I.P. address
20407A0A Serving 0 00:00:06.95 WWW 10.1.3.18
20407093 Ready 0 00:29:41.94
20406F23 Ready 0 00:00:06.91

If option 9 shows that xfServerPlus is not enabled, refer to the rsynd log file for information about
what went wrong. By default the rsynd log file is named node_rsynd_port.log and is located in
DBLDIR.

General Utilities
The Servstat Program

Synergy Language Tools 9.3 (12/09) 4-21

[10] Purge xfServerPlus free pool
Option 10 causes all processes in the xfServerPlus free pool to be destroyed and the pool to be
repopulated with new processes.

[11] Cycle xfServerPlus log file
Option 11 closes and then opens a new version of the xfServerPlus log file (DBLDIR:xfpl.log, by
default). This enables you to examine the log file without shutting down rsynd.

General Utilities
The Monitor Utility for Windows

4-22 Synergy Language Tools 9.3 (12/09)

The Monitor Utility for Windows
The Monitor utility on Windows (synxfmon.exe) tells you which files are open, who opened them,
and whether those files are locked. This capability is only possible if xfServer is being used.

synxfmon [option] [> redirect_file]

Arguments
option

One or more of the following options:

-k remote_port Close the xfServer connection on the specified remote (client) port.

-n host Host name of the xfServer machine. The default is localhost.

-p port Port where xfServer is running. The default is 2330.

-v Verbose output.

redirect_file

(optional) The name of a file (including the path) to which output will be sent.

Discussion
The Monitor utility generates a list of all files opened by users and indicates whether each file
contains one or more locked records. Each line of nonverbose output has the following format:

[status] username: filename

where [status] is one of the following lock statuses:

[] Unlocked

[L] Locked

Host must be a Windows server.

The -v option causes additional operational information to be returned, as well as the user name and
remote port number of the machine being reported on. For example, synxfmon might yield the
following output without the -v option:

[L] fred: c:\d_drive\dbl\syntxt.ism

but if -v is specified, the output might look like this:

User: fred Port: 2785
 1 file(s) open
 [L] ISAM: c:\d_drive\dbl\syntxt.ism
 File ops:
 READS... 1

General Utilities
The Monitor Utility for Windows

Synergy Language Tools 9.3 (12/09) 4-23

This information can be used in conjunction with the Windows netstat utility on the client and
server to assist in client process detection and abortion when locks are not released.

You can specify a redirect_file if you want output to be redirected to a file, rather than displayed to
the screen.

Valid port numbers for the -k and -p options are in the range 1024 to 65535, inclusive. You can
obtain the remote port number to specify for -k by first running the Monitor utility with the -v
option. You must be a member of the administrator group to close the connection. If the xfServer
connection is closed successfully, a “Successfully closed connection on port remote_port” is
generated. Otherwise, you will get an error message.

TIP
Because the -v option can produce a significant amount of output when multiple files are
open, we recommend that you redirect output to a file when using this option.

General Utilities
The Monitor Utility for UNIX

4-24 Synergy Language Tools 9.3 (12/09)

The Monitor Utility for UNIX

Monitoring Synergy/DE xfServer
You can audit your client/server system’s activities with the Synergy/DE xfServer’s Monitor
feature.

With the Monitor running, you can display the following:

Server information

Client information

Accessed file information

Error information (see the note below)

When to use the Monitor
You may want to run the Monitor whenever you run Synergy/DE xfServer, or run it only when you
need to troubleshoot any problems that may be occurring on the system. Depending on your
client/server setup, running with the Monitor always turned on may decrease your system’s
performance.

The primary purposes for running the Monitor are the following:

To troubleshoot any existing client/server problems

To audit the existing performance so you can determine any actions that could further
maximize performance

Running the Monitor
To run the Monitor, specify one of the following option combinations on the rsynd command line:

-m
-m -l
-m -t

These options are also listed on the table on page 4-26.

The error information displayed by the Monitor is related to the trappable runtime errors
caused by your Synergy Language application ($ERR_BADKEY, $ERR_EOF,
$ERR_FNF, etc.).

General Utilities
The Monitor Utility for UNIX

Synergy Language Tools 9.3 (12/09) 4-25

-m option
rsynd -m

The -m option

starts the Monitor.

maintains information on client/server activities of up to 300 accessed files in the xfServer’s
memory.

-m -l option
rsynd -m -l debugfile

The -m -l option

starts the Monitor.

writes detailed client information to the specified text file (debugfile) every time a client
accesses the server.

Debugfile is located in /usr/tmp (or /var/tmp if /usr/tmp can’t be found). If you are using an
alternate port, the port number is appended to the filename. For example, /usr/tmp/rmoncore is
created by the default rsynd running on port 2330, and /usr/tmp/rmoncore.2345 is created for the
rsynd running on port 2345.

-m -t option
rsynd -m -t minutes

The -m -t option

starts the Monitor.

writes summarized statistical information to a binary file (rmoncore) at intervals of the
specified number of minutes. (See the discussion of query’s -a option on page 4-26 if you want
to specify a different amount of time after starting the Monitor.) If -t minutes is not specified,
the default is every 20 minutes.

The -m -t option is necessary if you plan to use the -v option when you query for client/server
information. (See page 4-26 for information on the -v query option.)

You need to keep track of debugfile’s size. It can quickly grow very large and might fill your
disk.

If you use this option, you should keep track of the size of the rmoncore file. It could fill
your disk if left running for a long period of time.

General Utilities
The Monitor Utility for UNIX

4-26 Synergy Language Tools 9.3 (12/09)

Displaying Monitor information
Once you have started the Monitor program, you can request information about the system using
the QUERY command with any of the available options.

The following table lists the QUERY syntax for each type of query available.

Command What it gives you

query

or
query -g

Global information. This is information such as start times (both xfServer and
Monitor), the total number of packets that have been received and/or sent,
and total bytes that have been received or sent.

query -a min Alarm value change. The value passed in min is the number of minutes
between each write to the rmoncore file. For example, if you enter query
-a 60, the Monitor writes to rmoncore every 60 minutes. If min has a value
of 0, the timed logging to rmoncore (the -t option) is turned off. If you pass a
nonzero value when the timed logging is off, timed logging will be turned on
(even if -t was not specified).

query -c Clear (reset) Monitor global variables.

query -e Error log. Shows the number of packets that were returned with error status
instead of performing the client request.

query -f File information on the last 300 accessed files.

query -h Help listing for all these query options.

query -l Latest information since last reset.

query -n Names of files accessed and the last accessed time for each listed file.

query -p Process information (current client information).

query -P port option Alternate port. Query an xfServer monitor running on a port other than the
default (2330). For example, if you enter query -P 2345 -p, you will
get process information from the monitor running on port 2345. If you enter
query -P 2231 -g, you will get global information from the monitor
running on port 2231. If you start rsynd on the default port (rsynd -m), you
don’t have to specify -P port.

query -v View the rmoncore file. This is available only if -m -t was specified to start the
Monitor. (See page 4-25 for information about the -m -t option.)

General Utilities
The Monitor Utility for UNIX

Synergy Language Tools 9.3 (12/09) 4-27

Sample output from the Monitor Utility

query or query -g
Server is up for 0 day(s) 0 hour(s) 3 minute(s) and 9 second(s)
 Total current clients : 1
 Total current open files : 1
 Total clients' connections : 2
 Total files accessed : 2
 Total Data packets : 2473
 Total Data packets size : 123546
 Total packets : 4968
 Total packets size : 268719
 Total error packets : 2
 Total error packets' size : 71
 Error packets percentage : 0.0%
 Error pkts size percentage : 0.0%

Output Explanation

Total current clients The total number of clients currently connected to this instance of xfServer.

Total current open files The total number of files currently open across all connections.

Total clients’ connections The total number of connections since the Monitor was started.

Total files accessed The total number of files accessed since the Monitor was started.

Total Data packets The total number of data packets sent to and from this instance of xfServer.
A data packet is defined as a record either sent to xfServer using a STORE
or WRITE statement or received from xfServer using a READ statement.

Total Data packets size The total number of data bytes sent and received. The data bytes refer to
the record data only (not including overhead).

Total packets The total number of communication packets sent and received from
xfServer. This includes data and handshaking packets.

Total packet size The total number of bytes sent and received by xfServer from all packets.

Total error packets The total number of errors recorded by xfServer. There is no distinction
between innocuous and fatal errors here. See “query -e” below for an
itemized list of errors detected.

General Utilities
The Monitor Utility for UNIX

4-28 Synergy Language Tools 9.3 (12/09)

query -e
err cnt caused by
------- ---------
 1 READS

 query -f
file name time cr co ac op fl del stor read write pkt# size

test.ism 16:10 0 0 1 1 0 0 100 1007 0 1107 55298
fred.ism 16:11 1 0 1 1 0 0 1354 12 0 1366 68248

Total error packets’ size The total number of bytes used in send and receive packets during error
conditions.

Error packets percentage The percentage of error packets against all other packets.

Error pkts size percentage The percentage of error packet bytes against overall packet bytes.

Output Explanation

Output Explanation

file name The name of the file being analyzed. Only the rightmost 17 bytes of filenames accessed will
be displayed. Run query -n to identify the full path names.

time The last time this file was accessed.

cr The total number of times this file has been created with ISAMC since the Monitor was
started.

co The current number of connections to this file (at the instant query was run).

ac The total number of times this file has been accessed (with OPEN or ISAMC) since the
Monitor was started.

op The total number of times this file has been opened by an xfServer client since the Monitor
was started.

fl The total number of times a FLUSH has been sent to this file since the Monitor was started.

del The total number of times a record has been deleted (with DELETE) since the Monitor was
started.

stor The total number of times a record has been stored (with STORE) since the Monitor was
started.

General Utilities
The Monitor Utility for UNIX

Synergy Language Tools 9.3 (12/09) 4-29

query -l
The output for query -l is similar to that of query and query -g except it may report on totals since
the last time Monitor global variables were cleared (with query -c).

query -n
 date time file name
------ -------- -------------------
Nov 20 16:43:05 /usr1/data/test.ism
Nov 20 16:11:48 /usr1/data/fred.ism
Nov 20 16:35:02 /usr2/sde64/synergy6/test/rnt/test.ism

query -p
User Name : synuser
Host Name : aix.synergex.com
Host IP Address : 134.1.1.140
Log on time : Nov 20 17:00:05
Clear : 0
Rename : 0
Remove : 0
Current Open file : 1
Pkts # : 2622
Size total : 123498
E_pkt # : 1
E_Size : 71
File accessed : File Name co del read write store pkts size

 test.ism 1 0 1208 0 100 1308 65348
 data.ism 2 0 1903 123 121 12321 123412

read The total number of times a record has been read (with READ or READS) since the Monitor
was started.

write The total number of times a record has been written (with WRITE or WRITES) since the
Monitor was started.

pkt# The total number of packets sent and received while accessing this file since the Monitor was
started.

size The total size of all packets sent and received while accessing this file since the Monitor was
started.

Output Explanation

General Utilities
The Monitor Utility for UNIX

4-30 Synergy Language Tools 9.3 (12/09)

Output Explanation

User Name The name of the user.

Host Name The name of the xfServer host machine.

Host IP Address The IP address of the xfServer host machine.

Log on time The time at which the user logged on to make the connection.

Clear The total number of times this connected user has performed a clear operation
(XCALL ISCLR) for this connection only.

Rename The total number of times this connected user has performed a rename operation
(XCALL RENAM) for this connection only.

Current open file The total number of files open by this connected user at this time.

Pkts # The total number of overall packets sent and received from this connection.

Size total The total number of bytes for the number of packets for this connection.

E_pkt # and E_Size The total number of error packets and bytes for this connection.

File accessed The files currently open by this connection.

co The total number of times this connection has the file open.

del The total number of records in this file that have been deleted by this connection.

read The total number of records in this file that have been read (with READ or
READS) by this connection.

write The total number of records in this file that have been written (with STORE,
WRITE, or WRITES) by this connection.

pkts and size The total number of packets and the size of all packets sent and received while
this connection has been accessing this file.

General Utilities
The Monitor Utility for UNIX

Synergy Language Tools 9.3 (12/09) 4-31

query -v
 date time cp cf ct ft e_pkt e_size d_pkts d_size pkts size

Nov 20 16:12:01 0 0 2 2 2 71 2473 123546 4968 268719
Nov 20 16:35:01 1 1 3 3 0 0 2 2048 10 2872
Nov 20 16:36:01 0 0 3 3 0 0 3 3072 8 3318
Nov 20 16:37:01 0 0 5 4 2 138 0 0 16 915
Nov 20 16:42:01 1 1 6 4 0 0 1 50 8 502
Nov 20 16:43:01 0 0 6 4 0 0 0 0 2 36
Nov 20 16:44:07 0 0 7 4 0 0 0 0 8 418
Nov 20 17:01:00 1 1 9 4 4 142 2510 125396 5038 298110
Nov 20 17:17:05 2 2 3 1 0 0 0 0 24 1376
Nov 20 17:21:05 1 1 3 1 0 0 0 0 2 36

Output Explanation

cp The total number of clients currently connected to this instance of xfServer (same
as “Total current clients” from query -g) since the last interval.

cf The total number of files that are currently open across all connections (same as
“Total current open files” from query -g) since the last interval.

ct The total number of connections since the monitor was started. (same as “Total
clients’ connections” from query -g) since the last interval.

ft The total number of files accessed since the monitor was started (same as “Total
files accessed” from query -g) since the last interval.

e_pkt and e_size The total number of errors recorded by xfServer and the total number of bytes used
in send and receive packets during error conditions (same as “Total error packets”
and “Total error packets’ size” from query -g) since the last interval.

d_pkts and d_size The total number of data packets sent to and from this instance of xfServer and the
total number of data bytes sent and received (same as “Total Data packets” and
“Total Data packet size” from query -g) since the last interval.

pkts and size The total number of communication packets sent and received from xfServer and
the total number of bytes sent and received by xfServer from all packets (same as
“Total packets” and “Total packets’ size” from query -g) since the last interval.

General Utilities
The ActiveX Diagnostic Utility

4-32 Synergy Language Tools 9.3 (12/09)

The ActiveX Diagnostic Utility

WIN

The ActiveX Diagnostic utility (axutl.exe) enables you to register or test an ActiveX control.
Testing a control provides answers to the following questions:

Can a given ActiveX control be accessed?

If it can be loaded, what are its basic parameters?

If it cannot be loaded, why not?

If you cannot load an ActiveX control from your Synergy Language program, you can use the
ActiveX Diagnostic utility to determine whether the control can even be accessed on your system.
This eliminates guesswork as to whether the problem lies within your application or in the ActiveX
control itself. For example, the ActiveX Diagnostic utility can tell you if a DLL is missing, if the
control has not yet been registered, or if the control is not licensed, thus making it inaccessible to
your application.

To run the ActiveX Diagnostic utility,

Enter axutl.exe at the command prompt.

The ActiveX Diagnostic utility dialog box is displayed. (See figure 4-4.)

Registering an ActiveX control
1. In the ActiveX Diagnostic utility dialog box, click the Add Control button.

The Open dialog box is displayed.

2. Select the control you want to add, and click the Open button.

On Windows, you must have the file oledlg.dll in your Windows system directory with a
minimum date of 4/30/97. This DLL is operating-system specific, and a source of this
update comes with Internet Explorer.

You can also use the Windows regsvr32 utility (regsvr32.exe) to register and unregister
ActiveX Controls (and DLLs as well). This file is distributed with Windows and is also
available on the Microsoft web site.

General Utilities
The ActiveX Diagnostic Utility

Synergy Language Tools 9.3 (12/09) 4-33

Testing an ActiveX control
1. If the control you want to test is not listed in the ActiveX Diagnostic Utility dialog box, add and

register it by following the instructions in “Registering an ActiveX control” on page 4-32.

2. In the ActiveX Diagnostic Utility dialog box, select the ActiveX control you want to test, and click
the Test Control button.

Diagnostic information about the ActiveX control is displayed. (See figure 4-5.)

If the control can be loaded, the message “LOAD SUCCESSFUL” and some additional
information is displayed. The ProgID entry is the control_name string that is to be used by
%AX_LOAD to load that particular control. If this control requires a license, your system is
licensed (in other words, the .lic license file is present), and a runtime key is available, a LicKey
entry is also displayed. The LicKey entry is the license string that should be passed to %AX_LOAD
if you cannot legally distribute the license file to your end-users.

Figure 4-4. The ActiveX Diagnostic Utility dialog box.

General Utilities
The ActiveX Diagnostic Utility

4-34 Synergy Language Tools 9.3 (12/09)

If the control cannot be loaded, or if no .lic file is present and licensing is required, the message
“LOAD FAILED” is displayed. If the load failed for licensing reasons, you also get the message
“License: Runtime key required.”

Figure 4-5. Diagnostic results.

General Utilities
The Synbackup Utility

Synergy Language Tools 9.3 (12/09) 4-35

The Synbackup Utility

WIN, UNIX
Today’s 24-7 customer environments require that backups must be able to occur without having to
shut down applications. The synbackup utility provides a means for all cooperating processes,
including xfServer, to freeze I/O during a Synergy system backup. A cooperating process is defined
as any Synergy program (dbr, dbs, rsynd, isutl -r, irecovr, fconvert, and any programs that use
them) that has been started after the backup mode feature has been enabled. Therefore, make sure
you start any other Synergy products (such as xfServer or xfODBC) after you configure the backup
feature. See “Configuring the backup mode feature on Windows” on page 4-36 and “Configuring
the backup mode feature on UNIX” on page 4-38 for configuration instructions.

There are four backup modes:

Pending. Backup is about to be performed. The irecovr, isutl -r, or fconvert utility will not
begin operations on a file if this mode is set. All other cooperating processes are unaffected.

On. Backup can be performed. All I/O by cooperating processes is frozen, and the irecovr,
isutl -r, or fconvert utility will not begin operations on a file if this mode is set.

Off. Backup cannot be performed. All cooperating processes behave normally.

Not Allowed. Backup cannot be performed. The irecovr, isutl -r, or fconvert utility sets this
mode when it is in the process of creating a file. When the utility exits (regardless of whether it
succeeds or fails), it resets the backup mode to Off. All other cooperating processes are
unaffected.

When the backup mode is Pending or On, DELETEs, STOREs, and WRITEs operations are frozen,
and starting irecovr, isutl -r, or fconvert generates an “Operation not allowed due to backup mode”
error. How the application handles the freezing of update operations can be altered using the
%SYN_SETSTATE function. (See %SYN_SETSTATE in the “System-Supplied Subroutines,
Functions, and Classes” chapter of the Synergy Language Reference Manual.) The default behavior
is to suspend application execution.

You can display usage information (or help) for synbackup by running it without any options or
with any unrecognized options.

Synbackup cannot be run from a Synergy/DE Client installation. If it is, a “Backup feature
not allowed across network drive” error will be generated. The backup mode feature also is
not supported on systems running multiple versions of Synergy.

General Utilities
The Synbackup Utility

4-36 Synergy Language Tools 9.3 (12/09)

Synbackup on Windows
You must be a member of the Administrators or Backup operators group to run synbackup.

Synbackup has the following syntax:

synbackup [-c] [-b|-s|-x [-w seconds]] [-d] [-q]

-c

Create the file DBLDIR:synbackup.cfg. The backup mode is set to Off initially. (Only a
member of the Administrators group can use this option.)

-b

Set backup mode to Pending, which means that synbackup will next be run with the -s option.
Pending mode gives applications an opportunity to defer update operations until the pending
backup is complete.

-s

Set backup mode to On, which freezes all requests for update operations.

-w

Specify the maximum number of seconds to wait for the backup mode to change from Not
Allowed to Off. Specifying a value of -1 tells synbackup to wait indefinitely until the backup
can be performed. The -w option can only be specified in conjunction with -b or -s.

-x

Set backup mode to Off, which unfreezes any requests for update operations.

-d

Delete the DBLDIR:synbackup.cfg file (in other words, disable the backup mode feature).
(Only a member of the Administrators group can use this option.)

-q

Display the current backup mode.

A file mapping of a physical file (DBLDIR:synbackup.cfg) is created that contains the backup
mode: Pending, On, Off, or Not Allowed. Only those cooperating processes local to that file are
affected. The backup mode feature is disabled when the DBLDIR:synbackup.cfg file does not
exist.

Configuring the backup mode feature on Windows
Initialize the shared memory by running the synbackup utility with the -c option.

General Utilities
The Synbackup Utility

Synergy Language Tools 9.3 (12/09) 4-37

Synbackup on UNIX
Only a system administrator whose effective user ID is root can use synbackup to create or change
the backup mode. Otherwise, an error is generated. Any user is allowed to display the current
backup mode using the -q option.

Synbackup has the following syntax:

synbackup [-c [-ahhhhhhhh]] [-b|-s|-x [-w seconds]] [-q]

-c

Create the shared memory segment for all cooperating processes. The backup mode is set to
Off initially.

-a

Specify the base address of the shared memory segment, where hhhhhhhh is the address in
hexadecimal format. If -a is not specified, synbackup selects a base address.

-b

Set backup mode to Pending, which means that synbackup will next be run with the -s option.
Pending mode gives applications an opportunity to defer update operations until the pending
backup is complete.

-s

Set backup mode to On, which freezes all requests for update operations.

-w

Specify the maximum number of seconds to wait for the backup mode to change from Not
Allowed to Off. Specifying a value of -1 tells synbackup to wait indefinitely until the backup
can be performed. The -w option can only be specified in conjunction with -b or -s.

-x

Set backup mode to Off, which unfreezes any requests for update operations.

-q

Display the current backup mode.

The current backup mode (Pending, On, Off, or Not Allowed) is maintained in a shared memory
segment on the system. The synbackup utility is used to initialize and maintain this shared memory
segment, as well as to set the backup mode to Pending, On, or Off. The base address of this memory
segment is stored in the file DBLDIR:synbackup.cfg. So that the runtime does not have to
repeatedly open this file, it first checks the SYNBACKUP environment variable. If SYNBACKUP
is set, the runtime opens the synbackup.cfg file to retrieve the base address. If SYNBACKUP is not
set, the backup mode feature is disabled.

General Utilities
The Synbackup Utility

4-38 Synergy Language Tools 9.3 (12/09)

Configuring the backup mode feature on UNIX
1. Uncomment the SYNBACKUP=1 line in the distributed setsde script.

2. Run synbackup -c to initialize the shared memory segment. This shared memory segment must be
reinitialized after every system reboot.

3. Ensure that all processes wishing to cooperate execute the setsde script so the uncommented
SYNBACKUP line is honored. (This includes rsynd.)

General Utilities
The Synergy Prototype Utility

Synergy Language Tools 9.3 (12/09) 4-39

The Synergy Prototype Utility
The Synergy Prototype utility (dblproto) generates prototype files, which can be used for two
purposes:

To strongly prototype your non-object-oriented code if desired

To make declarations within a namespace available in other Synergy code (via the IMPORT
statement)

The Synergy Prototype utility enables you to strongly prototype your existing subroutines and
functions without any code changes by using a combination of the SYNDEFNS and SYNIMPDIR
environment variables. The utility also exports prototypes for structures and classes, including their
member subroutines, functions, properties, structures, and nested classes.

The Synergy Prototype utility has the following syntax:

dblproto [options] sourcefile [...]

Arguments
options

(optional) One or more of the following:

-expdir=directory Specify the export directory for the generated prototype file, where
directory is either a full directory specification or an environment
variable that contains a directory location.

-out=namespace Add the specified namespace and generate a single prototype file named
namespace (instead of a file for each routine) for subroutines and
functions that aren’t encapsulated in a class or namespace. (This option
is only used with non-object-oriented code.)

-qrelaxedend Change the behavior of the END statement to clear .DEFINEs at the end
of the routine instead of at the end of the file.

-qvariant=value Define the value of ^VARIANT.

-single Prototype multiple source files (for example, -single *.dbl or -single
a.dbl b.dbl c.dbl) one file at a time instead of as a compilation unit.
(This option is only used with non-object-oriented code.)

-? or -h Display dblproto command line options and usage information.

The equal sign in the above options is optional; you can use a space instead.

sourcefile

The name of one or more source files to be prototyped. The default filename extension is .dbl,
and wildcard characters are valid. You can alternatively specify a redirected input file in the

General Utilities
The Synergy Prototype Utility

4-40 Synergy Language Tools 9.3 (12/09)

format < filename, where filename contains a list of files to import. (Wildcard characters are
not valid with this format.)

Discussion
The Synergy Prototype utility creates a separate prototype file for every class, structure, and routine
outside of a class in the source files being prototyped (unless the -out option is specified; see
“Implementing strong prototyping for non-object-oriented code” on page 4-41).

When you run the Synergy Prototype utility on a source file that contains a namespace declaration
(i.e., object-oriented code), the utility exports each class definition and its members within the
namespace into a file called namespace-class.dbp and places it in the export directory. Nested
namespace filenames are in the format namespace-nestednamespace-class.dbp. For example, the
prototypes for class1 in namespace NS1.NS2 would be defined in the file NS1-NS2-class1.dbp.

When you run the Synergy Prototype utility on a source file that does not contain a namespace
declaration (i.e., non-object-oriented code), the utility exports each subroutine and function into a
file called namespace-synroutine-routine.dbp and places it in the export directory, where
namespace is the value of SYNDEFNS (or synglobal if SYNDEFNS is not defined) and routine is
the name of a subroutine or function. If sourcefile is a wildcard specification (for example, *.dbl)
for a directory that contains hundreds of files, dblproto might create thousands of small prototype
files and require over a gigabyte of memory. You can reduce compilation time and memory
requirements when prototyping non-object-oriented code by using the -out option to consolidate
routines into one namespace and generate a single prototype file named with the namespace name
and a .dbp extension. (See “Improving processing time and decreasing memory use” on
page 4-42.)

The export directory is determined by the following precedence order:

The location designated by the -expdir option, if -expdir is specified

The location designated by the SYNEXPDIR environment variable, if SYNEXPDIR is defined

The current directory

The Synergy Prototype utility ignores any blocks of source code between a .NOPROTO directive
and either a matching .PROTO directive or the end of the source file. It automatically encloses all
prototypes between a pair of .NOLIST-.LIST directives to prevent prototypes from being sent to the
listing file.

The .dbp prototype files are binary and cannot be moved from one endian system to
another.

When you change your source code, you should regenerate the prototype file(s).
Remember to delete the original .dbp file(s) for a directory before regenerating prototypes
for it to avoid prototype mismatch errors on the regeneration.

General Utilities
The Synergy Prototype Utility

Synergy Language Tools 9.3 (12/09) 4-41

Implementing strong prototyping for non-object-oriented code

When working with non-object-oriented code, you have the option of creating a single prototype
file instead of a separate prototype file for every routine. Using one prototype file instead of many
small prototype files improves compilation and Workbench performance. Both of the approaches
described below create a single prototype file, but the first uses a default namespace and location,
while the second requires you to add an IMPORT statement to each file in which you want the
prototypes to be used. Alternatively, you can choose to omit the -out option and create numerous
prototype files using the default namespace (SYNDEFNS) as described above. As long as
SYNDEFNS is set when you compile, all of the files will be automatically imported.

Using a default namespace and location to implement strong prototyping

We recommend that you use this approach to prototype non-object-oriented code. It sets default
values using environment variables and does not require you to modify code. Because you are using
the default namespace (defined by SYNDEFNS), the prototype files are imported automatically
from the directory specified with SYNIMPDIR.

1. Set the SYNDEFNS environment variable to a namespace name.

2. Set the SYNEXPDIR and SYNIMPDIR environment variables to the same path. The prototype file
will be created in and imported from this location.

3. Run dblproto on your .dbl files. For the -out value, specify the namespace you defined with
SYNDEFNS. For example, if SYNDEFNS were set to Fred, your command line might be

dblproto -out=Fred myfile1.dbl myfile2.dbl

The output file, Fred.dbp, will contain prototypes of all the functions, subroutines, and structures
in myfile1.dbl and myfile2.dbl. It will be created in the directory specified with SYNEXPDIR.

4. Compile your program.

Using an IMPORT statement to implement strong prototyping

This approach does not use the default namespace, so you must modify your code to import the
namespace.

1. Run dblproto on your .dbl files. Specify a namespace name with the -out option. You can either set
the SYNEXPDIR environment variable or specify the export directory on the command line. For
example,

dblproto -expdir=c:\dbpFiles -out=George myfile1.dbl myfile2.dbl

The output file, George.dbp, will contain prototypes of all the functions, subroutines, and
structures in myfile1.dbl and myfile2.dbl.

General Utilities
The Synergy Prototype Utility

4-42 Synergy Language Tools 9.3 (12/09)

2. In every dbl file that you want validated against the prototypes, add an IMPORT statement for the
namespace specified in step 1. If the .dbp file is not in the same directory as the program file, or if
you have not defined SYNIMPDIR, include the directory argument with the IMPORT statement.
For example,

import George directory 'c:\dbpFiles'

3. Compile your program.

Improving processing time and decreasing memory use

While the -out option affects the output of dblproto (yielding one file regardless of how many files
are input), the -single option affects how input to dblproto is processed, by causing files to be
processed one at a time rather than together in a compilation unit.

We suggest that you use -single if you have a lot of .dbl files with no type interdependencies (i.e.,
non-object-oriented code) and you do not want to consume a large amount of memory or
processing time. If you use -single in combination with -out and the sourcefile specification *.dbl,
each file is processed separately while still creating a single prototype file. Some cross-file
checking is disabled, but the same amount of memory is required as for processing a single file.

Handling source files in multiple directories

When prototyping existing subroutines and functions in multiple source directories, you have two
options: placing the prototypes in their respective source directories or placing the prototypes in a
separate directory.

Prototyping multiple directories in place

If you are using the default namespace and your prototypes can be interspersed with the rest of your
code in their original source directories, follow the instructions below. (We recommend this
solution if you do not need your prototypes to be in a separate directory.) You must ensure that there
are no duplicate subroutine or function names when using this approach, or compilations will fail
with errors importing the default namespace.

1. Set SYNDEFNS to the desired namespace.

2. Execute the dblproto command in each source directory, using the SYNDEFNS value for the -out
value. Put each output file into the corresponding source directory. For example,

dblproto -expdir=c:\sourceDir1 -out=myNameSpace *.dbl
dblproto -expdir=c:\sourceDir2 -out=myNameSpace *.dbl

If you prototype a set of files (*.dbl) without -single and any errors are reported, none of
the prototype files will be generated. With -single, prototype files will not be generated for
any files that report errors, but they will be generated for files without errors.

General Utilities
The Synergy Prototype Utility

Synergy Language Tools 9.3 (12/09) 4-43

3. Set SYMIMPDIR to point to the directories where the files were created:

SYNIMPDIR=c:\sourceDir1,c:\sourceDir2

4. Compile your program. When the compiler imports the namespace myNameSpace, it will look in
both sourceDir1 and sourceDir2 and import both files.

Prototyping multiple source directories to a separate prototype directory

If you are using the global namespace (the default or one defined with SYNDEFNS) and you want
your prototypes in one directory, execute the dblproto command as follows:

dblproto [-single] -out=globalnamespace.synroutine.filename

For example, assume our source directories are called myutil, mysales, and mygeneral. If the
SYNGLOBAL default namespace is used and SYEXPDIR is set, you can issue these commands:

dblproto –single –out=synglobal.synroutine.myutil *.dbl
dblproto –single –out=synglobal.synroutine.mysales *.dbl
dblproto –single –out=synglobal.synroutine.mygeneral *.dbl

and the following files would be generated in SYNEXPDIR:

synglobal-synroutine-myutil.dbp
synglobal-synroutine-mysales.dbp
synglobal-synroutine-mygeneral.dbp

See also
“Prototyping” in the “Welcome to Synergy Language” chapter of the Synergy Language
Reference Manual.

IMPORT in the “Synergy Language Statements” chapter of the Synergy Language Reference
Manual.

SYNEXPDIR, SYNIMPDIR, and SYNDEFNS in the “Environment Variables” chapter of
Environment Variables and System Options.

.NOPROTO-.PROTO in the “Preprocessor and Compiler Directives” chapter of the Synergy
Language Reference Manual.

General Utilities
The Variable Usage Utility

4-44 Synergy Language Tools 9.3 (12/09)

The Variable Usage Utility
By default, the Variable Usage utility identifies unused local variables in each routine. It can also
identify the global variables, labels, and include files that are no longer referenced in each routine
or the primary source file, as well as those used by one or more local (CALLed, not XCALLed)
routines. The variable usage level compiler option designates which items are reported.

To use this utility, compile using the variable usage compiler option and optionally the variable
usage level compiler option, as follows:

WIN, UNIX
dbl -qvar_review[=file] -qreview_level=n source_file

VMS
dibol /VAR_REVIEW[=file] /REVIEW_LEVEL=n source_file

Arguments
file

The name of the generated output file. The default filename is the name of the primary source
file with a .unu extension.

n

The sum of one or more of the following bit flags:

0 Unused local variables in each routine (default)

1 Unused global and local variables in each routine

2 Unused labels and local variables in each routine

4 Unused include files and local variables in each routine

8 Unused local variables defined in the primary source file only

Discussion
Valid values for n are 0 through 31. For example, using a value of 5 (1 + 4) reports on unused global
and local variables and unused include files in each routine. A value of 11 (1+2+8) reports on
unused labels and unused global and local variables defined in the primary source file only.

General Utilities
The Variable Usage Utility

Synergy Language Tools 9.3 (12/09) 4-45

Sample output
VARIABLE USAGE REPORT FOR c:\dev\test.dbl

ROUTINE ADDRECORD
The following files are included in this routine, but are no longer
referenced:
testdata.def C:\dev\test.dbl Line: 23
testinfo.def C:\dev\test.dbl Line: 43

The following local variables are no longer referenced:
IX C:\dev\test.dbl Line: 50
CUSTNO C:\dev\test.dbl Line: 63

ROUTINE UPDATERECORD
LOCAL ROUTINE LBL
The following local variables are referenced in this local routine:
FF C:\dev\test.dbl Line: 348
GG C:\dev\test.dbl Line: 349
HH C:\dev\test.inc Line: 15
KK C:\dev\test.inc Line: 18
No referenced global variables found in this local routine

ROUTINE DELETERECORD
No un-referenced include files found.
No un-referenced local variables found.

General Utilities
The Gennet Utility

4-46 Synergy Language Tools 9.3 (12/09)

The Gennet Utility

WIN
The gennet utility generates Synergy classes that wrap the classes defined in a .NET assembly.

Gennet has the following syntax:

gennet -output output_file -log log_file assembly [assembly...] [-impdir directory]
 [-s xml_file]

Arguments
-output

Indicates that an output file will follow. You can abbreviate -output to -o.

output_file

The path and name of the generated Synergy source file.

-log

Indicates that a log file will follow. You can abbreviate -log to -l.

log_file

The path and name of the generated log file.

assembly

The qualified name(s) of one or more assemblies used for input.

-impdir

(optional) Indicates that an import directory or logical will follow.

directory

A directory or logical for which gennet will build an import list.

-s

(optional) Specify smaller parts of assemblies that you want to build wrappers for.

xml_file

An XML file that specifies the assemblies for which wrappers need to be built.

General Utilities
The Gennet Utility

Synergy Language Tools 9.3 (12/09) 4-47

Discussion
Gennet generates a single file, or wrapper, for one or more .NET assemblies so you can use them in
your Synergy application(s). Follow these steps:

1. Run gennet, specifying all of the assemblies (including dependent assemblies) that you want to use
in your Synergy application.

2. Prototype the generated file using dblproto. (See “The Synergy Prototype Utility” on page 4-39 for
more information.)

This approach generates the fewest number of .NET entities and creates smaller prototypes and
object libraries, which improves runtime load performance and reduces compilation time because
there are fewer prototypes.

The classes generated by gennet are derived from DotNetObject. A ToString method with the
NEW modifier is generated for each generated class.

As far as possible, the generated classes all have the same type information (methods, properties,
fields, etc.) in Synergy/DE as they have in .NET, and they will use the DotNetObject methods
described in the “Synergy .NET Assembly API” chapter of the Synergy Language Reference
Manual to call their .NET equivalents.

If assembly contains an environment variable (for example MYLOC:myassembly.dll) the
generated wrapper will use that environment variable to load the assembly at runtime. Assemblies
that are in the .NET global assembly cache (GAC) should not be specified with an environment
variable. If neither an environment variable nor a physical path is specified, gennet searches for the
assembly in the following order:

The GAC

The current directory

The dbl\bin directory

The windows\system32 directory

Wrapper routines generated with gennet must be compiled with -qrelaxed:interop.

Never run gennet twice for a single linked unit. If you run it twice and then link the resulting
files together, a “Class CRC mismatch in module %s” error (CLSCRC) will occur.

Whatever type your instance variable is declared as determines the ToString() that will be
run. Therefore, a call to ToString() will run DotNetObject’s ToString().

General Utilities
The Gennet Utility

4-48 Synergy Language Tools 9.3 (12/09)

If output_file does not include an extension, .dbl will be added. If output_file contains an
environment variable (for example, MYDIR:myout.dbl), the generated include files will also be
accessed using that environment variable.

If you specify the -impdir option, gennet adds the specified directory or logical to the end of the
generated IMPORT statement. For example, if you specify -impdir MYLOGICAL, the generated
IMPORT statement will look something like this:

IMPORT System DIRECTORY 'MYLOGICAL:'

The -s option handles subsets of a DLL and allows you to specify only the classes you want to build
wrappers for, instead of creating a large number of unused classes. Before using the -s option, you
must first create an XML file that specifies the assemblies for which wrappers need to be built.

When using gennet classes in a routine, don’t try to import any of the System.* classes (described
in “System-Supplied Classes” in the “System-Supplied Subroutines, Functions, and Classes”
chapter of the Synergy Language Reference Manual). If you do, you will get compilation errors due
to conflicts with the gennet system classes. Instead, use the include file generated by gennet.

If an assembly is loaded into gennet as a dependency and later at runtime has one of its types
loaded before the original loading assembly, it will not be able to find the DLL outside of the GAC
or currently running dbr.exe directory. If an assembly dependency fails to load from the GAC or
the current gennet.exe directory, gennet will try to load from each of the directories from which it
has successfully loaded other assemblies. This list of directories is processed in order of
appearance.

The gennet utility does not support search paths. If you specify an environment variable
that is set to multiple directory paths, gennet will only use the first one.

Compilation time and memory usage can be significant for the wrapper routines generated
by gennet.

Do not try to build a wrapper routine generated by gennet in debug mode.

We recommend that you use OLBs for gennet-generated classes when they are used in
conjunction with ELBs that contain routines or methods that call the gennet-generated
classes. When linking an ELB with these OLBs, use the -r and -R switches.

General Utilities
The Gennet Utility

Synergy Language Tools 9.3 (12/09) 4-49

Gennet may generate the following errors:

In each of these cases, gennet will terminate with the error status and set the shell ErrorLevel to 1.

Any features of .NET classes that cannot be emulated in Synergy/DE are omitted from the
generated classes. Omitted features, types, and methods are reported in the log file. The following
are known restrictions and adaptations:

Generics and class names containing invalid Synergy/DE identifier characters are not
generated.

An “m” is added to the beginning of any identifier that starts with a leading underscore (_) to
make the name legal.

Identifiers that are reserved words in Synergy classes (such as this, parent, and, or, etc.) are
prefixed with “m_”.

Interfaces are folded into the generated classes when possible but may present conflicts.

Identifiers longer than 30 characters (the Synergy/DE limit) are not truncated, and you must
use the -qrelaxed:interop compiler option to compile your gennet output. Gennet detects any
collisions resulting from the 30-character limit, and the offending entities are omitted and the
omission logged to the log file. If the collision results in dropping a class, any methods or
properties that require that class are also omitted.

Parameters and return values that collide with Synergy types in the System namespace are
automatically converted to the Synergy type. If you are using System.Collections.ArrayList,
modifications made to a returned array are not visible to the corresponding .NET object unless
the array is copied back through a method or property invocation. In addition, delegates that
have parameters defined as System.Collections.Arraylist are marked INOUT.

Public members of System.Object that are not included in the Synergy implementation of
System.Object are omitted from all generated classes.

Any member that expects or returns a pointer type is omitted.

All objects contain their full .NET constructors with parameters, including default
constructors.

Inheritance is flattened so all methods are visible.

Reference parameters in the .NET assemblies are converted to INOUT arguments.

Error Cause

“Cannot find specified Assembly name” The specified assemblies cannot be opened and loaded as
.NET assemblies.

“Error opening output/log file” Output_file or log_file cannot be opened for output.

General Utilities
The Gennet Utility

4-50 Synergy Language Tools 9.3 (12/09)

An event is turned into a nested class. A member of that type is placed as an instance of the
event, which allows you to use the AddHandler, RemoveHandler, and RaiseEvent methods.
The nested class for the event is prefixed with “e_”.

The Clone, Equals, CreateInstance, and GetObjectData methods are not generated on any
generated classes.

See the “Synergy .NET Assembly API” chapter in the Synergy Language Reference Manual for
more information.

We recommend that you don’t add the directory that contains prototypes generated from
classes that were generated by gennet to SYNIMPDIR. Instead, use the -impdir option
when you run gennet.

General Utilities
The dbl2xml Utility

Synergy Language Tools 9.3 (12/09) 4-51

The dbl2xml Utility
The dbl2xml utility processes Synergy Language source files that include language attributes,
parameter modifiers, and comments, and outputs an XML file containing interfaces and methods.
This XML file is then used to update the Synergy Method Catalog (SMC), via the Method
Definition Utility’s import facility, for use with xfServerPlus and xfNetLink.

Many users find updating the SMC manually by entering data in the Method Definition Utility
(MDU) to be not only tedious, but also subject to error because changes to source code oftentimes
require a change to the SMC definition as well. By attributing your code and running dbl2xml, you
can automate the process and achieve greater accuracy. See “Using Attributes to Define Synergy
Methods” in the “Defining Your Synergy Methods” chapter of the Developing Distributed Synergy
Applications manual for details on attributing your code.

The dbl2xml utility has the following syntax:

dbl2xml [options] sourcefile [...]

Arguments
options

(optional) One or more of the following:

-out=output_file Specify the path and filename for the XML output file. You can use a
logical or the full path. The extension .xml will be appended to the
filename if you don’t specify an extension. By default, the file is named
with the first interface encountered during processing and placed in the
current directory.

-qrelaxedend Change the behavior of the END statement to clear .DEFINEs at the end
of the routine instead of at the end of the file.

-qvariant=value Define the value of ^VARIANT.

-single Process multiple source files (for example, -single *.dbl or -single a.dbl
b.dbl c.dbl) individually instead of as a compilation unit.

-? or -h Display dbl2xml command line options and usage information.

The equal sign in the above options is optional; you can use a space instead.

sourcefile

The name of one or more source files to be processed. The default filename extension is .dbl,
and wildcard characters are valid.

General Utilities
The dbl2xml Utility

4-52 Synergy Language Tools 9.3 (12/09)

Discussion
The dbl2xml utility creates a single XML file from one or more source files. Before running this
utility you must attribute your code as described in “Using Attributes to Define Synergy Methods”
in the “Defining Your Synergy Methods” chapter of the Developing Distributed Synergy
Applications manual.

If the routines included in a single interface are located in more than one source file, you should
process all those source files at the same time. This will make it easier to update the SMC, as you
can then import the entire interface at once, replacing the existing interface (if there is one). See
“Importing and Exporting Methods” in the “Defining Your Synergy Methods” chapter of the
Developing Distributed Synergy Applications manual for instructions.

The -single option causes files to be processed one at a time rather than together in a compilation
unit. We suggest that you use -single if you have a lot of .dbl files with no interdependencies and
you do not want to consume a large amount of memory or processing time.

In addition to errors generated by dbl2xml, you may see compiler errors because dbl2xml runs the
compiler before creating the XML file. We recommend that you compile first and fix any errors
before running dbl2xml.

Examples
This example processes two source files and creates an XML file named fred.xml:

dbl2xml -out=c:\work\fred myfile1.dbl myfile2.dbl

This example uses the -single option to process all .dbl files in the current directory and creates an
XML file named fred.xml:

dbl2xml -out=c:\work\fred -single *.dbl

See also
“The Method Definition Utility” in the “Defining Your Synergy Methods” chapter of the
Developing Distributed Synergy Applications manual.

When you change your source code, you should run dbl2xml to regenerate the XML file
and then re-import it into the SMC. You may want to add the commands to run dbl2xml and
to import the XML file to your build script.

5-1

5
Error Messages

This chapter defines the error messages a Synergy Language program can signal during program
execution, compilation, or linking, or during library creation and maintenance.

About Synergy Language Errors 5-2

Discusses the effect of trappable and fatal errors and explains error literals and error message
variables.

Runtime Errors 5-4

Lists error literals, numbers, and messages for the trappable, informational, fatal, success,
debugging log, and window runtime errors, along with a brief explanation of each message.

Compiler Errors 5-47

Lists error literals and messages for the nonfatal, informational, fatal, and warning compiler errors.

Linker Errors 5-99

Lists error literals and messages for the fatal, informational, and warning linker errors.

Librarian Errors 5-107

Lists error literals and messages for the fatal and warning librarian errors.

Synergy DBMS Errors 5-110

Lists the error numbers and messages for Synergy DBMS.

List of Runtime Error Numbers 5-114

Lists the runtime error numbers and literals in consecutive numerical order, as they are listed in the
file syntxt.ism, to give you an alternative way to look up error numbers.

Error Messages
About Synergy Language Errors

5-2 Synergy Language Tools 9.3 (12/09)

About Synergy Language Errors
Synergy Language uses the following types of error messages:

Trappable or nonfatal warning errors

Informational messages that describe the error in more detail

Fatal errors that cause the program to abort

A success message that indicates the program completed normally

Window manager errors

Some of the error messages listed below contain a variable, such as “%s” or “%d”. These variables
are replaced with an actual value, character, or string at runtime. The variables and their
corresponding replacement values are as follows:

Trapping runtime errors
Trappable runtime errors are those from which your program can recover. You can trap these errors
using the ONERROR statement, end-of-file labels in some of the I/O statements, and I/O error lists
that can be associated with any I/O statement.

When establishing error traps, your program indicates errors that are to be trapped, as well as the
label(s) to which execution control is to be transferred. When your program traps an error, program
control transfers to the appropriate error handling code as if a GOTO statement had occurred.
For more details, see ONERROR in the “Synergy Language Statements” chapter of the Synergy
Language Reference Manual and “Error Trapping” in the “Error Handling” chapter of that same
manual.

This variable Is replaced with this value

%s alpha string

%d signed decimal value

%u unsigned decimal value

%ld signed longword value

%c single alpha character

Error Messages
About Synergy Language Errors

Synergy Language Tools 9.3 (12/09) 5-3

Every trappable error has an error literal or a mnemonic that begins with $ERR_. For example, the
error literal for ARGSIZ is $ERR_ARGSIZ, and the error literal for ILLCHN is $ERR_ILLCHN.
You can use these error literals with ONERROR statements, in I/O error lists, and wherever you can
use a literal. For example:

onerror ($ERR_IOFAIL, $ERR_DIGIT) proc_err1, ($ERR_EOF) proc_err2

read(1, data, rec_id) [$ERR_IOFAIL=proc_err1]

Fatal errors
Fatal, nontrappable errors result in immediate, unconditional termination of program execution.
When a program is abnormally terminated because of a nontrappable error (or a trappable error for
which no error trapping was established), an error message and a traceback of the program are
generated. The traceback is a record of how your program reached the line of code that encountered
the error.

The traceback appears beginning at the line at which the error was detected, and proceeds backward
until all CALLs and XCALLs have been displayed. The following is an example of traceback:

%DBR-F-CHNUSE, Channel is in use
%DBR-I-ATLINE, at line 584 in routine M_PROCESS_P
 Called from line 814
 Called from line 462
%DBR-I-ATLINE, at line 335 in routine M_PROCESS
%DBR-I-ATLINE, at line 156 in routine TXTUTL

If you’re running your program in the debugger and a fatal error is encountered, the debugger
generates the fatal error message with its traceback and break at the line that caused the fatal error.
This feature enables you to remain in the debugger for post-error debugging.

Using error literals instead of numbers
In addition to a literal, each error message also has an associated number. We strongly recommend
that you use error literals instead of error numbers to make your code easier to read and maintain.

The Synergy Control Panel
Error numbers and messages are defined in the syntxt.ism message library (as shown in “List of
Runtime Error Numbers” on page 5-114.) You can use the Synergy Control Panel to translate or
otherwise customize these messages if you’d like.

See “The Synergy Control Panel” on page 4-3 for information about using the Synergy Control
Panel to extract and modify error messages.

Error Messages
Runtime Errors

5-4 Synergy Language Tools 9.3 (12/09)

Runtime Errors

Runtime error messages
The following error messages are those that can be trapped and from which your program can
recover.

Literal Number Message

$ERR_ADDRSIZ 160 Invalid address size

The subroutine address passed to XSUBR is of incorrect size.

$ERR_ALCOMPAT 626 ArrayList compatibility issue. See the 9.1.5 release notes

You’ve attempted to run a program that uses the ArrayList class without
recompiling first. You will only potentially see this error after upgrading
to 9.1.5 or higher, and once you have recompiled, you will not see it
again. However, you must still either change all references to ArrayList
to Synergex.SynergyDE.Collections.ArrayList or convert all ArrayList
index references to be 0-based. If you don’t do one of these two steps,
you will probably encounter future problems. More detailed information
is provided in the 9.1.5 release notes.

$ERR_ALPHARG 519 Alpha argument required

The subroutine requires an alpha variable to pass back a text value.

$ERR_AORDXP 82 Alpha or decimal variable expected

Either an alpha or decimal variable is required by the operation.

$ERR_ARGDIG 151 Numeric digit(s) expected in argument

You must pass an argument that contains only numeric characters
(0 – 9).

$ERR_ARGDIGPT 144 Numeric digit(s) and at most one decimal point expected

You must specify an argument that contains only numeric characters
(0 – 9) and a maximum of one decimal point.

$ERR_ARGMIS 87 Argument missing

You did not pass an argument that was expected by the external
subroutine.

$ERR_ARGORD 77 Arguments out of order for PAK or UNPAK

The fields passed in the PAK or UNPAK subroutines are not in
ascending order.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-5

$ERR_ARGREC 78 PAK/UNPAK fields not in record

A field not contained in the specified record for either the PAK or
UNPAK subroutine was found.

$ERR_ARGSIZ 31 Argument specified with wrong size

You passed an argument whose length was not within the prescribed
limits to a system-supplied external subroutine. Often, this error means
the argument was too short.

$ERR_ARRAYBNDS 619 Index is outside the bounds of the array

The array index does not lie within the specified array.

$ERR_AXERR 421 Error HRESULT (number) while processing an ActiveX
control

An error state occurred in one of the ActiveX API routines but was not
specifically recognized. For example, a uniquely ActiveX-related error
status on %AX_CALL, an unexpected error state on %AX_CREATE,
or a missing COM interface on %AX_LOAD could cause this error. In
almost all cases, additional qualifying information regarding the exact
error state is displayed in the debug log if AXDEBUG is set to yes.
Number is the returned HRESULT number, if any, from the ActiveX
control

$ERR_AXNOFIND 425 ActiveX parameter not found

The second argument to %AX_GET, %AX_GETINT, %AX_SET,
%AX_BIND, or %AX_CALL is not defined.

$ERR_AXNOLOAD 422 Could not load ActiveX control

%AX_LOAD could not load the referenced ActiveX control.

$ERR_AXNOSUB 423 Could not find subroutine or function

%AX_BIND could not find the Synergy Language routine that was
specified as an argument.

$ERR_AXUNSUP 424 Unsupported feature

The ActiveX control being loaded uses a feature that the Synergy
ActiveX API doesn’t support. Additional information is displayed in the
debug log if AXDEBUG is set to yes.

$ERR_BACKPEND 13 Backup mode is On

An attempt was made to DELETE, STORE, or WRITE to a Synergy
ISAM file when backup mode was On.

Error Messages
Runtime Errors

5-6 Synergy Language Tools 9.3 (12/09)

$ERR_BACKUPMODE 41 Backup mode error

The shared memory segment on a UNIX system cannot be attached to.
Use the system error code reported (or %SYSERR if the error is
trapped) to debug your shared memory problem.

$ERR_BADADDR 531 Bad address detected: %s

Returned by the Synergy Language debugger when asked to examine an
invalid address.

$ERR_BADDATATYP 335 SQL: Invalid data type for this operation

See “Synergy runtime error messages” in the “Error Logging and
Messages” chapter of the SQL Connection Reference Manual.

$ERR_BADDBGPORT 608 Invalid debug port number: %s. Must be an integer within the
range 1024 to 65535, inclusive

The port number specified in the dbr -rd command is not in the correct
range. It must be between 1024 and 65535, inclusive.

$ERR_BADDBGTMOT 609 Invalid remote debug timeout value: %s

The timeout value specified in the dbr -rd command is either negative,
0, or alpha. It must be a positive numeric value.

$ERR_BADELB 532 Bad ELB detected: %s

An ELB was specified that was invalid or corrupted. This error also
could be caused by duplicate global commons, global literals, global
data sections, or static records when the ELB was loaded, if the sizes of
the duplicate records are different.

$ERR_BADFONTID 542 Invalid font ID specified: %d

The specified font handle was passed to one of the %U_WNDFONT
subfunctions, and the handle does not correspond to any known font.

$ERR_BADFONTNAME 539 Invalid font name specified: %s

An invalid font name was passed to one of the %U_WNDFONT
subfunctions. A font name must be an identifier (case insensitive,
containing the characters a–z, 0–9, _, or $, and beginning with a-z) and
is limited to 60 characters.

$ERR_BADFORMAT 525 Bad format string

Bad argument translation string passed to %DLL_SUBR or
%DLL_CALL.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-7

$ERR_BADHANDLE 526 Bad DLL handle

Invalid DLL handle passed to %DLL_SUBR, %DLL_CALL, or
%DLL_CLOSE.

$ERR_BADHOST 325 Unknown host “%s” in server spec

The server host specified in a client program was unknown or
unreachable.

$ERR_BADKEY 52 Illegal key specified

One of the following conditions has occurred:

The specified key name does not match a key.

An implied key specification does not match a key (wholly or
partially).

The specified key index is not in the range defined for the ISAM file.

On Windows and UNIX, an explicit key of reference specified on a
READ or a FIND statement exceeds the number of keys in the file.

$ERR_BADUSER 326 Bad username, login rejected on %s

An invalid username or password caused the Synergy/DE xfServer to
reject a client login.

$ERR_BADWNDID 549 Window %d bad or no longer open

The specified window ID, which was passed to one of the windowing
API routines (W_), is invalid.

$ERR_BDIGXP 145 Binary digits expected in argument (%s)

You must specify an argument that only contains binary digits (0 or 1).

$ERR_BIGALPHA 14 Alpha temporary result exceeds 65535

The results of an alpha string concatenation are greater than 65535 bytes
on a 32-bit system.

$ERR_BIGNUM 15 Arithmetic operand exceeds maximum size

Either an operand or the result of an arithmetic operation exceeds the
allowable size for its data type. Possible causes are as follows:

During evaluation of an arithmetic expression, the number of
significant digits in the final or some intermediate result exceeded 28
for a decimal variable or the whole number part of an
implied-decimal variable.

Error Messages
Runtime Errors

5-8 Synergy Language Tools 9.3 (12/09)

The INCR statement caused the value of a variable to overflow its
field width. (For example, the highest number a d2 field can hold
is 99.)

A decimal value that exceeded the documented limit was passed to a
system-supplied external subroutine.

You specified a decimal value greater than 65,535 as the control
value in a SLEEP statement or as the number of seconds to wait in
the WAIT external subroutine.

$ERR_BLKSIZ 115 Invalid value specified for BLKSIZ

The BLKSIZ value specified in an OPEN statement is outside the
permitted range of values.

$ERR_CATCH 900 (Internal use only)

$ERR_CATCH is passed to the ONERROR statement to enable the
catching of errors in called routines that do not have an ONERROR
statement.

$ERR_CHNEXC 33 Too many files open

You’ve attempted to open more channels than this system supports. For
each file you need to open, you must close a previously opened file to
avoid this error. You can also reconfigure your operating system to
support more open channels.

$ERR_CHNUSE 16 Channel is in use

An OPEN statement specified the number of a channel that’s currently
in use.

$ERR_CLNTERR 319 Client server error, host %s

An error occurred during communications with the Synergy/DE
xfServer.

$ERR_CLSMTCH 603 Class mismatch between routines

The class being referenced doesn’t match the same class referenced in a
prior routine. This occurs when a class is changed (class members are
added, removed, or changed) and the prototype hasn’t been rebuilt or the
modules referencing the class hasn’t been recompiled.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-9

$ERR_CURSERR 334 ID must be a non select cursor
ID not SELECT cursor
Invalid cursor ID

See “Synergy runtime error messages” in the “Error Logging and
Messages” chapter of the SQL Connection Reference Manual.

$ERR_DATACRYPT 433 Error encrypting data field: %s
Error decrypting data field: %s

The specified error occurred during encryption or decryption processing
via OPENSSL.

$ERR_DBGCLOSED 613 Remote debug client closed the connection; continuing
without debug

The debug client closed the connection. All breakpoints and
watchpoints have been cancelled, and program execution continues as if
debug were not enabled.

$ERR_DBGNOCONN 611 No debug client connection was established

A debug client did not connect to the port within the specified timeout
period. No debug client connection was established, and program
execution continues as if debug were not enabled.

$ERR_DBGNOSOCK 610 Unable to attach to remote debug port

The port specified for debugging was already in use when xfServerPlus
attempted to launch the runtime or when the runtime attempted to listen
on that port. The xfServerPlus session or program execution continues
as if debug were not enabled.

$ERR_DBGSOCKER 612 Remote debug socket error; continuing without debug

xfServerPlus was able to launch the runtime and the runtime was able to
listen on the specified debug port, but some other error occurred when
attempting to accept a connection. More detailed information on the
error that occurred is appended to the log entry. The xfServerPlus
session or program execution continues as if debug were not enabled.

$ERR_DEADLOCK 535 Operation would cause deadlock

A READ from a file that is locked by a process waiting for a lock that
the reading process holds would cause a deadlock condition.

$ERR_DECXP 153 Decimal expected

An argument was passed, but it was not type d as required.

Error Messages
Runtime Errors

5-10 Synergy Language Tools 9.3 (12/09)

$ERR_DELREC 318 Deleted record

The record you are attempting to access with an RFA has been deleted
or moved. (For more information, see “Static RFAs” in the “Synergy
Language Statements” chapter of the Synergy Language Reference
Manual.)

$ERR_DEVNOTRDY 107 Device not ready

The device accessed by an I/O statement was off-line or otherwise not
ready (the modem has hung up, the device is a network device that has
been disconnected, and so forth), or one of the following OpenVMS
system errors was received: SS$_DEVOFFLINE, SS$_HANGUP,
SS$_DISCONNECT, or SS$_DEVINACT.

$ERR_DEVUSE 37 Device in use

An OPEN statement attempted to open a nonsharable device that was in
use.

$ERR_DIFDIMS 620 Arrays must have the same number of dimensions

The System.Array method Copy requires that the number of dimensions
match exactly.

$ERR_DIGIT 20 Bad digit encountered

The alpha value being converted to a numeric value contained a
character that is not a digit 0 through 9, a decimal point, a space, or a
sign character (+ or –).

$ERR_DIVIDE 30 Attempt to divide by zero

An arithmetic operation attempted to divide by zero.

$ERR_DLLCLSERR 529 DLL could not be closed

An error occurred while %DLL_CLOSE was closing a DLL.

$ERR_DLLOPNER 528 DLL could not be opened: %s

An error occurred while %DLL_OPEN was opening the specified DLL.
Possible causes are as follows:

The .dll file could not be found.

Your application does not have read access to the .dll file.

Not enough virtual memory is available to load the .dll file.

You have exhausted the maximum number of handles on your
system.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-11

The DllMain function of the DLL caused an error.

The DLL attempted to load another DLL, which failed for any one
of the above reasons.

$ERR_DLLOPNMOD 548 Associated DLL not in path or not found

When a DLL was being opened, another DLL required by the first could
not be found.

$ERR_DUPFONTNAM 540 Duplicate font name specified: %s

Internally, an attempt was made to create a font with a name already
assigned to some other font.

$ERR_EOF 1 End of file

You’ve attempted to access information beyond the logical or physical
end of a file. The physical end of a file was detected by a READS or
READ, or the end-of-file indicator (which varies according to operating
system) was entered from a character-oriented device during an
ACCEPT or READS.

$ERR_ EXCACT 120 Too many activation characters

Either the ACCHR (or ACESC) subroutine attempted to define
additional activation characters but exceeded the limit of 10, or you
specified an invalid activation character to the DACCHR (or DAESC)
subroutine.

$ERR_EXCEPT 616 Exception of type ‘%s’

An exception was created that doesn’t map to a $ERR_ error. For
example, if your code contains

exception_handle = new SynException()

the generic $ERR_EXCEPT error is used because there’s no associated
$ERR_ text. The text of the error message (which in this case would be
“Exception of type ‘SYNERGEX.SYNERGYDE.SYNEXCEPTION’”)
is specified in the exception_handle.Message property.

$ERR_EXECF1 590 Cannot execute: %s

An attempt to execute a program using the RUNJB subroutine was
unsuccessful. The file may not be present or this may be an incorrect
command.

$ERR_EXQUOTA 106 Exceeded quota

The runtime failed because it exceeded some process limit imposed on it
by the system.

Error Messages
Runtime Errors

5-12 Synergy Language Tools 9.3 (12/09)

$ERR_FILFUL 25 Output file is full

All space allocated for a file has been filled, and the file cannot be
extended.

$ERR_FILOPT 21 Invalid operation for file type

You’ve issued an I/O statement that was not allowed by the mode in
which the file was opened. For example, you would get this error if you
attempted to write to a file that was opened in input mode.

$ERR_FILORG 103 Invalid file organization

You’ve opened a file whose organization is different than that specified
in the OPEN mode.

$ERR_FILSPC 17 Bad filename

A file specification contains a syntactical error.

$ERR_FINUSE 38 File in use by another user

One of the following has occurred:

The file specified in an OPEN statement is in use by another user and is
not available as a shared file.

The file specified in a call to RENAM or DELET is currently open by
another user.

The file specified in a call to COPY is open in update, output, or append
mode by another user.

Verify that the file is closed before attempting to rename or delete it, or
that it is either closed or open in input mode before attempting to
copy it.

$ERR_FNF 18 File not found

You’ve attempted to locate a file that doesn’t match a specified filename.
This error usually occurs on an OPEN statement. The FNF error can
also occur on an LPQUE statement, a STOP statement, or the
processing of some system-supplied external subroutines, such as
DELET and RENAM. It can also occur on a %SYN_SYSERRTXT call
if %SYN_SYSERRTXT does not immediately follow an ONERROR
statement.

$ERR_FNOTFOUND 523 Function not found

The DLL function that you’ve called with %DLL_CALL routine
doesn’t exist. Check the documentation for the DLL to find out why the
function isn’t there.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-13

$ERR_FONTINUSE 541 Font %d in use, cannot delete

Internally, upon shutdown, an attempt was made to delete a font that is
currently in use.

$ERR_HDIGXP 146 Hexadecimal digits expected in argument (%s)

You must specify an argument that only contains hexadecimal digits
(0 – 9 and A – F).

$ERR_HNDCORUPT 625 Handle has been modified; possible subscripting violation

An invalid object handle was detected, and its contents resemble the
result of a CLEAR exceeding the boundary of a single data variable.

$ERR_HSIZERR 161 Map outside bounds of field or handle

A ^M reference caused a data reference outside of the declared bounds
of the handle or data field.

$ERR_IDPARMREQ 605 Implied-decimal parameter required

An implied argument was passed to a routine that declared the
parameter type as n instead of n..

$ERR_IDXP 158 Implied data type required

A system function was passed an argument with an incorrect data type.

$ERR_ILLCHN 10 Illegal channel number specified

You’ve specified a channel number that is less than 1 or greater than
1024. Channel numbers appear as part of I/O statements and as
arguments to some system-supplied external subroutines.

$ERR_INCPTCLS 600 Incompatible classes

An object handle was used that does not match (or is not an ancestor of)
a required class for a particular operation, or if you’re using the
FOREACH statement, the elements of the specified collection cannot be
cast to the type of the loop variable. This error is always accompanied
by the “Class <%s> is not an ancestor of <%s>” informational error.

$ERR_INTARG 521 Integer argument required

A system function was passed an argument with an incorrect data type.

$ERR_INTLCK 303 Unexpected system locking error

An attempt to acquire a file or record lock failed due to an unexpected
system error.

Error Messages
Runtime Errors

5-14 Synergy Language Tools 9.3 (12/09)

$ERR_INTRPT 98 Interrupt character detected

Program execution was terminated because the user entered the interrupt
character. You can disable the aborting action of the interrupt character
by using the FLAGS subroutine to set runtime option flag 8 or by
specifying the system option #10.

$ERR_INVACT 309 Invalid action for XCALL FATAL

You specified an invalid action in the FATAL subroutine. Valid values
are 0 – 3.

$ERR_INVALRFA 317 Invalid record’s file address

One of the following occurred:

You specified an invalid RFA on an I/O operation.

The size of the alpha argument to the GETRFA or RFA qualifier was
something other than 6 or 10.

GETRFA:global_rfa was used on the FIND statement, on the
READ, READS, and WRITE statements for file types other than
ISAM and relative, or on the WRITES statement for file types other
than relative.

RFA:global_rfa was used on the FIND, READ, and WRITE
statements for file types other than ISAM and relative.

The GETRFA and RFA qualifiers on the same READ statement had
variables of different sizes. If a READ statement has both a
GETRFA and an RFA qualifier, the variables for must both be either
6 bytes (RFA size) or 10 bytes (global RFA size).

$ERR_INVARG 420 Invalid argument

A parameter is invalid for a given usage. If this error occurs in an
ActiveX API routine, additional information regarding the exact error
state is displayed in the debug log if AXDEBUG is set to yes.

$ERR_INVCAST 617 Invalid cast operation

The type used to cast a variable is not the class or an ancestor class of
the object stored in the variable, or it does not have an explicit
conversion operator.

$ERR_INVCLLSEQ 546 Invalid calling sequence

You specified a Windows printing API function or operation that
requires previously set values. (For more information about valid calling
sequences, see “Recommended calling sequence” in the “Synergy

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-15

Windows Printing API” chapter of the Synergy Language Reference
Manual.)

$ERR_INVCLSHND 574 Invalid class handle

An object handle became corrupted but the runtime can’t tell. (If the
runtime does recognize that the handle is corrupt, it generates an
$ERR_HNDCORUPT error.)

$ERR_INVDATE 527 Invalid date

A system date routine was passed an illegal or badly formed date.

$ERR_INVDIM 223 Invalid number of dimensions

You’ve passed a dimensioned array as an XCALL argument, and the
associated argument within the subroutine was either not dimensioned
or did not have the same number of dimensions.

$ERR_INVDSCR 568 Invalid descriptor

An invalid descriptor was passed in a Synergy argument. If you get this
error, please contact Synergy/DE Developer Support for assistance. (See
“Product support information” on page x for details about contacting
Support.)

$ERR_INVEXFTYP 417 Invalid external function data type

An incorrect data type was declared in or passed to an external function,
or a subroutine whose first parameter is an alpha was called as a
function.

$ERR_INVFORENT 157 Invalid entry to FOR loop

A FOR loop was entered without being initialized (in other words, using
a GOTO statement).

$ERR_INVHDL 159 Invalid memory handle

An invalid memory handle was used in a memory allocation or ^M
statement.

$ERR_INVNAMHND 573 Invalid namespace handle

A namespace ID that was not a valid memory handle was passed in one
of the %NSPC_ routines. Correct the namespace ID.

$ERR_INVNETHND 571 Invalid network handle

A network connection ID that was not a valid memory handle was
passed to xfNetLink Synergy. Correct the network connection ID.

Error Messages
Runtime Errors

5-16 Synergy Language Tools 9.3 (12/09)

$ERR_INVOPER 627 Invalid operation: %s

An invalid operation has occurred. The following are some examples of
invalid operations:

A collection was modified while a FOREACH statement was being
executed.

An invalid operation occurred during a Select.

$ERR_INVPKEY 341 Invalid partial key

A partial key read was performed on a key defined as decimal.

$ERR_INVPNHAND 545 Invalid pen handle

An invalid pen memory handle was passed during a pen operation
(%WPR_INFO(report_handle, DWP_GETPEN)) in the Windows
printing API. Correct the pen handle.

$ERR_INVPRC 224 Invalid fractional precision

During evaluation of an arithmetic expression, the number of digits in
the fractional portion of an implied-decimal variable exceeded 28.

$ERR_INVRCBHND 570 Invalid RCB handle

An invalid memory handle was specified in the rcbid parameter of an
RCB call.

$ERR_INVRPTHND 544 Invalid report handle

An invalid report memory handle was used during a report operation in
the Windows printing API.

$ERR_INVWNDHND 572 Invalid window handle

A bad window handle was passed to the %W_INFO(WIF_USRMEM)
or W_FLDS(id, WF_USER) routine.

$ERR_IOFAIL 22 Failure during I/O operation

A system error that indicates the data transfer was incorrect was
returned during an I/O operation. One possible reason is that the I/O
statement tried to access a terminal device that wasn’t ready. (Perhaps
the device was offline, the modem hung up, the device was a network
device that had been disconnected, and so forth.)

To access the underlying system error that caused $ERR_IOFAIL, we
recommend that you capture %SYSERR immediately after the error is
trapped and use that value in the diagnosis process.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-17

WIN, UNIX
For ISAM files, see the stv argument of the ERROR routine for further
clarification. (See %ERROR in the “System-Supplied Subroutines,
Functions, and Classes” chapter of the Synergy Language Reference
Manual.) In most cases, an $ERR_IOFAIL error indicates ISAM file
corruption. Use isutl -vi to detect corruption and follow the repair
recommendations. If the problem persists and you are not aborting
programs abnormally and have not had system crashes, contact
Synergy/DE Developer Support. (See “Product support information” on
page x for details about contacting Support.)

VMS
You might get this error with the SS$_DATAOVERUN system error
code if the type-ahead buffer is filled and the terminal is set nohostsync
(a normal OpenVMS error condition). To avoid this error, either include
an error list in your ACCEPT statements or ensure that the terminal is
set hostsync. If the terminal cannot be set hostsync, you can set the
terminal altype to reduce the occurrence of this error. You can retrieve
additional information for RMS files using the stv argument of the
ERROR routine. (See %ERROR in the “System-Supplied Subroutines,
Functions, and Classes” chapter of the Synergy Language Reference
Manual.)

$ERR_IOMODE 108 Bad mode specified

In an OPEN statement, you specified a mode or submode that is invalid
or that conflicts with the file organization.

$ERR_IORDXP 154 Only integer and decimal operands allowed

The round value (operand on the right) that you specify to the rounding
operator (#) must be integer or decimal data type.

$ERR_IRCSIZ 316 Invalid record size

You specified an invalid record size. This error occurs primarily on
STORE, WRITE, or WRITES operations and may occur when you
output to an ISAM or relative file and the buffer you’re passing is larger
than the record size.

Error Messages
Runtime Errors

5-18 Synergy Language Tools 9.3 (12/09)

$ERR_IRNDVAL 156 Invalid round value for integer operand: %d

The round value (operand on the right) that you specify to the rounding
operator (#) for an integer value to round (operand on the left) must be
less than or equal to 28.

$ERR_ISINFO 591 ISINFO error

The %ISINFO routine requested that a null string be returned, but no
null string exists for the specified key.

$ERR_KEYNOT 53 Key not same

The specified key value doesn’t match an existing record in the file. This
error is related to I/O operations involving ISAM files and occurs for
any of the following reasons:

If the key field specified in a READ or FIND statement is at least as
long as that defined for the ISAM file, Synergy Language assumes
the READ or FIND is requesting a record whose key value exactly
matches the value of the designated key field. If no record’s key field
begins exactly as specified by the key value, this error occurs, and
the first record with a higher key value is returned. (Even though you
get an error, the I/O is completed.)

During a WRITE operation, the key value does not match the value
of the stored record exactly, and the index does not allow
modification.

$ERR_LIBMAX 330 Exceeded maximum open libraries

You’ve attempted to open more than 256 libraries at one time.

$ERR_LOCKED 40 Record is locked

You’ve attempted to access a record or group of records that is being
used by another user.

$ERR_LPQERR 256 LPQUE failed

An error occurred on the LPQUE statement. Use %SYSERR to obtain
(or access) system-specific error codes.

$ERR_MAXIF 141 Too many input files open

You’ve exceeded the maximum number of indirect command input files.

$ERR_MAXPRC 308 Too many processes

The attempt to create a new process failed because the maximum
number of allowed processes was reached.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-19

$ERR_MISSFLD 427 Field/Type/Property/Event not found

The specified field name does not represent a public or public static field
defined in the assembly associated with the specified object, or the
specified field, type, property, or event could not be found.

$ERR_MISSMETH 426 Method/Delegate not found

The specified method name does not represent a public or public static
method defined in the assembly associated with the specified object, or
the specified method or delegate could not be found.

$ERR_MRGERR 226 Merge error

An error occurred during the processing of the MERGE statement.

$ERR_MSGFAIL 324 SEND/RECV message failure

Some failure has caused a message not to be sent or received. The most
common causes for this error are that either you’ve exceeded the
maximum message size of 4080 bytes or the Synergy message manager
is not running.

This message is normal on a RECV statement if many messages are
queued up and the message manager has not yet processed them all. In
such a case, the RECV has queued another message in sequence, but the
message manager has not processed it in the time the runtime has
allotted for a reply. You should retry the RECV if you’re sure the
message manager is actually running. This error protects the program
from hanging if the message manager aborts; however, the time to wait
depends on the processing activity and speed of the system, so you must
determine if a retry is required.

$ERR_NETCONFIG 331 Local Network Configuration Error

A TCP socket call failed.

$ERR_NETCRYPT 432 File requires network encryption

An OPEN statement referenced a file with the network encryption flag
set via a network path specification (NFS or Windows network mapped
drive), and encryption has not been enabled on the server.

$ERR_NETPROB 320 Network problem reaching server %s

A problem was detected while trying to communicate with Synergy/DE
xfServer or xfServerPlus. Either an attempt was made to make a call on a
disconnected socket, or the socket connection was lost during the call.
Try closing all your channels and reopening them.

Error Messages
Runtime Errors

5-20 Synergy Language Tools 9.3 (12/09)

$ERR_NOCURR 61 No current record

You haven’t established a current record, and one is required for the I/O
operation you’re attempting. This error can occur when during a
DELETE or WRITE operation, a FIND, READ, or READS operation
does not logically precede the update attempt.

$ERR_NODBGPORT 607 Debug port number not specified: %s

A port number was not specified on the dbr -rd command. The number
of the port on which you want the debug server to listen as a Telnet
server for the debug client must be specified.

$ERR_NODOTNET 430 Could not load the .NET CLR

The .NET common language runtime (CLR) could not be loaded for any
one of a variety of reasons, including that it is not installed.

$ERR_NODUPS 54 Duplicate key specified

An output I/O operation attempted to store a duplicate key value in an
ISAM file that doesn’t allow duplicates.

$ERR_NOFDL 533 Invalid open mode for FDL usage

An FDL qualifier was specified in an OPEN for output statement.

$ERR_NOFORK 311 Cannot fork

A system fork call failed.

$ERR_NOLOAD 428 Could not load assembly

The assembly could not be loaded.

$ERR_NOMEM 9 Not enough memory for desired operation

This operation could not be performed with the available memory. This
error only occurs after all memory has been reorganized and all
unnecessary segments are freed. If you get this error, either decrease the
size of your routine or increase the amount of available RAM.

$ERR_NOMETHOD 162 Method’s routine not found

The method you called is not a member of a class.

$ERR_NOMORECURS 333 SQL: No more available open cursors

See “Synergy runtime error messages” in the “Error Logging and
Messages” chapter of the SQL Connection Reference Manual.

$ERR_NOOBJ 601 No object for handle

An object handle that does not contain an object instance was used.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-21

$ERR_NOOPEN 11 Channel has not been opened

You attempted an I/O operation on a channel that has not been activated
by the OPEN statement.

$ERR_NORETURN 622 Leaving local scope where a CALLed subroutine is still
active

A routine was CALLed from within a compound statement that defines
handles locally, and the compound statement was exited before a
RETURN was executed.

$ERR_NOSERVER 321 Synergy server is not running on %s

A client attempted to access a server on a host where the server has not
been started.

$ERR_NOSPAC 24 No space exists for file on device

Either on an OPEN statement in output mode or on a STORE statement
to an ISAM file that’s already open, the operating system indicated that
the device didn’t have enough space left for the file to be opened or the
record to be stored. On an OPEN statement, this error can occur either
because fewer storage blocks are available than are requested during
preallocation of the file or because the directory structure for the device
cannot accommodate more files.

The Novell operating system allows user log-ins to be limited in the
amount of disk space that the user can allocate. Novell version 3 and
higher allows directories to have disk space restrictions as well. Such
restrictions can cause $ERR_NOSPAC errors, even if hundreds of
megabytes are available on the disk. The network administrator can use
the Novell dspace.exe utility to check and change user and directory
restrictions if such errors occur. Your users may want to consider
eliminating these restrictions for certain directories and users.

$ERR_NOSQL 80 SQL Connection installation error or DBLOPT 48 not set

You’ve called an SQL Connection routine before the Connection was
initialized. SQL Connection is initialized by setting system option #48
using either DBLOPT or %OPTION.

$ERR_NOTAVL 19 Device not available

The device you’ve attempted to access is not available.

Error Messages
Runtime Errors

5-22 Synergy Language Tools 9.3 (12/09)

$ERR_NOTISM 56 Not an ISAM file

One of the following has occurred:

You’ve attempted to open a file that is not recognized as an ISAM
file.

You’ve specified a channel in the GETRFA, POSRFA, ISKEY, or
ISSTS subroutine that was not opened to an ISAM file.

You’ve specified a file in the ISCLR subroutine that is not
recognized as an ISAM file.

$ERR_NOTNAMHND 583 Handle is not a namespace handle

The memory handle passed as a namespace ID in one of the %NSPC_
routines is a valid memory handle, but it is not a handle to a namespace.
Correct the namespace ID.

$ERR_NOTNETHND 581 Handle is not a network handle

This is an xfNetLink Synergy error. The memory handle passed as a
network connection ID is a valid memory handle, but it is not an ID to a
network connection. Correct the network connection ID.

$ERR_NOTOBJHND 585 Handle is not an object handle

The memory handle passed as an object handle is a valid memory
handle, but it is not a handle to an object.

$ERR_NOTOHND 602 Both source and destination must be object handles

One of the operands in an assignment operation on object handles is not
an object handle.

$ERR_NOTPNHAND 589 Handle is not a pen handle

The memory handle passed as report_handle in
%WPR_INFO(report_handle, DWP_GETPEN) is a valid memory
handle, but it is not a pen handle. Correct the report_handle parameter.

$ERR_NOTRCBHAND 580 Handle is not an RCB handle

The memory handle passed in the rcbid parameter of an RCB call is a
valid memory handle, but it is not a handle to a routine call block.
Correct the rcbid parameter.

$ERR_NOTRPTHND 588 Handle is not a report handle

The memory handle passed during a report operation in the Windows
printing API is a valid memory handle, but it is not a handle to a report
operation. Correct the report_handle parameter.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-23

$ERR_NOTWNDHND 582 Handle is not a window handle

The memory handle passed as a user data set ID in the
%W_INFO(WIF_USRMEM) or W_FLDS(id, WF_USER) routine is a
valid memory handle, but it is not an ID to a user data set in a Synergy
window. Correct the user data set ID.

$ERR_NOXCAL 254 Undefined XCALL referenced

At least one of your program’s referenced ELBs was modified to refer to
a new routine that is undefined. When you ran your program, it
attempted to invoke a routine that referenced the undefined subroutine
or function.

$ERR_NULARG 322 Improper use of null argument

You passed a null argument to a data reference operation, intrinsic
function, or system-supplied external subroutine that requires a nonnull
argument. Null arguments are passed either by not specifying an
argument in the call or by specifying an argument that is itself an
argument that was not passed when the current routine was called.

$ERR_NUMXP 166 Numeric argument expected

A nonnumeric argument was passed to a subroutine that required a
numeric argument.

$ERR_OBJPASSED 623 Unexpected object handle passed as argument

An object handle was passed as an argument to a routine, but the routine
does not declare the parameter as the appropriate object handle type.

$ERR_ODIGXP 147 Octal digits expected in argument (%s)

You must specify an argument that contains only octal digits (0 – 7).

$ERR_OHNDCPY 606 Invalid copy of an object handle

An object handle was overwritten or cleared in such a way that the
runtime was unaware of its type. This can be caused by oversubscripting
a field in a record and changing the contents of another field declared as
an object handle.

$ERR_OHNDREQ 604 Object handle required

A parameter declared as an object handle was not passed an object
handle.

Error Messages
Runtime Errors

5-24 Synergy Language Tools 9.3 (12/09)

$ERR_OLDELB 595 Old ELB file format%s detected: relink %s

The ELB file format that you linked with is no longer supported. You
must relink with a newer version. (We recommend linking with the
current version.)

$ERR_ONLYWR 12 Attempt to open output device in input mode

An OPEN statement attempted to open an output-only device, such as a
line printer, using input (I) mode.

$ERR_OPNERR 95 OPEN error

An error occurred in an OPEN statement. To access the underlying
system error that caused $ERR_OPNERR, we recommend that you
capture %SYSERR immediately after the error is trapped, and use that
value in the diagnosis process.

$ERR_OPTINV 547 Invalid option

You specified an invalid operation option for a Windows printing API
function.

$ERR_OUTRDO 39 Output to read-only device

An I/O statement attempted to perform output to a device that is
write-locked.

$ERR_OUTRNG 104 Value out of range

A statement or subroutine argument or qualifier was outside the
permitted range of values.

$ERR_PROTEC 62 Protection violation

You’ve attempted to access a resource that is protected.

$ERR_PRTOBJHND 576 Protected object handle cannot be deleted

You’ve attempted to use %MEM_PROC(DM_FREE) on a memory
handle allocated with the Synergy XML API or xfServerPlus. Only the
XML API or xfServerPlus can delete these memory handles.

$ERR_PURGE 530 DCL purge error

An error occurred in the purge.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-25

$ERR_QUEUENOTAV 122 Invalid queue specified on LPQUE

The queue specified in an LPQUE statement was either not available or
invalid.

$ERR_QUEUENOTAV is a catchall for most print/batch symbiont
errors. You should use the %SYSERR intrinsic function to retrieve the
system error code to decode these errors further.

$ERR_RECBLK 301 Record must be a multiple of block size

The record size specified in a block I/O statement was not a multiple of
512 bytes.

$ERR_RECEXTCAL 5 Recursive XCALL

An external subroutine called itself.

$ERR_RECLNG 86 Invalid record length

Either a record that exceeds the length of the specified record was
encountered during SORT processing or you’ve passed an invalid record
to the ISAMC subroutine.

$ERR_RECNOT 431 Record not same

A record accessed via a READ statement (or a WRITE statement for
relative files) using the RFA qualifier with a GRFA no longer matches
the original record at the time the GRFA was created.

$ERR_RECNUM 28 Illegal record number specified

A READ, GET, WRITE, or PUT statement specified a record number
that was either less than one or greater than the number of records
present in the file currently associated with the I/O channel.

$ERR_RELREC 313 Invalid relative record

You’ve attempted to read a record that hasn’t been written yet or a
record that is corrupted.

$ERR_REPLAC 32 Cannot supersede existing file

You’ve attempted to overwrite a file that has been protected against
deletion. A possible cause of this error is that the OPEN statement, or
the RENAM or ISAMC subroutine attempted to create a new file that
already exists. This error condition is only detected if the FLAGS
subroutine runtime option flag 3 is set.

$ERR_RMSERROR 100 Unexpected RMS error

This error only occurs on OpenVMS. Synergy Language cannot access
the file it’s attempting to access.

Error Messages
Runtime Errors

5-26 Synergy Language Tools 9.3 (12/09)

$ERR_RNDVAL 155 Invalid round value: %d

The round value (operand on the right) that you specify to the rounding
operator (#) must be less than or equal to 28.

$ERR_RNF 64 Record not found

The specified record does not exist.

$ERR_RTNNF 511 Cannot access external routine %s

You’ve attempted to execute a routine that is not defined. This error is
returned by the XSUBR subroutine or ^XADDR when a named
subroutine cannot be found. This error may occur if you modify a
subroutine in an ELB to reference a routine that is not defined in the
main routine or the linked ELBs.

This error may also occur if variables defined as COMMON in an
external routine (which therefore default to EXTERNAL COMMON)
do not have a corresponding GLOBAL COMMON declaration within
the main routine.

$ERR_SEQRDS 615 Sequential read caching error

You are using the xfServer prefetch feature, and one of the instances
where it is not allowed has occurred. Immediately try doing a keyed
READ to reset your current position. If this doesn’t work, turn off
prefetching for this file. (See “Prefetching records to improve
performance with xfServer” in the “Synergy Language Statements”
chapter of the Synergy Language Reference Manual for more
information.)

$ERR_SETTYP 323 SET data types must be the same

The variables you specified in the SET statement did not have the same
data type.

$ERR_SINGLEDIM 618 Array is not a one-dimensional array

Some methods in System.Array (Getvalue, SetValue, IndexOf, and
LastIndexOf) require a single-dimension, or pseudo, array.

$ERR_SMERR 131 SORT or MERGE error

An error occurred during processing of a SORT or MERGE statement.

$ERR_SQLDYN 337 SQL: ^M variable still bound/defined on dynamic memory
deletion

You used %SSC_BIND, %SSC_DEFINE, or %SSC_OPEN using a
variable defined with a memory handle (^M), and the cursor was not
closed before the dynamic memory was deleted.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-27

$ERR_SQLERR 332 Initialize Synergy SQL by calling %INIT_SSQL first
Initialize Synergy SQL by setting DBLOPT 48
Synergy SQL ERROR: uninitialized system called
Synergy SQL ERROR: Licensing error. Demo period expired
Synergy SQL ERROR: Licensing error. Maximum users
exceeded
Synergy SQL ERROR: Licensing error. Product not installed

See “Synergy runtime error messages” in the “Error Logging and
Messages” chapter of the SQL Connection Reference Manual.

$ERR_SQLSTACK 336 SQL: Stack variable still bound/defined on routine exit

You used %SSC_BIND, %SSC_DEFINE, or %SSC_OPEN using a
variable defined in a stack record, and the cursor was not closed before
the routine exited.

$ERR_SRTFAI 243 SORT failure

An error occurred while Synergy Language was processing a sort (for
example, if you were attempting to sort in a read-only directory).

$ERR_SRVLICERR 536 Licensing error on server %s

The server is not licensed on the host specified.

$ERR_SRVRLICNS 534 Server license limit reached on %s

The server on the specified host has reached the maximum number of
licensed connections.

$ERR_SRVLICTIMOUT 537 Licensing timed out on server %s

The server license has expired on the specified host.

$ERR_STRMTCH 624 Structure mismatch between routines

A structure was passed as a structfield to a routine, or a boxed structure
in an object handle doesn’t match the same structure definition
referenced in a prior routine.

$ERR_SUBSCR 7 Invalid subscript specified

A value specified as a subscript is outside the allowable range of values,
which could indicate one of the following situations:

The starting position for a variable in a subscripted, ranged, or
indexed expression is less than or equal to zero.

The ending position in a ranged expression is less than the starting
position.

Error Messages
Runtime Errors

5-28 Synergy Language Tools 9.3 (12/09)

The memory area referenced through a subscripted, ranged, or
indexed expression is outside the bounds of either the routine’s local
data area, a calling routine’s data area (in the case of parameters), or
a global data area (in the case of global variables).

A real array is referenced with [0].

$ERR_SYNSOCK 569 Synsock error %d

xfNetLink Synergy has experienced a socket failure. For additional
information about the error, use the RX_GET_ERRINFO subroutine,
which stores the socket error level that would be returned as a status if
you made the socket calls directly yourself. Restart your system and
retry the operation. A recurrent error generally indicates a problem with
your network.

$ERR_TIMOUT 111 Terminal input operation timeout

One of the following occurred:

You specified the WAIT qualifier with a value on an ACCEPT or
READS statement to await input from a terminal, and the user didn’t
enter the required input before the specified amount of time expired.

The xfNetLink Synergy client timed out after waiting specified
length of time for call results. You can either extend the time-out at
runtime using %RX_RMT_TIMOUT, optimize the called routine, or
check with your network administrator.

The message manager mailbox specified in a RECV statement
exists, but the message manager is not running.

$ERR_TOOBIG 23 Input data size exceeds destination size

You’ve attempted to read data into a destination that is not large enough
to contain the complete data transfer. The full record is read and the data
is truncated to the size of your buffer.

$ERR_TOOLKIT 614 Toolkit error

Toolkit has encountered an error that is not a standard Synergy
Language error, or there has been an explicit call to U_ABORT. Use
%ERR_TRACEBACK to retrieve associated messages. See U_ABORT
in the “Utility Routines” chapter of the UI Toolkit Reference Manual for
more information.

$ERR_UNDEFERR 327 Undefined error

You’ve attempted to signal an error that is unknown to
Synergy Language.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-29

$ERR_UNHANDLED 621 Unhandled exception: %s

A THROW of an exception was not caught by an outer TRY/CATCH.

$ERR_UPDNFD 27 Update of non-file device

You’ve attempted to open a nonfile device in update mode.

$ERR_WINRSRC 538 Windows resource exhausted

An attempt to allocate a Windows resource failed. This error should be
followed by the system error message generated by Windows, which
provides additional information.

$ERR_WNDERR 329 Window Manager error

A window error occurred. The specific window error message should be
displayed below this error.

$ERR_WNFNCERR 543 Windows API function failure: %s

A call to the Windows API failed. The name of the failing function
should be displayed along with the Windows system error number. (For
more information about this error, refer to Microsoft’s system error
documentation.)

$ERR_WROARG 6 Incorrect number of subroutine arguments

The number of arguments passed to an external subroutine or intrinsic
function is different than the number of arguments expected by the
subroutine or intrinsic function.

$ERR_WRTLIT 8 Writing to a literal or missing argument

You’ve attempted to change the value of an alpha, decimal,
implied-decimal, or integer literal. This error normally occurs because
you’ve passed a literal or an expression to a system-supplied external
subroutine or intrinsic function that is expecting a variable, and the
subroutine tried to modify the argument.

$ERR_XFBADARRAY 556 Error mapping array element

An xfNetLink Synergy error occurred while mapping array elements.
For additional information about the error, use the RX_GET_ERRINFO
subroutine. Contact Synergy/DE Developer Support if you need
assistance. (See “Product support information” on page x for details
about contacting Support.)

Error Messages
Runtime Errors

5-30 Synergy Language Tools 9.3 (12/09)

$ERR_XFBADMTHID 551 Method ID too long

The specified method ID exceeds 31 characters. For additional
information about this xfNetLink Synergy error, use the
RX_GET_ERRINFO subroutine.

$ERR_XFBADPKT 553 Packet format error

A parsing error has occurred in xfServerPlus. Because this error is
sometimes caused by network noise, try the operation again. If you get
the same error a second time, contact Synergy/DE Developer Support
for assistance. (See “Product support information” on page x for details
about contacting Support.)

$ERR_XFBADPKTID 550 Incorrect packet identifier

The parser cannot parse the return response due to an invalid character
in the packet type field. Because this xfNetLink Synergy error is
sometimes caused by network noise, try the operation again. If you get
the same error a second time, contact Synergy/DE Developer Support
for assistance. (See “Product support information” on page x for details
about contacting Support.) If you are connecting a newer server to an
older client, you may need to upgrade the client.

$ERR_XFBADTYPE 554 Invalid parameter type

The argument type didn’t correspond to the definition in the Synergy
Method Catalog. For additional information about this xfNetLink
Synergy error, use the RX_GET_ERRINFO subroutine, and then check
your routine call against the definition in the Synergy Method Catalog.

$ERR_XFHALT 561 Fatal error occurred on server

xfServerPlus encountered a fatal, untrapped error in one of the Synergy
routines being called remotely. For additional information about the
error, use the RX_GET_HALTINFO subroutine. To solve the problem,
check the routine for untrapped errors. Be sure to check the number and
type of parameters. Then restore the system as required and restart the
session.

$ERR_XFINCALL 592 Remote call already in progress

An %RXSUBR call has timed out and you’ve attempted to make a
second %RXSUBR call before receiving the return packet for the first
call. Use %RX_CONTINUE to complete the timed-out %RXSUBR call
before making another remote call. Or, you can use
RX_SHUTDOWN_REMOTE to shut down the session.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-31

$ERR_XFIOERR 557 File I/O error occurred on server

A file I/O error occurred in a program on the xfServerPlus machine. For
additional information about the error, use the RX_GET_ERRINFO
subroutine. To solve the problem, correct your code or change the file
attributes as indicated by the specific I/O error.

$ERR_XFMETHCRYPT 596 Method requires encryption

The method is marked for encryption in the SMC, but the client sent
clear data.

$ERR_XFMETHKNF 558 Method ID not found

xfServerPlus could not find the method ID. For additional information
about the error, use the RX_GET_ERRINFO subroutine, and then check
your routine call against the definition in the Synergy Method Catalog.
Remember that the method ID is case sensitive.

$ERR_XFNOCALL 593 No current call in progress

You have attempted to call %RX_CONTINUE when no %RXSUBR
call has timed out. %RX_CONTINUE can be used only when a remote
call has timed out.

$ERR_XFNOCDT 565 Unable to open method catalog file

xfServerPlus could not open the catalog file of the Synergy Method
Catalog (cdt.ism), most likely because it could not find it, the file is
corrupted, or it is in a format prior to 8.3. If the SMC is not in the default
location, make sure XFPL_SMCPATH is set correctly.

$ERR_XFNOCMPDT 566 Unable to open method parameter file

xfServerPlus could not open the method parameter file of the Synergy
Method Catalog (cmpdt.ism), most likely because it either could not
find it or the file is corrupted. If the SMC is not in the default location,
make sure XFPL_SMCPATH is set correctly.

$ERR_XFNOCONN 560 No connection to remote host

This is an xfNetLink Synergy error. The connection to the host was lost.
Restart the session. If the transaction was interrupted in mid-stream, you
may need to restore the system to a valid state before restarting.

$ERR_XFNOELB 567 Unable to open ELB file

xfServerPlus could not locate or open the specified ELB. Make sure you
are using the correct ELB name in the SMC and that the logicals you are
using to point to ELBs are correctly defined.

Error Messages
Runtime Errors

5-32 Synergy Language Tools 9.3 (12/09)

$ERR_XFNOINIT 562 RX_DEBUG_START called without RX_DEBUG_INIT

This is an is xfNetLink Synergy error. RX_DEBUG_START was called
before a corresponding RX_DEBUG_INIT call was made.

$ERR_SRVNOTSUP 563 Feature not supported in this version

The feature you attempted to use is not supported in the version of the
server requested.

$ERR_XFNUMPARMS 552 Invalid parameter count

An invalid number of arguments was passed to xfServerPlus from
xfNetLink Synergy. For additional information about the error, use the
RX_GET_ERRINFO subroutine, and then check your routine call
against the definition in the Synergy Method Catalog.

$ERR_XFREQPARM 555 Required parameter not sent

A required argument was not passed to xfServerPlus from xfNetLink
Synergy. For additional information about the error, use the
RX_GET_ERRINFO subroutine, and then check your routine call
against the definition in the Synergy Method Catalog.

$ERR_XFRTNNF 559 Cannot access remote routine

xfServerPlus could not find the method in the specified ELB or shared
image. For additional information about the error, use the
RX_GET_ERRINFO subroutine. Make sure the correct ELB is
specified in the Synergy Method Catalog and that logicals are set
correctly to find the ELB.

$ERR_XFUNKERR 564 Unknown error reported by xfServerPlus

The server returned an error that was not recognized by the client.
Check the xfpl.log file, which records the error even though the client is
unable to receive it. This error usually happens when an older xfNetLink
Synergy client is communicating with a newer xfServerPlus server. To
solve this problem, update your client version. If your versions already
match, call Synergy/DE Developer Support. (See “Product support
information” on page x for details about contacting Support.)

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-33

Informational error messages
The following errors provide additional information about other errors.

Mnemonic Number Message

ACCVIO 1001 Access violation

You tried to index a variable outside of the data area.

ALITXP 1002 Alpha literal expected

You specified a value in the mode option for the OPEN statement that
wasn’t an alpha literal.

AMBKWD 1218 Ambiguous XDL keyword: %s

An XDL keyword was abbreviated to the point that it could not be
distinguished from another XDL keyword. For example, you cannot
abbreviate DENSITY to “D” because it cannot be distinguished from
the DUPLICATES keyword.

AMBVAL 1224 Ambiguous %s value: %s

An XDL keyword value was abbreviated to the point that it could not be
distinguished from another possible value.

ARGWAS 1003 Argument number was %d

An error occurred when processing the specified argument.

ATLIN 1193 At line %d in routine %s

An error occurred at the specified line in the specified routine.

ATLINE 1195 At line %s in routine %s

An error occurred at the specified line in the specified routine.

BADDSCR 1217 Corrupted descriptor: type = %d, class = %d

All Synergy Language variables are referenced by descriptor, which
contains a pointer to the variable’s data and its length. The Synergy
runtime has encountered an invalid descriptor.

BADIND 1011 Bad index: %d

You specified this illegal index value.

BADRNG 1012 Bad range value: %d,%d

You specified this illegal range value.

Error Messages
Runtime Errors

5-34 Synergy Language Tools 9.3 (12/09)

BADRNGR 1013 Bad range value: %d:%d

You specified this illegal range value.

BADXDLF 342 Bad XDL file

An invalid XDL keyword file was specified. See page 3-81 for a list of
rules that apply to XDL keyword files. If any of these rules are broken,
this message could be generated.

BADXDLS 343 Bad XDL string

An invalid XDL string was specified. See page 3-81 for a list of rules
that apply to XDL keyword files. If any of these rules are broken, this
message could be generated.

CALFRM 1196 Called from line %s

The detected error was called from the specified line.

CALFRO 1194 Called from line %d

The detected error was called from the specified line.

CHNWAS 1021 Channel specified: %u

An I/O error occurred on this channel.

CHRSPC 1022 Character specified: %c

You specified this character as the end value in a MERGE statement.

COLEQL 1029 Colon or equal sign expected

A syntax error occurred either in the qualifier specifications, in the
OPEN statement, or in the KEY specification of the OPTION qualifier
in the SORT or MERGE statement.

CONSUP 1216 Please contact your Synergy/DE supplier

If you get this error, contact Synergex or the company that provides your
Synergy/DE products.

CREFIL 1030 Error creating file

An error occurred during file creation. Files are created when you
specify output mode on an OPEN statement and when you use the
ISAMC subroutine.

DBLDIR 1040 DBLDIR not set

You did not set the DBLDIR environment variable, which is required to
be set to the directory that contains your Synergy Language distribution.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-35

DCMPER 1041 Data compression/uncompression error

You’ve attempted to READ(S) or WRITE a record that is corrupted in
an ISAM file with compressed data records.

DECXP 1042 Decimal expected

A decimal variable or literal was expected in one of the following
situations:

In the OPEN statement’s SIZE or RECSIZE specification

In the KEY specification of the SORT or MERGE statement’s
OPTION string

DELFIL 1043 Error deleting file

An error occurred while the file specified in the LPQUE statement was
being deleted.

DEVFUL 1211 Device full

You’ve attempted to extend a file when the device contains no free
space.

DIMEXP 1230 Dimensions of passed argument: %d

The specified dimension value was deemed out of range.

DIMSPC 1229 Dimension specified: %d

A dimension was specified that does not lie in the range declared for an
array.

DINCON 1046 Data incongruity

Your ISAM data file appears to be corrupted. A pointer to the index file
points to an invalid area of the data file.

DRCSIZ 1047 Destination record size: %d

The data area you specified in an I/O statement is this size.

EQLEXP 1055 Equal sign expected

An equal sign was expected after a qualifier in the SORT or MERGE
statement.

ERTEXT 1052 %s

This informational error displays different text for different situations,
including operating system errors. It explains an accompanying error in
more detail.

Error Messages
Runtime Errors

5-36 Synergy Language Tools 9.3 (12/09)

ERTEXTT 1228 %s

This informational error is used for generic information.

ERTXT2 1053 %s %s

This informational error displays different text for different situations,
including operating system errors. It explains an accompanying error in
more detail.

ERTXTN 1054 %s %d

This informational error displays different text for different situations,
including operating system errors. It explains an accompanying error in
more detail.

EXECF 1056 Cannot execute: %s

An attempt to execute a program using the EXEC or RUNJB subroutine
was unsuccessful.

EXPDEMO 1213 This system has timed out

Your 14-day demo period has expired. Please contact Synergex or your
Synergy/DE supplier for a configuration key.

EXUSER 1214 Exceeded concurrent user capacity

The maximum license capacity in the License Manager has been
reached. (In other words, the number of log-ins on your system is
greater than the licensed number of users.) Either contact your
Synergy/DE supplier for another configuration key so you can increase
the number of users, or wait until someone logs out.

FILWAS 1061 File specification was %s

The specified file is involved in the error.

FLSPCW 216 File specification was %s

The specified file is involved in the error.

FRCSIZ 1063 File record size: %d

The record size on a READ exceeded the destination size, and this
informational error displays the record size. This error only occurs on
OpenVMS.

IINCON 1070 Index incongruity

Your ISAM index file appears to be corrupted.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-37

INTCON 1212 Internal consistency failure

An error in runtime processing, usually associated with the License
Manager, has occurred.

INVAVAL 1222 Invalid %s value: %s

An invalid alpha value was specified for an XDL keyword. Some
keywords have a defined set of possible values. For example, the
FORMAT keyword requires a value of either “fixed” or “variable.” If
any other value is specified, this error is generated.

INVBUFF 1227 Alpha return argument expected

The buf argument to SDMS_ISINFO (which returns an alpha value) was
not passed.

INVCMD 1076 Invalid I/O command: %s

You specified this invalid command.

INVDVAL 1223 Invalid %s value: %d

An invalid decimal value was specified for an XDL keyword. Some
keywords have a defined set of possible values. For example, the
PAGE_SIZE keyword requires a value of 512, 1024, 2048, 4096, or
8192. If any other value is specified, this error is generated.

INVIVAL 1226 Numeric return argument expected

The ival argument to SDMS_ISINFO (which returns a numeric value)
was not passed.

INVKVAL 340 Invalid key value

The ISAM key value is not valid for the declared data type. For
example, if you declare a decimal ISAM key and attempt to STORE a
record with an alpha value for that key, this error will be generated.

INVSMD 1079 Invalid OPEN submode

You specified an invalid submode in an OPEN statement.

INVSW 1078 Invalid switch

You specified an invalid switch in the KEY specification of a SORT or
MERGE statement.

INVTYP 860 Invalid use of type %s

A structure or class name was used incorrectly. For example, a class
name can’t be used as a variable, a structure name can’t be passed as an
argument to a routine, etc.

Error Messages
Runtime Errors

5-38 Synergy Language Tools 9.3 (12/09)

INVVAL 1080 Invalid value for %s

You specified this invalid value in the LPQUE statement.

IOERR2 1088 Channel %d, open mode %s

This is the channel number and the open mode you specified.

IOOPN 1084 Cannot open %s

You specified this indirect filename that cannot be opened.

KEYSPC 1101 Could not locate key with identifier %s

You specified an invalid ISAM key of reference.

KEYSPEC 1225 Key specified: %d

When an error occurs within a key definition section of an XDL file, this
message is generated in addition to the error message to indicate the key
definition in which the error occurred.

MAXSIZ 1120 Maximum record size is %u

You can specify this maximum record size on a SORT or a MERGE
statement.

MLTKWD 1219 Keyword specified multiple times: %s

An XDL keyword that is supposed to occur only one time in the file
attribute section of the XDL file was found more than once. (The
keywords that can only occur once are FILE, NAME, KEYS,
ADDRESSING, PAGE_SIZE, RECORD, SIZE, COMPRESS_DATA,
FORMAT, and STATIC_RFA.)

MSGBIG 1207 Message exceeds maximum size

During a SEND and RECV, you specified a message to send that
exceeded 4080 bytes.

MSGEXP 1208 Message communication timeout

You’ve attempted to SEND or RECV a message with system option #7,
and the Synergy Language daemon is not running.

NOEOFC 1132 No EOF character found. Physical EOF was used

The physical EOF was encountered before the END value you specified
in a SORT or MERGE statement.

NOLMD 1210 Cannot access License Manager daemon

The Synergy Language daemon is not running.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-39

NOTCONF 1215 Synergy Runtime license is not configured

Your runtime is not configured. See the “Configuring License Manager”
chapter of the Installation Configuration Guide for assistance.

NOVAL 1221 No value supplied with keyword: %s

The specified XDL keyword requires a value, but none was assigned.

NUMWAS 1163 Record number: %ld

You specified this invalid record number.

OPNFIL 1140 Cannot open file

A file could not be opened.

OPTSPC 1142 Option specified %s

You specified this option.

OPTWAS 1077 Invalid option: %s

You specified this invalid option.

OPWCRE 1149 Operation was ISAMC

The error occurred on an ISAMC external subroutine.

OPWDEL 1146 Operation was DELETE

The error occurred on a DELETE statement.

OPWFND 1144 Operation was FIND

The error occurred on a FIND statement.

OPWRDS 1145 Operation was READS

The error occurred on a READS statement.

OPWRED 1143 Operation was READ

The error occurred on a READ statement.

OPWSTO 1147 Operation was STORE

The error occurred on a STORE statement.

OPWWRI 1148 Operation was WRITE

The error occurred on a WRITE statement.

RBKXP 1160 Right bracket expected

A closing right bracket was expected on the SIZE specification in an
OPEN statement.

Error Messages
Runtime Errors

5-40 Synergy Language Tools 9.3 (12/09)

READER 1162 Cannot read input file

An error occurred while an input file was being read.

RECWAS 1164 Record size specified: %u

You specified this record size.

RENFIL 1166 Error renaming file

This error occurred while renaming a file.

REQKWD 1220 Missing required keyword: %s

A required XDL keyword is missing. Each XDL description must
contain one FILE and one SIZE keyword. In addition, each key
definition must contain exactly one LENGTH and one START keyword.

RORKXP 1168 Record or key expected

Neither a record nor a key was specified in a SORT or MERGE
statement.

RPEXP 1169 Right parenthesis expected

A closing right parenthesis was not found in a SORT or MERGE
OPTIONS string.

SAMOP 132 Operands must be both alpha or both numeric

One operand is alpha and the other operand is numeric. Comparison
operations are only allowed when the operands are either both alpha or
both numeric.

STKTRC 1231 in %s:line %s

This message describes the stack trace of a caught exception.

SYSFLT 1209 System fault (%d)

During a SEND or RECV or a call to LM_LOGIN or LM_LOGOUT,
the Synergy Language daemon experienced a system fault while
processing your request.

TTSBMD 1185 Submode ignored for terminal open

You specified a submode that is invalid when opening a terminal.

VALRNG 1192 Value range is %d to %d

This is the valid range for the invalid value that you specified.

VALSPC 1191 Value specified is %ld

You specified this value.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-41

WRTFIL 1205 Cannot write to file

The system write to a file failed.

Fatal error messages
The following errors cause your program to abort immediately.

Mnemonic Number Message

BADCMP 29 Compile not compatible with execution system

The .dbr file was generated with an incompatible compiler or linker.

BADSYS 513 Bad runtime system

The runtime system has become invalid.

CMDBIG 515 Command line too long

Your dbr command line exceeded the maximum limit of 2000
characters.

GBLNF 512 Cannot access named global %s

You attempted to reference a global data section or external common
that is not defined. This error occurs on entry to a routine that references
the global data section or external common.

INVFATERR 500 Invalid fatal error number for XCALL FATAL

You requested an invalid error number on the FATAL subroutine.

INVOPT 516 Invalid option

You specified an invalid option on the command line.

LMFAIL 514 Licensing failure

During runtime start-up, some condition caused license validation
to fail.

MSGNOTFND 400 Error message number %d not found or internal failure

The specified error message could not be found.

NOCALL 2 Return with no CALL or XCALL

A RETURN statement was executed without a corresponding CALL or
XCALL statement.

NOTDBR 503 %s is not a DBR file

You specified a non-.dbr file in the runtime command line.

Error Messages
Runtime Errors

5-42 Synergy Language Tools 9.3 (12/09)

OLDDBR 594 Old DBR file format%s detected: relink %s

The DBR file format that you linked with is no longer supported. You
must relink with a newer version. (We recommend linking with the
current version.)

OPENF 509 Cannot open %s

The specified file could not be opened.

RUNERR 102 Internal runtime failure: %s

This Synergy Language system error is always accompanied by a
qualifying error description. Such an error represents conditions in
Synergy Language that rely on the documented performance of
operating system features. The error indicates that an operating
environment is in an unexpected state. Please call us at (800) 366-3472
or (916) 635-7300 if you get this error, and make sure you mention not
only the error mnemonic, but also the qualifying error description.

SIGNAL 508 Signal trap

A fatal signal that required the Synergy Language system to halt was
caught.

STKOVR 506 Runtime stack overflow

The internal control stack for the runtime has overflowed. This
generally occurs as the result of extremely deep subexpression nesting
in arithmetic expressions and/or use of large stack records which cause
the stack to be used up quicker. Use of stack records on their own cannot
cause this problem. Recode the routine to avoid the problem. The
default stack size is 256K.

If you also get the informational error “System Stack exhausted -
recursive call,” more than 1500 levels (or the maximum for the system
stack if it is less) of method, subroutine, or function calls have occurred.
You can increase this limit using the MAXRECURSELEVEL
environment variable if the system stack allows.

UNSUP 507 Unsupported command

You’ve attempted to execute a Synergy Language statement or
system-supplied subroutine or function that is not supported on this
operating system.

VMSERROR 67 Unexpected VMS system error

An OpenVMS system error occurred.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-43

VMSRMS 128 Unexpected VMS or RMS error

An OpenVMS or RMS error occurred.

WRTERR 520 write failure

An unexpected failure occurred during a WRITE to an ISAM file.

Success message
The following message indicates that your program completed successfully.

Mnemonic Number Message

STPMSG 510 STOP

The program completed normally.

Debugging log messages
The following error messages may be written to the rd.log file when the debugger is running
remotely (i.e., in a client/server configuration).

DBGNOSOCK 610 Unable to attach to remote debug port

The port specified for debugging was already in use when xfServerPlus
attempted to launch the runtime or when the runtime attempted to listen
on that port. The xfServerPlus session or program execution continues
as if debug were not enabled.

DBGNOCONN 611 No debug client connection was established

A debug client did not connect to the port within the specified timeout
period. No debug client connection was established, and program
execution continues as if debug were not enabled.

DBGSOCKER 612 Remote debug socket error; continuing without debug

xfServerPlus was able to launch the runtime and the runtime was able to
listen on the specified debug port, but some other error occurred when
attempting to accept a connection. More detailed information on the
error that occurred is appended to the log entry. The xfServerPlus
session or program execution continues as if debug were not enabled.

DBGCLOSED 613 Remote debug client closed the connection; continuing
without debug

The debug client closed the connection. All breakpoints and
watchpoints have been cancelled, and program execution continues as if
debug were not enabled.

Error Messages
Runtime Errors

5-44 Synergy Language Tools 9.3 (12/09)

Window error messages
Window error messages are displayed as part of an ERTEXT informational error. They are always
preceded by a “Window Manager error” (WNDERR). The following is a list of window error
numbers and their accompanying error text, as well as a description of what may have caused the
error. (The character n in these messages represents a variable number.)

2 The window number n is invalid

The specified window ID is outside the range defined in the MAXWINS constant, or the
window is not active.

3 Window doesn’t fit on screen

You tried to place a window whose display area won’t fit on the screen.

4 Not enough memory (needed n, had n)

The amount of memory you specified in the POOLSIZE constant wasn’t sufficient for
window processing.

5 Value n not in range n to n

The function requires a decimal argument, and the argument you specified was out of the
possible range. For example, this error is generated if you specify a palette number of 17,
because only palette numbers 1 through 16 are valid.

6 Function n not in range n to n

You used an invalid function in an XCALL statement. For example, this error is generated
if you try to use a WD_POS function in the W_PROC subroutine.

7 Not enough arguments

You didn’t supply all the arguments required for the XCALL statement.

8 Wrong data type

An XCALL argument list contains an alpha argument where a decimal argument is
required, or vice versa.

9 Window name already defined

A WP_CREATE function uses a name that has already been used for another window.

10 Too many windows (max of [maxwins])

You tried to create a window, but the maximum number of windows has been created.

11 Input field not completely visible

You tried to obtain input from a portion of a window that is partially or completely
occluded by another window.

Error Messages
Runtime Errors

Synergy Language Tools 9.3 (12/09) 5-45

12 No field set currently defined

You called the W_FLDS subroutine, and no field set has been created yet with the
W7CREATE function.

13 Transfer area too small

During a WI_XFR transfer function, the destination field wasn’t large enough for the data
being transferred.

14 No user data set currently defined.

A user data set operation (for example, WF_UGET or WF_UPUT) was attempted on a
window that doesn’t have a user data set.

15 One of the following error messages:

Drag bar border necessary for SYSMENU

The program attempted to create a system menu on a window that does not have a frame
that can support one. A system menu is created when you associate a close method with a
window. If the window frame doesn’t have a drag bar, the system menu cannot be created.
By default, Synergy windows usually have a drag bar, except in the following situations:

The “.BORDER off” or “.BORDER dragbar(off)” script commands are used.

The W_BRDR(id, WB_OFF) or W_BRDR(id, WB_DRAGOFF) commands are used
at runtime.

The window is too large to display a border inside the application window.

The window is only one row high and the dragbar has not been explicitly turned on.

or

Restoring Synergy Window: uncompression failure

A W_RESTORE operation failed (on any platform) because the format of the compressed
data was corrupt. This error is most likely to occur in an I_LDINP, M_LDCOL, or
U_LDWND routine in the Toolkit, but it can also occur if you call
W_SAVE/W_RESTORE directly. If this error occurs, something external to the window
system has interfered with the window data (for example, perhaps an external application
modified the data stored in a window library).

or

Window n not placed

The ID of a window that’s not placed was passed to the WIF_UNDER subfunction of
%W_INFO.

Error Messages
Runtime Errors

5-46 Synergy Language Tools 9.3 (12/09)

17 Toolbar error [%s]

One of the following toolbar errors has occurred:

Button %s already loaded

A TBB_LOAD was attempted using a button name that already exists on this toolbar.

Group button %s is not loaded

A TBB_GROUP was attempted using a button name that has not been loaded on this
toolbar.

Button %s not loaded

A TBB_STATE or TBB_SELECT was attempted using a button name that has not
been loaded on this toolbar.

Invalid toolbar ID: %d

The ID of a toolbar passed to TB_BUTTON or TB_TOOLBAR (for other than
TB_CREATE) is not the ID of any known toolbar.

Function name too long, MAX 30

A function name passed as the method argument on a TBB_LOAD is longer than 30
characters.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-47

Compiler Errors

Nonfatal error messages
The following errors do not cause the compiler to abort; however, the compiler does not create an
object file if one of these errors occur.

Mnemonic Number Message

ABSIMP 766 ABSTRACT or EXTERNAL routine cannot have statements

One of two problems has occurred:

You declared the ABSTRACT modifier on a method and also
provided an implementation for that method.

You declared a local external function and also provided an
implementation for that function.

ABSRTN 765 ABSTRACT routine must be in an ABSTRACT class

You declared the ABSTRACT modifier for a method but did not declare
the ABSTRACT modifier for its containing class.

ABSSEAL 772 Method cannot be ABSTRACT or VIRTUAL in a SEALED
class

A method in a class defined with the SEALED modifier has been
marked ABSTRACT or VIRTUAL. These modifiers cannot be specified
in the same method definition.

ABSTINST 756 Cannot instantiate abstract class %s

You’ve attempted to create an instance of a class that was defined with
the ABSTRACT modifier, which means it cannot be instantiated.

ACCESS 669 %s is inaccessible

The member you have tried to access is not accessible. If the specified
member has PROTECTED access, access is limited to the containing
class or types derived from the containing class. If it has PRIVATE
access, access is limited to the containing type. Accessibility is
determined as follows:

Inside an enclosing type, the accessibility of a member is determined
by evaluating the accessibility of that member, regardless of the
accessibility of the enclosing type. (For example, when using a field
within the class in which it was declared, only the accessibility of
the field, not the accessibility of the class, is evaluated.)

Error Messages
Compiler Errors

5-48 Synergy Language Tools 9.3 (12/09)

Outside an enclosing type, the accessibility of a member is
determined by first evaluating the accessibility of the enclosing type
and then evaluating the accessibility of the member. (For example, if
a field has public accessibility and its class has private accessibility,
the accessibility of the field is public inside the class and private
outside the class.)

The accessibility of an inherited type member is based on the
accessibility of that member as determined by the instance variable
used to access it.

ALIGN 364 Invalid .ALIGN value (%d)

The boundary position that you specified for the .ALIGN compiler
directive is invalid. The boundary must be one of the following values:
BYTE, WORD, LONG, QUAD, PAGE, or an expression in the range of
0 through 9.

ALPHARG 519 Alpha argument expected

The compiler requires an alpha argument.

ALPHAXP 416 Alpha expression expected

The compiler requires an alpha expression.

ALPHDIM 732 Alpha not allowed for dimension specification

You have attempted to pass an alpha type as a dimension value for an
array.

ALPHXP 402 Alpha operands required (%s)

The compiler requires an alpha expression.

ALRINPR 723 Already in a .NOPROTO section

The .NOPROTO compiler directive was specified with a previous
.NOPROTO directive already pending.

AMBIGUOUS 419 Path specification is ambiguous (…{%s})

You have specified two or more variables with the same name, without
specifying unambiguous paths for those variables. When you reference
a nonunique variable, you must specify a unique path for that variable.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-49

AMBOPT 104 Ambiguous option %s

A compiler command line qualifier was too short to differentiate it from
other similar qualifiers.

AMBSYM 668 Ambiguous symbol %s

One of the following scenarios has occurred:

A routine call cannot be resolved unambiguously to a routine
declaration.

The specified locally defined or class identifier is not unique within
a scope.

The specified class identifer is not unique within multiple imported
namespaces.

The specified symbol path is not unique within the routine.

To make a class identifier unique, you can qualify it with its namespace.
For example, a class called File could be identified as
UserNS.Class1.File.

ARGNUM 329 Invalid number of arguments

You have specified an invalid number of arguments.

ARGPASS 837 Parameter passing convention does not match method
declaration for argument %s in routine %s

The method you called passes an argument with ^VAL or ^REF syntax,
but the parameter was not declared as either in the method declaration,

ARGTYP 341 %s type argument expected (%s)

The compiler expected the specified data type, but the argument’s data
type was different.

ARRAYBOUNDS 680 Array dimension out of bounds for {%s}

You have attempted to access an array using an integer compile-time
expression that is not greater than 0 or that is greater than the upper
bound of the array (with bounds checking on).

ARRLCLSTR 848 Cannot use a local structure in a dynamic array

You tried to declare a structure that was declared inside a method in a
dynamic array.

ASMLOAD 873 Unable to load assembly %s : %s

You did not provide the name of an existing .NET assembly with the
-ref option.

Error Messages
Compiler Errors

5-50 Synergy Language Tools 9.3 (12/09)

ASNWR 942 Assignment within write not allowed for %s

The first parameter of an assignment is a string. This is not permitted.

ATTRTARG 869 Attribute not valid on this target

The attribute is not valid for the item that it is used with. For example,
you would get this error if xfMethod or xfParameter was used on
something that is not a method or parameter.

BADACCESS 759 Inconsistent accessibility

One of the following accessibility rules has been violated:

The accessibility of the parent class (PUBLIC, PROTECTED, or
PRIVATE) must be the same as, or greater than, the accessibility of
the child class.

The types used in the signature of any member must be as accessible
as the member itself. For example, an argument type or return type
cannot have private accessibility in a publicly accessible method.

Accessibility cannot be changed on overridden virtual members. The
accessibility of an overridden method or property must be the same
as the virtual member it overrides in the parent class.

BADCDIR 197 Invalid compiler directive: %s

The specified compiler directive was not recognized by
Synergy Language. Double check your spelling of the compiler
directive.

BADCNVCLS 780 Cannot convert %s class within class hierarchy

The argument type and return type of the conversion operator must not
be within the same class hierarchy

BADCNVTYP 781 Conversion operator must have a return or parameter type
that is the enclosing class

The conversion operator method must have either the argument type or
the return type be the enclosing class type.

BADCONSTLOC 855 CONST field not allowed in non-CONST record

A CONST field was specified in a record that was not declared with the
CONST modifier.

BADCPATH 847 Complex path not supported

Certain complex paths for resolution are not supported. (A path is a list
of IDs that may have array access, index access, method calls, and
object casts.) You may need to break up the path and simplify it.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-51

BADDSTRCTR 703 Destructor %s does not match class %s

A destructor method must have the same name as the class name but
with a tilde (~) character at the beginning. The specified destructor
name does not match the class name.

BADFLDPOS 681 Bad field position for %s

The field offset is invalid.

BADIMPORTDIR 700 Invalid directory specified for import: %s

An invalid directory is specified in the IMPORT statement. Either a
specific directory was specified rather than a logical or search list
logical, or the expansion of the logical or search list caused no
directories to be processed.

BADOPDECL 710 Cannot declare operator %s

The following .NET-reserved operator methods are not supported:
op_Implicit, op_False, op_AddressOf, op_PointerDereference,
op_SignedRightShift, op_UnsignedRightShift,
op_UnsignedRightShiftAssignment, op_MemberSelection,
op_Modulus, op_PointerToMemberSelection, op_LeftShift,
op_RightShift, op_Comma, op_RightShiftAssignment,
op_LeftShiftAssignment, op_ModulusAssignment, op_Assign,
op_MultiplicationAssignment, op_SubtractionAssignment,
op_AdditionAssignment, op_BitwiseAndAssignment,
op_BitwiseOrAssignment, op_DivisionAssignment

BADPROP 785 Improper use of property %s

A property was used as the destination in a clear equate statement (for
example, myproperty = destination).

BADRNG 373 Invalid range specified

The lower-range entry was greater than the upper-range entry on a
USING…RANGE statement.

BADROLOC 856 READONLY field not allowed in non-READONLY record

A READONLY field was specified in a record that was not declared
with the READONLY modifier.

BADSLD 769 SEALED modifier can only be used on %s marked as
OVERRIDE

You specified the SEALED modifier on a method or property that was
not declared as OVERRIDE. The SEALED modifier can only be
specified in conjunction with the OVERRIDE modifier.

Error Messages
Compiler Errors

5-52 Synergy Language Tools 9.3 (12/09)

BADSTATIC 778 Non-static reference not allowed in this context

You cannot use a non-STATIC reference in an initializer.

BADSTATLOC 779 Static field has improper location

You declared a field as STATIC in a common, literal, structure, or
nonstatic record.

BCOUTER 708 Cannot extend enclosing class

A nested class cannot extend any of its outer classes.

BCSEAL 707 Cannot extend a sealed class

The class you tried to extend was defined with the SEALED modifier,
which means it cannot be extended.

BCUDEF 650 Base %s %s cannot be found

The specified parent class type is not one of the types that was declared
or imported and therefore could not be resolved by the compiler.

BDINITVAL 506 Too many initial values

You have specified more initial values for a variable than there are
instances of that variable.

BDQUOT 25 Unmatched quotes

You have specified an opening or closing quotation mark without its
matching closing or opening quotation mark.

BIGNUM 361 Arithmetic operand exceeds maximum size

The number is larger than allowed.

BIGPATH 323 Path name too long

The file path name specified in the .INCLUDE compiler directive was
too long.

BIGSIZ 886 Size of %s %s too large

The size of the specified arrayed field exceeds 256 MB. Reduce the field
size to less than 256 MB.

BMRET 943 ^VAL cannot be used as method return type

You’ve specified ^VAL as a return type on a method. This is not
allowed.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-53

BNDXP 32 Bind name expected

You’ve specified the bind compiler option without specifying the name
of a routine to bind.

BOXLCLSTR 846 Boxing or unboxing of local structures not allowed

You’ve attempted to cast the value type of a structure whose declaration
was local to a method to or from System.Object.

BOXSTROBJ 864 Cannot box structure %s that contains a handle

You’ve attempted to box a structure that contains an object handle.

BSTMTCH 715 Best match for %s has an argument type or quantity that
doesn’t match

The compiler was unable to successfully resolve a method call; the
closest one differed from the call by either the number of parameters
passed or the type of one or more parameters. The signature of the
closest match is displayed to aid in determining which parameters were
incorrect.

CIRCBASE 728 Circular base class not allowed

When defining a class, you have declared a parent class that either forms
an inheritance loop (for example, class A inherits from B and class B
inherits from A) or is the same as the class being defined.

CIRCCONS 924 Circular constraint dependency

The constraint that you declared forms a circular dependency with the
other type parameters in the declaration.

CIRCINIT 782 Circular initializer not allowed

The initializer that you specified has created a circular reference. The
following is an example of a circular initializer:

method mychild
 p1, i4
 this(p1)
proc
endmethod

CLOSIN 37 Cannot close: %s

The specified source code output file could not be closed.

CLSREFRQD 718 Class type required: %s

You must specify a class name.

Error Messages
Compiler Errors

5-54 Synergy Language Tools 9.3 (12/09)

CLSYN 317 Invalid command line syntax: %s

The specified list option, which controls program listings and overrides
compilation flags set by the .START, .LIST, or .NOLIST compiler
directives, is invalid. Valid list options are +[NO]LIST, +[NO]COND,
+[NO]SUMMARY, and +[NO]OFFSET.

COLLECTTYP 909 Incompatible collection type %s in FOREACH

The type specified in a FOREACH statement is not valid for collection
variables. A collection variable must be one of the following types:

A dynamic system array of rank 1

A real Synergy array of rank 1

System.Collections.ArrayList or a descendant

Synergex.SynergyDE.Collections.ArrayList or a descendant

CONSARGS 702 Constructor requires argument list

You must use the syntax below to instantiate an accessible class and
pass parameter values to parameterized constructors:

VariableName = new FullClassName([param_values])

Note that the parentheses are required, even if you don’t specify any
param_values.

CONSBOTH 932 Cannot have both %s and %s constraints

You cannot have both a structure constraint and a constructor constraint,
or a structure constraint and a class constraint, on a type parameter.

CONSDUP 928 Duplicate constraint %s

You cannot repeat an interface name in a constraint on a type parameter.

CONSONE 929 Cannot have more than one %s constraint

You declared more than one class, structure, or constructor constraint on
a type parameter.

CONSREQD 933 %s constraint required

You tried to create an instance of the type without declaring a
constructor restraint on the type parameter.

CONSSEAL 927 Cannot use sealed class %s in constraint

You declared a sealed class in a class constraint.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-55

CONSSPC 926 Cannot use special class %s in constraint

You declared one of the following special classes in a class constraint:
System.Array, System.Delegate, System.Enum, System.ValueType.

CUSTATT 872 Cannot create custom attribute

You have declared a class with a base class of Attribute, thereby
attempting to create a customer attribute class, which is not permitted in
Synergy standard.

DDAPIERR2 752 Internal DDapi error %s %s

An error occurred while reading the repository. There are two main
reasons for this error:

The repository files are no longer available (for example, if they are
on a network drive and the network goes down).

The repository is invalid, and you need to run the Verify Repository
utility on the files.

DDBADLOG2 749 %s is not defined

The specified logical name is not defined. One possible reason is that
the logical specified for the repository location in a .INCLUDE
statement is lowercase.

On OpenVMS, since DCL uppercases the command line by default, a
lowercase logical in your code will not match it. We recommend that
you uppercase the logical that define a repository location in your
.INCLUDE statements. If not, we suggest that you add a second define
in which the logical is lowercase and quoted (which preserves the case).
A similar problem could occur on UNIX.

DDENUM 551 Enumeration %s not found in repository %s

The enumeration specified in your .INCLUDE directive is not found in
the specified repository.

DDINVLOG2 753 Invalid specification for repository files: “%s”

The specified repository filename is not valid.

DDNOLOG2 750 Logical for repository name expected

Your repository filename must include a logical if the
DBLDICTIONARY or RPSMFIL and RPSTFIL environment variables
are not set.

Error Messages
Compiler Errors

5-56 Synergy Language Tools 9.3 (12/09)

DDOPN2 751 Cannot open repository’s main file: %s

You’ve .INCLUDEd from the repository, and the compiler cannot find
the repository’s main file.

DDSTRUCT 549 Structure %s not found in repository %s

A structure or class is not found in the repository.

DECLORDER 906 Cannot use %s before declaring it

You’ve attempted to use the specified enumeration value as an initial
value before the enumeration was declared with the ENUM statement.

DECXP 407 Decimal or integer operand required

An invalid data type has been used in the procedure division.

DELEVT 892 Delegate type expected for event %s

The type for a delegate must be handle.

DESCTYPRQD 935 %s is not a descriptor type

You tried to access a non-descriptor type using ^ARG, ^ARGA,
^ARGN, ^ARGDIM, or ^ARGTYPE. You will only get this error when
using the -qnet (or /NET) compiler option.

DEXPREQ 412 Decimal or integer expression required

Either an invalid expression has been used in the data division or an
alpha has been passed as a dimension value for an array.

DUPACC 789 Property cannot have multiple get or set methods

You have provided more than one GET or SET method for a property. A
property can have a maximum of one GET and/or SET method.

DUPATTR 901 Duplicate %s attribute

You specified the same assembly attribute more than once.

DUPMETH 704 Class %s already defines a method %s with the same
parameter types

The specified class contains two or more methods whose declarations
differ only by return type.

DUPMODIF 764 Modifier %s can only be specified once

The preprocessor detected duplicate modifiers.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-57

DUPOPTS 914 Class %s already defines a method %s that differs only by
optional parameters

Either the overloading method is the same as method being overloaded
except for optional parameters, or more than one method overload per
ID has trailing optional parameters (including parameters defined
explicitly and methods marked with VARARGS).

DUPQUAL 687 Qualifier %s can only be specified once

A preprocessor directive contains duplicate qualifiers.

DUPSYP 664 Duplicate symbol %s for same parent not allowed

A local data field has the same name as a record, group, or field in an
enclosing scope.

EFDEF 509 External function already declared

You’ve declared the same external function more than once.

EMPTYA 724 Invalid usage of empty alpha string

A USING statement contained an empty alpha variable.

ENDGBLEXP 542 ENDGLOBAL expected

A GLOBAL DATA SECTION has no ENDGLOBAL statement.

ENDGRPEXP 504 ENDGROUP expected

A GROUP statement in the data division has no ENDGROUP
statement.

EOLXP 408 End of line expected at {%s}

Some extraneous text follows a statement at the end of the line.

EVTCLS 895 Event %s must be raised from within %s

The event must be raised from within the class in which it is declared.

EVTEXP 894 Event expected for %s

The item specified in the message may be addhandler, removehandler,
or raiseevent. In all cases, the first parameter for the item was not an
event.

EVTHDLR 893 Event handler %s does not match event signature

The passed-in event handler is either a method whose signature does not
match the signature of the event delegate or a non-method whose type is
not the same as the event’s delegate.

Error Messages
Compiler Errors

5-58 Synergy Language Tools 9.3 (12/09)

EXPHVAL 790 ^VAL function expected

The Undefined functions compiler option (-qimplicit_functions)
resolves to a nonlocal function that’s not ^VAL.

FENEWINDXR 911 A class with an indexer marked NEW is not supported in
FOREACH

You’ve tried to use a descendant class of ArrayList or
SynergyDE.ArrayList with an indexer property marked as NEW in a
FOREACH statement. This is not allowed. If you change the indexer to
OVERRIDE, it should work with FOREACH as desired. (Note that you
will need to match the signature of ArrayList’s indexer, which means
the property type must be @*.)

GDSDEF 510 Global data section already defined

You’ve referenced the same global data section more than once. Within
any given routine, only one GLOBAL statement can reference a
particular global data section.

GNCEXT 930 Generic class cannot extend %s

You cannot extend the named item with a generic class.

GLCMN 77 COMMON invalid in GLOBAL sections

You’ve specified the COMMON statement in a global data section.

GLLCL 538 LOCAL RECORD invalid in GLOBAL sections

You’ve specified the LOCAL RECORD statement in a global data
section.

GLLIT 505 LITERAL invalid in GLOBAL sections

You’ve specified the LITERAL statement in a global data section.

GLSTC 500 STATIC RECORD invalid in GLOBAL sections

You’ve specified the STATIC RECORD statement in a global data
section.

GLSTK 539 STACK RECORD invalid in GLOBAL sections

You’ve specified the STACK RECORD statement in a global data
section.

GLSTR 540 STRUCTURE invalid in GLOBAL sections

You’ve specified the STRUCTURE statement in a global data section.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-59

GRPBIG 507 GROUP %s size too large

You’ve specified a length argument in your group declaration, and the
size of the fields and/or groups within that group exceed the specified
length.

HANDRQD 709 Handle to %s required

You did not specify a handle when using a class type.

HIDABS 862 %s hides an inherited abstract member

A method is attempting to hide an abstract method (in other words,
declare a member using the NEW modifier) with the same name in an
abstract class that it is extending.

IDXCLSARY 843 Cannot index real array %s

A real array has an index.

IDXP 414 “%s” expected {%s}

The compiler found an unexpected item in the source line.

IDXRPARM 783 Indexer property must have at least one parameter

The indexer does not have any arguments. You must provide at least one
argument to the indexer.

IFCIMP 888 Interface %s not implemented by class %

You declared an explicit interface member, but the interface name does
not appear in the implements list of the class.

IFSTMT 354 Statement part of IF missing

You’ve specified an IF statement condition without the statement to be
executed.

IMPORT 701 Namespace %s not found

No prototypes are found in the import directory for the specified
namespace.

IMPORTNS 797 Invalid import namespace %s

The namespace specified in the IMPORT command isn’t a valid
identifier.

IMPOUTNS 803 IMPORT statement must be declared outside of a namespace

An IMPORT statement is not allowed within a NAMESPACE-
ENDNAMESPACE block.

Error Messages
Compiler Errors

5-60 Synergy Language Tools 9.3 (12/09)

INCMODIF 761 The modifier %s is incompatible with %s

The .INCLUDE modifier that you provided is invalid and can’t be
specified together with another modifier.

INDIMGRP 853 ^xtrnl is not allowed on an arrayed group’s field member as
an initial value

The ^XTRNL function was specified as an initial value for a field that is
a member of an arrayed group.

INFINALLY 792 %s must be completely inside the FINALLY block

A statement in a FINALLY block transfers control to a label outside the
FINALLY block.

INMTHD 568 MRETURN %s within a method

You used the MRETURN statement in a subroutine, function, or main
routine. MRETURN returns control from a method, and a method that
has a declared, non-VOID return type must have at least one
MRETURN statement.

INVALIGN 725 Invalid .ALIGN value (%s)

The value of an expression specified in the .ALIGN directive must in the
range 1 through 9.

INVARG 327 Invalid argument

One of the following has occurred:

An invalid record name has been specified in a .INCLUDE from the
S/DE Repository.

A field name or a literal has been passed to ^PASSED.

INVARGOBJ 912 ^ARGDIM not allowed on objects; use method to get length

The ^ARGDIM operation cannot be used on an object parameter. Since
collection object types typically implement a method or property that
returns the number of items in the collection, you can call the
appropriate method or access the appropriate property to get the number
of items in the object.

INVARGTYP 409 Invalid argument type

You’ve specified an invalid data type in an argument declared under the
SUBROUTINE statement.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-61

INVBGNHDR 828 BEGIN should be followed by end of line

Additional text appears on the same line as a BEGIN statement. The
BEGIN keyword should be the only thing on the line.

INVCALL 754 Invalid calling convention

You have attempted to XCALL a method or to call it as a function.

INVCAST 699 Invalid cast

Your attempt to cast an object variable to a specific class type using the
parenthesis syntax was not successful. This type of cast must meet at
least one of the following conditions:

The cast type falls within the hierarchy (either up or down) of the
object being cast.

An explicit conversion exists from the source type to the destination
type.

A value type is being cast to or from System.Object.

INVCLASS 560 Invalid class: %s

You did not pass a valid class as the second parameter of the .IS.
operator.

INVCLSENT 806 Invalid class member at or near {%s}

The syntax for a class member is not valid.

INVCRECENT 807 Invalid class record entry at or near {%s}

The syntax for a class record member is not valid.

INVDATADECL 845 Invalid %s declaration at or near {%s}

The syntax of the specified structure, record, common, literal, or
external function declaration is not valid. For example, the declaration

public structure mystruct##

would cause the error “Invalid structure declaration at or near {##}.”

INVDATAENT 813 Invalid data division entry at or near {%s}

The syntax for a data member is not valid.

INVDATALOC 842 Invalid DATA statement location

The DATA statement must be the first statement inside a scope.

INVDATASTMT 834 Invalid data statement syntax

The syntax for a DATA statement is not valid.

Error Messages
Compiler Errors

5-62 Synergy Language Tools 9.3 (12/09)

INVDEFNS 727 Invalid default namespace %s

The SYNDEFNS environment variable specifies a namespace that does
not have the correct syntax.

INVDSTRCTR 740 Destructor cannot have %s

You have declared a destructor with arguments, modifiers, and/or a
return type. A destructor does not accept any arguments or modifiers
and it cannot return a value.

INVEXC 743 Invalid exception type

The CATCH or the THROW exception variable was not the correct
type. Both THROW and CATCH block exception variables must either
be type System.Exception or inherit from System.Exception.

INVEXFTYP 417 Invalid external function data type

The access type that you specify in an EXTERNAL FUNCTION
declaration must be a, d, d., i, p, p., or ^VAL.

INVEXPR 817 Invalid expression at or near {%s}

The syntax for an expression is not valid.

INVEXTENT 815 Invalid external function entry at or near {%s}

The syntax for an external function declaration is not valid.

INVFF 90 Invalid fixed field size

An implied-decimal variable has an invalid size. The maximum size of
the whole number part is 28 significant digits, and the maximum size of
the fractional precision is also 28 digits (for example, d28.28). The field
size must be equal to or greater than the precision.

INVFNCID 426 Invalid function identifier {%s}

You’ve specified an illegal function name. The function name must be
an alphanumeric identifier.

INVFUNCNAME 695 .IF directive does not support function %s%s

The specified function is no longer supported by the preprocessor.

INVGDSENT 814 Invalid global data section entry at or near {%s}

The syntax for a global data section member is not valid.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-63

INVHFNC 737 Invalid ^ function (%s)

The function that you have attemped to call as a data reference operation
is not a data reference operation and therefore cannot be called with a
caret (^).

INVHMP 903 Partial structure cannot be used in ^m function

You cannot use the PARTIAL modifier on a structure declaration in a
^M statement.

INVIMP 802 Invalid IMPORT declaration

The import directory specified in the -qimpdir compiler option is not an
existing directory.

INVINIT 763 Invalid initializer

The initializer method signature must resolve to a constructor method in
the parent class (if parent is declared) or in the current class (if this is
declared). In addition, an initializer argument value must be a literal, a
STATIC field value, a CONST field value, or a parameter name from the
constructor.

INVIOERRCODE 819 Invalid I/O error code at or near {%s}

The syntax for an I/O error code is not valid.

INVKSW 350 Invalid key switch: %s

The key switch that you specified on the SORT or MERGE statement to
indicate the direction of the search is invalid. Valid switches are f, r, a, d,
and c.

INVKWD 818 Invalid keyword at or near {%s}

Either the EXTENDS keyword is misspelled, or an invalid code follows
a valid subroutine or function identifier without a comma.

INVMAINDECL 854 Invalid MAIN declaration at or near {%s}

The specified MAIN declaration syntax is not valid. See MAIN in the
“Synergy Language Statements” chapter of the Synergy Language
Reference Manual for valid syntax.

INVMETHINIT 809 Invalid method initialization list at or near {%s}

The syntax for a method initializer is not valid.

INVMOD 739 Invalid modifier %s on %s

A constructor can only have the following modifiers: PUBLIC,
PROTECTED, PRIVATE, or STATIC. All other modifiers are invalid.

Error Messages
Compiler Errors

5-64 Synergy Language Tools 9.3 (12/09)

INVMRET 569 Invalid MRETURN: %s

Either you did not specify a value for an MRETURN statement on a
method that has a declared, non-VOID return type, or the MRETURN
statement specifies a value for a method that is a constructor or a
destructor or that has a VOID return type.

INVMTHDHDR 850 Invalid method header at or near {%s}

The method declaration is not valid, because it includes the specified
invalid token. All subsequent tokens from the specified token to end of
line are ignored or discarded.

INVNSENT 805 Invalid namespace entry at or near {%s}

The syntax for a namespace member is not valid.

INVNUMDIM 421 Incorrect number of dimensions for {%s}

You’ve referenced an array with an incorrect number of subscripts.

INVOBJREF 678 Object references not allowed in %s

An object field was declared in a global data section.

INVOHND 563 Invalid object handle: %s

You did not pass an object handle as the first parameter of the .IS.
operator.

INVOPT 103 Invalid option: %s

You’ve specified an invalid option on an OPEN, READ, ISAMC, or
other statement with optional qualifiers.

INVPARAMENT 811 Invalid parameter entry at or near {%s}

The syntax for a parameter is not valid.

INVPARMGRP 849 Invalid parameter group at or near {%s}

The group declaration is not valid, because it includes the specified
invalid token. For example, dimensions are not allowed in a group
declaration, so brackets ([]) would cause this error to occur. All
subsequent tokens from the specified token to end of line are ignored or
discarded.

INVPROGENT 804 Invalid program entry at or near {%s}

The syntax is not valid at the program level (namespace, subroutine, or
function).

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-65

INVPROTOCXT 829 Prototypes must be imported using the IMPORT statement

You attempted to include a prototype in a file using the .INCLUDE
directive. A prototype file cannot be .INCLUDEd; it must be imported
using the IMPORT statement.

INVQUAL 688 %s qualifier is incompatible with %s

An I/O statement or preprocessor directive contains an invalid qualifier.

INVRECFLD 812 Invalid record field at or near {%s}

The syntax for a field in a record is not valid.

INVRERR 362 Invalid error literal

You’ve specified an incorrect error literal in an I/O error list or
ONERROR statement.

INVRQUAL 415 Invalid routine qualifier {%s}

You’ve specified an invalid qualifier on the SUBROUTINE statement.
Valid qualifiers are REENTRANT, RESIDENT (on Windows and
UNIX), TRUNCATE, and ROUND.

INVRSW 353 Invalid record switch: %s

The record switch that you specified on the SORT or MERGE statement
to identify the record as fixed-length or variable-length is invalid. Valid
switches are f and v.

INVRTHRW 744 Cannot rethrow outside of CATCH

An attempt to rethrow the most recently caught exception occurred
outside of a CATCH block.

INVSCRFNC 360 Invalid screen function or parameter {%s}

You’ve specified an unknown screen function command ($SCR_) on the
DISPLAY statement.

INVSCTOR 883 Cannot declare %s on static constructor

You’ve attempted to declare parameters on a static constructor.

INVSTMT 816 Invalid statement at or near {%s}

The syntax for a statement is not valid.

INVSTMTBDY 821 Invalid %s body at or near {%s}

The syntax for a statement body is not valid.

Error Messages
Compiler Errors

5-66 Synergy Language Tools 9.3 (12/09)

INVSTMTHDR 820 Invalid header in %s at or near {%s}

The syntax for a statement header is not valid.

INVSTRUCENT 808 Invalid structure entry at or near {%s}

The syntax for a structure member is not valid.

INVSTX 674 Invalid syntax

A general parsing syntax error occurred.

INVTERM 822 Invalid termination of %s at or near {%s}

The termination of an item was not successfully completed.

INVTYPSIZ 413 Invalid data type/size specification {%s}

A field or group’s type or size specification is incorrect. For example, a
group may not have a p (packed) data type; the size value cannot be 0 or
less; and the precision cannot be less than 0, greater than the specified
field size, or greater than 28. In addition, you cannot specify a fixed-size
array of any class type (derived from System.Object).

INVUSNGENT 915 Invalid entry within using statement

There is a syntax error within the body of a USING statement.

ISSTAT 717 %s required to access static member %s

You must precede the method name with the class name when calling an
accessible STATIC routine declared within another class from within a
STATIC or non-STATIC routine. The same rule applies to CONST
records.

ITOPBAD 877 Unable to do interop for %s

While using the -qrelaxed:interop option, an unexpected value was
passed to either of the parameters of the ADDHANDLER statement.

IVBAD 112 Initial value not allowed here

Initial values are not allowed in overlay records or STACK records.
(Note that if a routine is REENTRANT, unqualified RECORD
statements are compiled as STACK instead of defaulting to LOCAL.)

IVLNG 115 Initial value too long

The initial value you specified was larger than a single element of the
field.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-67

IVXP 116 Initial value expected

You must specify an initial value for an automatically sized variable
(indicated with a *) to determine the variable’s size.

LBLSCOPE 550 Label %s out of scope

Code jumps to labels (for example, CALL, GOTO, I/O error list,
EXIT lbl, READS(,,eof), ACCEPT(,,eof), GETS(,,eof), PUTS(,,eof),
RECV(,nomsg), and WRITES(,,full)) from any of the following to a
higher scope are not allowed in the FINALLY block of a
TRY-CATCH-FINALLY statement. A call to a label in a higher scope is
not allowed in the following:

A BEGIN-END block that contains a DATA statement using an
object variable

The CATCH block of a TRY-CATCH-FINALLY statement

A FOREACH statement whose loop variable is an object

LHSBOX 865 Explicit box invalid on left side of equate statement

A variable on the left side of an assignment cannot be boxed. (This is
because the boxed object would be temporary and would disappear after
the statement executed.)

LINLNG 301 Logical line too long

You’ve specified too many continuation lines for a statement or
XCALL, making your logical line too long. A logical line can have a
maximum of 1023 characters of compilable text (excluding comments,
tabs, and preceding and trailing blanks).

LSTXP 126 List file name expected

You’ve specified the list compiler option on your command line without
specifying a list filename to which to generate the program listing.

LVARTYP 913 Incompatible loop variable type %s in FOREACH

A FOREACH statement iterating over collection types, such as array
lists, requires object handle or boxed loop variables. The specified loop
variable is not one of these types.

LYTPARTS 905 Cannot apply StructLayout attribute on partial structure

A structure defined with the PARTIAL modifier cannot have the
StructLayoutAtrribute on it.

Error Messages
Compiler Errors

5-68 Synergy Language Tools 9.3 (12/09)

MBOTH 660 %s cannot be both %s

You’ve declared two mutually exclusive modifiers for the same item.
The following modifiers are mutually exclusive:

SEALED and ABSTRACT on a class

VIRTUAL and ABSTRACT on a method

PRIVATE and VIRTUAL or ABSTRACT on a method

PUBLIC, PROTECTED, and PRIVATE

NEW and OVERRIDE on a class member

LOCAL, STACK, or STATIC

STATIC and VIRTUAL, ABSTRACT, or OVERRIDE

STATIC and CONST

CONST and READONLY

BYREF and BYVAL

BYVAL and OUT or INOUT

BYVAL and OPTIONAL

IN, OUT, and INOUT

REQUIRED and OPTIONAL

METHDEL 890 Method %s does not match delegate

The method signature of the method passed into the constructor for the
delegate does not match the method signature of the delegate.

MISIMP 768 Does not implement %s

You did not provide an override for an inherited method declared as
ABSTRACT.

MISNGFIL 840 Missing source file

There are no files to parse.

MISTYP 659 Missing expected type for %s

You did not specify a return type for the specified method. A method
declaration requires the return type of the method being defined.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-69

MOREARGS 672 More argument values than declared parameters in routine
%s

When resolving a routine call to a routine declaration, the compiler
selects the best matching routine declaration, irrespective of access,
based on the method name, number of arguments, and types of
arguments. This error is generated if the best match has fewer
parameters than the call.

MRGFILS1 351 MERGE requires at least 2 input files

You’ve specified only one input file (or no input files) to merge on the
MERGE statement.

MRGFILS2 352 Too many input files for MERGE

You’ve specified more than seven input files to merge on the MERGE
statement.

MULTMAIN 675 More than one main routine encountered

Your program contains more than one main routine. You can specify
only one MAIN statement within a program.

NAMEREQ 767 Name must be specified with group modifier %s

You did not specify the name of a data structure with the GROUP
modifier in a .INCLUDE directive. When creating a data structure of the
format

[opt_req] [direction] GROUP = name

you must specify the name of the data structure to create.

NFND 662 %s not found

The specified identifier could not be found. If you are attempting to use
a member of a namespace that is not the current namespace, make sure
you have imported the namespace whose member you want to use.

NMETHODARG 676 %s not allowed as %s

Type n is specified on a method that is not marked UNIQUE.

NOAUTO 503 Autosizing not allowed here

You cannot specify a field length of * (to designate automatic sizing) on
an external literal.

NOBLOCK 358 Not within a BEGIN-END block

The EXIT statement is not enclosed within a BEGIN-END block.

Error Messages
Compiler Errors

5-70 Synergy Language Tools 9.3 (12/09)

NOCONS 861 Cannot find matching constructor in class %s

A constructor that matches the arguments to the NEW statement cannot
be found in the class that you’re creating.

NOENDC 310 .ENDC expected

Your code contains an .IF, .IFDEF, or .IFNDEF block without a closing
.ENDC compiler directive.

NOENDCASE 422 No ENDCASE for current CASE

The current CASE statement has a BEGINCASE without a matching
ENDCASE.

NOENDGRP 502 No ENDGROUP allowed

You cannot specify an ENDGROUP statement here.

NOENDUSING 420 Missing ENDUSING statement

Your code contains a USING statement without a closing ENDUSING
statement.

NOEXTEND 682 Cannot extend record by %s bytes with overlay field %s

An overlay field is extending a record. You can add a field to cover the
overlay.

NOFCSUB 729 Cannot call subroutine %s as a function because it has no
parameters

The specified subroutine has no arguments and therefore cannot be
called as function.

NOFIELDS 689 NOFIELDS cannot be used with another qualifier

When using .INCLUDE to include from a repository, you specified the
NOFIELDS modifier along with some other modifier. NOFIELDS
cannot be specified in conjunction with any other modifier.

NOFXD 406 Only integer and decimal operands allowed (%s)

You’ve used implied-decimal data in an expression in which this data
type is inappropriate.

NOGLB 136 Not processing a GLOBAL section

Your code contains an ENDGLOBAL statement with no matching
GLOBAL statement.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-71

NOGLOBAL 726 %s cannot be declared globally

The compiler encountered a class that was declared outside of a
namespace. A class must be declared within a namespace.

NOGROUP 501 No GROUP to end

Your code contains an ENDGROUP statement with no matching
GROUP statement.

NOIDENT 307 Identifier expected

The current compiler directive (for example, .DEFINE) requires an
identifier.

NOINSTAT 880 Cannot declare instance member in static class

Only static members are permitted in a static class.

NOLEN 537 Length not allowed

You’ve specified a length where a length is not allowed.

NOLOOP 356 Not currently within a loop statement

Your code contains an EXITLOOP statement that’s not within a looping
statement (such as DO FOREVER, FOR, REPEAT, or WHILE).

NOOPER 693 No operator %s

You tried to invoke a binary method using the specified binary operator
syntax, and a binary operator method with the specified name,
parameter types, and return type does not exist.

NOOVR 786 No suitable %s found to override

You have attempted to override a method or property that does not
exactly match the signature of an inherited method or property.

NOPROSEC 138 No procedural section

Your routine is missing a .PROC or PROC statement. You cannot
compile a class that doesn’t contain a method, as there is nothing to
compile.

NOPRPMTH 852 Operation not allowed with missing or unmatched %s on
property %s

The specified property was called using a GET or SET syntax, but it is
either missing a GET or SET method or the method does not match the
call.

Error Messages
Compiler Errors

5-72 Synergy Language Tools 9.3 (12/09)

NOPSEUDO 800 Pseudo arrays not allowed in this context

A pseudo array is not allowed as a local data statement type or within a
class definition.

NOQUOTE 319 Quoted string expected

The current compiler directive requires a string in quotation marks.

NORETURN 774 %s cannot have a return type

You have declared a return type for the specified method. Constructors,
destructors, and property accessor methods do not allow a return type.

NOSPECL 311 %s expected

The specified punctuation mark is required but missing from the
current line.

NOTALLOWED 683 %s not allowed in %s

One of the following occurred:

While importing a prototype, the compiler encountered
implementation of a method, function, subroutine, property, indexer,
or operator.

A class type was declared within a local record within a re-entrant
routine.

The INIT statement was applied to a parameter type other than
structfield.

.NOPROTO or .PROTO was specified within a conditional
preprocessing block.

An ONERROR statement was used in the same routine as a
TRY-CATCH statement.

INRANGE or OUTRANGE was specified on an unranged USING
statement.

A duplicate CATCH variable type is present in a TRY-CATCH
block.

A return type was specified on a GET or SET method in a property.

A keyword was used as an identifier in a DATA statement.

Multiple statements were used in a TRY-CATCH-FINALLY block
without an encasing BEGIN-END block.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-73

Index access on a structure in a ^M data reference operation or on
local data was specified in parentheses instead of square brackets
([]). Square brackets are required for structures in ^M and local
data.

Data containing object handles was passed to routine arguments that
are type alpha.

Local data was referenced in an INIT statement.

Ranging, indexing, or dimension access occurred in an INIT
statement.

RETURN, MRETURN, FRETURN, XRETURN, XCALL, CALL,
EXITTRY, ONERROR, or OFFERROR occurred in a FINALLY
block.

An object handle was used in a parameter group.

An indexer contains a routine, field, or record named “item”.

A group was defined in a class structure.

A nonstatic method was defined in a static class.

The NEW keyword was used on a field in a class record.

The MISMATCH modifier was used on a parameter in a nonunique
method.

A type other than n or n. (or a for a subroutine or function) was used
on a MISMATCH parameter.

A structure that contains an object handle was used as a parameter.

A nonstring object was returned on a function.

NOTATTR 871 %s is not an attribute class

You tried to use a non-attribute class as an attribute.

NOTCALLABL 741 Cannot directly call this method

You have attempted to call a constructor or destructor directly. A
constructor is called whenever an instance of the class is created, and a
destructor is called before an instance of the class is destroyed.

NOTCEXP 411 Not a compile-time expression

Synergy Language must be able to evaluate all .DEFINE symbols at
compile time. Either the current .DEFINE symbol includes a variable
and therefore cannot be evaluated at compile time, or the current
function is not supported at compile time.

Error Messages
Compiler Errors

5-74 Synergy Language Tools 9.3 (12/09)

NOTIMPL 313 Feature not yet implemented: %s

The feature you’ve attempted to use has not yet been implemented on
this operating system.

NOTINFUNC 742 Not within a function

You used the FRETURN statement in a subroutine or a method.
FRETURN specifies the return value of a user-defined function and
returns control to the calling routine. Use XRETURN or MRETURN
for a subroutine or method, respectively.

NOTINPR 722 Previous .NOPROTO expected

The .PROTO compiler directive was specified without a preceding
.NOPROTO directive. .PROTO cannot be specified without a matching
.NOPROTO.

NOTINSUB 359 Not within function or subroutine

You’ve specified XRETURN, FRETURN, ^PASSED, ^ARG, or
^ARGN in a main routine. None of these statements or data reference
operations are permitted in a main routine.

NOTINTRY 745 Not in TRY statement

An EXITTRY statement occurs outside of a TRY block. (EXITTRY is
not allowed in the FINALLY block.)

NOTSTAT 716 %s required to access non-static member %s

You have attempted to access an instance of a class within a static
method using one of the following techniques:

The this keyword

The parent keyword

Accessing any instance member of the class without using an
instance variable, including nonstatic methods, nonstatic instance
fields, and nonstatic properties

NOWRITE 736 Cannot write to this entity

A property was encountered as a destination in a SET, CLEAR, or INIT
statement. A property cannot be a destination in any of these statements.

NSRES 661 %s namespace reserved

You have declared a namespace that is reserved by Synergy Language.
Reserved namespaces include “System” or any nested namespace
within the System namespace, “Synergex” or any nested namespace
within the Synergex namespace, and “SynGlobal.”

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-75

NUMALPHARQD 690 Numeric or alpha type required: %s

An I/O statement requires a numeric or alpha data type if the type is not
a built-in type or a string.

NUMINCL2 748 Too many nested .INCLUDE levels

You have exceeded the maximum of 20 nested .INCLUDE levels.

NUMREQ 410 Numeric expression required

The current operation requires a numeric expression.

NUMXP1 401 Numeric operand required (unary %s)

The current arithmetic expression requires a numeric operand.

NUMXP2 405 Numeric operands required (%s)

The current arithmetic expression requires a numeric operand.

NVRTF 652 Cannot resolve return type for function %s

You have declared an invalid return type for a function. See “Where data
types can be used” in the “Defining Data” chapter of the Synergy
Language Reference Manual for a table that specifies valid return types.
If you get this error and you are using gennet, we recommend that you
either use the include file generated by gennet or separate your gennet
prototypes into a different directory from the ones in SYNIMPDIR.

NVRTM 651 Cannot resolve return type for method %s

You have declared an invalid return type for a method. See “Where data
types can be used” in the “Defining Data” chapter of the Synergy
Language Reference Manual for a table that specifies valid return types.
If you get this error and you are using gennet, we recommend that you
either use the include file generated by gennet or separate your gennet
prototypes into a different directory from the ones in SYNIMPDIR.

NVTEVT 891 Cannot resolve type for event %s

Within the event declaration, you specified a delegate identifier that is
not declared.

NVTF 654 Cannot resolve type for field %s

An invalid data type was declared for the specified field. See “Field
definition components” in the “Defining Data” chapter of the Synergy
Language Reference Manual for a list of valid data types for fields. If
you get this error and you are using gennet, we recommend that you
either use the include file generated by gennet or separate your gennet
prototypes into a different directory from the ones in SYNIMPDIR.

Error Messages
Compiler Errors

5-76 Synergy Language Tools 9.3 (12/09)

NVTG 655 Cannot resolve type for group %s

The group type was specified, but because it was not a type that was
declared or imported, the compiler could not resolve it. If you get this
error and you are using gennet, we recommend that you either use the
include file generated by gennet or separate your gennet prototypes into
a different directory from the ones in SYNIMPDIR.

NVTP 653 Cannot resolve type for parameter %s

The argument type that you specified is invalid for the type of routine
being declared. See “Where data types can be used” in the “Defining
Data” chapter of the Synergy Language Reference Manual for a table
that specifies which data types are valid in which circumstances. If you
get this error and you are using gennet, we recommend that you either
use the include file generated by gennet or separate your gennet
prototypes into a different directory from the ones in SYNIMPDIR.

NVTPR 656 Cannot resolve type for property %s

The specified property type was not one of the types that was declared
or imported and therefore could not be resolved by the compiler. If you
get this error and you are using gennet, we recommend that you either
use the include file generated by gennet or separate your gennet
prototypes into a different directory from the ones in SYNIMPDIR.

OBJHNDXP 565 Object handle/function expected

You have attempted to access an instance of a class within a static
method using the this keyword or the parent keyword, or you are
accessing an instance member of the class (including nonstatic methods,
nonstatic instance fields, or nonstatic properties) without using an
instance variable.

OLYBD 150 Overlay not allowed

A record overlay has been specified illegally. See “Overlaying data” in
the “Defining Data” chapter of the Synergy Language Reference Manual
for a list of overlay rules.

OLYBG 511 Overlay record too big

The size of the overlay record exceeds the size of the record it is
overlaying.

ONERRDTA 874 Local data cannot be defined in a routine containing
ONERROR/OFFERROR

A DATA statement was used in the same routine as an ONERROR
statement and/or an OFFERROR statement.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-77

OPARGTYP 714 Operator must have at least one argument of the enclosing
type

A unary operator method must have an argument that is type @class,
where class is the enclosing class.

OPENIN2 747 Cannot open: %s

The compiler cannot open the specified file for input.

OPENMD 348 Invalid OPEN mode: %s

The specified OPEN mode is invalid. See OPEN in the “Synergy
Language Statements” chapter of the Synergy Language Reference
Manual for a list of valid OPEN modes.

OPENSB 349 Invalid OPEN submode: %s

The specified OPEN submode is invalid. See OPEN in the “Synergy
Language Statements” chapter of the Synergy Language Reference
Manual for a list of valid submodes.

OPSTPUB 711 Operator must be declared STATIC and PUBLIC

A unary operator method must be declared as both STATIC and
PUBLIC.

OPTEXP 346 %s option requires an assigned value

The specified qualifier requires a value. (For example, this error is
generated if you specify the DIRECTION qualifier on the READ
statement without a direction specification.)

OPTNOEXP 347 %s option does not allow an assigned value

You’ve assigned a value to a qualifier that does not support one. (For
example, the REVERSE qualifier on the READ statement does not
require any value specification.)

OPTOBJ 776 REQUIRED modifier must be used on object parameters

You declared an argument whose type is an object (for example, string,
@class, @structure, @i4, boxed type) as OPTIONAL. All object
parameters must be REQUIRED (which is the default if neither
modifier is specified).

OPTTYP 345 %s expression expected for %s value

The specified value in the OPTIONS string of the OPEN or MERGE
statement has the wrong data type.

Error Messages
Compiler Errors

5-78 Synergy Language Tools 9.3 (12/09)

OPVOID 712 Operator cannot return void

A unary operator method cannot return a VOID.

OUTPARM 698 Must be able to write to argument %s because parameter was
declared as OUT or INOUT

An argument that was declared as IN was passed to a parameter marked as
OUT or INOUT.

OVRERR 738 Cannot override %s because it is not declared VIRTUAL,
OVERRIDE, or ABSTRACT in class %s

The specified method or property cannot be overridden because it is not
declared as VIRTUAL, ABSTRACT, or OVERRIDE in the parent class.

OVRSLD 830 Cannot override a SEALED %s

You have declared a method or property in an inheriting class to override a
method or property marked as SEALED in the parent class.

PARMOVR 876 New or overridden method changes parameter type from %s to
%s

A method has a different integer parameter than its parent. Change the
non-matching parameter type in the inherited method so that all types
match the parent.

PARSE 404 %s at or near {%s}

The specified syntax error has occurred.

PARTACC 835 Accessibility declarations of partial %s %s do not match

Two separate partial declarations of the same item have different access
modifiers (PUBLIC, PROTECTED, or PRIVATE).

PARTALPH 904 Cannot pass partial structure to an alpha parameter

A partial structure cannot be passed to an alpha parameter.

PMETHODARG 833 %s not allowed as %s

Type p or p. was specified as an parameter type on a method.

PRNPROP 858 Parentheses not needed for property %s

You have attempted to access a property like a method (for example,
c1.myprop()).

PRNRQD 857 Parentheses required on call to method %s

The parentheses are missing on a call to the specified method.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-79

PROPCONF 887 Property %s conflicts with %s in same class

The name of a class member conflicts with the specified property name.
(For example, a method named get_myproperty conflicts with a
property named myproperty.) Rename either the property or the
offending class member.

PROPPARM 784 Properties that are not indexers cannot have parameters

You have specified one or more arguments for a property that is not an
indexer property. Only indexer properties can have arguments.

PROTOMISMCH 705 %s %s does not match prototype

When importing a prototype into the source file where an item is
defined, the compiler found that the declaration for the specified item
does not match the prototype. If this error is encountered and level 4
warnings are on (in other words, you’re compiling with -W4), the
compiler will provide the signature of the declared item and the
prototype item to help you determine the differences between them.

PRTLOAD 947 Unable to load prototype %s : %s

A binary prototype could not be loaded due to the specified reason.
Often this error occurs because a namespace wasn’t imported for a type
you are using.

READONLY 734 Cannot write to read-only data

You attempted to initialize a field in a class that was declared with the
READONLY modifier. The value of a READONLY field can only be
set during declaration or in the constructor of the class.

RECBIG 1 %s size too large

The RECORD data area is too large. A named record must have fewer
than 65,535 bytes.

RECETY 839 Record is empty

A record does not contain any declared members.

RECURSE 851 Recursion not allowed

A type declaration was used inside another type declaration that it was a
part of (for example, a field that was part of struct1 was declared to be of
type struct1). This recursion must be removed.

RECWHANDLE 697 Cannot write to a record that contains a handle

You attempted to write to a record, group, or structure, that contains a
handle.

Error Messages
Compiler Errors

5-80 Synergy Language Tools 9.3 (12/09)

REFARYSCP 832 Cannot apply scope to reference array

Scope cannot be applied to an array of class types or a collection. For
example, if fld1 is declared as type @myclass, you can’t use it as
follows:

X = ^size(fld1[])

REFLIT 838 Integer literals cannot be passed by reference due to
optimization

An integer literal is being passed by reference. If compiler optimization
is being performed (for example, by default or if the -qoptimize=1
compiler option is set), you can’t pass integer literals by reference.

REFREQD 836 ^REF required for argument %s

You have called a method that passes an argument without ̂ REF, but the
argument is declared as ^REF in the method declaration.

REFTYPMSMCH 934 Parameter %s must match type exactly because it is passed
by reference

Value types passed as BYREF parameters (whether explicitly or by
default) must match exactly. A mismatch exists between the specified
parameter and the parameter it is being passed to.

REQDIM 512 Dimension specifications required for {%s}

You’ve attempted to reference the entire scope of a pseudo array using a
null subscript (pseudo[]). Synergy Language only allows you to refer to
one element of a pseudo array at a time.

REQPARM 673 Missing required parameter %s in routine %s

The specified required argument was not passed on a call to the
specified routine. A call to a routine that declares a required parameter
must provide a value to that parameter.

RESWORD 760 Reserved word %s

The following keywords cannot be used as identifiers for anything but
local variables, data statements, routine arguments, common records, or
global data outside of a class:

this

parent

Synergy relational operators EQ, NE, GT, LT, GE, LE, EQS, NES,
GTS, LTS, GES, LES, EQU, NEU, GTU, LTU, GEU, LEU

Synergy Boolean operators OR, AND, NOT, XOR

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-81

Synergy bitwise operators BOR, BXOR, BAND, BNAND, BNOT

Also, a local variable within a class cannot be named this or parent.

RETEXP 684 %s expected in %s

The specified method does not contain an MRETURN statement.

SAMXP 403 Operands must be both alpha or both numeric (%s)

You’ve specified an expression that contains different data types. An
expression requires like data types, such as n + n or a + a (not n + a).

SFLDINV 370 Invalid usage of STRUCTURE field

A structure ID was used where a field or parameter was expected.

SFLDREQ 369 STRUCTURE field required

You’ve specified a ^M statement that does not reference a
STRUCTURE field.

SRCLINBIG 544 More than 65534 source lines (%s). Debug not possible

Under rare circumstances, it is possible for the number of source line
numbers to exceed 65,534 in the compiler. This error is only generated
by the dbl8 compiler.

STARFIELD 677 '*' not allowed in parameter field specification

You declared an parameter that specifies * as the size (for example,
parm1, a*). Size cannot be an asterisk in a parameter definition.

STMTXP 340 Statement expected

You’ve specified an empty compound statement. For example, the
following causes this error to be generated:

for 1 from 1 thru 90
begin
end

SYMND 183 Record or field not declared

You’ve referenced an undefined symbol.

TOKUDF 187 Symbol already uniquely defined

You’ve declared two or more common variables with the same name and
nonunique paths, or two or more identifiers are not unique within a
single scope.

Error Messages
Compiler Errors

5-82 Synergy Language Tools 9.3 (12/09)

TOOMNYSRC 546 More than 254 source modules

The maximum number of source files per compiled routine is 254. This
limit was exceeded. This error is only generated by the dbl8 compiler.

TOOSHORT 694 Argument too short for %s

The size of the MASK variable to an I/O statement is too small.

TPRMTYP 931 Type parameter %s must be an identifier and not a type

A type parameter cannot take the name of a type.

TPSTAT 936 Keyword %s is invalid with static class member

The this or parent keyword was immediately followed by a static class
member. To fix the problem, include the class name when accessing the
static class member.

TRUEINT 713 Operator op_True must return integer

The unary operator for the op_True method must return an integer type.

TRUNC 195 Source line too long

The physical line is too long. A line cannot be longer than 255 characters
(excluding line terminators, such as carriage returns and line feeds).

TYP32 941 Type i8 cannot be return type on 32-bit platforms

You’ve used an i8 or long as the return type for a method or function or
as the data type for a property on a 32-bit platform. The data types i8 and
long are not permitted as return values or for properties on 32-bit
systems.

TYPCONS 925 Type %s does not meet constraint

One of the following occurred:

You’ve declared a class constraint on a type parameter, and the type
used to create the constructed type does not match or is not a child of
the class mentioned in the constraint.

You’ve declared an interface constraint on a type parameter, and the
type used to create the constructed type does not implement the
specified interface.

You’ve declared a constructor constraint on a type parameter, and the
type used to create the constructed type does not have a default
constructor.

A generic class inheriting a constraint provides a constraint on the
same type parameter, which conflicts with the parent’s constraints.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-83

TYPMISMCH 686 Type mismatch between %s and %s

The specified type names don’t match, which is most likely due to one
of the following situations:

The type of one or more of the variables being set in the SET
statement is not compatible with the type of the value being
assigned.

When importing a prototype of a subroutine or function into the
source where it is called, the compiler compares the signature of the
call with that of the prototype of the routine. The specified argument
type did not resolve to the parameter type within the prototype.

TYPPARM 670 Type mismatch for parameter %s in routine %s

You have attempted to pass an argument type that doesn’t match or
cannot convert to the parameter type, and the parameter was not defined
with the MISMATCH modifier. (For more information about the
MISMATCH modifier, see “Parameter definitions” in the “Defining
Data” chapter of the Synergy Language Reference Manual.)

TYPRET 671 Type mismatch for return type

The expression passed to MRETURN was not the same type as the
return type of the method, or a function that doesn’t have a declared type
has an FRETURN type that is different from the first FRETURN.

TYPUNEXP 908 Type %s unexpected here

The item specified in the error message is a type name, and it was
passed where it wasn’t expected. Check whether you meant to pass a
field of the specified type instead of the type name itself.

UNDEFLBL 338 Undefined label: %s

The specified GOTO or CALL target is not defined.

UNQOVR 773 A UNIQUE method cannot be overloaded, overridden, or
redeclared

You have attempted to overload, override, or redeclare one of the
following:

A method that was declared with the UNIQUE modifier

A subroutine or function inside a class declaration

UNSUPPORT 692 Unsupported syntax

The syntax you have used is not supported in this version of
Synergy Language.

Error Messages
Compiler Errors

5-84 Synergy Language Tools 9.3 (12/09)

UNXPTOK 590 %s (%s)

A preprocessor tokenizing error occurred.

UTLXP 202 UNTIL statement expected

You’ve specified a DO statement without the corresponding UNTIL
statement.

VALIDXP 823 Valid identifier expected at or near {%s}

The syntax of an identifier is not valid.

VALREQD 735 ^VAL required for argument %s

You have called a method that passes an argument without ^VAL
syntax, but it is declared as a BYVAL or ^VAL in the method
declaration.

VARARGARY 946 If ^VARARGARRAY used, no other extra arguments
allowed

When ^VARARGARRAY is used in a call, it must be the last item in the
argument list.

VARGOBJ 902 Cannot pass object type for %s as a vararg value

You’ve attempted to pass an object as a value for a variable argument.
Even if a routine uses the VARARGS modifier, an object can only be
passed as a declared argument; it cannot be passed as an argument
beyond the declared number of arguments.

VRNTXP 216 Variant value expected

You’ve specified the variant compiler option with a negative or
nonnumeric ^VARIANT value. (This error may also be displayed as
VARXP.)

WRILIT 331 Writing to a literal or missing argument

The current XCALL statement is supposed to return data, but it cannot
because the argument it’s supposed to write to is either a literal or is
missing altogether.

WRNGRC 201 Field not in this %s

You’ve used the position indicator (@) to position a variable outside the
current record or group.

WRODEFARG 371 Wrong argument count in define reference

You’ve specified an incorrect number of arguments in a macro call.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-85

XCALLHFUNC 733 Cannot XCALL a ^ function

You have attempted to call a data reference operation as an external
subroutine. The only data reference operation that can be XCALLed is
^SIZE.

XFMTHSTR 870 Structure %s used in XFMethod %s must come from
repository

A structure used with the xfMethod attribute must be .INCLUDEd from
the repository; it cannot be defined in the source file.

XTRAEND 336 Too many END statements

Your code contains at least one END statement that doesn’t have a
matching BEGIN statement.

XTRENDC 44 Too many .ENDC statements

Your code contains at least one .ENDC compiler directive without a
matching .IF, .IFDEF, or .IFNDEF directive.

Informational error messages
The following errors provide additional information about other errors.

Mnemonic Number Message

BADDIR 1218 Specified directory %s does not exist

The directory specified in the IMPORT statement doesn’t exist.

BADDSCR 1217 Corrupted descriptor: type = %d, class = %d

An internal failure has occurred.

ERTXT1 1052 %s

This message provides more information to support other error
messages.

ERTXT2 1053 %s%s

This message provides more information to support other error
messages.

EXPAN 529 Within expansion: %s

This message provides additional information about an expanded
replacement identifier (a .DEFINEd constant) that caused a syntax error.

Error Messages
Compiler Errors

5-86 Synergy Language Tools 9.3 (12/09)

YIELD 541 Resulting in %s

This message specifies the source file in which an error occurred when
the error occurred in an .INCLUDEd file.

INCFIL 531 Occurring in the source file: %s

This message displays the expansion of a replacement identifier.

OPWCRE 1149 Operation was CREATE

This message provides additional information about file I/O errors.

OPWDEL 1146 Operation was DELETE

This message provides additional information about file I/O errors.

OPWFND 1144 Operation was FIND

This message provides additional information about file I/O errors.

OPWRDS 1145 Operation was READS

This message provides additional information about file I/O errors.

OPWRED 1143 Operation was READ

This message provides additional information about file I/O errors.

OPWSTO 1147 Operation was STORE

This message provides additional information about file I/O errors.

OPWWRI 1148 Operation was WRITE

This message provides additional information about file I/O errors.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-87

Fatal error messages
If any one of the following errors is encountered, the compiler aborts immediately.

Mnemonic Number Message

BADSYS 520 License management problem - %s

You have encountered a licensing problem. Make sure your version of
Synergy Language is installed and fully licensed.

DDAPIERR 530 Internal DDapi error %s %s

An error occurred while reading the repository. There are two main
reasons for this error:

The repository files are no longer available (for example, if they are
on a network drive and the network goes down).

The repository is invalid, and you need to run the Verify Repository
utility on the files.

This error is only generated by the dbl8 compiler.

DDBADLOG 528 %s is not defined

The specified logical name is not defined. This error is only generated
by the dbl8 compiler.

DDINVLOG 535 Invalid specification for repository files: “%s”

The specified repository filename is not valid. This error is only
generated by the dbl8 compiler.

DDNOLOG 527 Logical for repository name expected

Your repository filename must include a logical if the
DBLDICTIONARY or RPSMFIL and RPSTFIL environment variables
are not set. This error is only generated by the dbl8 compiler.

DDOPN 525 Cannot open repository’s main file: %s

You’ve .INCLUDEd from the repository, and the compiler cannot find
the repository’s main file. This error is only generated by the dbl8
compiler.

DDRD 523 Cannot read repository’s main file

The compiler cannot read the repository’s main file (usually called
rpsmain.ism).

Error Messages
Compiler Errors

5-88 Synergy Language Tools 9.3 (12/09)

DDTXTOPN 526 Cannot open repository’s text file: %s

You’ve .INCLUDEd from the repository, and the compiler cannot find
the repository’s text file.

DDTXTRD 524 Cannot read repository’s text file

The compiler cannot read the Repository’s text file (usually called
rpstext.ism).

ERRCNT 303 Too many errors

Too many compilation errors have occurred. You may want to change
the setting of the DBLMAXERR environment variable.

INTCMPERR 685 Internal compiler error: %s

An internal compiler error occurred.

INTCMPERR2 746 Internal compiler error: %s

A parsing failure occurred, or the compiler encountered a structure it
didn’t expect.

INTERR 530 Internal error number: %d

An internal problem with the specified internal error number has
occurred in the compiler.

INVCLIDEF 600 Invalid/obsolete command verb “%s” used to invoke
compiler

On OpenVMS, the error “%CLI-E-ENTNF, specified entity not found in
command tables” was generated. The compiler queries the system for
each and every valid compiler switch to see if it is present on the
command line and if so, how it is set. This error is generated if the
system has no knowledge about the specified switch.

INVOCB 99 Invalid OCB index: %s

An internal problem has occurred in the compiler.

INVPOS 102 Invalid OCB load position

An internal problem has occurred in the compiler.

LISWRI 213 Cannot write to listing file

The compiler cannot write to the specified listing file.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-89

MAXLINE 879 Exceeded maximum number of lines in file %s

You’ve attempted to compile a file that has more than 262,143 lines,
which is the maximum the compiler can handle in a single file. Split the
file into smaller files and then compile them.

NUMFILES 889 Too many files

The OpenVMS FILLM parameter was not high enough to open all of
the .INCLUDE files. This error is reported in place of the Synergy
“Cannot open: %s” error (OPENIN2) and the OpenVMS “EXQUOTA,
exceeded quota” error when an EXQUOTA error is detected on the open
of an .INCLUDE file.

NULPR 147 No primary files specified

The compiler could not find the .dbl source input file on the command
line.

NUMINCL 82 Too many nested .INCLUDE levels

Your code contains more than 20 nested .INCLUDE source levels.

OBJWRI 144 Cannot write to object file

The compiler has encountered a disk I/O problem. One possibility is
that your disk is full.

OPENIN 158 Cannot open: %s

The compiler cannot open the specified file for input. This error is only
generated by the dbl8 compiler.

OPENOUT 159 Cannot open: %s

The compiler cannot open the specified file for output.

PARSERR 599 Fatal Parsing error: %d

A syntax error has occurred in your Synergy Language code. Call
Synergy/DE Developer Support for assistance. This error is only
generated by the dbl8 compiler.

SEGBIG 514 Code segment too big

A data element has caused a program section to exceed hex FFFF bytes
at compile time. The program has too much data.

Error Messages
Compiler Errors

5-90 Synergy Language Tools 9.3 (12/09)

UNKNOWN Unexpected and undefined compiler exit

An error situation that isn’t handled by any of the other compiler errors
occurred, such as an out-of-memory situation. This error is hardcoded
and doesn’t have an error number.

WRIFIL 160 Error writing %s

The compiler could not write to one of its work files.

Warning error messages
If any of the following errors are encountered, the compiler still creates an object file. Note that the
-W compiler option (/WARNINGS on OpenVMS) enables you to control which warning levels
will be displayed. (See page 1-16 for details.)

Mnemonic Number Message

ACCIGNORED 910 Accessibility on %s %s ignored

An access modifier (PUBLIC, PROTECTED, or PRIVATE) was used
on routine data. The modifier was ignored. (Level 3)

ARGMSMCH 791 Parameter must be declared with the MISMATCH modifer

You attempted to use an inappropriate ^ARG function to access a
parameter value without specifying the MISMATCH modifier for that
parameter. For example, the MISMATCH modifier enables you to use
^ARGA on a d value passed to an n parameter. (Level 1)

ATRUNC 794 Alpha expression too long for %s. Truncation may occur

Truncation may occur when a source that is an alpha expression is
moved to a smaller destination. (Level 4)

BIGIDEN 316 Identifier too long: %s

You’ve specified an identifier that is longer than 31 characters.
Identifiers are only significant up to the 31st character. (Level 2)

BLTID 863 Potential name conflict with built-in type

A class or structure has the same name as a built-in type (for example, a,
a30, i4, etc.). (Level 4)

DEFSIZE 720 Default size may not match %s definition

A field within a global or external literal or common was specified
without an explicit size (for example, i* or d where the size is
determined from the size of the initial value). Access may be incorrect if

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-91

the size differs from the global definition. We recommend that you
explicitly specify the size of the field. (Level 4)

DIMNDIM 798 Dimensioned access of non-dimensioned item %s

A bounds check occurs when an array is provided to a nonarray field.
(Level 4)

W_DUPRMV 875 Duplicate %s in class %s has been removed

More than one method with same signature existed in a class. The
duplicate method was removed. (Level 4)

EMPTYUCSTMT 731 Empty USING or CASE statement

The USING or CASE block does not contain any statements to execute.
(Level 4)

ENDXP 337 END statement expected

Your code contains a BEGIN statement without a matching END
statement. This error is only generated by the dbl8 compiler.

EXACTPATH 425 Exact specification of ambiguous path used (…{%s})

You’ve specified a path name that is not unique. Ambiguous path names
are tolerated for VAX DIBOL compatibility; however, we recommend
that your path names be unique. (Level 1)

GBLND 939 Global declaration does not contain %s

The name of the specified external common field was not found in a
global common. (.NET only)

GBLTNM 938 Type or size for %s does not match global declaration

An external common field differs from the global declaration in either
type or size. You will only get this error when using the -qnet (or /NET)
compiler option. (Level 1)

GBLTYP 940 Type %s not allowed in common declaration

You’ve used a remapped type (double, float, or decimal) in a global
common. You will only get this error when using the -qnet (or /NET)
compiler option. (Level 1)

GRPETY 824 Group is empty

The group does not contain any members. (Level 4)

Error Messages
Compiler Errors

5-92 Synergy Language Tools 9.3 (12/09)

HIDEERR 788 %s hides method that is not VIRTUAL, OVERRIDE, or
ABSTRACT in class %s. NEW required

The specified class member hides an inherited member that is not
declared as VIRTUAL, OVERRIDE, or ABSTRACT, but the NEW
modifier has not been declared for the overriding member. You must
specify NEW to hide an inherited member of the same name. (Level 1)

HIDEHAT 916 Routine hides data reference operation %s

You have defined a routine whose name conflicts with a Synergy data
reference operation. To call the system-supplied data reference
operation, you must use the “^” syntax. Otherwise, your user-defined
function will be called using the “%” syntax. (Level 4)

HIDEW 841 %s hides a member of an enclosing scope

A member hides another member with the same name in an enclosing
scope. (Level 3)

IDIGN 534 .IDENT ignored

On OpenVMS, an object module can only have one .IDENT record.
You’ve compiled multiple source modules into one object module using
the compiler command syntax:

DIBOL SOURCE1+SOURCE2+SOURCEn...

This warning tells you that only the first .IDENT compiler directive will
be acted upon. This warning only occurs on OpenVMS. (Level 3)

IMPFLD 796 Position of field %s causes an implicit field to be added

A nonoverlay field that doesn’t start at the end of the previous field has
been added. (Level 4)

IMPSTOP 777 Implicit STOP added to end of subroutine

The code generator added a STOP statement where one was needed.
This warning may be generated erroneously if we cannot detect that the
routine has a valid exit (for example, RETURN, XRETURN,
FRETURN, or MRETURN). (Level 4)

INITCONST 691 CONST/LITERAL field missing initialization value

A field denoted as CONST or LITERAL doesn’t have an initial value
like it should. (Level 3 or 4)

INITEXP 719 Initial value expected, defaulting to %s

The initial value on a field within a global literal was not specified. The
initial value will default to a 0 or a space, as indicated. (Level 4)

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-93

INITIGN 721 Initial value on external field ignored

A specified initial value on a field is ignored because it’s within an
external literal or external common. The initial value is only recognized
on the global definition. (Level 4)

INTRNG 799 Ranged access of integer fields not portable between
machines of different endian types

You are accessing a range on an integer field, which is not portable
between machines of different endian types. (Level 4)

INVCALL 754 Invalid calling convention

You have attempted to call a subroutine as a function. You will only get
this warning when using the -qnet (or /NET) compiler option; however,
you can still get this error for other reasons when not using -qnet. (See
page 5-61.) (Level 1)

INVDECSIZE 418 Invalid data size specification {%s}

You have declared a size on a parameter group, or an incorrect size was
declared for a decimal or packed parameter. (Level 3)

INVNEW 771 NEW modifier not required and will be ignored

You specified the NEW modifier on a member that does not hide an
inherited member. (Level 1)

INVPASSED 762 ^PASSED on required parameter is always true

You have used ^PASSED on an argument marked as REQUIRED.
(Level 4)

LBLDEF 339 Label previously declared

The current label name has already been used. A statement label must
be unique within the routine. (Level 1)

LNGTITL 314 Title too long

The title that you’ve specified as the listing page header in the .TITLE
compiler directive is longer than 128 characters. This error is only
generated by the dbl8 compiler.

LOGTOOBIG 357 Logical expression too large

You’ve specified too many Boolean operations (with the Boolean
operators .AND., .OR., and so forth) on the same logical line. (Level 2)

Error Messages
Compiler Errors

5-94 Synergy Language Tools 9.3 (12/09)

LSLENX 215 Listing length expected

You’ve specified the LENGTH compiler option without specifying a
value for the length of each page of the listing. (Level 3)

LSWIDX 214 Listing width expected

You’ve specified the WIDTH compiler option without specifying a
value for the width of the program listing. (Level 3)

NAMESUB 132 .NAME not allowed in subroutines

The .NAME compiler directive should only be specified in the main
routine, and you’ve specified it in a subroutine. This error is only
generated by the dbl8 compiler.

NARROWING 696 Narrowing conversion could cause loss of data

You specified an assignment or a passing of parameters that would
cause a narrowing conversion (that is, an assignment from a larger
source type to a smaller destination type) on an integer value. (Level 4)

NETALLOW 827 %s not allowed %s on .NET

The specified feature will not be allowed in Synergy/DE’s support for
Microsoft .NET. (Level 1)

NETAPI 918 Routine %s not supported in .NET

The specified API routine will not be included in Synergy/DE support
for Microsoft .NET. You will only get this error when using the -qnet
(or /NET) compiler option. (Level 1)

NETRFA 795 RFA variable must be type a in .NET

In Synergy/DE support for Microsoft .NET, an RFA variable will need
to be type a. (Level 1)

NETSUPRT 793 %s not supported in .NET

The specified item will not be included in Synergy/DE support for
Microsoft .NET. You will only get this error when using the -qnet (or
/NET) compiler option. (Level 1)

NEWREQ 770 NEW modifier is required on %s since it hides a member of
an inherited class

The specified method hides an inherited class method with the same
signature, but the hidden member has not been marked with the
OVERRIDE or NEW modifier. (Level 1)

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-95

NLREC 134 Preceding RECORD empty

The previous record contains no data. (Level 4)

NOALIGN 365 Alignment not performed

You’ve specified the .ALIGN compiler directive before a declaration
that does not define any data (such as an overlayed data declaration
statement, an EXTERNAL COMMON statement, or any field in an
EXTERNAL COMMON declaration). No alignment will be performed.
This error is only generated by the dbl8 compiler.

NOCND 320 Previous .IFDEF/.IFNDEF statement expected

You’ve specified an .IFT, .IFF, or .IFTF compilation control directives
outside of an .IF, .IFDEF, or .IFNDEF conditional block. (Level 1)

NOENDC2 755 .ENDC expected

A required .ENDC directive is missing at the end of the file. .ENDC
must always close an .IF, .IFDEF, or .IFNDEF conditional block.
(Level 1)

NOSPECL 311 ENDSTRUCTURE on global structure expected

The ENDSTRUCTURE statement is missing from a global structure
declaration. (Level 3)

NOTALIGNED 604 Physical memory alignment not guaranteed

The boundary position specified for the .ALIGN compiler directive is
greater than the natural register size of the machine on which it is being
used. Memory alignment can only be guaranteed up to the natural
register size, and it cannot be guaranteed when using MASK
functionality on I/O statements. (Level 1)

NOTBEXP 882 Assignment in Boolean expression! Did you intend “==”?

An IF statement contains an assignment (=) of simple variables in a
Boolean expression that might have been intended as a relational
operator (== or .EQ.). For example,

if (a = b) nop

generates this warning. (Level 4)

NOTDEF 322 Identifier not defined: %s

You’ve attempted to .UNDEFINE an identifier that has not been defined
in a prior .DEFINE directive line. This error is only generated by the
dbl8 compiler.

Error Messages
Compiler Errors

5-96 Synergy Language Tools 9.3 (12/09)

NOTEXE 367 Statement can never be executed

The compiler has detected a FOR loop that never executes. For example:
(Level 1)

for i from 10 thru 1
 nop

NUMLINES 920 Too many file lines. Subsequent debug line information
ignored

The file position of a routine being compiled with the debug option
exceeds 16777215 (0xFFFFFF). (The file position is the byte offset of
the beginning of the line from the beginning of the file.) The line
number information for subsequent file segments is ignored for the
current routine.

NUMSEGS 919 Too many file includes (more than 255). Subsequent debug
line information ignored

More than 255 file segments have been .INCLUDEd in a routine being
compiled with the debug option. The line number information for
subsequent file segments is ignored for the current routine.

OBJDIS 885 Object returned from %s discarded

A method that returns an object is called in such a way as to discard the
object returned. (Level 4)

OBJXP 149 Object file name expected

You’ve specified the Object compiler option without specifying an
object filename. (Level 3)

ONEALPHA 368 Only one character allowed: %s

You’ve specified a RANGE on a USING statement, and the alpha literal
that you’ve specified as your RANGE or match value is more than one
character. (Level 1)

OUTOFRANGE 366 Select value is outside defined range

You’ve specified a RANGE on a USING statement, and one of the
following conditions is true: (Level 1)

The match value is not within the range.

The match value is a range of values and no value within this range
is within the range you specified in your USING statement.

You’ve specified a relative operation, and no values that match this
operation are within the range.

Error Messages
Compiler Errors

Synergy Language Tools 9.3 (12/09) 5-97

OVRVIRT 787 %s hides inherited member in class %s. OVERRIDE or
NEW required

The specified method hides an inherited class method with the same
signature, but neither the OVERRIDE nor the NEW modifier has been
declared for the hiding member. You must specify OVERRIDE or NEW.
(Level 1)

PASSIMPL 868 Implied decimal argument %s passed to non-implied
parameter %s

You have passed a decimal value to a non-implied (d or n) parameter.
Either make both the argument and the parameter implied or make both
non-implied to eliminate the warning. (Level 4)

RETRQD 826 %s missing in %s

The XRETURN or FRETURN statement is missing from the specified
subroutine or function. (Level 4)

RETTYP 859 Return type for %s assumed to be %s

The return type was not explicitly declared or cannot be determined by
looking at the FRETURNs in the specified function. You can turn off
this warning by explcitly declaring the function type.

SRCLINBIGW 545 More than 65534 source lines (%s). Reported error line
incorrect

Under rare circumstances, it is possible for the number of source line
numbers to exceed 65,534 in the compiler. This error is only generated
by the dbl8 compiler.

STKMAIN 831 STACK not allowed on MAIN and has therefore been
ignored

The STACK modifier cannot be specified on the MAIN statement and is
ignored by the compiler. (Level 1)

STRTOPT 185 Unrecognized .START option: %s

You’ve specified an invalid option on the .START compiler directive.
Valid options are [NO]COND, [NO]LIST, [NO]OFFSETS,
[NO]PAGE, AND [NO]SUMMARY. This error is only generated by
the dbl8 compiler.

STRUCTHIDE 844 Local structure %s hides non-local structure %s

A structure inside a method hides a structure outside a method. (Level 3)

Error Messages
Compiler Errors

5-98 Synergy Language Tools 9.3 (12/09)

STXPFOR 516 Statement expected following FOR

You’ve specified a FOR loop without the statement to be executed. This
error is only generated by the dbl8 compiler.

SYMDEFD 312 Symbol already defined: %s

A .DEFINE compiler directive is attempting to define a symbol that’s
already been defined. (Level 3)

SYSRTNOVR 706 System routine overridden. Invalid binding may occur

You have specified a local routine that hides a system routine. As a
result, binding may work correctly. (Level 4)

TOOMANYSYM 543 More than 65534 symbols in debug source module. Excess
ignored

There is a limit of 65,535 symbol entries in a debugger table per routine.
The compiler has marked all referenced symbols as referenced. All
symbols that have not been referenced are then marked as referenced
until the limit of 65,535 symbols has been reached, at which point this
warning is issued and no additional symbols are emitted. If this limit has
been reached, the symbols that have not been emitted into the debug
table may not be used to debug the routine. (Level 3)

UNBXCNCL 866 Auto unbox cancels out boxing of %s. Boxing removed

Because automatic unboxing would cancel out boxing of the specified
item, the box has instead been removed for optimization purposes.
(Level 4)

XRETVAL 825 XRETURN cannot return a value on .NET

Although you can use XRETURN to return a value on a subroutine in
Synergy/DE 9, this functionality will not be included in Synergy/DE’s
support for Microsoft .NET. (Level 1)

XTRASRC 533 Only the first source file on the command line was compiled

On OpenVMS, you can only specify one source file on the compiler
command line unless you separate each filename with a plus sign (+).
Because your source files were not connected with a plus sign, only the
first file was compiled. This error only occurs on OpenVMS. (Level 3)

Error Messages
Linker Errors

Synergy Language Tools 9.3 (12/09) 5-99

Linker Errors

Fatal error messages
The following error messages cause the linker to abort.

Mnemonic Number Message

BADFIL 37 Bad record format in file: %s

You might get this error for any of the following reasons:

Your object code is extinct.

Your input file is not an object file, an OLB, or an ELB.

The order of your object code is invalid.

Your object module has been truncated.

To fix this problem, recreate your file from scratch.

BADNDN 49 Unrecognized module id 0x%x in %s

Your module was compiled on a machine of the wrong endian type.
Recreate your file from scratch.

BIGSEG 1 Segment exceeds maximum size in module %s

A data segment is too big to be linked.

CIRELB 54 Circular ELB reference in file %s

The ELB being created is also directly or indirectly referenced as input.
For example, the following set of dblink commands will cause this
error:

dblink -l util util.dbo mylib.elb

dblink -l mylib mylib.dbo util.elb

The first command creates util.elb and links it against mylib.elb. The
second command tries to create mylib.elb and link util.elb against it.
However, when util.elb is opened and the reference to mylib.elb is
encountered, mylib.elb will be opened and a circular reference will
occur.

Error Messages
Linker Errors

5-100 Synergy Language Tools 9.3 (12/09)

CLSCRC 59 Class CRC mismatch: class %s in module %s

The specified module contains a class with a different cyclic redundancy
check value than the same class from a previous module. This means
that the same class name was used with two different layouts in files that
were linked together. For example, this error would be generated if one
file imported a class and was compiled, and another file imported a
modified version of the same class and was compiled, and then the two
files were linked together.

CLSUND 60 Undefined class: %s

The specified class was referenced but never defined.

CMDBIG 2 Command line exceeds maximum length

The specified command line was too long. Use continuation lines.

COMDUP 51 Duplicate common symbol definition: %s in module %s

A global literal or global common symbol has been defined more than
once. Change the name of the common or literal or change one from
GLOBAL to EXTERNAL.

COMERR 3 Compiler errors in module: %s

Your module contained errors when it was compiled. Remove the errors
and recompile the module.

COMNF 4 COMMON record undefined: %s in module %s

The common or literal does not have a global definition. Change the
external common or literal to global or add an EXTERNAL or
GLOBAL definition.

DUPCLS 68 Duplicate class: %s in ELB %s

The specified class in the specified ELB has been defined more than
once, and the sizes of the duplicates are different.

DUPCOMN 63 Duplicate Global Common: %s in ELB %s

The specified global common in the specified ELB has been defined
more than once, and the sizes of the duplicates are different.

DUPGBL 67 Duplicate global: %s in ELB %s

The specified global variable in the specified ELB has been defined
more than once, and the sizes of the duplicates are different.

Error Messages
Linker Errors

Synergy Language Tools 9.3 (12/09) 5-101

DUPGDS 65 Duplicate Global Data Section: %s in ELB %s

The specified global data section in the specified ELB has been defined
more than once, and the sizes of the duplicates are different.

DUPLICATES 70 Duplicate symbols

A symbol has been defined more than once.

DUPLIT 64 Duplicate Global Literal: %s in ELB %s

The specified global literal in the specified ELB has been defined more
than once, and the sizes of the duplicates are different.

DUPMOD 6 Duplicate module name: %s

The module has been specified more than once. Remove or rename one
of the modules.

DUPSREC 66 Duplicate Static Record: %s in ELB %s

The specified static record in the specified ELB has been defined more
than once, and the sizes of the duplicates are different.

DUPSYM 7 Duplicate symbol definition: %s

The psect or module has been defined twice. Remove one of the
modules containing the duplicate.

E65K 39 Shared data symbols >65k

Your program contains more than 65k of COMMON data.

ELBNAM 43 ELB name specified is too long

An ELB has been specified with a name longer than 31 characters.

ERRCNT 36 Too many errors; compilation aborted

The number of errors exceeded 20, which is the maximum number of
errors.

FILINUSE 52 File %s is open by another user

The linker is attempting to open a file that is open by another user.

GBLPSNF 38 Global psect {%d} not found

An error has occurred in the linker’s processing.

GLOBNF 8 Global psect {%d} not in module %s

The psect was referenced but not defined. Check for coding errors in the
module and recompile.

Error Messages
Linker Errors

5-102 Synergy Language Tools 9.3 (12/09)

INSMEM 9 Insufficient memory for attempted operation

The program could not allocate enough memory for the linker to
perform its function. Make more memory available for the linker to use.

INTERR 517 Internal failure: %d

An error has occurred in the linker’s processing.

INVFN 10 Invalid command file name

You’ve specified an indirect command file with an invalid filename.

INVNUM 33 Option requires numeric value specification

You’ve specified the stack size linker option without specifying the size
of the stack.

INVOPT 11 Invalid option

You’ve specified an invalid command line option. see chapter 1,
“Building and Running Synergy Language Programs,” for a list of
available Synergy linker options.

INVSOF 12 Invalid switch or file name

You’ve specified an invalid command line switch or filename.

LIBMAX 15 Too many library input files

You’ve specified more than 32 OLBs or ELBs.

MAXIF 16 Too many input files open

You’ve input command lines to the linker by entering them indirectly
through a command file, but the depth of indirect command files
specified was too deep.

MAXTF 18 Too many files

The number of input files exceeded 265. Reduce the number of input
files by using object libraries.

NOCLS 57 Class not found

Either a CLSDEF object record specifies a class that was not specified
in a CLSDECL object record, or a CLSREF object record specifies a
class that was never declared. This error should never occur unless the
object file was not created correctly by the compiler.

Error Messages
Linker Errors

Synergy Language Tools 9.3 (12/09) 5-103

NOENDMOD 42 Internal error: No ENDMOD record in %s

The physical end of file was reached without finding an ENDMOD
object record. The file was truncated. Recreate the file that contains the
module, and recompile if necessary.

NOLIB 20 No library input allowed for library output

You’ve attempted to extract a module from an object file or ELB. A
module can only be extracted from an object library.

NOMAIN 21 No main-line or primary module specified

You’ve attempted to create a .dbr file without specifying a main routine.
Specify a file that contains a main routine or create an ELB.

NOMOD 40 Module %s not found in library

The module was not found in the object library.

NONAME 22 No file name specified with OUTPUT

You’ve used a linker option on the command line that requires a
filename (such as the extract, map file, library file, or output file option),
but no filename was specified.

NOTELB 35 Invalid ELB format in file: %s

The specified ELB has an invalid internal format. Re-create the ELB.

ONEPRI 24 Second main-line or primary module illegal: %s

You’ve specified more than one main or primary routine.

OPFNF 26 Cannot open input file: %s

The specified file could not be opened for input. Check whether the file
exists, and if it does, check the protections on that file and its directories.

OPOUT 27 Cannot open output file: %s

The specified file could not be opened for output. Check whether the file
exists and can be replaced. Check whether the device and directory
exist.

OPPNDN 48 Module %s built opposite ‘endian’ (%s)

You’ve attempted to link objects that have different endian types.
Recompile the modules on the same endian machines.

REFER 45 Fatal referencing errors

Not all parts of the executable being built are present. Find the missing
parts and relink with them.

Error Messages
Linker Errors

5-104 Synergy Language Tools 9.3 (12/09)

SUBRLB 29 No main-lines allowed in executable libraries

You’ve attempted to place a main routine into an ELB.

WRTERR 30 Out of disk space for output file

There is not enough disk space for Synergy Language to write to the
disk file. Remove enough files from the device to provide enough space
for the file being created.

XCLREF 31 Too many subroutines referenced from ELB module

You’ve exceeded the maximum number of subroutines that can be
referenced from an ELB module.

XUNDEF 32 XCALL routine undefined

An XCALL in the object code was unresolved by the linker.

Informational error messages
The following errors provide additional information about other errors.

Mnemonic Number Message

FRSTDEF 71 Symbol %s first defined in %s

Specifies where the first occurrence of the duplicate symbol was found.

FRSTRTN 72 Routine %s first found in %s

Specifies where the first occurrence of the duplicate routine was found.

Warning error messages

Mnemonic Number Message

CLSDUP 78 Duplicate class: %s in ELB %s

The specified class in the specified ELB has been defined more than
once, and the sizes of the duplicates are identical.

CMNGBL 50 COMMON ‘%s’ conflicts with GLOBAL DATA SECTION
in module %s

A common and a global data section have the same name.

COMNDUP 73 Duplicate Global Common: %s in ELB %s

The specified global common in the specified ELB has been defined
more than once, and the sizes of the duplicates are identical.

Error Messages
Linker Errors

Synergy Language Tools 9.3 (12/09) 5-105

COMWAR 5 Compile warnings in module: %s

The module had warnings when it was compiled. Remove the warnings
and recompile the module.

DUPRTN 69 Duplicate routine: %s in %s

The specified routine has been defined more than once in the specified
file.

ELBREF 44 Undefined global data reference ‘%s’

A global reference from within an ELB could not be found. Add a
module that defines the global.

ELBSUB 46 In subroutine ‘%s’, ELB ‘%s’

This informational message displays where the undefined global data
reference was specified.

GBLDUP 77 Duplicate global: %s in ELB %s

The specified global variable in the specified ELB has been defined
more than once, and the sizes of the duplicates are identical.

GDSDUP 75 Duplicate Global Data Section: %s in ELB %s

The specified global data section in the specified ELB has been defined
more than once, and the sizes of the duplicates are identical.

LITDUP 74 Duplicate Global Literal: %s in ELB %s

The specified global literal in the specified ELB has been defined more
than once, and the sizes of the duplicates are identical.

SRECDUP 76 Duplicate Static Record: %s in ELB %s

The specified static record in the specified ELB has been defined more
than once, and the sizes of the duplicates are identical.

NOTINI 41 Global data section ‘%s’ not initialized

The set of references to the specified global data section does not
contain the INIT option. Add “,INIT” to exactly one instance of that
global data section.

ONEINI 23 Global data section %s has duplicate , INIT

More than one of the specified global data sections contains the INIT
option. Remove all but one “,INIT” from the specified global data
sections.

Error Messages
Linker Errors

5-106 Synergy Language Tools 9.3 (12/09)

REFBIG 84 Global data reference larger than definition ‘%s’

A global data section reference is larger than the same named global
data section with “,INIT”. (This could happen, for example, if an
.INCLUDEd file was changed after one module was compiled.) When
this occurs, the linker increases the size of the global data section to
match the larger of the two, but the data initialization stays the same as
the one with the ,INIT. This means the increased size has random data in
it, and you cannot assume that it is initialized to anything or that the
initialization data is aligned correctly for the larger definition.

SUNDEF 47 COMMON symbol ‘%s’ undefined in module %s

The specified symbol was not present to build the executable routine
properly. Find the missing parts and relink with them.

Error Messages
Librarian Errors

Synergy Language Tools 9.3 (12/09) 5-107

Librarian Errors

Fatal error messages
The following errors cause the library to abort.

Mnemonic Number Message

BADFIL 1 Bad record format in file: %s

The object module is invalid and the file has been truncated. Recompile
the module.

CLOSIN 2 Cannot close %s

An internal error occurred when closing a file.

CMDBIG 3 Command line too long: %s

The command line was too long. Use continuation lines.

CONOPT 4 Conflicting options on command line

The Delete or Extract librarian option was specified on the same
command line as the Add or Replace option.

DNXSTMD 5 Cannot delete non-existing module: %s

The specified module did not exist and therefore could not be deleted.

EXSTMOD 6 Cannot add existing module: %s

You’ve attempted to add a module that already exists. Replace the
module instead of adding it.

INSMEM 9 Insufficient memory for attempted operation

The program could not allocate enough memory for the library to
perform its function. Make more memory available for the librarian
to use.

INTERR 517 Internal Error: %d

This error is generated for any of the following reasons:

40301 Error reading file header

40305 Error reading OLB

40306 Error creating temporary file

40201 Invalid object record position

Error Messages
Librarian Errors

5-108 Synergy Language Tools 9.3 (12/09)

40202 Empty OLB

40203 Invalid object record

40204 Invalid object record position extracting

40205 No ENDMOD for BEGMOD object record

40301 Cache initialization error

40302 Cannot unlink main OLB

40304 Cannot rename temp to main OLB

40403 Error accessing error file (W)

40404 Error accessing error file (E)

INVOPT 11 Invalid command line option

You’ve specified an invalid librarian command line option. see
chapter 1, “Building and Running Synergy Language Programs,” for a
list of available librarian options.

MAXIF 14 Exceeded maximum input file limit

You’ve input command lines to the librarian by entering them indirectly
through a command file, but the depth of indirect command files
specified was too deep.

MAXMOD 16 Exceeded maximum number of module names

The number of modules exceeded 256. Reduce the number of modules.

MAXTF 17 Exceeded maximum number of files

The number of input files exceeded 256. Reduce the number of input
files.

MODXP 18 Module name expected

You’ve used the Delete command line option without specifying the
name of the module to delete.

NONAME 19 No name specified for command line option

You’ve used a command line option that requires a filename (such as
Add, Create, or Replace), but no filename was specified.

NOTSUBR 20 Module %s is not a subroutine

The module is not a subroutine or function. Specify a subroutine or
function.

Error Messages
Librarian Errors

Synergy Language Tools 9.3 (12/09) 5-109

OBJXP 21 Object file expected: %s

An object file was expected but not found.

OLBXP 22 Object library expected: %s

An object library was expected but not found.

OPENIN 23 Cannot open input file: %s

The input file does not exist or cannot be opened. Check whether the file
exists, as well as its protections.

OPOUT 24 Cannot open output file: %s

The specified file could not be opened for output. Check whether the file
exists and can be replaced. Also check whether the device and directory
exist.

OPTXP 28 Option expected

One of the following librarian command line options was not specified:
Add, Replace, Delete, or Extract.

WRTERR 30 Out of disk space for output file

There is not enough disk space for Synergy Language to write to the
disk file. Remove enough files from the device to provide enough space
for the file being created.

XNXSTMD 26 Extracting non-existing module: %s

You’ve attempted to extract a module that doesn’t exist.

Warning error messages

Mnemonic Number Message

RNXSTMD 25 Warning - Replacing non-existing module: %s

A nonexistent module was added when the replace librarian option was
used.

Error Messages
Synergy DBMS Errors

5-110 Synergy Language Tools 9.3 (12/09)

Synergy DBMS Errors
The following list maps the Synergy DBMS error numbers to their message text. If you run isutl
with messaging enabled, the text specified here will be displayed. If you run it without messaging
enabled (-m0), only the number will be displayed.

1 Bad ISAM file control

2 Specified key out of range

3 Lock failure

4 Filename length too long

5 EOF encountered

6 Index incongruity error

7 Illegal decimal key of reference

8 Illegal alpha key of reference

9 Invalid OPEN mode, Requires update

10 Invalid RFA

11 I/O error

12 Illegal record size

13 Key not same

14 No current record established

15 No duplicates allowed

16 I/O error: No disk space

17 Not an ISAM file

18 Record not locked for WRITE/DELETE

19 Cannot open data file

20 Cannot open index file

21 Qualifier incongruity error

22 I/O error: Read failure

23 Record is locked

24 Input size exceeds destination size

25 I/O error: Write failure

26 Data incongruity, key to deleted rec

27 Data compression/uncompression error

28 Data freelist error

29 Deleted record error

30 Cannot create file

31 Insufficient memory for attempted op

32 Invalid option

Error Messages
Synergy DBMS Errors

Synergy Language Tools 9.3 (12/09) 5-111

33 Invalid compression option

34 Invalid key length

35 Invalid record length

36 Invalid start position

37 Missing required parameter

38 Mismatched segments

39 Key spans end of record

40 Existing file, cannot overwrite

41 Undefined keys, cannot create

42 Flush error

43 Encountered incompatible ISAM file

44 Record not found (No record Read/Found)

45 Invalid null value

47 File in use by another user

48 C-ISAM file corrupted

49 Too many open files

50 Cannot open C-ISAM file

51 C-ISAM read error

52 Cannot open BTRIEVE file

53 BTRIEVE file is corrupted

54 BTRIEVE requester not loaded

55 No privilege to this file or directory

56 Generic Btrieve Error

57 File not found

58 Bad file specification

59 Invalid I/O mode on open

60 Bad file org on open

61 Bad I/O options in I/O statement

62 Operation timed out

63 Illegal function for this control

64 Remote LPQUE error

65 No caching allowed

66 Bad decimal key value

67 Partial numeric key not allowed

68 Invalid overlay of numeric key

70 Invalid index page size

71 Invalid index density

Error Messages
Synergy DBMS Errors

5-112 Synergy Language Tools 9.3 (12/09)

72 Invalid key type

73 Invalid key order

74 Incorrect number of types specified

75 Incorrect number of orders specified

76 Invalid non-key integer size

77 Non-key integer data cannot overlap

78 Invalid overlay of non-key integer data

79 Specified segment out of range

80 Null value doesn’t exist for key

81 Error in XDL file

82 Error in XDL string

83 Interrupt detected

100 Illegal record number

101 No room to write to file

102 Invalid relative record

103 Cannot delete file

104 Device not available

105 No FDL file allowed on open yet

106 Server license limit reached

107 No winsock

108 TCP/IP init error

109 TCP/IP bad remote user name

110 Cannot connect to port

111 Cannot create client connection

112 bad host name

113 Network problem

114 Server not running on remote host

115 Deadlock condition detected

116 Licensing error, see log for details

117 Licensing timed out

118 Network error after open

119 Version of Xfserver not compatible

120 Sort failure

121 Merge failure

122 Sort work file in use

123 Error writing to exception file

124 Bad data segment - correctable

Error Messages
Synergy DBMS Errors

Synergy Language Tools 9.3 (12/09) 5-113

125 Bad data segment - non-correctable

126 Index error

127 Data error

128 ISAM Utility failure

Error Messages
List of Runtime Error Numbers

5-114 Synergy Language Tools 9.3 (12/09)

List of Runtime Error Numbers
Below is a list of all runtime error mnemonics and their corresponding error numbers, listed in
consecutive error number order as they are listed in the message file syntxt.ism.

RNT 00001 EOF E End of file

RNT 00002 NOCALL F Return with no CALL or XCALL

RNT 00005 RECEXTCAL E Recursive XCALL

RNT 00006 WROARG E Incorrect number of subroutine arguments

RNT 00007 SUBSCR E Invalid subscript specified

RNT 00008 WRTLIT E Writing to a literal or missing argument

RNT 00009 NOMEM E Not enough memory for desired operation

RNT 00010 ILLCHN E Illegal channel number specified

RNT 00011 NOOPEN E Channel has not been opened

RNT 00012 ONLYWR E Attempt to open output device in input mode

RNT 00013 BACKPEND E Backup mode is On

RNT 00014 BIGALPHA E Alpha temporary result exceeds 65535

RNT 00015 BIGNUM E Arithmetic operand exceeds maximum size

RNT 00016 CHNUSE E Channel is in use

RNT 00017 FILSPC E Bad filename

RNT 00018 FNF E File not found

RNT 00019 NOTAVL E Device not available

RNT 00020 DIGIT E Bad digit encountered

RNT 00021 FILOPT E Invalid operation for file type

RNT 00022 IOFAIL E Failure during I/O operation

RNT 00023 TOOBIG E Input data size exceeds destination size

RNT 00024 NOSPAC E No space exists for file on device

RNT 00025 FILFUL E Output file is full

RNT 00027 UPDNFD E Update of non-file device

RNT 00028 RECNUM E Illegal record number specified

RNT 00029 BADCMP F Compile not compatible with execution system

RNT 00030 DIVIDE E Attempt to divide by zero

RNT 00031 ARGSIZ E Argument specified with wrong size

RNT 00032 REPLAC E Cannot supersede existing file

RNT 00033 CHNEXC E Too many files open

RNT 00037 DEVUSE E Device in use

RNT 00038 FINUSE E File in use by another user

RNT 00039 OUTRDO E Output to read-only device

Error Messages
List of Runtime Error Numbers

Synergy Language Tools 9.3 (12/09) 5-115

RNT 00040 LOCKED E Record is locked

RNT 00041 BACKUPMODE E Backup mode error

RNT 00044 ELBREF W Undefined global data reference ‘%s’

RNT 00052 BADKEY E Illegal key specified

RNT 00053 KEYNOT E Key not same

RNT 00054 NODUPS E Duplicate key specified

RNT 00056 NOTISM E Not an ISAM file

RNT 00061 NOCURR E No current record

RNT 00062 PROTEC E Protection violation

RNT 00064 RNF E Record not found

RNT 00067 VMSERROR F Unexpected VMS system error

RNT 00077 ARGORD E Arguments out of order for PAK or UNPAK

RNT 00078 ARGREC E PAK/UNPAK fields not in record

RNT 00080 NOSQL E SQL Connection installation error or DBLOPT 48 not set

RNT 00082 AORDXP E Alpha or decimal variable expected

RNT 00086 RECLNG E Invalid record length

RNT 00087 ARGMIS E Argument missing

RNT 00095 OPNERR E OPEN error

RNT 00098 INTRPT E Interrupt character detected

RNT 00100 RMSERROR E Unexpected RMS error

RNT 00102 RUNERR F Internal runtime failure: %s

RNT 00103 FILORG E Invalid file organization

RNT 00104 OUTRNG E Value out of range

RNT 00106 EXQUOTA E Exceeded quota

RNT 00107 DEVNOTRDY E Device not ready

RNT 00108 IOMODE E Bad mode specified

RNT 00111 TIMOUT E Terminal input operation timeout

RNT 00115 BLKSIZ E Invalid value specified for BLKSIZ

RNT 00120 EXCACT E Too many activation characters

RNT 00122 QUEUENOTAV E Invalid queue specified on LPQUE

RNT 00128 VMSRMS F Unexpected VMS or RMS error

RNT 00131 SMERR E SORT or MERGE error

RNT 00132 SAMOP E Operands must be both alpha or both numeric

RNT 00141 MAXIF E Too many input files open

RNT 00144 ARGDIGPT E Numeric digit(s) and at most one decimal
point expected

RNT 00145 BDIGXP E Binary digits expected in argument (%s)

Error Messages
List of Runtime Error Numbers

5-116 Synergy Language Tools 9.3 (12/09)

RNT 00146 HDIGXP E Hexadecimal digits expected in argument (%s)

RNT 00147 ODIGXP E Octal digits expected in argument (%s)

RNT 00151 ARGDIG E Numeric digit(s) expected in argument

RNT 00153 DECXP E Decimal expected

RNT 00154 IORDXP E Only integer and decimal operands allowed

RNT 00155 RNDVAL E Invalid round value: %d

RNT 00156 IRNDVAL E Invalid round value for integer operand: %d

RNT 00157 INVFORENT E Invalid entry to FOR loop

RNT 00158 IDXP E Implied data type required

RNT 00159 INVHDL E Invalid memory handle

RNT 00160 ADDRSIZ E Invalid address size

RNT 00161 HSIZERR E Map outside bounds of field or handle

RNT 00162 NOMETHOD E Method’s routine not found

RNT 00163 INVCLASS E Class is invalid for operation

RNT 00164 DUPEVENT E Event code already specified

RNT 00165 NOTOBJID E Not an object identifier

RNT 00166 NUMXP E Numeric argument expected

RNT 00216 FLSPCW I File specification was %s

RNT 00223 INVDIM E Invalid number of dimensions

RNT 00224 INVPRC E Invalid fractional precision

RNT 00226 MRGERR E Merge error

RNT 00243 SRTFAI E SORT failure

RNT 00254 NOXCAL E Undefined XCALL referenced

RNT 00255 DUPFIL E Too many duplicate files open

RNT 00256 LPQERR E LPQUE failed

RNT 00301 RECBLK E Record must be a multiple of block size

RNT 00303 INTLCK E Unexpected system locking error

RNT 00308 MAXPRC E Too many processes

RNT 00309 INVACT E Invalid action for XCALL FATAL

RNT 00311 NOFORK E Cannot fork

RNT 00313 RELREC E Invalid relative record

RNT 00316 IRCSIZ E Invalid record size

RNT 00317 INVALRFA E Invalid record’s file address

RNT 00318 DELREC E Deleted record

RNT 00319 CLNTERR E Client server error, host: %s

RNT 00320 NETPROB E Network problem reaching server %s

RNT 00321 NOSERVER E Synergy server is not running on %s

Error Messages
List of Runtime Error Numbers

Synergy Language Tools 9.3 (12/09) 5-117

RNT 00322 NULARG E Improper use of null argument

RNT 00323 SETTYP E SET data types must be the same

RNT 00324 MSGFAIL E SEND/RECV message failure

RNT 00325 BADHOST E Unknown host “%s” in server spec

RNT 00326 BADUSER E Bad username, login rejected on %s

RNT 00327 UNDEFERR E Undefined error

RNT 00329 WNDERR E Window Manager error

RNT 00330 LIBMAX E Exceeded maximum open libraries

RNT 00331 NETCONFIG E Local network configuration error

RNT 00332 SQLERR E SQL Connection error

RNT 00333 NOMORECURS E SQL: No more available open cursors

RNT 00334 CURSERR E SQL: Error on cursor

RNT 00335 BADDATATYP E SQL: Invalid data type for this operation

RNT 00336 SQLSTACK E SQL: Stack variable still bound/defined on routine exit

RNT 00337 SQLDYN E SQL: ^M variable still bound/defined on dynamic memory
deletion

RNT 00340 INVKVAL E Invalid key value

RNT 00341 INVPKEY E Invalid partial key

RNT 00342 BADXDLF E Bad XDL file

RNT 00343 BADXDLS E Bad XDL string

RNT 00400 MSGNOTFND F Error message number %d not found or internal failure

RNT 00417 INVEXFTYP E Invalid external function data type

RNT 00420 INVARG E Invalid argument

RNT 00421 AXERR E Error while processing an ActiveX control

RNT 00422 AXNOLOAD E Could not load ActiveX control

RNT 00423 AXNOSUB E Could not find subroutine or function

RNT 00424 AXUNSUP E Unsupported feature

RNT 00425 AXNOFIND E ActiveX parameter not found

RNT 00432 NETCRYPT E File requires network encryption

RNT 00433 DATACRYPT E Error encrypting/decrypting data field: %s
RNT 00500 INVFATERR F Invalid fatal error number for XCALL FATAL

RNT 00503 NOTDBR F %s is not a DBR file

RNT 00506 STKOVR F Runtime stack overflow

RNT 00507 UNSUP F Unsupported command

RNT 00508 SIGNAL F Signal trap

RNT 00509 OPENF F Cannot open %s

RNT 00510 STPMSG S STOP

Error Messages
List of Runtime Error Numbers

5-118 Synergy Language Tools 9.3 (12/09)

RNT 00511 RTNNF E Cannot access external routine %s

RNT 00512 GBLNF F Cannot access named global %s

RNT 00513 BADSYS F License management problem

RNT 00514 LMFAIL F Licensing failure

RNT 00515 CMDBIG F Command line too long

RNT 00516 INVOPT F Invalid option

RNT 00517 INTERR F Internal failure: %d

RNT 00518 NODBLOPT E DBLOPT %d is obsolete, use %s

RNT 00519 ALPHARG E Alpha argument required

RNT 00520 WRTERR F write failure

RNT 00521 INTARG E Integer argument required

RNT 00522 AORIARG E Integer or alpha argument required

RNT 00523 FNOTFOUND E Function not found

RNT 00525 BADFORMAT E Bad format string

RNT 00526 BADHANDLE E Bad DLL handle

RNT 00527 INVDATE E Invalid date

RNT 00528 DLLOPNERR E DLL could not be opened: %s

RNT 00529 DLLCLSERR E DLL could not be closed

RNT 00530 PURGE E DCL purge error

RNT 00531 BADADDR E Bad address detected: %s

RNT 00532 BADELB E Bad ELB detected: %s

RNT 00533 NOFDL E Invalid open mode for FDL usage

RNT 00534 SRVRLICNS E Server license limit reached on %s

RNT 00535 DEADLOCK E Operation would cause deadlock

RNT 00536 SRVLICERR E Licensing error on server %s

RNT 00537 SRVLICTIMOUT E Licensing timed out on server %s

RNT 00538 WINRSRC E Windows resource exhausted

RNT 00539 BADFONTNAM E Invalid font name specified: %s

RNT 00540 DUPFONTNAM E Duplicate font name specified: %s

RNT 00541 FONTINUSE E Font %d in use, cannot delete

RNT 00542 BADFONTID E Invalid font ID specified: %d

RNT 00543 WNFNCERR E Windows API function failure: %s

RNT 00544 INVRPTHND E Invalid report handle

RNT 00545 INVPNHAND E Invalid pen handle

RNT 00546 INVCLLSEQ E Invalid calling sequence

RNT 00547 OPTINV E Invalid option

RNT 00548 DLLOPNMOD E Associated DLL not in path or not found

Error Messages
List of Runtime Error Numbers

Synergy Language Tools 9.3 (12/09) 5-119

RNT 00549 BADWNDID E Window %d bad or no longer open

RNT 00550 XFBADPKTID E Incorrect packet identifier

RNT 00551 XFBADMTHID E Method ID too long

RNT 00552 XFNUMPARMS E Invalid parameter count

RNT 00553 XFBADPKT E Packet format error

RNT 00554 XFBADTYPE E Invalid parameter type

RNT 00555 XFREQPARM E Required parameter not sent

RNT 00556 XFBADARRAY E Error mapping array element

RNT 00557 XFIOERR E File I/O error occurred on server

RNT 00558 XFMETHKNF E Method key not found

RNT 00559 XFRTNNF E Cannot access remote routine

RNT 00560 XFNOCONN E No connection to remote host

RNT 00561 XFHALT E Fatal error occurred on server

RNT 00562 XFNOINIT E RX_DEBUG_START called without RX_DEBUG_INIT

RNT 00563 SRVNOTSUP E Feature not supported in this version

RNT 00564 XFUNKERR E Unknown error reported by xfServerPlus

RNT 00565 XFNOCDT E Unable to open method catalog file

RNT 00566 XFNOCMPDT E Unable to open method parameter file

RNT 00567 XFNOELB E Unable to open ELB file.

RNT 00568 INVDSCR E Invalid descriptor

RNT 00569 SYNSOCK E Synsock error %d

RNT 00570 INVRCBHND E Invalid RCB handle

RNT 00571 INVNETHND E Invalid network handle

RNT 00572 INVWNDHND E Invalid window handle

RNT 00573 INVNAMHND E Invalid namespace handle

RNT 00574 INVCLSHND E Invalid class handle

RNT 00576 PRTOBJHND E Protected object handle cannot be deleted

RNT 00580 NOTRCBHND E Handle is not an RCB handle

RNT 00581 NOTNETHND E Handle is not a network handle

RNT 00582 NOTWNDHND E Handle is not a window handle

RNT 00583 NOTNAMHND E Handle is not a namespace handle

RNT 00585 NOTOBJHND E Handle is not an object handle

RNT 00588 NOTRPTHND E Handle is not a report handle

RNT 00589 NOTPNHAND E Handle is not a pen handle

RNT 00590 EXECF1 E Cannot execute: %s

RNT 00591 ISINFO E ISINFO error

RNT 00592 XFINCALL E Remote call already in progress

Error Messages
List of Runtime Error Numbers

5-120 Synergy Language Tools 9.3 (12/09)

RNT 00593 XFNOCALL E No current call in progress

RNT 00594 OLDDBR F Old DBR file format%s detected: relink %s

RNT 00595 OLDELB E Old ELB file format%s detected: relink %s

RNT 00596 XFMETHCRYPT E Method requires encryption

RNT 00600 INCPTCLS E Incompatible classes

RNT 00601 NOOBJ E No object for handle

RNT 00602 NOTOHND E Both source and destination must be object handles

RNT 00603 CLSMTCH E Class mismatch between routines

RNT 00604 OHNDREQ E Object handle required

RNT 00605 IDPARMREQ E Implied-decimal parameter required

RNT 00606 OHNDCPY E Invalid copy of an object handle

RNT 00607 NODBGPORT E Debug port number not specified: %s

RNT 00608 BADDBGPORT E Invalid debug port number: %s. Must be an integer within
the range 1024 to 65535, inclusive

RNT 00609 BADDBGTMOT E Invalid remote debug timeout value: %s

RNT 00610 DBGNOSOCK E Unable to attach to remote debug port

RNT 00611 DBGNOCONN E No debug client connection was established

RNT 00612 DBGSOCKER E Remote debug socket error; continuing without debug

RNT 00613 DBGCLOSED E Remote debug client closed the connection; continuing
without debug

RNT 00614 TOOLKIT E Toolkit error

RNT 00615 SEQRDS E Sequential read caching error

RNT 00616 EXCEPT E Exception of type ‘%s’

RNT 00617 INVCAST E Invalid cast operation

RNT 00618 SINGLEDIM E Array is not a one-dimensional array

RNT 00619 ARRAYBNDS E Index is outside the bounds of the array

RNT 00620 DIFDIMS E Arrays must have the same number of dimensions

RNT 00621 UNHANDLED E Unhandled exception: %s

RNT 00622 NORETURN E Leaving local scope where a CALLed subroutine is still
active

RNT 00623 OBJPASSED E Unexpected object handle passed as argument

RNT 00624 STRMTCH E Structure mismatch between routines

RNT 00625 HNDCORUPT E Handle has been modified; possible subscripting violation

RNT 00626 ALCOMPAT E ArrayList compatibility issue. See the 9.1.5 release notes

RNT 00627 INVOPER E Invalid operation: %s

RNT 01001 ACCVIO I Access violation

RNT 01002 ALITXP I Alpha literal expected

RNT 01003 ARGWAS I Argument number was %d

Error Messages
List of Runtime Error Numbers

Synergy Language Tools 9.3 (12/09) 5-121

RNT 01011 BADIND I Bad index: %d

RNT 01012 BADRNG I Bad range value: %d,%d

RNT 01013 BADRNGR I Bad range value: %d:%d

RNT 01021 CHNWAS I Channel specified: %u

RNT 01022 CHRSPC I Character specified: %s

RNT 01029 COLEQL I Colon or equal sign expected

RNT 01030 CREFIL I Error creating file

RNT 01040 DBLDIR I DBLDIR not set

RNT 01041 DCMPER I Data compression/uncompression error

RNT 01042 DECXP I Decimal expected

RNT 01043 DELFIL I Error deleting file

RNT 01046 DINCON I Data incongruity

RNT 01047 DRCSIZ I Destination record size: %d

RNT 01052 ERTEXT I %s

RNT 01053 ERTXT2 I %s %s

RNT 01054 ERTXTN I %s %d

RNT 01055 EQLEXP I Equal sign expected

RNT 01056 EXECF I Cannot execute: %s

RNT 01061 FILWAS I File specification was %s

RNT 01063 FRCSIZ I File record size: %d

RNT 01070 IINCON I Index incongruity

RNT 01076 INVCMD I Invalid I/O command: %s

RNT 01077 OPTWAS I Invalid option: %s

RNT 01078 INVSW I Invalid switch

RNT 01079 INVSMD I Invalid OPEN submode

RNT 01080 INVVAL I Invalid value for %s

RNT 01084 IOOPN I Cannot open %s

RNT 01088 IOERR2 I Channel %d, open mode %s

RNT 01101 KEYSPC I Could not locate key with identifier %s

RNT 01120 MAXSIZ I Maximum record size is %u

RNT 01132 NOEOFC I No EOF character found. Physical EOF was used

RNT 01134 NUMSPC I Number specified: %ld

RNT 01140 OPNFIL I Cannot open file

RNT 01142 OPTSPC I Option specified %s

RNT 01143 OPWRED I Operation was READ

RNT 01144 OPWFND I Operation was FIND

RNT 01145 OPWRDS I Operation was READS

Error Messages
List of Runtime Error Numbers

5-122 Synergy Language Tools 9.3 (12/09)

RNT 01146 OPWDEL I Operation was DELETE

RNT 01147 OPWSTO I Operation was STORE

RNT 01148 OPWWRI I Operation was WRITE

RNT 01149 OPWCRE I Operation was ISAMC

RNT 01160 RBKXP I Right bracket expected

RNT 01162 READER I Cannot read input file

RNT 01163 NUMWAS I Record number: %ld

RNT 01164 RECWAS I Record size specified: %u

RNT 01166 RENFIL I Error renaming file

RNT 01168 RORKXP I Record or key expected

RNT 01169 RPEXP I Right parenthesis expected

RNT 01185 TTSBMD I Submode ignored for terminal open

RNT 01191 VALSPC I Value specified is %ld

RNT 01192 VALRNG I Value range is %d to %d

RNT 01193 ATLIN I At line %d in routine %s

RNT 01194 CALFRO I Called from line %d

RNT 01195 ATLINE I At line %s in routine %s

RNT 01196 CALFRM I Called from line %s

RNT 01205 WRTFIL I Cannot write to file

RNT 01207 MSGBIG I Message exceeds maximum size

RNT 01208 MSGEXP I Message communication timeout

RNT 01209 SYSFLT I System fault (%d)

RNT 01210 NOLMD I Cannot access Synergy License Manager

RNT 01211 DEVFUL I Device full

RNT 01212 INTCON I Internal consistency failure

RNT 01213 EXPDEMO I This system has timed out

RNT 01214 EXUSER I Exceeded concurrent user capacity

RNT 01215 NOTCONF I Synergy Runtime license is not configured

RNT 01216 CONSUP I Please contact your Synergy/DE supplier

RNT 01217 BADDSCR I Corrupted descriptor: type = %d, class = %d

RNT 01218 AMBKWD I Ambiguous XDL keyword: %s

RNT 01219 MLTKWD I Keyword specified multiple times: %s

RNT 01220 REQKWD I Missing required keyword: %s

RNT 01221 NOVAL I No value supplied with keyword: %s

RNT 01222 INVAVAL I Invalid %s value: %s

RNT 01223 INVDVAL I Invalid %s value: %d

RNT 01224 AMBVAL I Ambiguous %s value: %s

Error Messages
List of Runtime Error Numbers

Synergy Language Tools 9.3 (12/09) 5-123

RNT 01225 KEYSPEC I Key specified: %d

RNT 01226 INVIVAL I Numeric return argument expected

RNT 01227 INVBUFF I Alpha return argument expected

RNT 01228 ERTEXTT I %s

RNT 01229 DIMSPC I Dimension specified: %d

RNT 01230 DIMEXP I Dimensions of passed argument: %d

RNT 01231 STKTRC I in %s:line %s

Synergy Language Tools 9.3 (12/09) A-1

A
Compiler Listings

A compiler listing is generated when you compile your program with the listing compiler option.
This appendix provides a sample compiler listing and a description of each item in the listing. It
also describes the compiler listing tables that can be generated.

Compiler Listings
Sample Compiler Listing

A-2 Synergy Language Tools 9.3 (12/09)

Sample Compiler Listing
LIST Mon Feb 9 13:00:42 2009 DBL V9 Compiler p001
 /usr2/list.dbl

 1 ;
 2 ; list.dbl
 3 ;
 4 ; Example of listing
 5 ;
 6
 7 subroutine secnds
 8 begtim, d
 9 endtim, d
 10
 11 .include "mydata.dbl"
 2.1 ; First line of "mydata.dbl"
 2.2 ;
 2.3 .include "mydata2.dbl"
 3.1 ; First line of "mydata2.dbl"
 3.2 ;
 3.3 .define MAXSEC ,8000000
 3.4 .define MINSEC ,0
 3.5 ; Last line of "mydata2.dbl"
 2.4 record
 2.5 fld1, d4
 2.6 fld2, d4
 2.7 ; Last line of "mydata.dbl"
 12 record
 13 curtim ,d6
 14 hr ,d2 @curtim
 15 mi ,d2 @curtim+2
 16 se ,d2 @curtim+4
 17 cursec ,d5
 18
 19 proc
 20 xcall time (curtim)
 21 cursec=(hr*3600)+(mi*60)+se
 22 if (cursec .lt. begtim)
 23 begin
 24 cursec = cursec + 86400
 25 .ifdef TEST
 26 C if (cursec .gt. MAXSEC)
 27 C begin
 28 C cursec = MAXSEC
 29 C end
 30 .endc

Compiler Listings
Sample Compiler Listing

Synergy Language Tools 9.3 (12/09) A-3

 31 end
 32 endtim=cursec-begtim
 33 return
 34 endsubroutine

Errors: 0, in file /usr2/list.dbl
dbl -w 80 -l list list
SYNCMPOPT: -qcheck
DBLOPT: 11

An explanation of the compiler listing

Header
The listing begins with a page break. The header’s first line contains the following information:

Routine name (the name of the current routine being compiled, whether it be a subroutine
name, function name, or the main routine name; the main routine name is preceded by
MAIN$). For example, in the sample compiler listing, the routine name is LIST.

Current date. For example, in the sample compiler listing, the current date is

Wed Dec 21 11:16:35 1994

Compiler header (set to “DBL V6 Compiler”). For example, in the sample compiler listing, the
header is

DBL V6 Compiler

Page count. For example, in the sample compiler listing, the page count is

p001

The second line of the header contains the following information:

Title (initialized to blanks; the title is set with the .TITLE compiler directive). For example, in
the sample compiler listing, the title is initialized to blanks underneath the routine name.

File creation date. For example, in the sample compiler listing the file creation data is

Wed Dec 21 11:02:39 1994

Source file path. For example, in the sample compiler listing the source file path is

/usr5/list.dbl

After the two header lines, the compiler generates a blank line.

Line numbering
A line number is generated for each line in the source file that contains the PROC statement. For
example, in the sample compiler listing, the first line of the source begins on line number 1, the
second begins on line number 2, and so forth.

Compiler Listings
Sample Compiler Listing

A-4 Synergy Language Tools 9.3 (12/09)

Include files
Source files that are .INCLUDEd are generated to the listing file. Each include file has its own set
of line numbers. In our sample compiler listing, notice how the line numbers begin with 2.1 after
the mydata.dbl file is included at line 11 and 3.1 after the mydata2.dbl file is included at line 2.3.

An include level counter is incremented each time the compiler accesses an include file and
decremented each time the compiler returns from an include file. If this counter is greater than 0, it
is displayed to the left of the line numbers in the listing file, as illustrated in the sample compiler
listing.

Lexical level
A lexical level counter is incremented each time the compiler encounters a PROC (or .PROC) or
BEGIN statement. The counter is decremented each time the compiler encounters an END (or
.END) statement. This counter is displayed to the right of the line numbers in the listing file for
each PROC, BEGIN, or END statement, as illustrated in lines 19, 23, 31, and 34 of the sample
compiler listing above. The lexical level counter is not displayed next to line 27 and 29 because
they are enclosed within a false conditional block. See the next section, “False conditionals,” for
more details.

False conditionals
The letter “C” is displayed to the right of the line numbers of lines within false conditional blocks,
as illustrated in lines 26 – 29 of the sample compiler listing. (These lines are not compiled.) If you
turned off the printing of false conditionals (using the NOCOND option on the .START compiler
directive, the conditionals compiler option, or the +NOCOND compiler list option), lines 25 – 30
would not be generated to the listing file.

Footer
A count of the warnings and errors that the compiler encountered is generated at the end of each
listing, along with the command line that was specified to generate the listing.

If the compiler encounters any warnings or errors during compilation, those error messages are also
generated to the listing file, following the line that caused the warning or error.

SYNCMPOPT
If the SYNCMPOPT environment variable is set in the environment, its contents are generated to
the listing file. This information helps you determine which options were active when compilation
occurred.

DBLOPT
If the DBLOPT environment variable is set in the environment, its contents are generated to the
listing file. This information helps you determine which options were active when compilation
occurred.

Compiler Listings
Compiler Listing Tables

Synergy Language Tools 9.3 (12/09) A-5

Compiler Listing Tables
Depending on which .START and/or compiler options you’ve set, the compiler might generate one
or more tables in the compiler listing at the end of each routine. The two listing tables that are
currently available are as follows:

Symbol table offsets table

Memory usage summary table

Sample listing tables
TABLES Mon Feb 9 13:01:15 2009 DBL Version 9.1.5a Compiler Page: 1
 /usr2/tables.dbl

 1 ;
 2 ; tables.dbl
 3 ;
 4 ; Shows examples of compiler listing tables
 5 ;
 6
 7 record
 8 avar ,a50
 9 group grp ,[20]a
 10 fld1 ,d3
 11 fld2 ,a3
 12 endgroup
 13 dvar ,d8
 14 idvar ,d8.4
 15
 16 proc
 17 avar = idvar + dvar
 18 idvar = grp[4].fld1
 19 xcall sub1(4, dvar)
 20 end

Symbol Table Offsets

AVAR 0
DVAR 1
FLD1 3(GRP.)
GRP 4
IDVAR 2

 21
 22 subroutine sub1

Compiler Listings
Compiler Listing Tables

A-6 Synergy Language Tools 9.3 (12/09)

 23 arg_1 ,d
 24 arg_2 ,d
 25 record rec
 26 avar ,a8
 27 proc
 28 avar = arg_1
 29 xcall sub2
 30 return
 31 end

Symbol Table Offsets

ARG_1 -1
ARG_2 -2
AVAR 0(REC.)

 32
 33 subroutine sub2
 34 record
 35 dvar ,d8
 36 avar ,a4
 37 proc
 38 dvar = avar
 39 end

Symbol Table Offsets

AVAR 1
DVAR 0

TABLES Mon Feb 9 13:01:15 2009 DBL Version 9.1.5a Compiler Page: 2
 /usr2/tables.dbl

Errors: 0, in file /usr2/tables.dbl
dbl -il tables_i tables

Compiler Listings
Compiler Listing Tables

Synergy Language Tools 9.3 (12/09) A-7

TABLES Mon Feb 9 13:01:20 2009 DBL Version 9.1.5a Compiler Page: 1
 /usr2/tables.dbl

 1 ;
 2 ; tables.dbl
 3 ;
 4 ; Shows examples of compiler listing tables
 5 ;
 6
 7 record
 8 avar ,a50
 9 group grp ,[20]a
 10 fld1 ,d3
 11 fld2 ,a3
 12 endgroup
 13 dvar ,d8
 14 idvar ,d8.4
 15
 16 proc
 17 avar = idvar + dvar
 18 idvar = grp[4].fld1
 19 xcall sub1(4, dvar)
 20 end

 Memory Usage Summary

 FXDCTL = A0
 DATA = BC
 CODE = 20
 LITERAL = 4
 DESCR = 40
 LINCTL = 30
 ADDR = 4
 FXD4CTL = 4
 STKREC = 0
 DYNCTL = 0

 Total size: 1F8

 21
 22 subroutine sub1
 23 arg_1 ,d
 24 arg_2 ,d
 25 record rec
 26 avar ,a8
 27 proc

Compiler Listings
Compiler Listing Tables

A-8 Synergy Language Tools 9.3 (12/09)

 28 avar = arg_1
 29 xcall sub2
 30 return
 31 end

 Memory Usage Summary

 FXDCTL = A4
 DATA = 8
 CODE = C
 LITERAL = 0
 DESCR = 8
 LINCTL = 30
 ADDR = 4
 FXD4CTL = 4
 STKREC = 0
 DYNCTL = 0

 Total size: F8

TABLES Mon Feb 9 13:01:20 2009 DBL Version 9.1.5a Compiler Page: 2
 /usr2/tables.dbl

 32
 33 subroutine sub2
 34 record
 35 dvar ,d8
 36 avar ,a4
 37 proc
 38 dvar = avar
 39 end

 Memory Usage Summary

 FXDCTL = A0
 DATA = C
 CODE = 8
 LITERAL = 0
 DESCR = 10
 LINCTL = 2C
 ADDR = 4
 FXD4CTL = 4
 STKREC = 0
 DYNCTL = 0

Compiler Listings
Compiler Listing Tables

Synergy Language Tools 9.3 (12/09) A-9

 Total size: F8

Errors: 0, in file /usr2/tables.dbl
dbl -ml tables_m tables

An explanation of the compiler listing table

Symbol table offsets table
If you set the symbol table offsets option (for example, -i on Windows and UNIX) when you invoke
the compiler, the compiler generates a list of every symbol referenced in the preceding routine with
its offsets into the symbol table. You can use these offsets to reference symbols while debugging a
program that was not compiled and linked with the debug option. (If you compile and link with the
debug option, you can reference the symbols by their names as opposed to their offsets.)

You can turn the listing of this table on and off with the [NO]OFFSETS option of the .START
compiler directive. See .START in the “Preprocessor and Compiler Directives” chapter of the
Synergy Language Reference Manual for more information about the .START options.

If a symbol is a member of a group or a named data structure (as “AVAR” is in the second table in
“Sample listing tables” on page A-5), the path to that symbol is also listed in the table. Also notice
the “(GRP.)” next to the entry for “FLD1” in the first table.

Memory usage summary table
The compiler generates a memory usage summary table at the end of each routine when you set the
memory compiler option (for example, -m on Windows and UNIX). The memory usage summary
table lists the size (in bytes) of each program component. The size is represented as a hexadecimal
number.

You can turn the listing of this table on and off with the [NO]summary option of the .START
compiler directive. See .START in the “Preprocessor and Compiler Directives” chapter of the
Synergy Language Reference Manual for more information about the .START options.

Synergy Language Tools 9.3 (12/09) Index-1

Index

Symbols
$ suffix 1-10
! debugger command 2-51
@ debugger command 2-50

Numerics
.257 filename extension 3-73

A
-A compiler option 1-10
-a compiler option 1-9
ActiveX control

registering 4-32
testing 4-32, 4-33

ActiveX Diagnostic utility 4-32
/ALIGN compiler option 1-9
align data compiler option 1-9
allocation map 1-43
alpha ISAM key 3-10, 3-84
alternate

IF compiler option 1-9
key 3-9, 3-41
store compiler option 1-9

/ALTIF compiler option 1-9
/ALTSTORE compiler option 1-9
argument, omitted

compiler option 1-18
linker option 1-40

array
enforcing bounds checking 1-15
size 1-9

ascending key
characteristics 3-14
defining 3-40, 3-41

%AX_LOAD routine 4-33
axutl.exe utility 4-32

B
-B compiler option 1-10
-b compiler option 1-9
backup mode 4-35 to 4-38
binary data in text file 3-53
/BIND compiler option 1-9
binding

compiler option 1-9, 1-19
converting nonbound programs 1-19
primary routine 1-9

bldism utility 3-29, 3-30, 3-33 to 3-41
block

separator 3-4
submode 3-26 to 3-28

bounds checking 1-10, 1-15, 1-19
BREAK debugger command 2-12 to 2-16
breakpoint

canceling 2-17, 2-28
deleting 2-19
displaying 2-40
saving 2-35
setting 2-12 to 2-16

building
shared image 1-36
Synergy Language program 1-7, 1-37

C
-C compiler option 1-10
-c compiler option 1-11
caching ISAM files 3-8
CANCEL debugger command 2-17
canceling watchpoints and breakpoints 2-17
case sensitivity

compiler options 1-17
ISAM keys 3-10, 3-84

CASE statement 1-12
-C-f-h-m compiler option 1-15
channel, displaying open 2-40
/CHECK compiler option 1-10

C

Index-2 Synergy Language Tools 9.3 (12/09)

chklock utility 3-30, 3-42
class

displaying information 2-41
generating for .NET 4-46 to 4-50

clearing ISAM file 3-62
command, executing from debugger 2-51
command line, displaying

compiler 1-23
librarian 1-32
linker 1-44

Command Prompt window 1-2
common

compiler option 1-18
variable, $ suffix 1-10

/COMMON compiler option 1-10, 1-11
COMMON statement

treat as external 1-11
treat as global 1-11

comparing database file definitions 3-44 to 3-49
compiler

built-in definitions 1-11, 1-21
error message 5-47 to 5-90
invoking 1-7

methods for 1-2 to 1-4
with redirection 1-3

omitted argument 1-18
option 1-8, 1-9 to 1-17

align data 1-9
alternate IF 1-9
alternate store 1-9
array size 1-9
bind 1-9
bind primary 1-9
bounds checking 1-10
common suffix 1-10
conditionals 1-10
debug 1-10, A-9
expand macros 1-10
external common 1-11
FIND lock 1-11
form feed 1-11
global common 1-11
global definition 1-11
header 1-11
import directories for prototyping 1-11
list 1-11
local record 1-12

.NET compiler warnings 1-12
no object file 1-12
numeric argument 1-12
object 1-12
optimize 1-12
page break 1-13
page length 1-13
profiling 1-13
recursion 1-13
refresh 1-13
relax strong prototyping and error checking 1-14
show information 1-15
stack record 1-15
static record 1-15
stream file 1-15
strict 1-15
trim 1-15
truncate 1-15
undefined functions 1-15
variable usage 1-15
variable usage level 1-16
variant 1-16
warnings 1-16
width 1-17

recursion 1-13
redirecting commands 1-23
SCO OpenServer 1-7
warning 5-90 to 5-98

compiler listing
conditional blocks in A-4
contents of A-3 to A-4
controlling 1-8
footer 1-11, A-4
form feed in 1-11
generating 1-11
header 1-11, A-3
include files in A-4
lexical level A-4
line numbering A-3
page break 1-13, A-3
page length 1-13
sample A-2
table A-5 to A-9

compiling 1-7 to 1-23
bound program 1-19
conditionally based on system 1-21

compressing record data 3-7, 3-36

D

Synergy Language Tools 9.3 (12/09) Index-3

conditional
block, compiler listing A-4
compiler option 1-10
excluding false 1-10

connection manager 4-16
Control Panel. See Synergy Control Panel
converting ISAM file 3-59
corruption, file vs. data 3-15
counted file 3-5, 3-53

exception file 3-15
isload and 3-64 to 3-65

COUNTED option on isload 3-64
-C-P-h-m compiler option 1-15
CPU, tracking 4-12
customizing text messages 4-3 to 4-11

D
-d compiler option 1-10
data

compressing 3-7, 3-36
corruption 3-15
refreshing 1-13

database file 3-1 to 3-91
accessing records 3-2
comparing to system catalog or repository 3-44 to

3-49
converting from one type to another 3-29, 3-50 to

3-55
moving to other systems 3-91

DBGSRC environment variable 2-38
displaying 2-40
setting 2-38

dbl command
examples 1-22
invoking on Windows 1-2 to 1-4
syntax 1-7

.dbl extension 1-7
dbl2xml utility 4-51 to 4-52
DBLCASE environment variable 1-5
dbl.def file 1-21
dblibr command

examples 1-30
invoking on Windows 1-2 to 1-4
syntax 1-28 to 1-30

dblink command
examples 1-43
invoking on Windows 1-2 to 1-4
syntax 1-37 to 1-39

.dbo file 1-10
object files 1-12
created with librarian 1-30

dbr command
invoking on Windows 1-2 to 1-4
scheduled task 1-55
syntax 1-50

dbrpriv runtime 1-51
dbs service runtime 1-52

limitations 1-54
scheduled task 1-55

dbspriv service runtime 1-51, 1-54
dbssvc service runtime 1-53 to 1-54

License Manager and 1-54
limitations 1-54

DCL RUN command 1-51
debug

compiler option 1-10, A-9
linker option 1-38
runtime option 1-50

/DEBUG compiler option 1-10
debugger 2-1 to 2-60

assigning value to variable 2-21
breakpoint

canceling 2-17
deleting 2-19
setting 2-12
shared image 2-15

command 2-11 to 2-51
line 2-4
recalling and editing 2-11

continuing program execution 2-28 to 2-29
displaying

debug entry 2-45
source code 2-31
traceback 2-44

ELB routines available to 2-33
examining variable 2-22 to 2-26
example session 2-52 to 2-60
executing system command 2-51
exiting program

with traceback 2-27
without traceback 2-34

E

Index-4 Synergy Language Tools 9.3 (12/09)

font used in 2-4
help 2-4, 2-30
indirect command file 2-5, 2-50
invoking 1-50, 2-3
log file 2-32
options

examining 2-40 to 2-42
setting 2-38 to 2-39

program state information 2-40 to 2-42
remote 2-8 to 2-10
searching for a string 2-37
service runtime and 1-54
source file

moving 2-4
path 2-38

stepping to next routine 2-43
symbolic access table and 1-38
UI Toolkit, invoking 2-49
updating screen 2-36
variable, specifying 2-5
watchpoint

canceling 2-17
setting 2-46 to 2-48

window, size and placement 2-4
Windows settings 2-4

/DECARGS compiler option 1-12
decimal

argument, mapping to numeric 1-12
ISAM key 3-10, 3-84

decoding profile.dat or lines.dat 4-13
/DECSCOPE compiler option 1-9
.DEFINE, clearing 1-14
DELETE debugger command 2-19
deleting watchpoints and breakpoints in debugger 2-19
density

file 3-6, 3-82
ISAM key 3-14, 3-39

/DENSITY option 3-39
DEPOSIT debugger command 2-21
descending key

characteristics 3-14
defining 3-40, 3-41

detached process, service runtime 1-52
diagnostics, ActiveX controls 4-32
DIBOL compatibility 1-9
/DISWARN compiler option 1-17
dlib.lib file 1-41
dtktxt.ddf file 4-7

duplicate key
characteristics 3-11
defining 3-41

dynamic memory 2-40

E
-E compiler option 1-13
ELB

creating
from OLB 1-42
linker option 1-27, 1-38

debugger and 2-33
extension, default 1-38, 1-39
general information 1-26
global data section and 1-28
linking 1-40, 1-41

with other ELBs 1-26, 1-39, 1-42
listing information about 1-47
making changes to 1-27
maximum open 1-40
OLB vs. 1-27, 1-41
opening at runtime 1-26, 1-40
unresolved references 1-38

$ERR_ prefix 5-3
$ERR_QUENOTAV, decoding 5-25
$ERR_RTNNF error 1-27
ERRCNT error 5-88
error 5-1 to 5-123

fatal 5-3
literal 5-3
numbers, list of 5-114
trappable 2-41, 5-2

error message
adding 4-8
compiler 5-47 to 5-85

fatal 5-87 to 5-90
informational 5-85 to 5-86
trappable 5-47 to 5-85
warning 5-90 to 5-98

customizing 4-3 to 4-11
librarian 5-107 to 5-109

fatal 5-107 to 5-109
warning 5-109

linker 5-99 to 5-106
fatal 5-99 to 5-104
warning 5-104

F

Synergy Language Tools 9.3 (12/09) Index-5

runtime 5-4 to 5-46
fatal 5-41 to 5-43
informational 5-33 to 5-41
success 5-43
trappable 5-4 to 5-32

windowing system 5-44 to 5-46
/ERRWARN compiler option 1-17
EXAMINE debugger command 2-22 to 2-26
.exc file 3-60
exception file 3-60
executable

file
creating 1-37, 1-39, 1-48
listing information about 1-45
name of 1-39, 1-48

program, creating from many routines 1-19
executing a program 1-50
EXIT debugger command 2-27
exiting in debugger

with traceback 2-27
without traceback 2-34

/EXPAND compiler option 1-10
expanding macros 1-10
external common compiler option 1-11

F
-F compiler option 1-11
-f compiler option 1-11
facility code 4-5
false conditional, excluding from listing 1-10
fast-loading ISAM files 3-53, 3-61, 3-74
fatal error 5-3

compiler 5-87
librarian 5-107
linker 5-99
runtime 5-41

fcompare utility 3-30, 3-44 to 3-49
fconvert utility 3-15, 3-29, 3-50

backups and 4-35
ISAM files 3-53

FDL keyword, correspondence to XDL 3-88 to 3-90

file
binding to executable program 1-9
corruption 3-15
creating 3-33
ISAM 3-2

clearing 3-62
converting 3-59
creating 3-33
density 3-6, 3-82
keyed access 3-2
loading 3-62
physical representation of 3-5
rebuilding 3-72
recovering 3-59
sequential access 3-2
status information 3-79
unloading 3-62
verifying structure 3-50, 3-66, 3-72

linker options 1-48
moving between Windows and UNIX 2-4
name 1-5, 1-6
object, default extension 1-48
open status 4-22
parameter 3-30 to 3-32, 3-56 to 3-58
type 3-5

defining 3-36
fixed-length 3-5
multiple fixed-length 3-5
variable-length 3-5

FIND statement 1-11
/FIND_LOCK compiler option 1-11
firewall and debugging via Telnet 2-9
FIXED option on isload 3-64
fixed-length

file 3-5
isload option 3-64

font, debugger 2-4
footer in compiler listing A-4
foreign language, translating text into 4-6
form feed 1-11
function

truncating name 1-15
undefined 1-15

G

Index-6 Synergy Language Tools 9.3 (12/09)

G
-G compiler option 1-11
-g compiler option 1-11
/GBLDEFS compiler option 1-11
gennet utility 1-14, 4-46 to 4-50
global common compiler option 1-11
global data 1-45
GO debugger command 2-28 to 2-29

H
-h compiler option 1-11
header

compiler listing A-3
compiler option 1-11
page, excluding from listing 1-11

HELP debugger command 2-30
help in debugger 2-4, 2-30
HTTP, debugging and 2-8

I
-i compiler option 1-12
IF statement 1-9
/IMPDIR compiler option 1-11
/IMPLICIT compiler option 1-15
IMPORT statement 1-11
include file A-4
index 3-2

block 3-4
density 3-6
size 3-7, 3-82

diagram 3-3
structure 3-2

information advisor, isutl 3-75
information line, text of 4-3
informational error 5-2

compiler 5-85 to 5-86
runtime 5-33 to 5-41

input file, linker 1-40, 1-48
integer

data
moving between machines 3-91
moving to or from RMS 3-91
portability of 3-9

ISAM key 3-11, 3-84
optimization, relaxing 1-12

interop option 1-14

I/O
ISAM statement 3-16
redirection 1-5
terminal 1-54

ipar utility 3-29, 3-56 to 3-58, 3-78
irecovr utility 3-29, 3-59 to 3-61

backups and 4-35
vs. isutl 3-59, 3-66

ISAM 3-2
definition language 3-81 to 3-90

See also XDL file
file 3-1 to 3-69

clearing 3-62
converting 3-50 to 3-55, 3-59
creating 3-33 to 3-41
density 3-6, 3-82
keyed access 3-2
loading 3-53, 3-62, 3-74
moving to other systems 3-91
physical representation of 3-5
rebuilding 3-72
recovering 3-59
sequential access 3-2
status information 3-79
structure 3-8
type 3-5, 3-36
unloading 3-62
verifying structure of 3-50, 3-66, 3-72

File Maintenance Utility 3-70 to 3-78
index 3-2 to 3-4
I/O statement 3-16
key 3-2, 3-9

ascending or descending 3-14, 3-40, 3-41
defining 3-38
density 3-14, 3-39
duplicates 3-11, 3-41
modifiable 3-12, 3-38
null 3-13, 3-38
order 3-39
segmented 3-12, 3-38
size restriction 3-8
type 3-10, 3-38

patching to a different revision 3-29, 3-71, 3-75
routines 3-17
utilities 3-29

ISAMC routine 3-29
ISAMxf. See Synergy DBMS

K

Synergy Language Tools 9.3 (12/09) Index-7

ISCLR routine 3-29
ISINFO routine 3-29
ISKEY routine 3-29
isload utility 3-29, 3-62 to 3-65
ismvfy utility 3-29, 3-66 to 3-69

vs. isutl 3-59, 3-66
ISSTS routine 3-29
isutl utility 3-15, 3-29, 3-70 to 3-78

backups and 4-35
displaying information and advice 3-75
temporary files 3-73
vs. irecovr and ismvfy 3-59, 3-66
xfODBC and 3-73

K
key

alternate 3-9
ascending or descending

characteristics 3-14
defining 3-40, 3-41

attributes 3-9
defining 3-38
density 3-14, 3-39
duplicates

characteristics 3-11
defining 3-41

modifiable
characteristics 3-12
defining 3-38

null
characteristics 3-13
defining 3-38

order 3-39
primary 3-9
segmented

characteristics 3-12
defining 3-38

size restriction 3-8
type 3-10, 3-38
value 3-2, 3-4

keyed access 3-2

L
-L compiler option 1-13
-l compiler option 1-11
language, translating 4-6
leaf block 3-4

length compiler option 1-13
lexical level counter in compiler listing A-4
librarian 1-28

error message 5-107 to 5-109
invoking 1-28

examples 1-30
methods for 1-2 to 1-4
with full command 1-2, 1-3
with redirection 1-3, 1-32

maximum number of object files 1-30
options 1-28 to 1-29

library
contents 1-30
executable

creating 1-38
listing information about 1-47

file, linker option 1-38
object, creating 1-28
recommendations for using 1-27

line
numbering

compiler listing A-3
removing from executable image 1-12

terminator, preserving 2-4
lines.dat file 4-13
LINK command 1-48 to 1-49
linker

error message 5-99 to 5-106
invoking

examples 1-43, 1-49
methods for 1-2 to 1-4
with full command 1-2, 1-3
with redirection 1-3, 1-44

omitted argument 1-40
options 1-37 to 1-39, 1-48

linking
creating bound programs 1-19
executable libraries 1-42
executable programs 1-41
object modules 1-37
procedure 1-49
recommendations for 1-41

.lis file 1-11
list

compiler option 1-11
options 1-8, 1-18

.LIST compiler directive 1-8, 1-18

M

Index-8 Synergy Language Tools 9.3 (12/09)

LIST debugger command 2-31
listdbo utility 1-24
listdbr utility 1-45
listelb utility 1-47
/LISTING compiler option 1-11
listing file 1-15
loading ISAM file 3-62
/LOCAL compiler option 1-12
local record, default 1-12
locking a record

FIND statement 1-11
information about 3-42

LOGGING debugger command 2-32

M
macro, expanded 1-10
map file

creating 1-38, 1-43
linker option 1-38

MASK qualifier 1-54
memory

dynamic 2-40
uninitialized 2-38, 2-41

message
creating new 4-7
customizing 4-3 to 4-11

command line interface 4-8
from ASCII file 4-6
interactively 4-4

facility code 4-5
file 4-3
library, creating 4-7
modifying 4-3
printing file 4-3
translating 4-3

modifiable key 3-12, 3-38
/MODIFY option 3-38
module, descriptor block 1-46
Monitor utility

UNIX 4-24 to 4-31
Windows 4-22

moving database files 3-91
multiple fixed-length file 3-5

N
-N compiler option 1-12
-n compiler option 1-12

.NET
compiling classes for 1-14
wrapping classes 4-46 to 4-50

.NET assembly API 4-47
/NET compiler option 1-12
.NET compiler warning 1-12
no object file compiler option 1-12
no output linker option 1-38
/NOALTIF compiler option 1-9
/NOARGNOPT compiler option 1-12
nocase ISAM key 3-10, 3-84
/NODEBUG compiler option 1-10
NODEBUG debugger option 2-28
/NODECARGS compiler option 1-12
/NOGBLDEFS compiler option 1-11
.NOLIST compiler directive 1-8, 1-18
/NOOBJECT compiler option 1-12
/NOOPTIMIZE compiler option 1-12
/NOREFRESH compiler option 1-13
/NOWARNINGS compiler option 1-16
null

key 3-13, 3-38
trimming trailing 1-15

/NULL option 3-38
numeric argument compiler option 1-12

O
-o compiler option 1-12
object

compiler option 1-12
displaying information 2-41
file

creating 1-7, 1-17
default extension 1-48
listing contents 1-24
name of 1-12, 1-17
not generating 1-12
order of source files within 1-17

module
adding to library file 1-29, 1-30
deleting from library file 1-29, 1-31
extracting from library file 1-29, 1-31
file vs. 1-29, 1-37
getting information 1-29
linking 1-37, 1-41
replacing 1-29

/OBJECT compiler option 1-12

P

Synergy Language Tools 9.3 (12/09) Index-9

offset table A-9
/OFFSETS compiler option 1-12
offsets compiler option 1-12
OLB 1-25

adding object module 1-29, 1-30
creating 1-25, 1-29, 1-30
deleting object module 1-29, 1-31
detailed description during processing 1-29
ELB and 1-27, 1-42
extracting object module 1-29, 1-31
generating list of contents 1-29
linking 1-25, 1-41
making changes to 1-27
no warnings 1-29
replacing object modules 1-29

.olb file 1-29
oledlg.dll file 4-32
OPEN statement 3-29
OPENELB debugger command 2-33
operating system

conditionally compiling for 1-21
defining symbols for with dbl.def file 1-21

/OPTIMIZE compiler option 1-12
/ORDER option 3-39
output file, linker 1-38

P
-P compiler option 1-13
-p compiler option 1-9
page

break 1-13
header, excluding from listing 1-11
ISAM 3-7, 3-82
length, in compiler listing 1-13

/PAGE_SIZE compiler option 1-13
parameter file 3-30 to 3-32, 3-56 to 3-58
patching an ISAM file 3-29, 3-71, 3-75
path, source files in debugger 2-38
portable

integer 3-9, 3-83
sequential file 3-65

primary compiler option 1-9, 1-19
primary key 3-9, 3-38 to 3-41
printing message file 4-3
privileges, elevated 1-51, 1-54
/PROFILE compiler option 1-13
profile program 4-13

profile.dat file 4-13
profiling routines 1-13, 4-12

excluding routines 4-13
service runtime and 1-55

profline program 4-13
program

binding 1-19
building 1-7, 1-37
detached 1-52
executable, listing information about 1-45
running 1-50

prototyping
import directories 1-11
Synergy Prototype utility 4-39 to 4-43

protxt.ddf file 4-7
psect 1-34

Q
-qalign compiler option 1-9
-qaltif compiler option 1-9
-qaltstore compiler option 1-9
-qcheck compiler option 1-10
-qdebug compiler option 1-10
-qdecargs compiler option 1-12
-qdecscope compiler option 1-9
-qerrwarn compiler option 1-17
-qexpand compiler option 1-10
-qexternal compiler option 1-11
-qglobal compiler option 1-11
-qimpdir compiler option 1-11
-qimplicit_functions compiler option 1-15
-qlocal compiler option 1-12
-qnet compiler option 1-12
-qnoaltif compiler option 1-9
-qnoaltstore compiler option 1-9
-qnoargnopt compiler option 1-12
-qnocheck compiler option 1-10
-qnodebug compiler option 1-10
-qnodecargs compiler option 1-12
-qnodecscope compiler option 1-9
-qnoobject compiler option 1-12
-qnooptimize compiler option 1-12
-qnosuffix compiler option 1-10
-qobject compiler option 1-12
-qoptimize compiler option 1-12
-qprofile compiler option 1-13
-qreentrant compiler option 1-13

R

Index-10 Synergy Language Tools 9.3 (12/09)

-qrefresh compiler option 1-13
-qrelaxed compiler option 1-14
-qreview_level compiler option 1-16
-qstack compiler option 1-15
-qstatic compiler option 1-15
-qstrict compiler option 1-15
-qsuffix compiler option 1-10
QUERY command 4-26
QUIT debugger command 2-34
quitting in debugger

with traceback 2-27
without traceback 2-34

-qvar_review compiler option 1-15
-qvariant compiler option 1-16

R
-r compiler option 1-13
rd.log file 2-10, 5-43
rdltxt.ddf file 4-7
record

fixed-length 3-64
local 1-12
lock

default on FIND 1-11
getting information about 3-42
status 4-22

stack compiler option 1-15
static 1-15
structure 3-8
variable-length 3-64

recovering an ISAM file 3-59
recursive compiler option 1-13
RECV statement, service runtime and 1-54
redirecting

compiler commands 1-23
librarian and 1-32
linker and 1-44

/REENTRANT compiler option 1-13
/REFRESH compiler option 1-13
refresh compiler option 1-13
registering ActiveX control 4-32
regsvr32 utility 4-32
relative file 3-17 to 3-21, 3-53
relax integer optimization compiler option 1-12
relax strong prototyping compiler option 1-14
/RELAXED compiler option 1-14
replacement identifier, clearing 1-14

Repository, comparing database files to 3-44
/REVIEW_LEVEL compiler option 1-16
RFA, static 3-37
rmoncore file 4-26
RMS

DELETE statement and 3-20
FDL files and 3-90
key name 3-38
maximum record size 3-9
moving file to other systems 3-91
relative file 3-18
restriction 3-13
sequential file 3-21
status utility and 3-79
usage 3-2

root block 3-4
routine

binding 1-19
compiling 1-7
enabling profiling 1-13
header in compiler listing A-3
linking 1-37
listing information about 1-46
unresolved names 1-41

rpstxt.ddf file 4-7
rpttxt.ddf file 4-7
rsynd daemon 4-24
Run dialog box 1-3
running Synergy Language programs 1-50
runtime

error message 5-4
invoking

methods for 1-2 to 1-4
syntax 1-50
with an icon 1-4
with full command 1-2, 1-3

scheduled task 1-55
service 1-52 to 1-55

S
-s compiler option 1-9
scheduled task, dbr or dbs as 1-55
SCO OpenServer 1-7
SCREEN debugger command 2-36
SEARCH debugger command 2-37
/SEGMENT option 3-38

S

Synergy Language Tools 9.3 (12/09) Index-11

segmented key
characteristics 3-12
defining 3-38

SEND statement, service runtime and 1-54
separator block 3-4
sequential

access 3-2
file 3-21 to 3-23

fixed-length records 3-64
portability between endian types 3-65
variable-length records 3-64

service runtime 1-52 to 1-55
debugging and 2-8, 2-9
scheduled task 1-55

servstat 4-16 to 4-21
SET debugger command 2-38 to 2-39
shared image

building 1-33 to 1-36
setting breakpoint in 2-15

/SHOW compiler option 1-15
CONDITIONALS 1-10
HEADERS 1-11
NEWPAGE 1-11, 1-13
NOCONDITIONALS 1-10
NOHEADERS 1-11
NONEWPAGE 1-11, 1-13

SHOW debugger command 2-40 to 2-42
/STACK compiler option 1-15
stack size

default 1-45
displaying 2-40
linker option 1-38
setting 1-38, 1-45

.START compiler directive 1-18
offsets option A-9
overriding 1-8
summary option A-9

statement I/O, ISAM 3-16
static

record 1-15
RFA 3-37

/STATIC compiler option 1-15
status utility 3-29, 3-79 to 3-80
STEP debugger command 2-40, 2-43
storing ISAM data 3-9
/STREAM compiler option 1-15
stream file 1-15, 3-23 to 3-26

/STRICT compiler option 1-15
structure, record 3-8
subroutine, external

ISAM 3-17
library 1-41
name, truncating 1-15
profiling 1-13, 4-12
unresolved call to 1-25, 1-26, 1-39

success message 5-43
suffix, common variable 1-10
.sym file 1-38
symbol controls, outputting 1-10
symbol table offset 1-12, A-9
symbolic access

file, creating 1-38
table 1-10

synbackup utility 4-35 to 4-38
synbackup.cfg file 4-36 to 4-37
synckini utility 4-15
Synergy Control Panel 4-3 to 4-11

command line 4-8 to 4-11
running 4-4

Synergy DBMS 3-1 to 3-91
Synergy File Compare Utility 3-44 to 3-49
Synergy Language

database files 3-50
programs, creating and running 1-2 to 1-55

Synergy Prototype utility. See prototyping
Synergy windowing API 1-54
synergy.ini file 1-4, 4-15
SYNRTL.OPT file 1-48
SYNTXT environment variable 4-3
syntxt.ism file

contents 4-3
corruption 4-7
error mnemonics and numbers 5-114
modifying 4-4

synuser.ini file 4-15
synxfmon.exe utility 4-22
system catalog, comparing database files to 3-44
system option

#34
compiler and 1-8
librarian and 1-28, 1-32
linker and 1-37

#49 2-4

T

Index-12 Synergy Language Tools 9.3 (12/09)

T
-T compiler option 1-15
-t compiler option 1-15
TBYTE qualifier 3-8
Telnet, debugging via 2-9 to 2-10
terabyte file

ISAM 3-8 to 3-9
relative 3-18
sequential 3-21

terminal I/O, service runtime and 1-54
text

customizing 4-3 to 4-11
file, converting 3-53
message file, creating 4-7

%TNMBR routine 1-54
TRACE debugger command 2-44
trace flag

compiler 1-23
librarian 1-32
linker 1-44

traceback 2-41, 2-44, 5-3
translating text to other languages 4-6
trappable error

compiler 5-47 to 5-85
displaying mode 2-41
runtime 5-2, 5-4 to 5-32

trapping errors 5-2
/TRIM compiler option 1-15
trim compiler option 1-15
truncate compiler option 1-15
truncating names 1-15
%TTSTS routine 1-54
/TYPE option 3-38

U
-u compiler option 1-13
UI Toolkit, service runtime and 1-55
uninitialized memory

displaying debugger mode 2-41
setting debugger to check for 2-38

unloading an ISAM file 3-62
unsigned ISAM key 3-11, 3-84
.unu filename extension 1-15, 4-44
unused variable, reporting 1-15, 1-16, 4-44
USING statement 1-12

utility
ActiveX Diagnostic 4-32
chklock 3-42
dbl2xml 4-51 to 4-52
fconvert 3-50
Monitor

UNIX 4-24
Windows 4-22

servstat 4-16 to 4-21
synckini 4-15
Synergy Control Panel 4-3
Synergy DBMS 3-29
Synergy Language profiler 4-12
Synergy prototype 4-39 to 4-43
Variable Usage 4-44

V
-V compiler option 1-9
-v compiler option 1-16
^VAL function 1-15
/VAR_REVIEW compiler option 1-15
variable

length
COUNTED option on isload 3-64
file 3-5

name, truncating 1-15
reporting nonusage 1-15, 1-16, 4-44

Variable Usage utility 1-15, 1-16, 4-44
/VARIANT compiler option 1-16
^VARIANT data reference operation 1-16
verbose mode when processing OLB 1-29
verifying structure of ISAM file 3-50, 3-66, 3-72
version, Synergy 1-52
VIEW debugger command 2-45

W
-W compiler option 1-16
-w compiler option 1-17
%WAIT routine 1-54
warning

changing to error 1-17
disabling 1-17
error message

compiler 5-90 to 5-98
librarian 5-109
linker 5-104

X

Synergy Language Tools 9.3 (12/09) Index-13

library option 1-29
linker option 1-39
not generating 1-16

warning disabled linker option 1-39
/WARNINGS compiler option 1-16
WATCH debugger command 2-46 to 2-48
watchpoint

canceling 2-17, 2-28
displaying 2-41
saving 2-35

-WD compiler option 1-17
wdtxt.ddf file 4-7
width, compiler listing 1-17
/WIDTH_SIZE compiler option 1-17
WINDBG debugger command 2-49
window error messages 5-44
windowing API 1-54
Windows Vista, elevated privileges 1-51, 1-54
Windows, Run dialog box 1-3
Workbench 1-3

X
-X compiler option 1-15
XDL file

contents 3-30
keywords

correspondence to FDL 3-88 to 3-90
description and values 3-81 to 3-87

rules 3-81
specifying 3-31
syntax checker utility 3-90

xdlchk utility 3-90
xfODBC, alternate keys and 3-73
xfServer

closing connection on remote port 4-22 to 4-23
display status, OpenVMS 4-18
free pool size, OpenVMS 4-19

checking and trimming 4-20
extend time 4-20

global logicals, OpenVMS 4-19
monitoring

UNIX 4-24 to 4-26
Windows 4-22

purge free pool, OpenVMS 4-19
server logicals, OpenVMS 4-19
shutting down 4-19
system manager, OpenVMS 4-16

xfServerPlus
debugging and 2-8, 2-10
displaying status information 4-20
ELBs and 1-42, 1-43, 1-46
purging free pool 4-21

XML, generating with dbl2xml 4-51 to 4-52
XUNDEF error 1-41

Z
zoned store 1-9

	Synergy Language Tools
	Contents
	Preface
	1 Building and Running Synergy Language Programs
	Creating and Running Synergy Language Programs
	Methods for invoking commands on Windows
	Input/Output redirection
	Filenames on Windows
	Filenames on UNIX

	Compiling a Synergy Language Routine
	Invoking the compiler
	Redirecting compiler commands from a file
	Listing object file contents

	Creating and Using Libraries
	About object and executable libraries
	Creating executable libraries
	Creating object libraries
	Invoking the librarian
	Redirecting librarian commands from a file

	Building Shared Images
	Linking Object Modules
	Invoking the linker on Windows and UNIX
	Redirecting linker commands from a file
	Expanding the Synergy Language stack through the linker
	Listing executable programs
	Listing ELBs
	Invoking the linker on OpenVMS

	Running Synergy Language Programs
	Running programs on Windows and UNIX
	Running programs on OpenVMS
	The service runtimes
	Using dbr or dbs as a scheduled task

	2 Debugging Your Synergy Programs
	Introduction to the Debugger
	Debugger Commands
	Command recall and editing
	BREAK - Set a program breakpoint
	CANCEL - Cancel watchpoints and breakpoints
	DELETE - Delete a program breakpoint
	DEPOSIT - Assign a value to a variable
	EXAMINE - Examine the contents of a variable or address
	EXIT - Exit the current program with traceback
	GO - Continue program execution
	HELP - Provide command help information
	LIST - Display lines of source code
	LOGGING - Log the debugging session to a file
	OPENELB - Make an ELB’s subroutines available to debugger
	QUIT - Quit the current program without traceback
	SAVE - Save current debugger settings
	SCREEN - Update the Synergy windowing system
	SEARCH - Search the source for a string
	SET - Set debugger options
	SHOW - Examine debugger options and program state information
	STEP - Step to the next Synergy Language statement
	TRACE - Display the current traceback
	VIEW - Display lines around a debug entry
	WATCH - Set a watchpoint
	WINDBG - Invoke the UI Toolkit debugger
	@ - Process an indirect command file
	! - Execute system commands

	Sample Debugging Session

	3 Synergy DBMS
	Synergy File Types
	Synergy ISAM files
	Synergy relative files
	Synergy sequential files
	Synergy stream files
	Synergy block file I/O

	Synergy DBMS Utilities
	Parameter and XDL files
	bldism - Create an ISAM file
	chklock - Report file lock information
	fcompare - Compare database files to system catalog or repository
	fconvert - Convert database files to other file types
	ipar - Generate parameter file descriptions
	irecovr - Recover Revision 1 - 3 ISAM files
	isload - Load, unload, or clear an ISAM file
	ismvfy - Verify structure of a Revision 1 - 3 ISAM file
	isutl - Verify, recover, and optimize Revision 4 and higher ISAM files
	status - Report the status of an ISAM file

	ISAM Definition Language
	XDL keywords
	XDL syntax checker utility

	Moving Database Files to Other Systems

	4 General Utilities
	The Synergy Control Panel
	Before you begin
	Making minor changes: Editing messages interactively
	Making major changes: Unloading messages to an ASCII file
	Creating your own text message files
	Modifying messages at the command line

	The Synergy Language Profiler
	Enabling profiling
	Decoding the profile.dat or lines.dat file
	Keep in mind…

	The Synckini Utility
	The Servstat Program
	Function of the program
	Running servstat with command line arguments
	Servstat options

	The Monitor Utility for Windows
	The Monitor Utility for UNIX
	Monitoring Synergy/DE xfServer
	When to use the Monitor
	Running the Monitor
	Displaying Monitor information
	Sample output from the Monitor Utility

	The ActiveX Diagnostic Utility
	Registering an ActiveX control
	Testing an ActiveX control

	The Synbackup Utility
	Synbackup on Windows
	Synbackup on UNIX

	The Synergy Prototype Utility
	The Variable Usage Utility
	Sample output

	The Gennet Utility
	The dbl2xml Utility

	5 Error Messages
	About Synergy Language Errors
	Trapping runtime errors
	Fatal errors
	Using error literals instead of numbers
	The Synergy Control Panel

	Runtime Errors
	Runtime error messages
	Informational error messages
	Fatal error messages
	Success message
	Debugging log messages
	Window error messages

	Compiler Errors
	Nonfatal error messages
	Informational error messages
	Fatal error messages
	Warning error messages

	Linker Errors
	Fatal error messages
	Informational error messages
	Warning error messages

	Librarian Errors
	Fatal error messages
	Warning error messages

	Synergy DBMS Errors
	List of Runtime Error Numbers

	Appendix A: Compiler Listings
	Sample Compiler Listing
	An explanation of the compiler listing

	Compiler Listing Tables
	Sample listing tables
	An explanation of the compiler listing table

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Send us your comments

