
Getting Started
with Synergy/DE

Version 9.3

Printed: December 2009

The information contained in this document is subject to change without notice and should not be construed
as a commitment by Synergex. Synergex assumes no responsibility for any errors that may appear in this
document.

The software described in this document is the proprietary property of Synergex and is protected by
copyright and trade secret. It is furnished only under license. This manual and the described software may be
used only in accordance with the terms and conditions of said license. Use of the described software without
proper licensing is illegal and subject to prosecution.

© Copyright 2001–2009 by Synergex

Synergex, Synergy, Synergy/DE, and all Synergy/DE product names are trademarks of Synergex.

ActiveX, JScript, and Windows are registered trademarks of Microsoft Corporation.

Serena and ChangeMan are registered trademarks and Builder is a trademark of Serena.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems
Inc., in the United States and other countries.

SlickEdit, Context Tagging, and SmartPaste are registered trademarks of SlickEdit, Inc.

Workbench’s context-tagging support was developed using ANTLR from MageLang Institute.

All other product and company names mentioned in this document are trademarks of their respective
holders.

DCN GS-01-9301

Synergex
2330 Gold Meadow Way
Gold River, CA 95670 USA

http://www.synergex.com
phone 916.635.7300
fax 916.635.6549

http://www.synergex.com

Getting Started with Synergy/DE 9.3 (12/09) iii

Contents

Preface

About this manual ix
Manual conventions ix
Other useful publications x
Product support information x
Synergex Professional Services Group xi
Comments and suggestions xi

1 What Is Synergy/DE?

What Is Synergy/DE? 1-2

An underlying philosophy 1-2
Advantages of Synergy/DE 1-2

Elements of Synergy/DE 1-4

Professional Series 1-4
Connectivity Series 1-6
xfSeries 1-6

Developing an Application 1-7

Developing a distributed application 1-8

Using the Documentation 1-9

Getting Started with Synergy/DE 1-9
Online Help 1-9
Synergy/DE reference manuals and user’s guides 1-9
Other documents 1-10

Contents

iv Getting Started with Synergy/DE 9.3 (12/09)

2 Developing Your Application in Workbench

What Is Professional Series Workbench? 2-3

Where Do You Begin? 2-4

Starting Workbench 2-4
Defining the startup environment 2-5
Running Workbench on a Terminal Services machine or in a shared

configuration 2-7

Accessing Synergy/DE Tools 2-8

Setting Up Your Development Environment 2-10

Understanding workspaces, projects, and configurations 2-10
Creating a workspace 2-10
Creating a project 2-11

Editing Synergy Code with the Workbench Editor 2-17

Setting up automatic code formatting and completion 2-17
Editing a file 2-19
Working with tag files 2-24
Moving between files in your project 2-26
Displaying online Help 2-27

Generating Synergy Code Segments 2-28

Using aliases 2-28
Using code templates 2-31

Analyzing Your Code 2-34

Viewing a call tree of external routines 2-34
Viewing where a method is called 2-35
Browsing an ActiveX control 2-36

Compiling, Building, Running, and Debugging 2-37

Checking compilation errors 2-37
Debugging a project 2-37

Customizing Your Development Environment 2-39

Customizing the way a project is opened 2-39
Customizing and adding commands 2-40
Adding file extensions to Workbench 2-42
Customizing keyword color coding 2-42
Changing the tagging delay 2-43
Turning tagging off 2-44

Contents

Getting Started with Synergy/DE 9.3 (12/09) v

Interfacing with version control tools 2-44
Changing the version of the .NET Framework SDK used by Workbench 2-45
Copying customization settings 2-45

Using Workbench for Non-Windows Development 2-47

Using NFS-based mapped drives 2-47
Using FTP 2-48

3 Setting Up Your Repository

What Is Repository? 3-2

Starting Repository 3-2
Getting help 3-2
Displaying a list of valid data for a field 3-2

Defining a Record Layout for Use in an Application 3-3

Defining a structure 3-3
Defining fields 3-4
Saving your structure 3-6

Defining User Interface Characteristics 3-7

Defining a structure 3-7
Defining how input is redisplayed in a field 3-8
Defining fields 3-9
Defining field attributes 3-9

Defining Files for ReportWriter 3-15

Defining a structure 3-15
Defining fields 3-15
Determining how each field will be displayed in a report 3-15
Defining a format 3-16
Defining a key to your record 3-16
Defining a relation between two structures 3-18
Defining a file 3-19
Assigning a structure to a file 3-20

Defining a Database Schema for xfODBC 3-21

Contents

vi Getting Started with Synergy/DE 9.3 (12/09)

4 Designing Your User Interface

Important Terminology 4-2

What Is Composer? 4-3

Starting Composer 4-3
What’s on your Composer screen? 4-3
Using Help 4-6

Using Composer 4-8

Designing an input window using repository fields 4-8
Designing an input window from scratch 4-12
Saving your work 4-16
Compiling your script 4-17
Exiting Composer 4-18

5 Programming in Synergy Language

What Is Synergy Language? 5-2

Creating a source file 5-2
Structure of a Synergy Language program 5-3

Compiling, Linking, and Running Your Program 5-5

Compiling your program 5-5
Creating object libraries 5-6
Linking your program 5-6
Running your program 5-8

Debugging Your Program 5-9

Saving and restoring debugger settings 5-9
Debugging with bounds checking 5-10

Advanced Features 5-12

Using dynamic memory 5-12
Dispatching routines dynamically 5-17

Programming Tips 5-18

Referencing data indirectly 5-18
Comparing data 5-20
Manipulating dates 5-21
Using compile-time definitions 5-23
Using integer data 5-23
Using CASE vs. USING 5-23

Contents

Getting Started with Synergy/DE 9.3 (12/09) vii

6 Implementing Your User Interface with UI Toolkit

What Is UI Toolkit? 6-3

Performing terminal I/O 6-3

Starting UI Toolkit 6-4

The Toolkit screen 6-4
Letting Toolkit manage your files 6-5
Using event-style programming 6-6
Including tools.def 6-6
Using variables for identifiers 6-7

Managing Display Levels with Environment Processing 6-8

Local and global screen components 6-9

Managing Window Libraries to Store and Retrieve Display Components 6-10

Benefits of window libraries 6-10
Specifying a window library 6-10

Creating Script Files and Window Libraries 6-11

Creating and using menu columns, windows, and lists 6-11

Implementing Online Help 6-35

Implementing native Toolkit help 6-36

Organizing Your Display with Tabbed Dialogs 6-39

Using Composite Windows to Combine Windows and Lists 6-42

Using Methods 6-45

Using input methods 6-45

7 Accessing Data Remotely with xfServer

What Is a Client/Server System? 7-2

A basic client/server model 7-2
A multi-tier client/server model 7-3
Benefits of a client/server system 7-4

What Is xfServer? 7-5

How the xfServer system operates 7-5

Contents

viii Getting Started with Synergy/DE 9.3 (12/09)

8 Accessing Logic Remotely with xfServerPlus

Overview 8-2

What Are xfServerPlus and xfNetLink? 8-3

xfServerPlus 8-3
xfNetLink Synergy Edition 8-4
xfNetLink Java Edition 8-5
xfNetLink COM Edition 8-5
xfNetLink .NET Edition 8-7

Design Considerations 8-8

Separating the user interface from application logic 8-9
Separating data access from application logic 8-9
Using ELBs or shared images 8-10
Handling errors 8-10
Guidelines to improving performance and resilience 8-11

Glossary

Index

Getting Started with Synergy/DE 9.3 (12/09) ix

Preface

About this manual
Getting Started with Synergy/DE provides a technical overview of all components of
Synergy/DE™, as well as a task-oriented “cookbook” for using Synergy/DE. It walks you through
the steps required to develop a basic Synergy™ application—and tells you what else you can do
and where to get more information if you want to go beyond the basics.

Because we assume that you are familiar with programming in some language, this guide does not
cover basic principles of programming. Instead, it includes language features specific or integral to
developing in Synergy/DE.

Manual conventions
Throughout this manual, we use the following conventions:

In code syntax, text that you type is in Courier typeface. Variables that either represent or
should be replaced with specific data are in italic type.

Optional arguments are enclosed in [italic square brackets]. If an argument is omitted and the
comma is outside the brackets, a comma must be used as a placeholder, unless the omitted
argument is the last argument in a subroutine. If the comma is inside the brackets and an
argument is omitted, the comma may also be omitted.

Arguments that can be repeated one or more times are followed by an ellipsis…

A vertical bar (|) in syntax means to choose between the arguments on each side of the bar.

Data types are boldface. The data type in parentheses at the end of an argument description
(for example, (n)) documents how the argument will be treated within the routine. An a
represents alpha, a d represents decimal or implied-decimal, an i represents integer, and an n
represents numeric (which means the type can be d or i).

WIN
Items or discussions that pertain only to a specific operating system or environment are called out
with the name of the operating system.

Preface

x Getting Started with Synergy/DE 9.3 (12/09)

To “enter” data means to type it (or highlight it, in the case of a selection window entry) and
then press ENTER. (“ENTER” refers to either the ENTER key or the RETURN key, depending on
your keyboard.)

When you are instructed to “select an entry from the menu,” either press the shortcut for that
entry, or pull down the appropriate menu, highlight the entry, and press ENTER.

To “Exit the window” on Windows, click the OK button or press the Exit shortcut.

On UNIX and OpenVMS, press the Exit shortcut, or press ENTER from the last field, and then
ENTER again from the Make changes or press RETURN to complete input message.

Other useful publications
Repository User’s Guide

Synergy Language Reference Manual

Synergy Language Tools

Environment Variables and System Options

UI Toolkit Reference Manual

Installation Configuration Guide

Developing Distributed Synergy Applications: Using xfNetLink and xfServerPlus

Professional Series Workbench online Help system

S/DE Composer online Help system

Product support information
If you cannot find the information you need in this manual or in the publications listed above, you
can call the Synergy/DE Developer Support department at (800) 366-3472 (in North America) or
(916) 635-7300. To purchase Developer Support services, contact your Synergy/DE account
manager at the above phone numbers.

Before you contact us, make sure you have the following information:

The version of the Synergy/DE product(s) you are running

The name and version of the operating system you are running

The hardware platform you are using

The error mnemonic and any associated error text (if you need help with a Synergy/DE error)

The statement at which the error occurred

The exact steps that preceded the problem

What changed (for example, code, data, hardware) before this problem occurred

Preface

Getting Started with Synergy/DE 9.3 (12/09) xi

Whether the problem happens every time and whether it is reproducible in a small test program

Whether your program terminates with a traceback, or whether you are trapping and
interpreting the error

Synergex Professional Services Group
If you would like assistance implementing new technology or would like to bring in additional
experienced resources to complete a project or customize a solution, Synergex™ Professional
Services Group (PSG) can help. PSG provides comprehensive technical training and consulting
services to help you take advantage of Synergex’s current and emerging technologies. For
information and pricing, contact your Synergy/DE account manager at (800) 366-3472 (in North
America) or (916) 635-7300.

Comments and suggestions
We welcome your comments and suggestions for improving this manual. Send your comments,
suggestions, and queries, as well as any errors or omissions you’ve discovered, to
doc@synergex.com.

mailto:doc@synergex.com

1-1

1
What Is Synergy/DE?

Welcome to Synergy/DE version 9, the next generation of Synergy tools designed with programmer
productivity and flexibility in mind.

What Is Synergy/DE? 1-2

Defines the underlying philosophy and advantages of developing in Synergy/DE.

Elements of Synergy/DE 1-4

Briefly describes each component of Synergy/DE.

Developing an Application 1-7

Illustrates the products and steps you can use to create a Synergy application.

Using the Documentation 1-9

Describes the reference manuals, user’s guides, and online Help that are included with the
Synergy/DE products.

What Is Synergy/DE?
What Is Synergy/DE?

1-2 Getting Started with Synergy/DE 9.3 (12/09)

What Is Synergy/DE?
Synergy/DE is a full suite of development tools that provides everything you need to create
powerful, event-driven business applications. It includes tools to write and process your
applications, design and support your user interface, manage your data from one central location,
and create comprehensive reports.

An underlying philosophy
If you were building a house, you would need many tools, ranging from the very powerful to the
very basic. Having these tools readily available would reduce the time and maximize the efficiency
with which you could complete the job. This same principle applies to developing a business
application: Well-chosen, accessible tools make the job a lot easier. Using the right tool for the
right job is the fundamental philosophy of Synergy/DE.

Using Synergy/DE, you can focus most of your resources on your vertical or custom application,
because Synergy/DE takes care of your systems-level development.

Advantages of Synergy/DE
Synergy/DE enables you to

take advantage of one of the most highly scalable distributed technologies. Unique Synergy
multi-tier technology enables you to scale your application from one stand-alone machine to an
enterprise-wide system hosting thousands of users.

open your Synergy business logic and data to a variety of thin client technologies. Using
Synergy/DE xfNetLink and xfServerPlus, you can build distributed solutions that enable Web
browsers, Visual Basic front-end applications, Active Server Pages, or Synergy thin clients to
access Synergy routines and database files.

maintain database independence. Third-party applications can access your Synergy data, and
your Synergy application can access popular, third-party SQL databases.

easily create and maintain your application. “Draw” and maintain user interface elements in a
visual environment. Easily add new features to accommodate your customers’ changing needs.
Quickly customize and localize your user interface.

keep your applications portable. Develop your applications in any environment—Windows,
virtually all UNIX platforms, OpenVMS—and in most cases deploy in other environments by
simply relinking.

save time. Save development and maintenance time by creating and reusing object and
executable libraries. Call routines or share information with applications written in other
languages.

What Is Synergy/DE?
What Is Synergy/DE?

Getting Started with Synergy/DE 9.3 (12/09) 1-3

use functional depth. Develop complete applications by working only at the high level, such as
in Composer or by calling environment-supplied subroutines, or drop down to the core level
where you have complete flexibility to customize all aspects of your application.

manage the development process. Eliminate duplication of work by reusing supplied and
custom libraries and centralizing all data definitions where the entire development team can
access them and ensure consistency between efforts.

reduce maintenance. Centralizing data definitions and libraries means that changes can be
made in one central location rather than throughout thousands of lines of codes.

What Is Synergy/DE?
Elements of Synergy/DE

1-4 Getting Started with Synergy/DE 9.3 (12/09)

Elements of Synergy/DE
The following Synergy products comprise Synergy/DE:

Figure 1-1. The components of Synergy/DE.

Professional Series
Both Professional Series Workbench and Professional Series Development Environment include
the components listed below. In addition, Professional Series Workbench provides an interface that
not only launches all of these components but features a Synergy Language–sensitive visual editor
as well as project management tools. (Professional Series Workbench is only available on
Windows.)

UI Toolkit
UI Toolkit gives you all you need to create your application’s user interface, including an extensive
set of subroutines to handle your environment maintenance and menu, input, text, selection, and list
processing.

Connectivity
Series

xfSeries

Professional
Series

(Workbench or
Development
Environment)

What Is Synergy/DE?
Elements of Synergy/DE

Getting Started with Synergy/DE 9.3 (12/09) 1-5

Composer (Windows only)
Composer is an interactive user-interface design tool. You “draw” windows and input windows just
the way you like, graphically assigning properties that are immediately reflected on your screen,
and Composer generates the appropriate script commands to define your objects. Composer also
accepts predefined input windows and fields from Repository, so you can view and modify them
graphically.

Repository
Repository is the tool you use to define and maintain the data that will be used in your application
or in reports that can be created with Synergy/DE ReportWriter or xfODBC. It provides a method
of managing data structures and fields in one centralized location, so that you can modify a field
throughout your application simply by changing one definition in your repository.

Synergy Language
Synergy Language is a high-level business programming language that encourages structured,
system-independent, modular code. Beyond the basic statements that specify processing to be
performed, Synergy Language includes a large number of prewritten external subroutines and
functions, a source-level debugger, graphical user interface support, and a fast and efficient
system-independent file structure.

Synergy DBMS
The Synergy DBMS system includes everything needed to create and manage high-speed, keyed
access and ordered sequential access databases.

ReportWriter
ReportWriter is an end-user application that retrieves, integrates, and consolidates data into
columnar, ad hoc reports. You can customize and include ReportWriter as part of your application,
either predefining reports for your customers to run or enabling them to design their own reports.

Synergy Runtime
Synergy Runtime supports the actions requested by your Synergy/DE applications during
execution.

What Is Synergy/DE?
Elements of Synergy/DE

1-6 Getting Started with Synergy/DE 9.3 (12/09)

Connectivity Series

SQL Connection and Synergy database drivers
SQL Connection is Synergy/DE’s SQL API that works in conjunction with the appropriate
database driver to enable a Synergy application to access SQL data sources (typically RDBMSs).
Synergy/DE provides database drivers that enable SQL Connection access to popular databases
such as Oracle and SQL Server.

SQL OpenNet
SQL OpenNet provides the middleware needed if your Synergy SQL application will be accessing
remote RDBMSs (residing on a remote computer on your network).

xfODBC
xfODBC opens Synergy DBMS data to any third-party, 32-bit ODBC application. It supports
version 2.5 of the ODBC API (level 1) and uses SQL OpenNet for remote data access.

xfSeries

xfServer
xfServer processes network client requests for Synergy DBMS data. Residing on the same
computer as the Synergy databases, the server can serve data to any Synergy application running
with a Synergy runtime (version 6.1 and higher).

xfServerPlus
xfServerPlus handles the remote execution of Synergy routines.

xfNetLink
xfNetLink provides four methods for accessing Synergy logic with an assortment of clients:

xfNetLink Synergy Edition, which is a set of routines that work in conjunction with
xfServerPlus to execute Synergy routines stored on a remote machine

xfNetLink Java Edition, which works in conjunction with Sun Microsystems’ JavaTM
programming language

xfNetLink COM Edition, which enables a client to call Synergy routines residing on a remote
server machine using a standard COM calling mechanism

xfNetLink .NET Edition, which works in conjunction with Microsoft’s .NET Framework SDK

What Is Synergy/DE?
Developing an Application

Getting Started with Synergy/DE 9.3 (12/09) 1-7

Developing an Application
Figure 1-2 illustrates how you can use Professional Series to develop your application.

Figure 1-2. Developing an application with Synergy/DE.

Repository

Define record
layout

Define user interface
characteristics

Define files for
generating reports

Composer

Design user interface interactively

ReportWriter

Create reports

UI Toolkit subroutines

Support user interface

Synergy Language

Write supporting code

Define a schema
for the database

Create a system
catalog to

translate Synergy
data for the

xfODBC driver

xfODBC
dbcreate utility

Synergy
application

Compile and link

Workbench

Create a workspace and projects, launch Synergy tools, create and edit source files

Workbench editor

What Is Synergy/DE?
Developing an Application

1-8 Getting Started with Synergy/DE 9.3 (12/09)

Developing a distributed application
Synergy/DE also provides the capability to design and deploy your Synergy application in two-tier
or multi-tier systems. See chapter 8, “Accessing Logic Remotely with xfServerPlus.” The
Developing Distributed Synergy Applications manual provides additional information about
building a distributed computing system.

What Is Synergy/DE?
Using the Documentation

Getting Started with Synergy/DE 9.3 (12/09) 1-9

Using the Documentation

Getting Started with Synergy/DE
This manual is primarily intended for experienced developers who are new users of Synergy/DE
tools. It provides a technical overview of all components of Synergy/DE, as well as a task-oriented
“cookbook” for developing with Professional Series. Like a tutorial, this guide walks you through
the basic tasks (illustrated in figure 1-2) that you will perform as you develop your Synergy
application. It also discusses client/server and web development.

Online Help
Composer has a complete online Help system, including context-sensitive help. The Composer
Help system provides online instructions for performing any task in Composer. You can search for
information about any topic and then display that information, with hypertext links to additional,
related information, on the screen. The context-sensitive help informs you to how to proceed from
the current point or defines your current options. Workbench also has an online Help system, as do
many of the Synergy/DE utilities.

Synergy/DE reference manuals and user’s guides
Here’s a list of other manuals that will assist you in using Synergy products:

Synergy Language Reference Manual

Describes the syntax of all statements, functions, subroutines, compiler directives, utilities, and
environment variables included in Synergy Language. Also documents other features of the
Language, such as program organization, expressions, indexed sequential access method
(ISAM), system options, compiler and runtime errors, the message controller, and the
debugger.

Synergy Language Tools

Describes the programming tools that are used with Synergy Language: the compiler, linker,
librarian, and runtime; the debugger; the Synergy DBMS file management system; and general
utilities. Also documents the Synergy Language error messages.

Environment Variables and System Options

Lists and discusses all of the environment variables and system options available in
Synergy/DE.

UI Toolkit Reference Manual

Describes the syntax of all Toolkit subroutines and utility programs, which are used to create
and maintain state-of-the-art user interfaces.

What Is Synergy/DE?
Using the Documentation

1-10 Getting Started with Synergy/DE 9.3 (12/09)

Repository User’s Guide

Explains how to define data in Repository and describes its utility functions. Also describes the
syntax of Synergy Data Language statements and Repository information-retrieval
subroutines.

ReportWriter User’s Guide

Explains how to use ReportWriter to access and organize your data into useful reports.
Includes a tutorial and describes the ReportWriter utility functions.

SQL Connection Reference Manual

Describes how to access SQL databases from Synergy Language applications.

Professional Series Portability Guide

Discusses the functions, requirements, and processes that are unique to each of the platforms
on which Synergy/DE runs, so that you can design your application to be as portable as
possible.

xfODBC User’s Guide

Describes how to access Synergy databases from ODBC applications.

Installation Configuration Guide

Provides information about using License Manager to license your Synergy products,
configuring a client/server system with xfServer, and installing and configuring Connectivity
Series products. Also includes general information on Synergy/DE installation and operating
system requirements.

Developing Distributed Synergy Applications: Using xfNetLink and xfServerPlus

Describes how to build a distributed Synergy application with a Synergy, Java,
COM-compliant, or .NET front-end that enables you to access Synergy routines and data
remotely.

Other documents
The following migration guides and white papers are available on the Online Manuals CD:

Synergy/DE Quick Migration Guide

Migrating Your Application to Windows

Modularizing Your Synergy Code: The First Step to Distributed Computing

2-1

2
Developing Your Application in
Workbench

This chapter introduces you to the Professional Series Workbench, a visual development
environment that includes the Professional Series Development Environment toolset, an integrated
launchpad that brings these tools together, Synergy Language–sensitive code editing capabilities,
and project management tools. Professional Series Workbench is only available on Windows.

What Is Professional Series Workbench? 2-3

Defines Professional Series Workbench.

Where Do You Begin? 2-4

Describes how to set up the startup environment and how to run Workbench.

Accessing Synergy/DE Tools 2-8

Explains how to launch Synergy/DE tools from Workbench.

Setting Up Your Development Environment 2-10

Describes the benefits of using workspaces and projects and explains how to create them.

Editing Synergy Code with the Workbench Editor 2-17

Explains how to edit a file, automate code formatting and completion based on your own company
style, display popup help for routine syntax, and work with tag files.

Generating Synergy Code Segments 2-28

Describes how to use aliases and code templates to quickly generate Synergy Language/UI Toolkit
code for some of the more common code structures, including your own method routines.

Analyzing Your Code 2-34

Describes the analysis tools that can help you identify which routines are called by a specified
routine and which routines call a specified routine.

Compiling, Building, Running, and Debugging 2-37

Describes how to compile, build, and run your project from Workbench, as well as how to
customize compile, build, debug, and execute commands for individual projects.

Developing Your Application in Workbench

2-2 Getting Started with Synergy/DE 9.3 (12/09)

Customizing Your Development Environment 2-39

Discusses how to customize the way a project is opened, define script extensions other than .wsc,
add your own commands to the Workbench menu, add or remove buttons from the Workbench
toolbar, change the tagging delay or turn tagging off completely, access the version control tool of
your choice, and copy or save your customization settings.

Using Workbench for Non-Windows Development 2-47

Describes how you can use NFS-based mapped drives or FTP to make Workbench your primary
editor on non-Windows systems.

Developing Your Application in Workbench
What Is Professional Series Workbench?

Getting Started with Synergy/DE 9.3 (12/09) 2-3

What Is Professional Series Workbench?
Professional Series Workbench is an enhanced version of the Professional Series Development
Environment (PSDE). Workbench makes moving between Repository, Composer, and other
Synergy/DE components easier as you develop your applications. Workbench’s smart, fully
customizable language-sensitive editor provides color coding, automatic indenting, standardized
code templates, project tag capability for recognizing and accessing routine code, and many other
code-automating features. It enables you to take advantage of automated script compiling and many
other features that can streamline your development efforts.

In short, Workbench can help you spend less time writing and debugging, ensure standard coding
practices, and speed your applications to market.

The Workbench editor is based on SlickEdit® technology from SlickEdit, Inc.

Developing Your Application in Workbench
Where Do You Begin?

2-4 Getting Started with Synergy/DE 9.3 (12/09)

Where Do You Begin?

Starting Workbench
From your SynergyDE folder on the Start menu, select Workbench.

The Workbench desktop looks like this:

Running Workbench for the first time after installation runs the update_synergy command, which
initializes Workbench and creates the SlickEdit configuration directory, C:\Documents and
Settings\user\My Documents\My SlickEdit Config\version, where user is the user name of the user
who is currently logged in and version is the current version of SlickEdit in the format x.x.x (for
example, 10.0.2).

Figure 2-1. The Workbench desktop.

Project toolbar Edit window Synergy/DE toolbar

Message area and command line Output toolbar

Developing Your Application in Workbench
Where Do You Begin?

Getting Started with Synergy/DE 9.3 (12/09) 2-5

Defining the startup environment
Setting environment variables and initialization settings enables you to control program
functionality externally without modifying your code. For a more complete discussion of the
advantages of environment variables, refer to “Referencing data indirectly” on page 5-18. For a list
of all environment variables and initialization settings available to Synergy/DE and instructions on
how to set them, refer to the “Environment Variables” chapter of Environment Variables and System
Options.

You can define environment variables and initialization settings either in the environment, in the
synergy.ini file, or in the Open tab of Workbench’s Project Properties dialog box. Synergy.ini is an
initialization file that contains variables that affect the Synergy runtime and Synergy/DE
development tools on Windows.

Variables are set in the following order:

Globally, by selecting Start > Settings > Control Panel > System > Advanced > Environment
Variables

At a DOS prompt

In the synergy.ini file (which is read when the project is opened)

In the Open tab of the Project Properties dialog box (see “Customizing the way a project is
opened” on page 2-39) or using syn_set or syn_set_global on the Workbench command line
(see “Setting environment variables in Workbench” on page 2-6)

Environment variables set in the environment are available to Workbench when it is started. All
appropriate initialization settings from the [synergy] section of synergy.ini are set in the order in
which they are specified in synergy.ini. Settings in synergy.ini override any duplicate variables set
at the environment level. We set the variables from the active synergy.ini when Workbench is
started and again whenever a Synergy/DE project is opened. We restore the settings from the
synergy.ini that was active when Workbench was started whenever a project is closed. Settings in a
project’s Open tab are specific to that project.

Accessing the Workbench command line
Besides enabling you to set environment variables, the Workbench command line can be used to
execute Workbench or operating system commands and to run other programs. You can display and
move the cursor to the Workbench command line in one of two ways:

With your cursor in the edit window, press ESC.

Click in the message area at the bottom of the Workbench window. (See figure 2-2.)

Developing Your Application in Workbench
Where Do You Begin?

2-6 Getting Started with Synergy/DE 9.3 (12/09)

Setting environment variables in Workbench
To set an environment variable when a Synergy project is open,

At the Workbench command line or in the Open tab of the Project Properties dialog box, enter
the following command:

syn_set var=value

where var is the environment variable you want to set and value is the value you want to set it
to. This command overrides any variable set globally, at a DOS prompt, or in synergy.ini while
the current project is active. If value is empty, Workbench unsets var from the environment
while the project is open. When the project is no longer active, the variable is unset (or reset to
its original value if it was already set when Workbench was invoked).

Figure 2-2. Typing at the Workbench command line.

Workbench command line

Developing Your Application in Workbench
Where Do You Begin?

Getting Started with Synergy/DE 9.3 (12/09) 2-7

To make Workbench load the environment variables from the [synergy] section of synergy.ini and
then synuser.ini,

At the Workbench command line or in the Open tab of the Project Properties dialog box, enter
the following command:

syn_set_synergy_ini [path]

where path is the directory path to which the SFWINIPATH environment variable will be set.
The environment variables will be loaded from the [synergy] section of the synergy.ini and
synuser.ini files in that path. If path is not specified, Workbench uses the default path for
synergy.ini and synuser.ini as defined in “Setting Environment Variables and Initialization
Settings” in the “Environment Variables” chapter of Environment Variables and System
Options. If syn_set_synergy_ini is not called in the project’s Open tab, it will be called after
all project open commands.

To reset your environment variables back to what they were when you opened the project,

At the Workbench command line, enter the following command:

syn_init_proj filename

where filename is the name of a file that will list the environment variables and initialization
settings after they are reset. See “Accessing the Workbench command line” on page 2-5 if you
need help displaying the Workbench command line.

Running Workbench on a Terminal Services machine or in a
shared configuration
On a Terminal Services machine or in a shared configuration, the update_synergy command only
creates the SlickEdit configuration directory for the user who is currently logged in. For clients of a
shared installation, it creates this directory on the client machine. For Terminal Services users, it
creates this directory on the Terminal Services machine.

Environment variables set with syn_set after syn_set_synergy_ini is called are available
in the environment for any command that Workbench spawns. Be aware, however, that the
Synergy tools (dbl, dblink, etc.) may read the [synergy] section of synergy.ini, which will
override settings made in the spawned environment when these tools are launched from
Workbench. We recommend that you use syn_set to add environment variables based on
values in synergy.ini, instead of trying to override variables that are set in synergy.ini.

We do not recommend using the SlickEdit set command to change the value of an
environment variable.

Developing Your Application in Workbench
Accessing Synergy/DE Tools

2-8 Getting Started with Synergy/DE 9.3 (12/09)

Accessing Synergy/DE Tools
You can start the following tools from the Synergy/DE menu and/or toolbar:

Composer

Script

Repository

Method Definition utility

Synergy/DE online manuals

To launch one of these applications (or to bring it to the forefront if it’s already running), do one of
the following:

From the Synergy/DE menu, select the desired application.

Click the desired toolbar button, as shown in figure 2-3.

When Composer is selected, if a Synergy/DE project is open and a script file is active, Composer is
launched with that script file. If no script file is active, or no script files exist in the project, the
Launch Composer dialog is displayed, where you can select an existing script or create a new script
to edit in Composer.

The following utilities are also available from the Utilities submenu:

ActiveX Diagnostic utility

Script-to-Repository Conversion utility

Synergy Control Panel

Figure 2-3. The Synergy/DE toolbar.

We do not recommend or support the maintenance of multiple versions of Workbench (or
Composer). If you are planning to maintain multiple versions of Synergy/DE, you must
remove the older versions of Workbench (and Composer) before installing the newest
version.

Composer Repository

Method Definition UtilityScript Compiler

Synergy/DE
Online Manuals

Developing Your Application in Workbench
Accessing Synergy/DE Tools

Getting Started with Synergy/DE 9.3 (12/09) 2-9

Method Definition utility

Synergy Type Library Configuration utility

Synergy .NET Configuration utility

SMC/ELB Comparison utility

Variable Usage utility

Depending on what type of project is open, additional utilities may be available from the Build
menu.

To run the Synergy Prototype utility (dblproto), which generates prototypes for the source code in
a Synergy/DE project, select Build > Generate Synergy Prototypes.

Developing Your Application in Workbench
Setting Up Your Development Environment

2-10 Getting Started with Synergy/DE 9.3 (12/09)

Setting Up Your Development Environment

Understanding workspaces, projects, and configurations
A workspace is the top level structure in Workbench. It enables you to group related projects
together and also to save the settings from your editing session. Context Tagging at the workspace
level provides contextual help for routines and classes across projects. The data for each workspace
is stored in a text file that has the extension .vpw.

Projects enable you to specify collections of files and build parameters that operate on those files.
They facilitate tagging files, restoring edit sessions, compiling from Workbench, customizing
builds, loading files, and managing version control, and they enable you to define environment
variables specific to a project. We strongly recommend that you create a project if you want to use
one or more of these features.

A configuration is contained within the project file. A project can have multiple configurations,
each with different values for various project settings, to cause different tools and options to act
upon the same set of working files depending on where or how those files are going to be used. The
most common use of project configurations is to enable you to have debug and release versions of
your project without defining two different projects. You might also require 32- and 64-bit
configurations if your end user has concurrent 32- and 64-bit installations. All of these are included
as part of your Workbench distribution, but you will need to customize the settings as described in
“Customizing a configuration” on page 2-15 if you want to use them effectively.

Creating a workspace
Workspaces are usually created when you create a new project. At that time you have the option to
create a new workspace for the project or add it to the current workspace, if one exists. See
“Creating a project” on page 2-11. The Create new workspace radio button in the Project tab of the
New dialog must be selected, as shown in figure 2-4 on page 2-12.

You can also create a workspace outside of a project, for example, if you intend to import existing
projects or if you want a workspace to edit files that aren’t part of a project, but this isn’t very
common.

Opening a workspace
From the Project menu, select a recent workspace from the bottom section of the menu. If the
workspace you’re looking for is not listed, select All Workspaces and then locate your workspace in
the displayed submenu.

Developing Your Application in Workbench
Setting Up Your Development Environment

Getting Started with Synergy/DE 9.3 (12/09) 2-11

Creating a project

You can create several types of Synergy/DE projects in Workbench:

For instructions on creating a COM, Java, or .NET component project, see the appropriate chapter
of the Developing Distributed Synergy Applications manual:

“Creating a Synergy/DE COM Component Project” in the “Creating Synergy COM
Components” chapter

“Creating a Synergy/DE Java Component Project” in the “Creating Java Class Wrappers”
chapter

“Creating a Synergy/DE .NET Component Project” in the “Creating Synergy .NET
Assemblies” chapter

Projects created prior to 9.3.1 may not have access to all of the features mentioned in this
chapter.

If you want the result to be Select this as the project type

One or more DBRs (multiple source files targeting one or more
.dbr files)

Synergy/DE

A DBR (multiple source files and one or more ELBs and OLBs,
built into a single .dbr file)

Synergy/DE Application

An ELB (multiple source files built in one executable library) Synergy/DE Executable Library (ELB)

An OLB (multiple source files built in one object library) Synergy/DE Object Library (OLB)

A COM component Synergy/DE COM Component

A Java class wrapper Synergy/DE Java Component

A .NET assembly Synergy/DE .NET Component

TIP
When developing for .NET, you’ll probably want to create one project for creating an
assembly and one for creating an executable.

Developing Your Application in Workbench
Setting Up Your Development Environment

2-12 Getting Started with Synergy/DE 9.3 (12/09)

To create a regular Synergy/DE project, a Synergy/DE application project, or an executable or
object library,

1. From the Project menu, select New. The Project tab of the New dialog box is displayed. (See
figure 2-4.)

2. Enter the desired information in each field and then click OK.

You cannot change the project type after the project has been created, so select your
project type carefully.

Figure 2-4. Creating a Synergy project.

Type the name of your project,
using alphanumeric characters.
Workbench assigns a filename
extension of .vpj to each
Synergy/DE project

Type or select the directory in
which you want your project to
be saved. If the directory you
specify does not exist, you will
be prompted to create it

Select Synergy/DE, Synergy/DE
Application, Synergy/DE
Executable Library, or
Synergy/DE Object Library

Select Create new workspace to create a
new workspace for this project or Add to
current workspace to add this project to
the current workspace

Select Create project directory
from project name to create a
directory with the same name
as the project

Developing Your Application in Workbench
Setting Up Your Development Environment

Getting Started with Synergy/DE 9.3 (12/09) 2-13

The Project Properties For filename dialog box is displayed. (See figure 2-5.) From here you can
add files to a project and define other project settings.

3. From the Files tab of the Project Properties For filename window, click Add Files to add files to
your project. The Add Source Files dialog box is displayed. (See figure 2-6.) (You can also add files
by clicking Add Tree or Add Wildcard.)

4. Select the files you want to add and click Open. The Project Properties For filename dialog box is
redisplayed with the files you selected listed in the Project files field.

5. Exit the dialog box when you’re done, unless you want to define other project properties.

To add additional files (including ActiveX controls) later, right-click on the project in the Projects
tab of the project toolbar and select Add Files. The dialog box in figure 2-5 is redisplayed.

Figure 2-5. Adding files to a project.

The files in the
project are
displayed here

If you are specifying
different files for
different
configurations,
select the
configuration you
want to modify.
Otherwise, select
All Configurations

Click Add Files to
select individual
files to add to your
project

Click Add Wildcard
to select files to
add to your project
using wildcard
specifications

Click Add Tree to
search through a
directory tree
using wildcard
specifications

Developing Your Application in Workbench
Setting Up Your Development Environment

2-14 Getting Started with Synergy/DE 9.3 (12/09)

Using multiple configurations of a project
Workbench is distributed with the following configurations so you can set up different tools and
options for the 32- and 64-bit release and debug versions of your application (if you need them):

Release32

Release64

Debug32

Debug64

All Configurations

You will need to customize any of these configurations that you want to use by changing their
settings in the Synergy/DE Options dialog box. For example, you can configure your build
commands to place the object code in different directories or perform a rebuild after switching
configurations.

Note that you can define additional configurations if you need them by clicking the Configurations
button in the Project Properties dialog.

Figure 2-6. Adding files to a project.

Select the files you
want to add to your
project. Use
CTRL+click to select
more than one file
at a time

Click Open to add
the selected files
to your project

Developing Your Application in Workbench
Setting Up Your Development Environment

Getting Started with Synergy/DE 9.3 (12/09) 2-15

Customizing a configuration

The following instructions apply to the Synergy/DE, Synergy/DE Application, Synergy/DE
Executable Library, and Synergy/DE Object Library project types. To change the prototype,
compiler, linker, or runtime settings for any of these projects,

1. From the Build menu select Synergy/DE Options. The Synergy/DE Options dialog box is
displayed. (See figure 2-7.) (You can also get to this dialog from the Tools tab of the Project
Properties dialog by clicking the Options button.)

2. In the Settings for field, select the configuration you want to modify. If you are making changes that
should be applied across all configurations in the project, select All Configurations.

3. If the files generated by this configuration are to be used on a 64-bit system (even if Workbench is
currently running on a 32-bit system), check the 64-bit configuration box. This tells Workbench to
use the 64-bit tool set.

Figure 2-7. Customizing compiler settings.

Select the configuration
you want to modify

Select 64-bit configuration
if the files generated by this
configuration are to be run
on a 64-bit system

Type or browse for the path
to the output file directory

Type browse for the path to
the directory that will be
used for Synergy Language
imports

Specify any additional
compiler options that are
not included in this dialog,
separated with a space

Select the options you want
the compiler to use for this
configuration

Developing Your Application in Workbench
Setting Up Your Development Environment

2-16 Getting Started with Synergy/DE 9.3 (12/09)

4. Enter the desired information in each field on each tab and then click OK. Note that this dialog only
contains the most commonly used options; you can use the Other options field to specify additional
options.

The build commands for the debug version need to specify any debug options, and if you’re
referencing ELBs or OLBs, you’ll need to select the libraries on the Link tab.

Switching between configurations

To change the active configuration, from the Build menu, select Set Active Configuration and then
select the desired configuration from the submenu.

Adding a project to a workspace
You can add a project to a workspace either when you create that project or later. When you are
creating a new project, select the Add to current workspace radio button on the Project tab of the
New dialog box. (See figure 2-4.)

To add a project to a workspace after the project has been created,

1. From the Project menu, select Insert Project into Workspace. The Add Project to Workspace dialog
box is displayed.

2. Type or select the name of the project file you want to add to the current workspace.

Sharing workspace and project files can cause project corruption or abnormal side effects.
We strongly recommend that workspace and project files reside on your local hard drive.

Developing Your Application in Workbench
Editing Synergy Code with the Workbench Editor

Getting Started with Synergy/DE 9.3 (12/09) 2-17

Editing Synergy Code with the Workbench Editor
Professional Series Workbench includes a language-sensitive visual editor that provides

automatic code indentation.

Synergy Language recognition.

Synergy Language compiler integration.

Context Tagging.

repository awareness.

context-sensitive routine help.

Setting up automatic code formatting and completion
To set up or customize automatic code indentation and completion,

1. From the Tools menu, select Options > Languages > Application Languages > Synergy Language >
Indent.

2. In the Indent style field, select Syntax indent so that the editor will indent your code according to
Synergy Language syntax when Enter is pressed, and type the number of characters that each level
should be indented.

If Indent with tabs is checked, pressing Tab or Enter will indent with tabs rather than spaces. The
value in the Tabs field sets the tabbing increment or individual tab stops.

If Use SmartPaste™ is checked, the editor will automatically indent a statement correctly when you
copy and paste it to nest it within another statement. Make sure the value in the Syntax indent field
matches the Smart indent amount. The default is 4. (See figure 2-8.)

The Workbench editor offers four styles of automatic code indentation to choose from for
conditional statements (IF, CASE, USING), looping statements (WHILE, REPEAT, FOR), and
BEGIN-END blocks. When you type such statements, they are automatically indented based on the

TIP
We suggest adding the Synergy Language entry in the Options dialog to the Options
Favorites menu tree. Select Tools > Options > Languages > Application Languages >
Synergy Language and click the Add Synergy Language to Favorites button. Then click
Show Favorites and click the plus sign before Synergy Language to expand the listing.

TIP
We recommend that the Tabs value be either the same as or a multiple of the value of
Syntax indent. If these values do not match, tabs will only be inserted when the cursor is
indented past a tab location. We do not recommend specifying individual tab stops in the
Tabs field.

Developing Your Application in Workbench
Editing Synergy Code with the Workbench Editor

2-18 Getting Started with Synergy/DE 9.3 (12/09)

style you have selected. For example, as you type BEGIN beneath an IF statement, both the BEGIN
and the END statement (which you can specify should be added automatically when BEGIN is
typed) are formatted and indented according to your chosen style. To set this up,

3. Select Formatting under Synergy Language in the tree on the left. The Synergy Language >
Formatting pane is displayed. (See figure 2-9.)

4. Enter the desired information in each input field and then click OK.

All of the above settings are global, rather than project-specific, settings.

Figure 2-8. Setting up automatic code formatting and completion.

Developing Your Application in Workbench
Editing Synergy Code with the Workbench Editor

Getting Started with Synergy/DE 9.3 (12/09) 2-19

Editing a file
You can either create a new file or edit an existing one.

1. Do one of the following:

The file opens in the edit window. (See figure 2-1.)

2. If the file is untitled or if it does not have a .dbl extension, save your file as a .dbl file using the
Save or Save As command.

3. Type or edit your code, taking advantage of keyword completion and syntax expansion (if desired)
as explained in the sections below.

4. When you’re done making edits, save your file again.

Figure 2-9. Setting code formatting options.

Select the BEGIN-END
formatting you prefer

Select this check box to generate extended block endings,
such as ENDRECORD, ENDCOMMON, and so on

Type the number of indents
to which the cursor will
automatically be indented
after a PROC statement or
subroutine label

Select the default case in which
keywords will be entered

Type the number of the
column at which comments
will start by default

To Do this

Create a new file Select File > New.
In the New dialog box, select Synergy Language from the list of file types. You
can also specify a filename, location, and whether to place the file in the current
project.

Edit an existing file Select File > Open.
In the Open dialog box, type or select the name of the file you want to edit.

Developing Your Application in Workbench
Editing Synergy Code with the Workbench Editor

2-20 Getting Started with Synergy/DE 9.3 (12/09)

Taking advantage of keyword completion
After you type a Synergy Language keyword, the color of the text changes to indicate that the editor
recognizes a keyword. If the Enable auto-completion and Keywords check boxes in the Synergy
Language > Auto-Complete pane of the Options dialog are selected, a drop-down list of possible
keywords is displayed when you type a partial keyword. Use the up and down arrow keys to
highlight the desired keyword or alias, and select it by pressing Enter or the spacebar. For instance,
if you type “exit”, the keywords EXITLOOP and EXITTRY are displayed in a drop-down list.

To turn on keyword completion and set the minimum number of characters at which the editor will
complete the keyword for you,

1. Select Tools > Options > Languages > Application Languages > Synergy Language >
Auto-Complete. The Synergy Language > Auto-Complete pane of the Options dialog box is
displayed. (See figure 2-10.)

2. Select the Enable auto-completion check box.

3. Select the Keywords check box.

4. In the Minimum prefix length field, type the minimum number of characters to type before the
drop-down keyword list is displayed.

5. Click OK to exit the Options dialog box if you are done modifying options.

Taking advantage of syntax expansion
When syntax expansion is enabled, Workbench inserts the corresponding block-ending keyword(s)
whenever you type a block-beginning keyword followed by space at the end of a line. Examples of
block-beginning keywords are CLASS (ENDCLASS), FOR (FROM...THRU), and SUBROUTINE
(PROC).

To enable alias expansion and to make Workbench automatically insert block-ending keyword(s)
for the corresponding block-beginning keywords,

1. Select Tools > Options > Languages > Application Languages > Synergy Language >
Auto-Complete. The Synergy Language > Auto-Complete pane of the Options dialog box is
displayed. (See figure 2-10.)

2. Select the Syntax expansion check box.

3. In the Minimum expandable keyword length field, type the minimum number of characters to type
before alias expansion can occur.

Compiler directives, although recognized as keywords, are not automatically completed in
this way. If you want to customize the color of your keywords and compiler directives, see
“Customizing keyword color coding” on page 2-42.

Developing Your Application in Workbench
Editing Synergy Code with the Workbench Editor

Getting Started with Synergy/DE 9.3 (12/09) 2-21

You can also generate extended block endings (for example, PROC...ENDSUBROUTINE for the
SUBROUTINE keyword) by doing the following:

4. Select Synergy Language > Formatting from the tree view on the left.

5. Select the Extended Syntax Expansion check box.

6. Click OK to exit the Options dialog box if you are done modifying options.

Getting help with routine syntax
As you type text in the Workbench editor, you can display help for the current situation.

Displaying context-sensitive routine help

To display a list of arguments for a subroutine, function, or method,

Type the routine name, followed by an open parenthesis.

Figure 2-10. Setting up syntax expansion.

Developing Your Application in Workbench
Editing Synergy Code with the Workbench Editor

2-22 Getting Started with Synergy/DE 9.3 (12/09)

If the routine has more than one definition (for example, a routine with multiple subfunctions), the
displayed syntax will say “1 of n,” where n is the total number of definitions. You can cycle through
the definitions by pressing ALT+comma (ALT+,) or clicking on the gray and black arrow buttons in
the displayed routine help. (You can also press ALT+comma with the cursor anywhere in the
routine name or syntax to display routine help in the first place.)

As you type each argument in the editor, it is boldfaced in the argument list so you can easily keep
your place. Optional arguments are displayed in square brackets. (See figure 2-11.)

This procedure works not only for Synergy Language and UI Toolkit routines but also for your own
routines. Depending on how your project is set up, you may first need to set up a .dbl-specific tag
file that references those routines. Refer to “Setting up a .dbl-specific tag file” on page 2-25 for
more information.

Displaying a list of valid operations for the current location

To list the valid variables, functions, macros, and so forth that can be used at a specific location,
press ALT+period (ALT+.) at that location. If there is text before the cursor, the displayed list
narrows down your options. For example, pressing ALT+period after “u_” provides a list of items
that begin with “u_”.

If you’re specifying a record or group, when you press period (.) after the record or group, a list of
all members in that record or group automatically appears. If your cursor is at a field name or class
variable followed by a period (optionally followed by more text or, in the case of a class variable, by
the method name) and a right parenthesis, the Workbench editor displays the list of subfields for the
field in question, matching text as described above. You can do this with repository structures as

Figure 2-11. Displaying context-sensitive help.

Developing Your Application in Workbench
Editing Synergy Code with the Workbench Editor

Getting Started with Synergy/DE 9.3 (12/09) 2-23

well, as long as you have .INCLUDEd the repository in your source code. (See “Including from a
repository” in the Discussion for .INCLUDE in your Synergy Language Reference manual for more
information.)

Moving between routines in a single source file
Each named main routine, named function, named subroutine, macro, and
.INCLUDE is represented on the project toolbar’s Defs tab in a tree view.
(See figure 2-12.)

To jump to a particular main routine, function, or subroutine in the source
file, double-click on the routine name in the project toolbar.

Figure 2-12. The Defs tab.

Setting up and using collapsible regions of code
A collapsible region is a block of code that you can hide or make visible depending on whether the
region is collapsed or expanded.

1. To define a collapsible region, add the .REGION compiler directive at the beginning of the code
block and the .ENDREGION directive at the end of the code block.

2. To trigger collapsible regions, type the following on the SlickEdit command line:

hide_code_block

Now you can collapse or expand a collapsible block by clicking on the - or + in the left margin of
your Edit window.

TIP
You can bind a key to the hide_code_block command by selecting Tools > Options >
Keyboard > Key Bindings.

Developing Your Application in Workbench
Editing Synergy Code with the Workbench Editor

2-24 Getting Started with Synergy/DE 9.3 (12/09)

Working with tag files
If you have multiple source files, you’ll probably want to use the editor’s tag file feature. A tag file
lets you move between files using CTRL commands or get context-sensitive help for routines located
outside the current file. A tag file is automatically created for each new project with the name of the
project and the extension .vtg. You can add files to this file or create additional tag files if you
desire. Once a tag file is created, it automatically updates in the background when you make edits.

The Symbol tab of the output toolbar displays tags for the word under the cursor. If only one tag is
found, the source file containing the tag is displayed, and you can double-click on it to edit the file.
Otherwise, the tag symbols are listed, and you can double-click on a tag symbol to go to that tag.

Adding files to the workspace’s tag database
1. From the Tools menu, select Tag Files (or click the Tag Files button on the Symbol tab). The Tag

Files dialog box is displayed. (See figure 2-13.)

2. Select the tag file you want to add files to and click the Add Files button. The Add Source Files
dialog box is displayed.

We recommend that custom tag files be placed in directories outside the Synergy/DE
directory tree. Any custom tag files should reside on your local hard drive.

If the source file contains a .INCLUDE as the first line in the file, the Symbol tab does not
display the definition of tag symbols in the file.

Figure 2-13. Adding files to a tag file.

Select the tag file you
want to add files to

Click Add Files

Developing Your Application in Workbench
Editing Synergy Code with the Workbench Editor

Getting Started with Synergy/DE 9.3 (12/09) 2-25

3. In the File name field, type or browse for the name of a file you want to add and click the Open
button. The file you select will be added to the list of files in your tag file.

4. Repeat steps 2 and 3 for as many files as you want to add.

Setting up a .dbl-specific tag file
You might want to set up a separate, extension-specific tag file for files that, for one reason or
another, you don’t want to include in your project. For example, if you have a set of .INCLUDE or
source files that you don’t modify very often or that are used by other developers (such as your core
routines), you probably want to maintain them outside of your project. Setting up separate tag files
for such files lets you use the editor’s tagging features for all symbols—not just the symbols in your
project—including being able to view popup help for routines that aren’t part of the current project.

To set up a .dbl-specific tag file,

1. From the Tools menu, select Tag Files (or click the Tag Files button on the Symbol tab).

2. In the Context Tagging - Tag Files dialog box, click the Add Tag File button.

3. In the Add Tag File dialog box, select Synergy Language from the list and then click OK.

4. In the Add Tags Database dialog box, enter a name for the new tag file and click Open. The default
filename is tags.vtg.

5. The Synergy/DE file extensions are listed in the File types field of the Add Tree dialog box. In the
directory tree below the File types field, select a directory in which to save the tag file (or leave the
Path blank to select the default location), and then click OK.

6. In the Context Tagging - Tag Files dialog box, click Done when you are finished.

Tagging imported classes
To tag imported classes efficiently, we recommend creating a separate tag file for a specific class,
namespace, or series of classes and then including that tag file whenever the tags for those classes
are needed. This feature is especially useful if you use the Synergy .NET API and have a large
number of imported classes created by the gennet utility, because you don’t need to include the
source files for all of those classes in your project.

1. Follow steps 1 through 3 of “Setting up a .dbl-specific tag file” above.

2. In the Add Tags Database dialog box, choose a descriptive name and an appropriate location for the
import tag file and click Open.

Developing Your Application in Workbench
Editing Synergy Code with the Workbench Editor

2-26 Getting Started with Synergy/DE 9.3 (12/09)

3. In the “Add Tree” dialog, do one of the following:

If the files in your tag file change...

Files in a tag file are not automaticay retagged when they change. To retag the contents of a tag file,

1. From the Tools menu, select Tag Files (or click the Tag Files button on the Symbol tab).

2. In the Context Tagging - Tag Files dialog box, select the tag file that needs to be retagged.

3. Click the “Rebuild Tag File” button.

4. In the Rebuild Tag File dialog box, select the desired options and then click OK. (Select “Retag
modified files only” if you only want to retag files that have been modified since the last time they
were tagged.)

Including a tags database from another project
To include a tags database from another project (for example, your common library routines),

1. From theTools menu, select Tag Files (or click the Tag Files button on the Symbol tab).

2. Click the “Add Tag File” button.

3. In the Add Tag File dialog box, select Synergy Language from the list and click OK.

4. In the Add Tags Database dialog box, select the project tag file that you want to add and click Open.

Moving between files in your project
To jump to the definition of a routine or label in the source file (or vice versa),

1. Place the cursor on the invocation of the routine or label or on its definition.

2. Do one of the following:

To select Do this

An entire directory Select the directory you want to tag and click OK.

Individual file(s) 1. Click Cancel.
2. Select the new tag file in the list and click the “Add Files” button.
3. Locate and select the individual source files to be tagged. Click OK.

To move from Press

The invocation of the routine or label to the definition CTRL+period (CTRL+.)

The definition of the routine or label back to the invocation CTRL+comma (CTRL+,)

Developing Your Application in Workbench
Editing Synergy Code with the Workbench Editor

Getting Started with Synergy/DE 9.3 (12/09) 2-27

For example, placing the cursor over “sub1” in “xcall sub1” and pressing CTRL+period takes you to
the definition of the subroutine sub1. Pressing CTRL+comma returns to the “xcall sub1” invocation.

Displaying online Help
Do one of the following:

To find information about Do this

The editor using a table of contents Select Help > Contents

The editor using an index or full-text search Select Help > Search

The editor using a list of frequently asked user
questions and their answers

Select Help > Frequently Asked Questions

Other Synergy-specific aspects of Workbench Select Synergy/DE > Workbench Help Topics

A specific dialog box or error message Click the Help button in the dialog or message box

Developing Your Application in Workbench
Generating Synergy Code Segments

2-28 Getting Started with Synergy/DE 9.3 (12/09)

Generating Synergy Code Segments
Aliases and code templates are time-saving features of Workbench that generate common
UI Toolkit code segments and method routines directly into your program.

Using aliases
Workbench provides two types of aliases: directory (stored in the alias.slk file) and
extension-specific (stored in the dbl.als file). Both are distributed in the workbench directory.
When they are modified for the first time, they are copied to the SlickEdit configuration directory,
and the modifications are made to that version of the file.

Using directory aliases means you don’t have to type in long path names when prompted for a
filename or directory. For more information about directory aliases, refer to the online Help. (See
“Displaying online Help” on page 2-27.)

Extension-specific aliases are used for syntax and code expansion, enabling you to generate
entire sections of code automatically. The remainder of this section describes how to use
extension-specific aliases.

Before you begin using aliases in Workbench, follow the instructions in “Taking advantage of
syntax expansion” on page 2-20 to turn on alias expansion.

Invoking an alias
If the file you’re editing has an extension associated with Synergy/DE, you can expand an alias as
follows:

Type the alias into the Workbench editor and press the spacebar or Enter.

Each alias displays a Parameter Entry dialog box that prompts you for such information as routine
name, variable names, and so forth (see figure 2-14 for an example). After you enter the requested
information, Workbench inserts the alias code into the current source code window, substituting the
names you specified in the appropriate places.

Figure 2-14. Entering alias parameters.

Type the requested names or IDs
for the alias code segment you
want to add to your program

Developing Your Application in Workbench
Generating Synergy Code Segments

Getting Started with Synergy/DE 9.3 (12/09) 2-29

Workbench is distributed with aliases for the following code segments:

Code segment Alias

Application move event synmeappmove

Application resize event synmeappsize

Application state changed synmeappstate

Application century method synmecentury

User defined data - check field method synmechkfld

Application close event synmeclose

User defined data - display field method synmedspfld

User defined data - edit display field method synmeedtdsp

Application input override method synmeentrst

User function key override method synmefkey

User help method synmehelp

User utilities method synmeutils

Input field arrive method synmiarrive

Input field change method synmichange

Input field display method synmidisplay

Input field drill method synmidrill

Input field edit format method synmieditfmt

Input field hyperlink method synmihyper

Input field leave method synmileave

List arrive method synmlarrive

List double click method synmldblclk

List leave method synmlleave

List load method synmlload

Tabset method synmtab

Developing Your Application in Workbench
Generating Synergy Code Segments

2-30 Getting Started with Synergy/DE 9.3 (12/09)

Customizing an alias
To modify either the code that is generated when you expand an alias or the parameters you are
prompted for,

1. From the Tools menu, select Options > Languages > Application Languages > Synergy Language >
Aliases. (See figure 2-15.)

(You can also view which aliases are available from this pane in the Options dialog box.)

2. Edit as many aliases as you want to and then exit the Options dialog box.

Creating your own alias
1. From the Tools menu, select Options > Languages > Application Languages > Synergy Language >

Aliases. (See figure 2-15.)

2. Click the New button. The Enter New Alias Name dialog box is displayed.

Window button method synmwbutton

Window click event method synmwclick

Window close event method synmwclose

Window generic event method synmwevent

Window maximize event method synmwmax

Window minimize event method synmwmin

Window move event method synmwmove

Window restore event method synmwrest

Window scroll event method synmwscroll

Window resize event method synmwsize

Synergy function synfunc

Synergy subroutine synsub

Input processing loop syninp

List processing loop synlist

Tabset processing loop syntab

Code segment Alias

Developing Your Application in Workbench
Generating Synergy Code Segments

Getting Started with Synergy/DE 9.3 (12/09) 2-31

3. Enter the name of the alias you want to create and then exit the Enter New Alias Name dialog box.

4. In the edit window of the Synergy Language > Aliases pane, type the code that will be generated
when this alias is expanded.

5. Click the Add button. The Enter Alias Parameter dialog box is displayed.

6. Enter the desired information in each input field, as shown in figure 2-16, and then exit the Enter
Alias Parameter dialog box.

7. Create as many aliases as you want and then exit the Options dialog box or select a different option
to modify.

Using code templates
Template files enable you to create generic versions of your Toolkit method routines. When the
drilldown button for a method property of an input field or button is clicked in Composer or
Repository, Workbench generates the appropriate method routine into the editor. You can then
customize the routine as desired.

Figure 2-15. Editing an alias.

Type or select
the name of the
alias you want
to modify

Type your
changes to the
code that will
be generated
when the alias
is expanded

Click to define
a new alias

Click to delete
the selected
alias

Shows the
parameters you
will be
prompted for
when you
expand the

Click to add a
new parameter

Click to delete the
selected parameter

Click to modify the name,
prompt, or initial value of
the selected parameter

Click to change the
order of the selected
parameter in the
Parameters dialog box

Select the
Surround With
check box to
only display
aliases that can
be used with
the Surround
with context
menu entry

Developing Your Application in Workbench
Generating Synergy Code Segments

2-32 Getting Started with Synergy/DE 9.3 (12/09)

Template files have the extension .tpl.

To expand a template file,

1. In the Application window in Composer, select the input field or button object for which you want
to generate a method routine.

2. In the Properties window, click the drilldown button for the desired method property. The Choose
Method File dialog box is displayed in Workbench.

3. Type or browse for the name of the source file that contains or will contain the code for the method
you selected in Composer. If the file does not exist, it will be created for you.

Customizing template files
You can customize the template files that are distributed with Workbench. The *.tpl files are
distributed to the workbench\wbsamples directory and then copied to the workbench directory if
they don’t already exist. If you are in a Terminal Services or shared configuration and you want all
users to have a version that is different from the distributed version, edit the template files in the
workbench directory. If only some of the users want to use a modified version, they can copy the
desired *.tpl files to their SlickEdit configuration directory and then edit those files instead.

Using tokens in template files
In the templates, you can use tokens to represent specific names. For example, structure and field
tokens enable you to replace generic references to structures and input fields with references to
actual structure and field names when generating methods for input windows. When Workbench
inserts the template file’s contents into the specified file, it replaces all instances of the tokens with
the appropriate structure or field name.

Figure 2-16. Defining alias parameters.

Enter the name of a routine parameter in the
generated code

Enter the text that will prompt you for
information about the specified parameter
when the alias is expanded

Enter an initial value, if any, for this parameter

Developing Your Application in Workbench
Generating Synergy Code Segments

Getting Started with Synergy/DE 9.3 (12/09) 2-33

Workbench is distributed with the following tokens:

If the field is a repository field, the #STRUCTURE# token is replaced with the repository structure
name. If the field is not a repository field, the #STRUCTURE# token is replaced with the name of
the structure the field belongs to in the input window.

This token Is replaced with For this method

#STRUCTURE# Structure name Input field

#FIELD# Input field name Input field

#CURSOR# The flashing cursor (so you can begin typing) All

#ROUTINE# Routine name All

TIP
To avoid potential conflict with the names of tokens we may add in the future, we
recommend that if you create your own tokens, you either use a character other than the
pound sign as the delimiter (for example, @token@), or you use a unique prefix (for
example, your initials, as in #AK_token#).

Developing Your Application in Workbench
Analyzing Your Code

2-34 Getting Started with Synergy/DE 9.3 (12/09)

Analyzing Your Code
When you must restructure or otherwise modify a routine, it’s important to be aware of possible
ramifications to other pieces of code. Workbench provides some analysis tools to help you identify
which routines are called by a specified routine and which routines call a specified routine.

Viewing a call tree of external routines
The call tree utility lists all routines (across multiple source files) called by the chosen routine. You
can also expand any routine in the call tree to see what routines are called, in turn, by that routine.

The primary objective of this utility is to provide insight into the logical structure of an unfamiliar
software system. The generated list of called routines can be especially useful when you are
converting legacy systems into components. Or if you want to expose a method in a component,
generating a call tree of that method enables you to view all the methods called from that method,
which can help you determine the scope of work needed to expose the method.

Launching the call tree
A call tree can only be generated when a workspace is loaded.

1. From the Symbols tab of the project toolbar, right click on the routine for which you want to
generate a call tree. (To locate the routine you want, expand the Workspace folder and then the
Global Functions or Global Procedures subfolder, depending on whether you’re looking for a
function or a subroutine, respectively.)

2. Select Calls or uses from the context menu.

A call tree is displayed for all methods under the selected method. (See figure 2-17.) The call tree
continues searching through submethods until either there are no more submethods, the
submethods loop back recursively to an existing method, or the call tree reaches a method that is
defined outside of the project.

To place your cursor at the beginning of a call in the Workbench editor, double-click on that call in
the Symbol Uses/Calling Tree window.

Determining what appears in the call tree
To toggle which items are included in the call tree,

1. Right-click in the Symbol Uses/Calling Tree window to display the context menu.

2. Highlight Quick filters in the context menu and then select the items you want to display.

Developing Your Application in Workbench
Analyzing Your Code

Getting Started with Synergy/DE 9.3 (12/09) 2-35

Viewing where a method is called
When restructuring code for a component, you may want to know where a particular method is
called, to help you identify which areas of code will be affected by changes to that routine.

Launching the reference utility
References can only be generated when a workspace is loaded.

1. From the Symbols tab of the project toolbar, right click on the routine, class, class member, or local
field for which you want to generate references. (To locate the item you want, expand the
Workspace folder and then the appropriate subfolder, depending on what type of item you are
looking for.)

2. Select References from the context menu.

Workbench searches all files in all projects in the current workspace to create a list of calls to the
selected routine or references to the selected class, class member, or local field. The call list is
displayed in the References tab of the output toolbar. (See figure 2-18.)

Figure 2-17. Viewing a call tree.

Developing Your Application in Workbench
Analyzing Your Code

2-36 Getting Started with Synergy/DE 9.3 (12/09)

To locate a reference in the Workbench editor, double-click on the occurrence in the results
window, or select the results window and press CTRL+G to move your cursor through the results
window one line at a time. The appropriate file will be opened in the editor if it is not already open.
The source line containing the reference is displayed in the preview window in the References tab if
you highlight the occurrence in the results window.

Another way to find references
1. From the Search menu, select Find.

2. Enter the name of the method or other item you want to search for and click the Files >> button.

3. In the Look in field, enter the files or group of files to be searched. If you click the drop-down
button, you can select <Buffers> to search all open files, <Workspace> to search all files in the
workspace, <Project> to search all files in the project, or the specified directory to search that
directory. (Refer to the SlickEdit help for additional information about the Find dialog box or
appending multiple search targets.)

4. Click OK to search for all places where this method or other name appears in the selected files.

Browsing an ActiveX control
To view all methods and fields within an ActiveX control,

1. Add the ActiveX control to a project if it’s not associated with one already.

2. Select the Symbols tab on the project toolbar to display the Workbench class browser.

3. Locate the ActiveX control by expanding the Workspace folder and then the Packages/Namespaces
subfolder.

4. Expand the ActiveX control or right-click on it to select an option from the context menu.

You should be able to view all classes in the control, all methods in each class (including the
parameters for each method), and all properties in each class.

Figure 2-18. Viewing routine references.

Developing Your Application in Workbench
Compiling, Building, Running, and Debugging

Getting Started with Synergy/DE 9.3 (12/09) 2-37

Compiling, Building, Running, and Debugging
After you’ve typed and edited your code, you can compile, build (or link), and run your project
directly from Workbench by selecting the desired command from the Build menu or clicking the
appropriate toolbar button. (See “Customizing and adding commands” on page 2-40 for
instructions on changing your default commands.)

Checking compilation errors
If Workbench encounters any compilation errors, it displays them in the Build tab of the output
toolbar, which is below the edit window. You can move between compilation errors in the build
window as follows:

As you select each error, that line of code is highlighted in the Workbench editor.

Debugging a project
To compile and build in debug mode, make sure Emit debug information (-d) is selected in the
Compile and Build tabs of the Synergy/DE Options dialog box (Build > Synergy/DE Options).
When you run the compiler and linker, the object and .dbr files will be created with debugging
information.

You can also execute a user-defined (or default) debug command by selecting Debug from the
Build menu.

Saving the current debugger state
The Synergy debugger enables you to save the current debugger state to a file. The debugger state
includes break points, watch points, and option settings. By specifying the name of this debugger
state file as the initialization file for the debugger, you can associate a set of debugger commands
with a project and invoke those commands every time you restart the debugging session.

Use the debugger SAVE command to save the debugger settings to a file. (See the “Debugging Your
Synergy Programs” chapter of Synergy Language Tools for details.)

To move to Do this

The next error Press CTRL+SHIFT+DOWN ARROW

The previous error Press CTRL+SHIFT+UP ARROW

A specific error Click on that error

Developing Your Application in Workbench
Compiling, Building, Running, and Debugging

2-38 Getting Started with Synergy/DE 9.3 (12/09)

To restore the saved debugger commands,

1. From the Project menu, select Project Properties and then click the Open tab.

2. In the editing area of the dialog, set the DBG_INIT environment variable to the name of the file that
contains the saved debugger state.

When you invoke the Synergy debugger, it will use the specified file to initialize itself.

Developing Your Application in Workbench
Customizing Your Development Environment

Getting Started with Synergy/DE 9.3 (12/09) 2-39

Customizing Your Development Environment

Customizing the way a project is opened
To specify commands that will get executed when the project is opened,

1. From the Project menu, select Project Properties and then click the Open tab.

2. Enter the desired commands in the field shown in figure 2-19 and then exit the dialog box. (You do
not need to close and reopen the project to make these changes take effect.)

The commands that you specify in this dialog box are executed before any initialization settings in
the [synergy] section of synergy.ini are loaded and set.

For details about specific commands, select Search from the Help menu and search for those
commands.

Figure 2-19. Specifying project open commands.

Type any macro commands (one
command per line) that you want
executed when the project is
opened

Select the configuration you want to
modify. Select All Configurations to
change the settings for all of your
configurations

TIP
To save effort, we recommend setting SFWINIPATH instead of individual settings. (Refer to
SFWINIPATH in the “Environment Variables” chapter of Environment Variables and System
Options for details.)

Developing Your Application in Workbench
Customizing Your Development Environment

2-40 Getting Started with Synergy/DE 9.3 (12/09)

Customizing and adding commands
You can customize the commands for compiling, building, debugging, and executing for a project,
for a project type, or for a file with an extension associated with Synergy/DE when no project is
opened. For example, if you have a version control system, you can specify that the Build command
on the Build menu is “build” or “make” or any other command you want it to be. Alternatively, you
can specify a batch file that designates which files to build.

Workbench also enables you to create any number of tools to perform any desired commands. Two
customizable tools (User 1 and User 2) are provided for you, or you can create a brand new tool.
Note that any customized tool you create can only be activated from the menu and cannot be bound
to a toolbar button or key press.

Customizing commands for a project
You can modify the command lines for existing tools or add new tools that can be used by an entire
project.

1. Open the project if it is not already open.

2. From the Project menu, select Project Properties.

3. In the Project Properties For project dialog box, select the Tools tab if it’s not already displayed.

4. Enter the desired information in each input field (see figure 2-20) and then exit the dialog box.

Once your project is set up, you can simply select Compile, Build, Debug, or Execute from
the menu.

Customizing commands for the Synergy/DE project type
You can modify the command lines for existing tools (Compile, Build, Debug, and so forth) or add
new tools that Workbench will use when creating a Synergy/DE project.

1. Close any open workspaces and files.

2. From the Project menu, select New.

3. Click the Customize button.

4. In the Customize Types dialog box, select the configuration you want to change the template for
(for example, Synergy/DE) and click the Edit button.

5. In the Project Package for project dialog box, select the Tools tab if it’s not already displayed.

6. Enter the desired information in each input field, as shown in figure 2-20. Then exit the dialog box.

Because Synergex reserves the right to override user settings in future versions of
Workbench, we recommend you do not change the project packages for “Synergy/DE COM
Component,” “Synergy/DE Java Component,” or “Synergy/DE .NET Component.”

Developing Your Application in Workbench
Customizing Your Development Environment

Getting Started with Synergy/DE 9.3 (12/09) 2-41

All new projects of this type and configuration will inherit these tools when the project is created. If
a project type has more than one configuration, you will need to customize each configuration
individually.

Figure 2-20. Customizing compiling, building, and running commands.

Select the tool you want to change
or click New to define your own tool
from scratch

Type the text that
will appear on the
Project menu as
the menu entry for
this tool. Indicate
the quick-select
character for the
entry by preceding
that character with
an ampersand (&)

Select Capture
output to capture
the command’s
output and process
it with Workbench’s
built-in error
message
processing facility.
(Do not check this
box for COM, Java,
or .NET projects)

Select Output to
build window to
send captured
output to the build
window

Select Clear build window
to clear the contents of the
window before executing
the command

Select the
configuration you
want to modify

Click the arrow key
to display a
selection list of
variables to help
you build your
desired command
line

Select which files to
save before the
command is
executed

Select when the
entry will be
displayed on the
menu

Type or select the
directory from
which to run the
command. By
default, commands
are run from the
working directory
(%rw)

Developing Your Application in Workbench
Customizing Your Development Environment

2-42 Getting Started with Synergy/DE 9.3 (12/09)

Customizing commands for a file being edited outside a Synergy/DE project
You can customize the commands for compiling, building, debugging, and executing on a global
level when a .dbl file is opened with no open project or workspace.

1. Close any open workspaces and files.

2. From the Tools menu, select Options > Languages > Application Languages > Synergy Language >
General.

3. Click the Language Specific Project button.

4. In the Project Properties For Synergy Language dialog box, select the Tools tab if it’s not already
displayed.

5. Enter the desired information in each input field (see figure 2-20), and then exit the dialog box.

You can add your own commands using the New button, although they will not appear in the menu.

Adding file extensions to Workbench
Workbench enables you to specify your own file extensions for source files, include files, and
UI Toolkit script files in Synergy/DE projects. For example, unless you specify additional script
extensions, only scripts with the extension .wsc will be recognized in Composer and Workbench.
The extensions you specify will be added to the appropriate dialog boxes in Workbench.

To specify a new filename extension for a Synergy/DE project,

1. From the Synergy/DE menu, select Utilities > File Extensions.

2. Enter the desired information in each input field (see figure 2-21), and then exit the dialog box.

3. If you’ve added a UI Toolkit script file extension and you want the default for a script file to be
something other than .wsc, change the default extension in Composer by doing the following:

Run Composer.

From the Options menu, select Composer.

Click the File tab, and in the Default Extensions section, change the Script file value. Exit the
dialog box.

Customizing keyword color coding
Synergy keywords, compiler directives, and operators are automatically displayed in a different
color from the rest of your code. To change the colors that are displayed,

1. From the Tools menu, select Options > Languages > Application Languages > Synergy Language >
Color Coding.

2. In the Lexer name field, make sure dbl is selected.

Developing Your Application in Workbench
Customizing Your Development Environment

Getting Started with Synergy/DE 9.3 (12/09) 2-43

3. Select the Keywords radio button to change the default keyword color, the Preprocessor radio
button to change the default compiler directive color, or the Operators radio button to chanage the
default operator color.

4. Click the Colors button.

5. In the Foreground color (or Background color or Embedded code) field, click the Click to change
color button. In the Select a color dialog box, click the desired text color or change the Red, Green,
and Blue values as desired, and then click OK.

6. Change the color of any other screen element by selecting the one you want to change in the list at
the left side of the Colors pane and performing step 5.

7. Exit the Options dialog box or select a different option to modify when you’re finished customizing
colors.

Changing the tagging delay
You can customize how often tagging takes place by changing the number of seconds of idle time
before tagging begins on a changed buffer. The default value is 3, which means open files are
retagged immediately after you stop typing or using the mouse. Most people find this value too low.
To change the tagging delay value,

1. From the Tools menu, select Options > Editing > Context Tagging.

2. Change the value in the Start after seconds idle field.

Figure 2-21. Specifying different script extensions.

Type the file extension you
want to add

Select the type of file you’re
adding an extension for

If you want to disassociate an
extension from Synergy, select
it here and then click Remove

Click to add the
specified
extension

Developing Your Application in Workbench
Customizing Your Development Environment

2-44 Getting Started with Synergy/DE 9.3 (12/09)

You can experiment with this value to find the one that works best for you. Depending on how fast
you type, you may want to set this value to a number like 15 or 30. (In general, faster typists will
probably prefer a higher value than slower typists.)

3. Exit the dialog box when you’re finished.

Turning tagging off
To turn off automatic tagging,

1. From the Tools menu, select Options > Editing > Context Tagging.

2. Set Tag file on save and Background tagging of open files to False.

When Background tagging of open files is not checked, Workbench only generates tags upon
request.

3. Exit the dialog box when you’re finished.

Interfacing with version control tools
Workbench provides support for several popular version control systems. To access these tools
directly from Workbench,

1. From the Tools menu, select Version Control > Setup.

2. In the Version Control Setup dialog box, select the version control system of your choice (or create
a new one using the Add button).

3. Click Setup and make any necessary changes to the version control commands, depending on your
preferences or procedures.

4. Click OK.

The Get and Put toolbar buttons are now enabled.

For additional information, refer to the online Help system (see “Displaying online Help” on
page 2-27) and select “Version Control” from the index.

Deselecting either of these options may cause all tagging to occur the moment you request
it, which might cause Workbench to appear to hang.

Developing Your Application in Workbench
Customizing Your Development Environment

Getting Started with Synergy/DE 9.3 (12/09) 2-45

Changing the version of the .NET Framework SDK used by
Workbench
When creating a Synergy/DE .NET Component project, Workbench looks for the highest version of
the .NET Framework SDK that is installed. To change the default version to a different installed
version of the .NET Framework SDK,

1. Open the project.

2. Select Build > Component Information and click the .NET Environment button.

3. In the .NET Environment Configuration dialog box, select the desired Target .NET Framework
version and click OK.

Copying customization settings
To copy certain Workbench customization settings to another machine or to another user in a
Terminal Services or shared configuration,

1. From the Tools menu, select Options > Export/Import Options.

2. To export all options, click the Export All Options button. To export a specific set of options, click
the Setup Export Groups button. To import options that have already been exported, click the
Import Options button.

3. For additional information and instructions, click the Help button in the Export/Import Options
pane of the Options dialog.

To copy any of the customizations listed in the table below,

1. If the target machine has a brand new Workbench installation, enter the command update_synergy
at the Workbench command line before beginning this procedure. Restart Workbench and change
your editor configuration to match the machine whose configuration you are copying.

2. Copy the desired files below from the source SlickEdit configuration directory to the target
SlickEdit configuration directory:

File Description

diffmap.ini Diff dialog settings

oem.vlx Color

project.vpe File extension command settings

ubox.ini Comments

uformat.ini Code formatting

Developing Your Application in Workbench
Customizing Your Development Environment

2-46 Getting Started with Synergy/DE 9.3 (12/09)

3. If any of your template files have been customized, see “Customizing template files” on page 2-32.

4. Run Workbench on the target machine.

5. Change the emulator configuration on the target machine to match the emulator settings on the
machine from which you are copying.

6. Press ESC to go to the Workbench command line, and enter the command

load_conf

7. Exit Workbench.

usrprjtemplates.vpta Project templates

vusrobjs.e User-defined dialog boxes and menus

wbcfg.e Workbench configuration file

wbkeys.e Workbench keymapping file

a. The usrprjtemplates.vpt file is version specific and should therefore only be copied
to a SlickEdit configuration directory of the same Synergy/DE version.

File Description

Developing Your Application in Workbench
Using Workbench for Non-Windows Development

Getting Started with Synergy/DE 9.3 (12/09) 2-47

Using Workbench for Non-Windows Development
Even though Workbench is only available on Windows, you can use it as your primary editor for all
Synergy/DE-supported platforms via distributed computing. There are two options for accessing
source files:

You will need to use xfServer to access your repository.

Using NFS-based mapped drives
If you have problems with file loss or corruption, before using an NFS-mapped drive, we strongly
recommend that you add “-s3” to the end of the command shortcut that runs Workbench. For
example:

c:\synergyde\workbench\bin\vs.exe -s3

Using the NFS protocol to map a drive enables desktop users on a network to access remote source
files and window scripts from UNIX and OpenVMS. If this option is too slow, you’ll probably want
to tweak the performance of your file server. Your NFS software can help you optimize
performance.

We also recommend that you turn off automatic tagging in Workbench. (See “Turning tagging off”
on page 2-44.)

Option Pros Cons

NFS (Network
File System)
based mapped
drives

An NFS-based mapped drive is
virtually identical to mapping a drive
to a Windows server.
Projects can be used.
Composer can be used.

This option can be slower than FTP,
although NFS can be optimized for
better performance.
NFS is not a very high-performance file
server when used on OpenVMS.

FTP This option is potentially faster,
because you only transfer a file once
and you edit it locally.

FTP is not suitable for systems using
version control.
If you have multiple developers, the
potential exists for overwriting each
other’s changes.
Projects cannot be used.
Composer cannot be used.

Developing Your Application in Workbench
Using Workbench for Non-Windows Development

2-48 Getting Started with Synergy/DE 9.3 (12/09)

Using FTP
Workbench’s built-in FTP functionality provides the ability to import source code directly into the
editor from any other system on your network. Once you’ve set up the session protocols,
Workbench’s FTP tools enable you to edit remote code and compile it with the Windows compiler
to check for errors. If you’ve set up your code to build on Windows, you can link it and perform test
runs in the Workbench editor. You can then upload the modified source code to the original
directory on the original platform simply by saving your work.

To set up FTP links between Windows and remote platforms, you must do the following:

1. Define your connection if it is not defined already.

2. Start a connection.

3. Open the file you want to edit and make your changes.

4. Transfer the file between your local machine and an FTP host.

5. Close the connection.

Basic instructions follow in the sections below. For additional information, refer to the SlickEdit
User’s Manual.

Defining a connection
1. From the File menu, select FTP > Profile Manager. The FTP Profile Manager dialog box is

displayed.

2. If you want to set up any firewall/proxy settings, log file options, or any other default settings, see
“Customizing your FTP sessions” on page 2-50.

3. Click Add. The Add FTP Profile dialog box is displayed. (See figure 2-22 and figure 2-23.)

4. Enter the desired information in each field and click OK when you’re finished.

You can define as many sessions with full specifications as required. You can also create more than
one session to the same host with each accessing a different remote directory with source files. In
addition, you can specify the full path to the local work directory into which you want to download
the code for each session.

Starting a connection
1. In the FTP Profile Manager dialog box, select the connection you want to establish.

2. Click Connect.

Developing Your Application in Workbench
Using Workbench for Non-Windows Development

Getting Started with Synergy/DE 9.3 (12/09) 2-49

Opening a file for editing
1. After you have started a connection, click the Open tab on the Project toolbar. A listing of FTP files

is displayed.

2. Double-click on a file to open it.

3. Edit the file as usual in the edit window.

Transferring files between your local machine and an FTP host
The FTP Client dialog box enables you to open several FTP sessions at one time and then jump
from session to session as desired.

1. From the File menu, select FTP > Client to display the FTP Client toolbar.

2. Right-click on the local or remote file listing to display a menu of operations from which to choose.

Figure 2-22. Adding an FTP profile.

Type a name
to identify this
profile

Type the host
name of the FTP
server

Type your log-on
ID and password
or select the
Anonymous login
checkbox if your
FTP log-in uses
the “anonymous”
user ID

Choose how files
will be transferred
by default. For
source files,
select ASCII

Type the initial remote
and local directories after
log-in. The local directory
applies only to the FTP
Client toolbar

Type the initial remote
and local filters. The
local filter only applies
to the FTP Client
toolbar

Select the Save password
check box if you want to save
your password so you don’t
have to type it each time

Select FTP if you
are connecting to
an FTP server,
and then select a
Host type of Auto.
Or, select SFTP/
SSH if you are
connecting to a
Secure Shell
(SSH) server that
supports the SFTP
subsystem, and
then select an
Auth type of Auto

Developing Your Application in Workbench
Using Workbench for Non-Windows Development

2-50 Getting Started with Synergy/DE 9.3 (12/09)

Closing a connection
1. Open the FTP Profile Manager dialog box (File > FTP > Profile Manager) if it’s not open already.

2. Select the connection you want to close in the Profiles field.

3. Click Close.

Customizing your FTP sessions
You can optimize each session’s protocols for the connecting remote host by customizing your FTP
sessions in the FTP Options dialog box. From this dialog you can do the following:

Specify a default password for anonymous log-ins

Set default case sensitivity for the filenames you bring into Workbench from a UNIX system,
so you can later upload those filenames back to the original system

Specify whether you’ll be prompted to upload each time code is saved in the Workbench editor
(or that code should not be uploaded at all when it is saved)

Specify how long Workbench will wait for a reply from the FTP server

Set up firewall and proxy specifications if you are creating FTP sessions on secured networks

Set up a session log to be created for all FTP sessions

Figure 2-23. Adding an FTP profile (advanced settings).

Type the number of
seconds to wait for
a reply from the
FTP server

Type the FTP port number

Select which case
should be used for
the remote filename
based on the local
filename Type a remote path and a

local path to indicate how one
maps to the other

Select the Auto refresh check
box to update the host directory
listing after each operation

Select the Keep
alive check box to
keep a connection
alive even when idle

Developing Your Application in Workbench
Using Workbench for Non-Windows Development

Getting Started with Synergy/DE 9.3 (12/09) 2-51

To customize your FTP sessions,

1. If you’re in the FTP Profile Manager dialog box, click Default Options. Otherwise, from the File
menu select FTP > Default Options. The FTP Options dialog box is displayed.

2. Enter the desired information in each field of the appropriate tabs and click OK when you’re
finished.

3-1

3
Setting Up Your Repository

This chapter introduces you to S/DE Repository and walks you through defining your data for
several different uses. We’ve set up a small example for you to practice with, because we believe
you will learn more quickly by actually performing the steps rather than just reading them.

For each of the instructional sections of this chapter, you will need to define a structure and its
fields; we strongly recommend that you begin by following the instructions in the sections
“Defining a structure” on page 3-3 and “Defining fields” on page 3-4, even if you don’t need to
define a record layout for use in an application.

What Is Repository? 3-2

Describes what Repository is, how to run it, and how to access context-sensitive help.

Defining a Record Layout for Use in an Application 3-3

Explains how to define the type and size characteristics of your data in Repository so it can be used
by the Synergy compiler.

Defining User Interface Characteristics 3-7

Explains how to define the visual and behavioral characteristics of your data in Repository so it can
be used by S/DE UI Toolkit (including Composer).

Defining Files for ReportWriter 3-15

Explains how to define additional visual and relational characteristics in Repository so your data
can be used by Synergy/DE ReportWriter.

Defining a Database Schema for xfODBC 3-21

Tells where to find instructions for using Repository with xfODBC.

Setting Up Your Repository
What Is Repository?

3-2 Getting Started with Synergy/DE 9.3 (12/09)

What Is Repository?
Repository enables you to define the structure of your data in a centralized location, without
redundancy. Repository can then supply this information to the Synergy compiler for processing
application files, to Composer for building a user interface, and to ReportWriter for creating
reports.

Because data is only defined once, changes need only be made once. For example, if you want to
expand a field that appears throughout your application, one simple change to your repository does
the trick.

Starting Repository
To start Repository, do one of the following:

From the Workbench toolbar, select Repository.

From your SynergyDE folder in the Start menu, select Repository.

At a command prompt, type

dbr RPS:rps

(If you are not in the directory that contains dbr.exe, DBLDIR\bin must be in your path.)

Getting help
From any field in any input window in Repository, you can access context-sensitive help for that
field. If you’re not sure what information to enter in a field,

1. Place your cursor in the field.

2. Press F1 or click the Help button.

Displaying a list of valid data for a field
Many fields in Repository also enable you to display a list of available selections. To display such a
list,

With your cursor in the field, select List Selections from the menu.

See also
Your Repository User’s Guide. This includes instructions for using all features of Repository, as
well as information about Repository utilities, the Synergy Data Language (which describes the
contents of a repository), and the subroutines that enable you to access repository data from within
an application.

Setting Up Your Repository
Defining a Record Layout for Use in an Application

Getting Started with Synergy/DE 9.3 (12/09) 3-3

Defining a Record Layout for Use in an Application
The most efficient way to define data fields is in one central location—a data repository—rather
than in each of the programs that make up your application. The same definitions can then be
accessed by multiple applications across multiple systems.

You will first need to define a structure and then define the data fields required by your application,
including the data type and size of each field.

As an example for this chapter and the ones that follow, we’ve designed a simple application that
maintains business contact information. It requires the following data fields:

company ,a45
address ,a45
city ,a25
state ,a2
zip ,d5
salutation ,a4
lname ,a16
fname ,a16
contact ,a32
phone ,d10
fax ,d10
modem ,d10
email ,a47
notes ,a47
type ,a10
status ,a10
sl ,d1
tk ,d1
rps ,d1
pvcs ,d1
odbc ,d1
dte ,d1

Defining a structure
The first step in defining a record layout is to create a new structure. In Repository, the term
structure refers to the entire record definition, or the combination of field and key characteristics.

To define a structure,

1. From the Modify menu, select Structures.

2. From the Structure Functions menu, select Add Structure.

The Structure Definition input window is displayed. (See figure 3-1.)

Setting Up Your Repository
Defining a Record Layout for Use in an Application

3-4 Getting Started with Synergy/DE 9.3 (12/09)

3. Enter the desired information in each input field and then exit the input window.

Defining fields
To define the necessary fields in your new structure, along with their data types and sizes,

1. With the new structure highlighted, select Edit Attributes from the Structure Functions menu.

2. From the Attributes menu, select Fields.

3. From the Field Functions menu, select Add Field.

The Field Definition input window is displayed. (See figure 3-2.)

Figure 3-1. Defining a structure.

Enter a unique
structure name

Select the
type of file
you want to
assign this
structure to

Enter a unique and
identifiable description
for this structure

Select a way to identify this structure uniquely if
multiple structures will be assigned to one file,
or select None if the structure requires no tag.

Setting Up Your Repository
Defining a Record Layout for Use in an Application

Getting Started with Synergy/DE 9.3 (12/09) 3-5

4. Enter the desired information in each input field, using the example fields listed on page 3-3, and
then click the OK button. (You can also define display, input, validation, and method information
by moving to those tabs before clicking OK. These tabs are discussed in “Defining field attributes”
on page 3-9.)

Make sure the Excluded from Language field is not checked; you will need to be able to access the
fields you define later. You can ignore the Template overrides section for this example.

Figure 3-2. Defining a field.

Enter a
unique field
name to
identify the
field in your
definition file
and program

Enter a unique
and identifiable
description for
this field

Enter the maximum number of
characters the field can
contain, as well as the
number of decimal places if
the field is implied-decimal

Select what
type of data
the field will
contain

If the field is an
overlay to
another field,
enter the name
of the field at
which the
overlay begins

Check the appropriate box(es) if you don’t
want this field to be available to the
Synergy compiler, UI Toolkit (Composer),
ReportWriter, and xfNetLink

Enter 1 (unless
this field is
arrayed)

If you want the overlay to begin at
an offset position, enter the number
that should be added to the starting
position of the field being overlaid

Check this
box if this
field is a
group

Setting Up Your Repository
Defining a Record Layout for Use in an Application

3-6 Getting Started with Synergy/DE 9.3 (12/09)

5. Repeat steps 3 and 4 for each field you want to define. We suggest you define all of the example
fields except the fax, modem, and notes fields, which you can define by following the instructions
in “Defining a field by copying an existing one” on page 3-6.

Defining a field by copying an existing one
If a field you’re defining is similar to an existing field, you can make a copy of the first field and
then modify it to create a new field. For example, in our sample application, you can create the fax
and modem fields by copying the phone field.

To copy a field,

1. Highlight the field you want to copy in the Field Definitions list.

2. From the Field Functions menu, select Copy Field.

3. Enter a unique name for the new field and modify the information in any of the remaining input
fields as desired; then exit the input window.

Reordering fields
The order in which the fields are listed determines the order in which they will exist within the
structure. To move a field definition,

1. Highlight the field you want to move in the Field Definitions list.

2. From the Field Functions menu, select Reorder Fields.

The highlighted field is now enclosed in square brackets ([]), indicating that it can be moved.

3. Use the UP ARROW and DOWN ARROW keys to move the bracketed field to another position in the
list.

4. Select Reorder Fields again to get out of move mode.

Saving your structure
When you attempt to exit the structure you’re working on, Repository prompts you to save your
changes.

To save your structure when exiting,

1. From the General menu, select Exit as many times as necessary. (For example, from the Field
Definitions window, you’ll need to select Exit twice.)

2. Select Yes when prompted to save your changes.

You can either define another structure in the Structure Definitions list or you can select Exit again
to return to Repository’s main menu.

Setting Up Your Repository
Defining User Interface Characteristics

Getting Started with Synergy/DE 9.3 (12/09) 3-7

Defining User Interface Characteristics
The data fields you define in Repository can be read into Composer as predefined input fields. Such
centrally defined defaults simplify the process of supporting an application: when you modify a
repository definition (and rebuild the applications that use that repository), that change is inherited
by every object that refers to the original definition—regardless of which application the object is
in. As a result, not only are the data definitions consistent from one application to another, but the
user interface is consistent as well. In addition, many changes required to localize or customize an
application can be accomplished by making changes in the repository, which enables you to
customize your user interface more quickly, with less chance of error.

When you define fields for use in Composer, you’ll want to define not only the fields themselves
but also the fields’ attributes and formats. Then, once you’ve added the fields to an input window in
Composer, you can modify the fields and add features in the interface designer’s visual,
WYSIWYG environment.

Here’s what the primary input window in our example application is going to look like:

Defining a structure
Just like when you defined data fields for use by the Synergy compiler, the first step is defining a
structure, as described on page 3-3.

Instead of defining another new structure here, you can use the structure you created on page 3-3
for our example user interface.

From the Modify menu, select Structures.

Setting Up Your Repository
Defining User Interface Characteristics

3-8 Getting Started with Synergy/DE 9.3 (12/09)

Defining how input is redisplayed in a field
When you define your fields’ display attributes, you will have the option of selecting a predefined
format to use when data is entered. For example, in our sample user interface, we’d probably want
to assign a display format for the telephone number fields, Phone, Fax, and Modem.

So, to plan ahead, you can define two types of formats:

Global

Structure-specific

A global format can be used by a field definition in any structure. A structure-specific format is
defined for a particular structure and can only be used by the fields in that structure.

To define a structure-specific format,

1. Highlight the structure for which you want to define a format in the Structure Definitions list.

2. From the Structure Functions menu, select Edit Attributes.

3. From the Attributes menu, select Formats.

4. From the Format Functions menu, select Add Format.

The Format Definition input window is displayed. (See figure 3-3.)

5. Enter the desired information in each input field and then exit the input window.

6. Repeat steps 4 and 5 for each additional format you want to define.

7. From the General menu, select Exit.

Figure 3-3. Defining a format.

Select whether
the format is
alpha or
numeric

Select how a format is justified in a field
(or, in other words, how it will be truncated
if truncation is necessary)

Enter a string
of format
characters to
specify how
the data
should be
displayed

Enter a unique
name to identify
your format

Setting Up Your Repository
Defining User Interface Characteristics

Getting Started with Synergy/DE 9.3 (12/09) 3-9

If you want your format to be global instead of structure-specific, simply define it by selecting
Formats from the Modify menu in Repository’s main menu. Steps 4 through 7 are the same,
regardless of the type of format you defined.

Defining fields
The next step in creating a user interface is to define the required input fields. In our example, we’re
going to use the same fields we defined on page 3-4.

1. With your structure highlighted, select Edit Attributes from the Structure Functions menu. (If the
Attributes menu is already present on your menu bar, go directly to step 2.)

2. From the Attributes menu, select Fields.

3. To view or edit the definition for an existing field, highlight that field and press ENTER.

4. Make sure the Excluded from Toolkit field is not checked for any of the fields; you will need to be
able to access the fields you define later.

Defining field attributes
Because we are designing a user interface, we need to define the appearance of each field on the
screen as well as the field’s behavior.

Determining how the field will look
Repository refers to the field’s appearance as “Display information.” To specify display information
for a field from the Field Definition input window,

1. On Windows, click the Display tab or press CTRL+TAB until the Display tab is displayed. On UNIX
or OpenVMS, press TAB until the Display tab is displayed. (See figure 3-4.)

2. Enter the desired information in each input field and then exit the dialog box or move to a different
tab in the dialog box to define additional information.

(You can also get to the Display tab from the Field Definitions list. Highlight the field you want to
modify, and select Edit Display Information from the Field Functions menu.)

Determining how the field will behave
Repository breaks down the field’s behavior into the categories “Input,” “Validation,” and
“Methods.” Input information determines how input must be entered and how it will be displayed
and interpreted. Validation information defines what input is considered valid. Method information
specifies any arrive, leave, drill, hyperlink, or change method subroutines associated with a field.

Setting Up Your Repository
Defining User Interface Characteristics

3-10 Getting Started with Synergy/DE 9.3 (12/09)

Specifying how input will be entered and displayed

To specify how input will be entered and displayed, do the following from the Field Definition
input window:

1. On Windows, click the Input tab or press CTRL+TAB until the Input tab is displayed. On UNIX or
OpenVMS, press TAB until the Input tab is displayed. (See figure 3-5.)

2. Enter the desired information in each input field and then exit the dialog box or move to a different
tab in the dialog box to define additional information.

Figure 3-4. Defining display information.

Select whether a position is to be specified
for this field/prompt combination and, if so,
whether it is absolute or relative

Select whether a position is
associated with this field
independent of its prompt

Enter the text that
will prompt the user
for input

Enter a help
identifier to
pass to a help
subroutine

Enter the text
to display on
the
information
line

Select how
the input will
be justified in
the field

Select whether the
field is displayed as
an input field, set of
radio buttons, or
check box

Enter the
name of a
predefined
format if you
want to apply
a display
format to this
field (see
page 3-8)

Select whether a
specified character
should “paint” the field
to indicate where the
user types input

Enter the names of the
fonts in which to display
the contents of this field
and its prompt (if you
don’t want the defaults)

Setting Up Your Repository
Defining User Interface Characteristics

Getting Started with Synergy/DE 9.3 (12/09) 3-11

(You can also get to the Input tab from the Field Definitions list. Highlight the field you want to
modify, and select Edit Input Information from the Field Functions menu.)

Specifying how input will be validated

To specify how input will be validated, do the following from the Field Definition input window:

1. On Windows, click the Validation tab or press CTRL+TAB until the Validation tab is displayed. On
UNIX or OpenVMS, press TAB until the Validation tab is displayed. (See figure 3-6.)

2. Enter the desired information in each input field and then exit the input window or move to a
different tab in the dialog box to define additional information.

Figure 3-5. Defining input information.

Select whether
lowercase input is
converted to
uppercase

Select
whether input
is terminated
automatically
when the field
is filled

Select
whether the
cursor
position in a
text field is
retained when
the field is
re-entered

Select
whether a
default value is
displayed or a
default action
occurs

Select whether input will be
prevented from being displayed

Enter how long
to wait for input

Select whether the
decimal point can be
omitted when typing in
a numeric field

Select whether to
terminate the field
after a specified
period of time

Select the
default action

Select whether the
date and time will
default to the current
system date and time

Setting Up Your Repository
Defining User Interface Characteristics

3-12 Getting Started with Synergy/DE 9.3 (12/09)

(You can also get to the Validation tab from the Field Definitions list. Highlight the field you want
to modify, and select Edit Validation Information from the Field Functions menu.)

Specifying method subroutines for a field

You can assign the following types of method subroutines to an input field:

Arrive method

Leave method

Figure 3-6. Defining validation information.

Select when, if ever,
break processing will
occur for this field

Select whether
nonblank, nonzero
input is required

Select
whether the
field has a list
of valid
entries

Select
whether the
field is
displayed as a
selection list,
and specify
selection
options

Select whether
negative values are
allowed on a numeric
field

Specify the minimum
and maximum values
allowed in a numeric
field

Select whether a numeric
field should return a
decimal value for a text
entry selected from an
allow or selection list

Specify whether the value in an
alpha or user field must match
the case of a specified
allowable entry

Specify whether alpha or
user field input must match
all characters in the
specified allowable entry

Setting Up Your Repository
Defining User Interface Characteristics

Getting Started with Synergy/DE 9.3 (12/09) 3-13

Drill method

Hyperlink method

Display method

Edit format method

Change method

An arrive method subroutine is called to perform special processing before an input field is
processed, while a leave method subroutine performs additional processing after an input field is
processed (for example, validating the input).

If a drill method subroutine is specified, a drilldown button is displayed after the field in
Windows environments. The subroutine is called when the user clicks the drilldown button
(in Windows) or selects a drilldown menu entry (in Windows or non-Windows
environments). A drill method is primarily used to look up additional information or
display an input window.

A hyperlink method subroutine is called when the user clicks on an input field prompt. When a
prompt is associated with a hyperlink method, that prompt is a hyperlink and the foreground color
of the prompt is green.

A change method function is called after a field is validated by the UI Toolkit I_INPUT subroutine.
It performs additional processing after an input field is changed (for example, validating radio
button and check box fields).

A display method function is called before UI Toolkit displays the contents of an input field. Your
display method can modify the display format of the input field, as well as its color and attributes,
thus enabling you to override Toolkit’s display format for the field.

An edit format method function is called before UI Toolkit has formatted the contents of an input
field to be edited. Your edit format method can modify the edit format of the input field, as well as
its color and attributes, thus enabling you to override Toolkit’s edit format for the field.

To specify method subroutines for a field, do the following from the Field Definition input window:

1. On Windows, click the Method tab or press CTRL+TAB until the Method tab is displayed. On UNIX
or OpenVMS, press TAB until the Method tab is displayed. (See figure 3-7.)

2. Enter the desired information in each input field and then exit the input window or move to a
different tab in the dialog box to define additional information.

(You can also get to the Method tab from the Field Definitions list. Highlight the field you want to
modify, and select Edit Method Information from the Field Functions menu.)

Setting Up Your Repository
Defining User Interface Characteristics

3-14 Getting Started with Synergy/DE 9.3 (12/09)

Figure 3-7. Defining method information.

Enter the name
of a method
subroutine that
you’ve written or
plan to write.
Click the
drilldown button
to open the
Choose Method
File dialog in
Workbench,
where you can
create or modify
the subroutine
in the text editor.

Setting Up Your Repository
Defining Files for ReportWriter

Getting Started with Synergy/DE 9.3 (12/09) 3-15

Defining Files for ReportWriter
Repository seamlessly supplies information to Synergy/DE ReportWriter for creating reports.
When you define fields for use in ReportWriter, you need to define not only the fields themselves
but also the way the field will be used and displayed in a report, the keys that determine the
relationships between files and how those keys will be linked with keys from other structures, and
which files use which structures.

Defining a structure
As when you were defining data fields for use by the Synergy compiler, the first step is defining a
structure.

1. From the Modify menu, select Structures.

2. Select the structure you defined on page 3-3.

Defining fields
The next step in creating a user interface is to define the required input fields. In our example, we’re
going to use the same fields we defined on page 3-4.

1. With your structure highlighted, select Edit Attributes from the Structure Functions menu. (If the
Attributes menu is already present on your menu bar, go directly to step 2.)

2. From the Attributes menu, select Fields.

3. To view or edit the definition for an existing field, highlight that field and press ENTER.

4. Make sure the Excluded by ReportWriter field is not checked for any of the fields; you will need to
be able to access the fields you define later.

Determining how each field will be displayed in a report
In addition to defining the field’s general appearance, which we did on page 3-9, “Display
information” contains field data that affects how the field is used and displayed in a report.

To specify display information for a field,

1. Highlight the field you want to modify in the Field Definitions list.

2. From the Field Functions menu, select Edit Display Information.

The Display Information input window is displayed. (See figure 3-8.)

Setting Up Your Repository
Defining Files for ReportWriter

3-16 Getting Started with Synergy/DE 9.3 (12/09)

3. Enter the desired information in the Report hdg, Format name, and Report just input fields and then
exit the input window. (See page 3-16 for instructions on predefining a format.)

4. Repeat steps 1 through 3 for each field you want to define.

Defining a format
When you specify display information for a field, you can specify a predefined format to use with
that field in a report generated by ReportWriter.

If you defined a format for an input field on page 3-8, you can use that same format here.
Otherwise, follow the instructions on page 3-8 to define a display format.

Defining a key to your record
A key is the portion of the data record that identifies the record and is used to access it. For
example, if you define a company name field as a key with no duplicates, a record can be uniquely
identified based on the company name. The keys you define in Repository also determine what
relationships you can set up between database files, which in turn determine what additional
information ReportWriter can access outside of a particular file.

Figure 3-8. Defining how a field will be displayed in a report.

Enter the text
to display as
the column
heading in a
report

Enter the
name of a
predefined
format if you
want to apply
a format to
this field

Select how
the data will
be justified
within the
report column

Setting Up Your Repository
Defining Files for ReportWriter

Getting Started with Synergy/DE 9.3 (12/09) 3-17

The first key you define (or the first key in the list) is the primary key. A primary key must be an
access key.

To define a key,

1. Highlight the structure you want to define a key for in the Structure Definitions list.

2. From the Structure Functions menu, select Edit Attributes.

3. From the Attributes menu, select Keys.

4. From the Key Functions menu, select Add Key.

The Key Definition input window is displayed. (See figure 3-9.)

Figure 3-9. Defining a key.

Enter a unique
name for the key

Select whether
the value of this
key can be
changed

Select whether
this key can have
a null value

Select whether the key
is a true key in the
database file (Access)
or not (Foreign)

Select the order
in which the key
field data is
returnedSelect whether

duplicate values
for this key are
allowed in more
than one record

If duplicates are
allowed, select
whether they’ll be
inserted at the
front or end of a
list of records
that have the
same key value

Select whether the
key segment type is
field (F), literal (L), or
external (E)

Enter the name of a field in the
current structure (for F), a field
in a different structure (for E),
or a literal string (for L)

Enter the name
of a different
structure (for E)

Setting Up Your Repository
Defining Files for ReportWriter

3-18 Getting Started with Synergy/DE 9.3 (12/09)

5. Enter the desired information in each input field and then exit the input window.

6. Repeat steps 4 and 5 for each key you want to define.

7. When you’re finished defining keys, select Exit from the General menu.

Defining a relation between two structures
To enable ReportWriter to cross-reference data between files, you must create relations between
structures. A relation enables you to link the keys of one structure with the keys of another
structure. For example, if you relate a company name key in a contact management file with a
company name key in a sales transaction file, ReportWriter can access sales information for each
company when you create a report of your business contacts. We recommend that you set up every
relation you can think of that a ReportWriter end-user might possibly need.

To define a relation,

1. Highlight the structure you want to define a relation for in the Structure Definitions list. (If the
Attributes menu is already present on your menu bar, skip steps 1 and 2 and go directly to step 3.)

2. From the Structure Functions menu, select Edit Attributes.

3. From the Attributes menu, select Relations.

4. From the Relation Functions menu, select Add Relation.

The Relation Definition input window is displayed. (See figure 3-10.)

5. Enter the desired information in each input field and then exit the input window.

6. Repeat steps 4 and 5 for each relation you want to define.

Figure 3-10. Defining a relation.

Enter the name of the
access or foreign key
you want to relate

Enter the name of an
access key to which you
want to relate the “From”
key

Enter the name of the
structure to which you
want to relate the first
structure

Setting Up Your Repository
Defining Files for ReportWriter

Getting Started with Synergy/DE 9.3 (12/09) 3-19

Defining a file
Defining your database files through Repository enables you to access those files from
ReportWriter. Once you define a file you can assign one or more structures to it, thus specifying
which structures can be used to access that file.

To define a file,

1. From the Modify menu in Repository’s main menu, select Files.

2. From the File Functions menu, select Add File.

The File Definition input window is displayed. (See figure 3-11.)

3. Enter the desired information in each input field and then exit the input window.

4. Assign a structure to this file by following the instructions in “Assigning a structure to a file” on
page 3-20.

Figure 3-11. Defining a file.

Enter a unique
name for your file
definition

Select whether the file is ASCII, ISAM,
relative, or user-defined. The file type
must match that of any structure you
want to assign

Do not select this box if
you want this file to be
available in ReportWriter

Enter the name of the
actual database file,
including the logical
(or physical) path

Setting Up Your Repository
Defining Files for ReportWriter

3-20 Getting Started with Synergy/DE 9.3 (12/09)

Assigning a structure to a file
You must assign a structure to a file in order for the file to be able to use that structure. You can only
assign a structure that has the same file type as the file to which you’re assigning.

1. From the File Definitions list, select Assign Structures from the File Functions menu.

2. From the Structure Functions menu, select Add Structure.

3. Enter the name of a structure to assign to the file.

4. Repeat steps 2 and 3 for each structure you want to assign.

5. From the General menu, select Exit twice to return to Repository’s main menu.

Setting Up Your Repository
Defining a Database Schema for xfODBC

Getting Started with Synergy/DE 9.3 (12/09) 3-21

Defining a Database Schema for xfODBC
A component of xfODBC, the dbcreate utility, uses repository data definitions to generate a system
catalog, which prepares a Synergy database for ODBC access. A system catalog describes a
Synergy database in a way that the xfODBC driver can understand. You can run dbcreate either
from the command line or from within the xfODBC Database Administrator (DBA).

When you define data for use by xfODBC, your repository should contain a complete set of
structures, tags, fields, and file information; templates for similar fields; and well-chosen keys and
relations. See “Setting Up a Repository” in the “Preliminary Steps” chapter of the xfODBC User’s
Guide for detailed instructions.

4-1

4
Designing Your User Interface

Now that you’ve set up your repository, you can start designing your user interface. This chapter
introduces you to S/DE Composer, UI Toolkit’s visual user interface designer for Windows
environments. We will take you through the steps of designing an input window and several of the
objects it can contain.

Important Terminology 4-2

Defines several of the terms used in this chapter.

What Is Composer? 4-3

Describes what Composer is, what it looks like, and how to run it.

Using Composer 4-8

Walks you through the design of an input window that contains predefined input fields imported
from your repository, radio buttons, check boxes, selection list fields, a drilldown to a second input
window, lines, standard input fields, and command buttons. This section also describes how to save
and close a script file, close a project, and compile your script.

Designing Your User Interface
Important Terminology

4-2 Getting Started with Synergy/DE 9.3 (12/09)

Important Terminology

What is an object?
In this manual, when we refer to an object we mean any window, list class, menu column, window
field, input field, selection window entry, menu entry, text, line, box, or button. Each object is an
independently designed element that has certain characteristics and values and exhibits certain
behavior.

What is a window?
The term window refers to the window you’re designing and encompasses general windows, input
windows, and selection windows.

A general window usually conveys information, such as error or informational messages.

An input window contains one or more defined input fields into which the user can enter data.

A selection window contains a group of predefined selections from which the user can choose.

What are attributes and properties?
An attribute is a characteristic of an object, and a property is the value of an attribute. For example,
color is an attribute, and red is a property.

What is a script file?
A script file is an editable text file that contains special script commands to define and control user
interface objects and their characteristics. When you design your user interface in Composer, the
script commands are generated into a script file for you. Once your script file is created, it must be
compiled.

The advantage of using script files is that your user interface objects are defined outside of your
programs. You can modify object properties without changing or recompiling your Synergy
Language subroutines.

What is a project?
Composer organizes your script files in projects. A project is a collection of one or more related
script files (for example, all of the script files for a particular application).

Designing Your User Interface
What Is Composer?

Getting Started with Synergy/DE 9.3 (12/09) 4-3

What Is Composer?
S/DE Composer is a powerful user interface designer that enables you to create the elements of
your interface graphically using the mouse and keyboard on Windows systems. You can easily
move, resize, and change the characteristics of your interface objects in a WYSIWYG
environment. Then, after you interactively design your general windows and input windows,
Composer will generate the appropriate window scripts.

Starting Composer
To start Composer, do one of the following:

From the Workbench toolbar, select Composer.

From your SynergyDE folder in the Start menu, select Composer.

At a command prompt, type

dbr SYNBIN:composer

If you are not in the directory that contains dbr.exe, DBLDIR\bin must be in your path.
Likewise, the SYNBIN environment variable must be in your path, and it must be set to the
directory in which Composer is installed.

What’s on your Composer screen?
Composer consists of four windows:

The Control Bar window

The Application window

The Properties window

The Object Manager window

The Control Bar
The Control Bar manages the entire Composer application. It contains Composer’s menu bar and
toolbars. To exit Composer, close the Control Bar window.

Composer has two toolbars, separated by a line:

The Standard toolbar

The Object toolbar

The Standard toolbar gives you quick mouse access to the most common project management,
object editing, and window and tool access functions. It has two tab sets: Composer and Tools.

Designing Your User Interface
What Is Composer?

4-4 Getting Started with Synergy/DE 9.3 (12/09)

The Object toolbar enables you to create and manipulate user interface objects quickly. It consists
of an arrow pointer button and a tabbed toolbar. The arrow pointer button enables you to select
objects in the Application window. The toolbar has three tab sets: Objects, Input, and Window.

To display the name of a toolbar button, hold your mouse pointer over the button for two seconds.

The Application window
The Application window provides an
area in which you can design your user
interface. This design area contains a
grid that represents cell-based rows and
columns. When you move or size user
interface objects, they snap to the grid.
Objects created in the design area also
contain grids, so that objects created
within those objects will snap to row/
column boundaries as well. You can
turn off the grids if you need to (for
example, when you want to print your
screen).

The title bar for the Application
window contains the name of the
current script file.

Figure 4-2. The Application window.

Figure 4-1. The Control Bar window.

Standard toolbar Object toolbar

Designing Your User Interface
What Is Composer?

Getting Started with Synergy/DE 9.3 (12/09) 4-5

The Properties window
The Properties window contains a list of design object
attributes, followed by the property, or value, for each
attribute. The attributes and properties displayed
always belong to the object that’s currently selected in
the Application window. If no object is selected in the
Application window, the properties displayed are
those of the active script file.

Some attributes have subattributes and must be
expanded before you can view or modify the
subattributes. Such attributes are preceded by a plus
sign (+). When the attribute is expanded, it is
preceded by a minus sign (–). To expand or collapse
an attribute, double-click on it.

Figure 4-3. The Properties window.

The Object Manager
The Object Manager window displays a visual
representation of the project file, script file(s), and
user interface object hierarchy in the following
order:

 Project file

 Script file

 Containing object

 Contained object

From Object Manager, you can move, copy, delete,
or rename objects.

The Object Manager window has its own menu bar,
which contains functions available in Object
Manager. It also has a status bar at the bottom to
indicate the activity being performed.

Figure 4-4. The Object Manager window.

Designing Your User Interface
What Is Composer?

4-6 Getting Started with Synergy/DE 9.3 (12/09)

The order in which the objects are listed is the order in which they are generated when the script file
is written or updated. Files or objects that can be expanded are preceded by a plus sign (+).
Expanded files or objects are preceded by a minus sign (–). To expand or collapse a file or object,
double-click on it. Script files or objects that have not been fully compiled display the letter U (for
“unprocessed”).

Using Help
Composer has an extensive online Help system to give you instructions for just about anything
you’ll need to do. If you can’t find the information you need in this guide, you can search the online
Help for additional options and procedures:

From the Help menu, select Composer Help Topics, or click the Help Topics button on the

toolbar.

From the Help Topics screen (see figure 4-5), you have three ways to search for information:

Click the Contents tab to browse through topics by category.

Figure 4-5. Using Composer Help.

Designing Your User Interface
What Is Composer?

Getting Started with Synergy/DE 9.3 (12/09) 4-7

Click the Index tab to see a list of index entries. Either type the word you’re looking for or
scroll through the list.

Click the Find tab to do a full-text search of words or phrases that may be in a Help topic.

Composer also provides help that is specific to the currently selected or highlighted item. To
display context-sensitive help for a Composer window, dialog box, property, or object, do one of
the following:

Select the item and press F1. (From a dialog box, you can also click the Help button.)

Point to the item with the arrow pointer, click the right mouse button, and select Context Help
from the displayed context menu.

To display help for a menu command,

Pull down the menu, highlight the command (without selecting it), and press F1.

Designing Your User Interface
Using Composer

4-8 Getting Started with Synergy/DE 9.3 (12/09)

Using Composer
While this manual is not a tutorial, we believe that the quickest way to get you designing with
Composer is for you to set up a sample user interface screen. As an exercise, you can use the same
application for which you set up a repository in chapter 3, “Setting Up Your Repository.”

Here’s the primary input window you’re going to design:

We recommend that you run Composer and actually create this input window (or one of your own)
as you read through the procedures below. Don’t be afraid to experiment and make mistakes: you
can always click the Undo (or Redo) button if you change your mind.

Designing an input window using repository fields

Creating an input window
When you create any object in Composer, you can either let Composer place the object in a default
location, or you can specifically place it where you want it to go. These instructions tell you how to
create an input window of the size and in the location you desire:

1. Click the Input window button on the toolbar.

Designing Your User Interface
Using Composer

Getting Started with Synergy/DE 9.3 (12/09) 4-9

2. Click and drag on the desired location in the Application window until the window is large enough
to hold the fields shown in the screen above.

To create an input window of a default size in a default location, simply double-click the Input
window toolbar button.

Adding a window title

To specify a title to be displayed in the window’s title bar,

1. Select the window by clicking on it in the Application window.

2. Click the Title property in the Properties window and enter the name of the title you desire (Contact
Folder, in our example).

Adding predefined repository fields
You can add input fields you’ve defined in S/DE Repository to the input window you just created.

1. Select the input window in the Application window if it’s not already selected.

2. Click the Repository field button on the toolbar.

The Repository Fields dialog box is displayed. Because this is the first repository field you’re
adding, you need to add a repository structure before you can place any fields. (If you were adding
a second or any subsequent repository fields, you could skip steps 3 through 7 below.)

3. Click the Select button.

The Select Repository Structure dialog box is displayed. (See figure 4-6.)

Figure 4-6. Selecting a Repository structure.

Type or select the
name of the
structure that
contains the fields
you want in your
input window

Click Repository to
select a new
repository

Designing Your User Interface
Using Composer

4-10 Getting Started with Synergy/DE 9.3 (12/09)

4. In the Name field, select the name of the structure that contains the fields you want to add to your
input window.

5. Click OK to return to the Repository Fields dialog box. (See figure 4-7.)

6. From the list of input fields, either double-click on each field you want to add or click the Select All
button to add all input fields in the list.

Arrayed fields are indicated by a + or – in the untitled column. Click on the + or – to expand or
collapse an array. When an array is expanded, you can select individual elements of the arrayed
field to add to the input window.

7. When you’re finished adding fields, exit the dialog box.

Figure 4-7. Adding Repository fields.

Double-
click on
each
field you
want to
add

Click
Select All
if you
want to
add all
input
fields in
the
structure

For an
arrayed
field, click
the + or –
in this
column to
expand or
collapse
the array

Click Expand All
to expand all
arrays in the list

Click Collapse All
to collapse all
arrays in the list

Designing Your User Interface
Using Composer

Getting Started with Synergy/DE 9.3 (12/09) 4-11

Fine-tuning your input fields

Moving fields

Now that you see how the fields are laid out, you might want to change their positions. To move
one or more fields,

1. Select the field or group of fields you want to move in the Application window. (To select a group
of fields, click on the first field and then CTRL+click on all additional fields you want to include in
the group.)

2. Click and drag anywhere on the field or on any field in the group (except on a sizing handle) until
the field’s outline is in the location you want.

Changing a prompt

To change the prompt for an input field,

1. Select the input field in the Application window.

2. Click the Prompt property in the Properties window and type the desired text of your prompt.

Creating a line
To add a line to your input window,

1. Select the input window by clicking on it in the Application window.

2. Click the Line button on the toolbar.

3. Click and drag on the desired location in the Application window until the line is the desired
orientation and size. (Drag vertically if you want a vertical line or horizontally if you want a
horizontal line.)

Creating a command button
To add an OK button to your input window,

1. Select the input window by clicking on it in the Application window.

2. Double-click the Button button on the toolbar.

3. In the Properties window, Text is already displayed as the Face property, so click the Text
subattribute and enter the text OK.

4. Click the Name attribute and enter the menu entry you want this button to generate, in this
case I_OK.

Designing Your User Interface
Using Composer

4-12 Getting Started with Synergy/DE 9.3 (12/09)

You can repeat these steps to create Cancel and Help buttons or any additional buttons you desire.
The Name properties for standard Cancel and Help buttons should be O_ABANDON and
O_HELP. For nonstandard buttons, you can assign functionality in one of two ways:

In the Name property, enter the name of a menu entry (as instructed in step 4 above).

In the Method property, enter the name of a method routine that will perform special
processing, or click the drilldown button to display the Choose Method File dialog box in
Workbench so you can select or create a source file that contains or will contain the method
routine code. (See “Using code templates” on page 2-31 for more information.) You can also
enter the name of an executable subroutine library in the Library subproperty.

If you want to create a button that displays a bitmap graphic instead of text, simply select Bitmap
as the Face property and then enter the name of the bitmap file, including the full directory path or
logical.

A button can also have a quick-select character, which enables the user to simulate clicking the
button in your application by pressing ALT+character. If you want the button to have a quick-select
character, click the Select character attribute and enter the quick-select character. If the button
contains text, the first occurrence of the quick-select character will be underlined.

Designing an input window from scratch
Now we’re going to create an input window whose fields have not been predefined in Repository.

Creating a “drilldown” input window
The Last field has a drilldown button, so we’re going to create a second input window that’s a
drilldown from the first. In our application, our drilldown method for the field will display and
process this second input window. Here’s what it looks like:

Designing Your User Interface
Using Composer

Getting Started with Synergy/DE 9.3 (12/09) 4-13

To create the second input window in a default location,

1. Double-click the Input window button on the toolbar.

2. Click the Title property in the Properties window and enter the name of the title you desire
(Personal Info, in this example).

Creating new input fields
We haven’t defined any input fields for this window in the Repository, so this time you’ll need to
create the fields from scratch. To add several new input fields to your input window,

1. Select the input window by clicking on it in the Application window.

2. SHIFT+click the Input field button on the toolbar.

3. For each field you want to create, click and drag on the desired location in the Application window
until the field is the desired size.

4. Repeat step 3 until you’ve created as many input fields as you like.

5. Click any other Object toolbar button to cancel creation mode.

Setting input field properties

Specifying a prompt

1. Select the input field in the Application window.

2. Click the Prompt attribute in the Properties window and type the desired text of your prompt.

If you want your prompt to be a hyperlink that calls a subroutine to perform special processing
whenever the prompt is clicked, double-click the +Methods attribute to display the Hyperlink
method attribute. Then click the Hyperlink method attribute and type the name of a hyperlink
method subroutine you’ve written or plan to write, or click the drilldown button to display the
Choose Method File dialog box in Workbench so you can select or create a source file that contains
or will contain the method routine code. (See “Using code templates” on page 2-31 for more
information.) Hyperlink prompts are displayed in green.

Setting size

You’ll probably want to make sure your input fields are the right size. To size a field,

1. Select the field by clicking on it in the Application window.

2. In the Properties window, look at the Size property.

Designing Your User Interface
Using Composer

4-14 Getting Started with Synergy/DE 9.3 (12/09)

3. If the size is not what you want, type a new size or click and drag on one of the field’s sizing
handles in the Application window.

Adding a check box

You can either display an existing input field as a check box or create one from scratch using the
Check box toolbar button.

To display an existing input field as a check box,

1. Select the input field by clicking on it in the Application window.

2. In the Properties window, under the Type property, set the View as subproperty to Check box.

Adding a selection list field

Two of the fields in our example are selection list fields (sometimes referred to as “combo boxes”).
You can either display an existing input field as a selection list field or create one from scratch
using the Selection list toolbar button.

To create a selection list field using the Selection list button,

1. Select the input window in the Application window.

2. Double-click the Selection list button.

3. Click the Selections attribute in the Properties window and then click the drilldown button.

4. In the Selections dialog box, select Selection list in both the Type and View as fields. (If you have
a predefined selection window, you can select Selection window as the Type.)

5. Replace Entry 1, Entry 2, and Entry 3 with the selection items of your choice, pressing ENTER after
each.

6. Exit the dialog box.

Adding an editable text field

The Comments field in our example is an editable text field, which is a real alpha array. When the
user enters input into a text field, the text wraps automatically.

To create an editable text field,

1. Create an input field or select an existing input field in the Application window.

2. Set the Dimension subproperty (under Type in the Properties window) to a value greater than 1.

Designing Your User Interface
Using Composer

Getting Started with Synergy/DE 9.3 (12/09) 4-15

Specifying information line text

You can display instructions or other text on the information line of your application screen when
the user moves the cursor to a field. For instance, in our Personal Info example, you might want to
display the text “Select the marital status of this contact” for the first selection list field.

To specify information line text for a field,

1. Select the input field in the Application window.

2. In the Properties window, set the Information line property to the text you want to display when
this field is active.

Specifying methods

You can specify routines to be called in the following situations:

These method routines enable you to perform additional processing, such as validating or
formatting the input. If you don’t specify these subroutines, no special action is taken.

To specify method routines,

1. Double-click the +Methods attribute to display the method attributes.

2. Click the desired method attribute, and either type the name of a method routine you’ve written or
plan to write or click the drilldown button.

3. If you click the drilldown button, Workbench will be launched (or brought to the top), and the
Choose Method File dialog box will be displayed if the specified method is not in any of the source
files in the current project. In the Choose Method File dialog, select or create a source file that
contains or will contain the code for the method you are specifying.

(In chapter 6, “Implementing Your User Interface with UI Toolkit,” you will write sample arrive
and leave method subroutines.)

To specify a routine to be called Use this method

Before an input field is processed Arrive

After an input field is processed Leave

When the field contents are being edited Edit format

When the field’s contents have been validated Change

Before the field’s contents are displayed Display

When the user clicks on the field’s prompt Hyperlink

When the user clicks the field’s drilldown button Drill

Designing Your User Interface
Using Composer

4-16 Getting Started with Synergy/DE 9.3 (12/09)

Saving your work
When you’re finished defining the input windows in our exercise, you have several options:

Close your project.

Save or close the current script file.

Continue defining user interface objects in this script file or create and modify other script files
for additional practice.

Closing your project
When you close your project, Composer will prompt you to save any unsaved script files, as well as
the project itself. To close the active project,

1. From the File menu, select Close Project.

2. When prompted as to whether you want to save changes to your script, click Yes.

Because your script still has a temporary name, you are prompted to enter a permanent name.

3. In the Save <Scriptn.wsc> As? dialog box, select the desired drive and directory, and type the
desired script filename in the File name field.

4. Click OK.

Composer generates a script file with the name you specified. You are also prompted to save
changes to your project.

5. In the Save <Project.psc> As? dialog box, select the desired drive or directory and type the desired
project filename in the File name field.

6. Exit the dialog box.

Saving a script file
To save a new or existing script file,

Click the Save Script button on the toolbar.

If the script has the temporary name <Scriptn.wsc> (where n is a number), you are prompted to
enter a script filename.

Designing Your User Interface
Using Composer

Getting Started with Synergy/DE 9.3 (12/09) 4-17

Closing a script file
When a script file is closed, all of its open objects are removed from the Application window. To
close your script file,

From the File menu, select Close Script.

If the script has not been saved since the last time you made changes, you are asked whether you
want to save changes to your script.

Compiling your script
You must compile your script before you can use it in your application. To specify compilation
options,

1. From the File menu, select Compile Scripts Setup.

The Compile Scripts Setup dialog box is displayed. (See figure 4-8.)

2. Select the scripts you want to compile and enter the desired information in the other input fields.

Figure 4-8. Compiling a script.

Type or select the name of the library file to useSelect Overwrite to overwrite
the existing library file on
compilation or Append to
append the current
compilation to the existing
library file

Type or select the name of a
file to which the compiler will
write any errors encountered
during compilation

Click Compile to compile all
of the specified script files

Either select the Select all
check box to select all script
files in the project for
compilation OR select the
script files you want to
compile by checking the box
to the left of each script.

Designing Your User Interface
Using Composer

4-18 Getting Started with Synergy/DE 9.3 (12/09)

3. If you want to compile the selected scripts right now, click Compile. If you want to compile later,
click OK to exit the dialog box.

When you compile, the Script compiler reads the selected script files and converts them to a
window library (ISAM file).

To compile scripts later,

From the File menu, select Compile Scripts.

If you have not set up any script compilation options, this command compiles the default set of
scripts (which is all scripts in the project).

Exiting Composer
To exit Composer,

Do one of the following:

Click the Control Bar’s Close button.

From the File menu, select Exit.

5-1

5
Programming in Synergy Language

This chapter introduces Synergy Language and steps you through building and running a simple
application. It also acquaints you with features of the Language that will help you optimize
performance and simplify maintenance.

What Is Synergy Language? 5-2

Defines what Synergy Language is and briefly describes the structure of a Synergy Language
program.

Compiling, Linking, and Running Your Program 5-5

Describes the procedures required to transform your source modules from text files into object files
and finally into an organized structure that is executed by the Synergy runtime. This section also
provides a short explanation of object libraries and executable libraries.

Debugging Your Program 5-9

Explains how to include and use the debugger in your application.

Advanced Features 5-12

Describes how to use dynamic memory and how to dispatch routines dynamically.

Programming Tips 5-18

Provides a variety of suggestions and introduces several capabilities of Synergy Language that will
help your programs run more efficiently and make them easier to maintain.

Programming in Synergy Language
What Is Synergy Language?

5-2 Getting Started with Synergy/DE 9.3 (12/09)

What Is Synergy Language?
The fundamental component of Synergy/DE is Synergy Language. Most of the other elements are
intended to work as layered tools on this basic component. Synergy Language provides the
framework for integrating all other required components of Synergy/DE into a seamless
development environment that will ultimately help you develop your total business solution. Its
comprehensive capabilities and features make it easy to develop, maintain, and extend your
applications.

One of the most significant benefits of Synergy Language is the fact that applications written in the
Language are source-code portable to a multitude of hardware and software platforms, including
Windows, OpenVMS, and popular flavors of UNIX. (Contact your Synergy/DE account manager
for a full list of currently supported platforms.) In many cases, recompiling is not even necessary;
in others, compiling and linking are the only requirement.

Synergy Language provides many system-level functions directly from within the language. This
means you don’t have to worry about getting system-level expertise to do things like set system
environment variables; perform sorts; obtain system values; and create, delete, or rename files.
Each of these functions is performed from within the program through a call to a system-supplied
external subroutine with a standard interface that does not change between platforms. By using
these routines, you can standardize your installation procedures and simplify your maintenance
overhead.

In addition to providing you with a mechanism for having a single set of sources for multiple
platforms, Synergy Language provides you with an excellent methodology for making data
portable across platforms. If you use the Synergy DBMS utilities and take advantage of the
system-supplied subroutines for ISAM file creation, creating multikeyed access files on any
supported platform is quite painless. You do not need expertise in creating files on the target
platform; simply run your creation program and populate your database files with the supplied
utilities. The process is the same on any supported platform. Synergy/DE makes porting an
opportunity, not a problem.

Creating a source file
If you are creating your source files for the first time, it is important that you do it correctly, as you
may be able to use some of these routines as templates for future development.

Selecting an editor
Professional Series Workbench includes a Synergy Language–sensitive visual editor that
automates code formatting and provides keyword recognition and completion, popup argument
lists for Synergy routines, and integration with the Synergy compiler. If you’re developing on
Windows, we recommend you use this visual editor to simplify your editing process.

Programming in Synergy Language
What Is Synergy Language?

Getting Started with Synergy/DE 9.3 (12/09) 5-3

If you do not use the Workbench visual editor, you may use any popular word processing or text
editing software (such as Microsoft Word or Notepad) or an editor from the command line. It really
does not matter, as long as the editor you use is capable of writing out the final result as an ASCII
text file, with no additional formatting or header information embedded in the file. Most word
processing products will generate this type of file if you save your document as text only.

If your editing tool appends its own extension to your files, you may want to change that at the
system level to take advantage of the defaults of the Synergy/DE components or to adhere to
standards in your development organization. We recommend using the default extension .dbl for
Synergy Language source files.

Creating your modules
Once you have chosen your editing tool, you can begin creating or modifying your source code.
Establishing a standard for your development is an important part of the decision process for a
successful development effort. Once development has been ongoing for some time, it is difficult to
retrofit standards into existing code. Choose some standard methodology and try to stick to it. You
can obtain our suggested coding standard by contacting your Synergy/DE account manager.

A major benefit of Synergy Language is that you can group multiple routines in a single source
module. This enables you to combine subroutines that are unique to a program within the same
source module, thus reducing the number of compilations required to generate program objects. All
of your definitions are maintained across the routines, requiring you to put definitions in only one
place.

Structure of a Synergy Language program
A Synergy Language program contains one or more prototype imports, structures, namespaces,
classes, and routines. A Synergy Language routine is composed of two main parts: a data division
and a procedure division. The data division contains most of the declarations, directives, and
statements necessary to identify the various data structures that will be referenced by the program
statements. The procedure division contains all of the operational statements that act on the data
structures contained in the data division. Any data structure that is referenced in the procedure
division must either be defined in the data division of the routine with which it is associated or in
the procedure division as a stack local variable. You can define data structures that are not
referenced in the procedure division, but you cannot have references in the procedure division that
are not previously defined in the routine.

Identifying your routine
Your routine should start with a statement that identifies what type of routine you are creating. The
statements that identify routine types are MAIN, SUBROUTINE, FUNCTION, and METHOD.
Each one of these statements tells the compiler that this is the beginning of the data division or
parameter section for this routine. For a more comprehensive discussion of these statements, see
the “Synergy Language Statements” chapter of your Synergy Language Reference Manual.

Programming in Synergy Language
What Is Synergy Language?

5-4 Getting Started with Synergy/DE 9.3 (12/09)

Data division
A data division contains classes, structures, records, fields, groups, literals, temporary definitions,
references to data segments located outside of the program, and possibly definitions of external
functions that are referenced in the procedure division. In addition, we highly recommend that each
routine contain comments that describe the purpose of the routine and define any interactions with
other routines. If the routine is an external subroutine, function, or method, the arguments that are
passed to and returned from the routine should also be defined.

The end of the data division and the start of the procedure division is defined by the PROC
statement.

Procedure division
The procedure division contains the logic and operational statements that will be executed to make
your program perform the task you desire. Each statement will be executed according to the syntax
and semantics defined in the Synergy Language Reference Manual. Synergy Language allows for
data manipulation, file and terminal I/O, program logic control, arithmetic operations, and
conditional execution. By combining these capabilities, you should be able to create a routine (or
group of interacting routines) that solves any business problem.

The end of the procedure division is defined by the END, ENDMAIN, ENDSUBROUTINE,
ENDFUNCTION, or ENDMETHOD statement. These statements tell the compiler that the routine
is complete and prepares it to deal with the next routine.

See also
Your Synergy Language Reference Manual, which contains the syntax and specifications for every
statement and system-supplied subroutine in Synergy Language. Refer to this manual for further
information.

Programming in Synergy Language
Compiling, Linking, and Running Your Program

Getting Started with Synergy/DE 9.3 (12/09) 5-5

Compiling, Linking, and Running Your Program
Once you’ve written your source modules, you must compile, link, and run your programs. Here
are the steps you should follow:

1. Compile each source module. See “Compiling your program” below.

2. If desired, combine your compiled routines in an object library. See “Creating object libraries” on
page 5-6. Creating an object library simplifies the linking process (as well as your distribution
strategy).

3. Link your compiled routines or object library, generating an executable library if desired. See
“Linking your program” on page 5-6.

4. Test your program by running it. See “Running your program” on page 5-8.

Compiling your program
The Synergy compiler interprets the ASCII code you have written in your source modules and,
using the rules of Synergy Language, creates another file that contains the instructions to perform
the program actions you have specified. The output from the compiler is called object code and is
sometimes referred to as an object file. Most applications are composed of many of these individual
object files that are bound (or linked) together into a single executable program.

By default, the compiler expects the input source module to have the extension .dbl. If your
programs follow this convention, you will not have to specify a filename extension in your
compiler commands. The compiler creates output files with the following default extensions:

We recommend using these default filename extensions so that other tools (for example, Windows
Explorer) will know what type of file it is.

For instructions on compiling your program, refer to the “Building and Running Synergy Language
Programs” chapter in Synergy Language Tools. You can also compile your program directly from
Professional Series Workbench by doing the following:

1. Make sure the file you want to compile is open.

2. From the Project menu, select Compile.

Extension File type

.dbo Generated object file

.lis Listing file

Programming in Synergy Language
Compiling, Linking, and Running Your Program

5-6 Getting Started with Synergy/DE 9.3 (12/09)

Creating object libraries
Once you’ve created a number of related external subroutines and have tested them thoroughly, you
may want to group them together so you can reference them as a single entity. Instead of having to
remember to include all of the object files that are referenced in each program every time you link
the application, you can create an object library using the Synergy librarian.

An object library is a collection of object files that have been compiled and stored in a special file
that can be referenced by the Synergy linker. Any routines that are included in the object library
will be extracted from the library at link time. Thus, instead of distributing hundreds of .dbo files,
you can distribute a single .olb file that contains all of the compiled source code routines.

For instructions on creating an object library, refer to the “Building and Running Synergy
Language Programs” chapter in Synergy Language Tools.

Linking your program
After you’ve compiled your source code into object files, you must gather the object files into a
cohesive unit so they can be executed as a single program. This gathering is done by the linker
program. The linker also performs many other functions, such as resolving addresses for global
symbols, figuring out where external data references are located, identifying the exact location of
external routines so your program can call them, and associating all program information with the
required system resources for your system. The output from the linker is an executable program: a
complete, self-contained group of instructions capable of being executed by the runtime.

By default, the Synergy linker expects your object files to have the extension .dbo. If your
programs follow this convention you will not have to specify a filename extension in your linker
commands. The linker creates output files with the following extensions:

If any of your object files have been changed, you must recompile them before relinking your
application for the changes to take effect. You do not need to recompile object files that have not
been changed. When you relink your application, your changes will be incorporated into the new
executable program.

TIP
There are many other ways to request a source compile on various platforms. For example,
Serena ChangeMan Builder’s make command is an excellent choice for program builds.

Extension File type

.dbr Executable file

.map Map file

.elb Executable library

Programming in Synergy Language
Compiling, Linking, and Running Your Program

Getting Started with Synergy/DE 9.3 (12/09) 5-7

For instructions on linking your program, refer to the “Building and Running Synergy Language
Programs” chapter in Synergy Language Tools. You can also link your program directly from
Professional Series Workbench by doing the following:

1. Make sure the file you want to link is open.

2. From the Project menu, select Build.

If the file was not previously compiled, selecting Build will compile it.

Creating executable libraries
As useful as object libraries are, they have limitations. If your source code changes, not only do you
have to recompile the module, but you also have to relink every application that included that
particular object file. This could be time-consuming if your application is large and the object file
you have changed is common to most of your programs.

To address this issue, as well as others, Synergy Language provides a feature called executable
libraries. An executable library is different from an object library in that the object file is not
included in the executable program. Instead, the linker includes a referencing pointer to where the
routine is located in the executable library. When the Synergy runtime executes your program and
the routine is called, the runtime knows how to execute the code from the executable library.

Four advantages of using an executable library instead of (or in addition to) an object library are

smaller programs. If you have a subroutine that is called by several programs and you’re not
using an executable library, each executable program contains a complete copy of the
compiled subroutine. As a result, your programs are larger in size and use more memory when
executing. Using an executable library can significantly reduce the size of your program
images.

time savings. As with an object library, if you change an object file, you have to recompile the
file and replace the old object file with the new one. However, you don’t have to do anything
else. Because your programs contain only a pointer to the object file to be executed, and the
executable library keeps track of where the new object is located, you don’t have to relink your
programs to take advantage of the change. When your program is executed, the Synergy
runtime merely gets the new copy from the executable library.

more efficient distribution process. Because your executable program contains only a
referential pointer to another program image, you can simply replace the executable library,
instead of redistributing an object library and the commands necessary to relink the
application. When the new executable library is installed, your changes are already in effect.

creation by the Synergy linker. You can either use an existing object library and create an
executable library that contains all of your object files, or you can have the linker put the object
files directly into an executable library.

For instructions on creating an executable library, refer to the “Building and Running Synergy
Language Programs” chapter of Synergy Language Tools.

Programming in Synergy Language
Compiling, Linking, and Running Your Program

5-8 Getting Started with Synergy/DE 9.3 (12/09)

Restrictions

Once an image is inserted into an executable library, it cannot be removed. If you want to delete
some images from an executable library, you must delete the library and rebuild it from scratch.

VMS
Executable libraries are not implemented on OpenVMS systems. On those systems, the
functionality has been implemented as OpenVMS shared images.

Running your program
Now you’ve come to the easiest part: actually running your program. This is the final step in
program development. If you’ve done your job completely, you will have a working program. If
not, you will have to figure out where changes need to be made, change the source code, and then
recompile, relink, and retest your program.

By default, the Synergy runtime expects your programs to have the extension .dbr. If your
programs follow this convention, you will not have to specify a filename extension in your runtime
commands.

For instructions on running your program, refer to the “Building and Running Synergy Language
Programs” chapter in Synergy Language Tools. You can also run your program directly from
Professional Series Workbench by doing the following:

1. Make sure the file you want to run is open.

2. From the Project menu, select Execute.

TIP
To facilitate the process of rebuilding an executable library, you might want to keep an
object library from which you can regenerate your executable library. The Synergy librarian
provides the necessary tools for managing individual object files in an object library.

Programming in Synergy Language
Debugging Your Program

Getting Started with Synergy/DE 9.3 (12/09) 5-9

Debugging Your Program
No one writes perfect code, at least not all of the time. Because almost every program has a few
bugs that need to be fixed, a debugger is a valuable tool.

Built into Synergy Language is a powerful utility that enables you to interactively control program
execution, examine the data structures referenced by your program, modify those data structures to
contain whatever values you choose, and validate memory references for correctness. You can
instruct the debugger to “watch” a variable and report when its value changes, what the old value
was, and what the new value is. You can identify a particular statement (or multiple statements) as
a stopping place. You can decide whether to step through routines or execute them in their entirety.

To run a program under the control of the Synergy debugger,

1. Compile your program with the -d option.

2. Link your program with the -d option.

3. Run your program with the -d option.

You can also run a program in debug mode directly from Professional Series Workbench by
selecting Debug from the Project menu.

Much of debugging is common sense: finding out where the program is going wrong and stopping
the execution before the problem happens, then stepping through the program one statement at a
time, looking at variables that affect the processing, changing values to create conditions that are
potential problems, and trying to validate your program logic by tracing the program flow. As you
interact with your programs, you’ll get a sense of what kinds of mistakes cause what classes of
problems, and identifying the source of problems will become easier.

See also
The “Debugging Your Synergy Programs” chapter of Synergy Language Tools. We highly
recommend reading this chapter to become familiar with the different commands and capabilities
of the debugger, and for instructions on running the debugger remotely. The debugger is a tool that
will save you a lot of time if you use it correctly.

Saving and restoring debugger settings
You can save the current break points, watch points, and option settings of the debugger so these
settings can easily be restored the next time you run the debugger.

Use the SAVE file debugger command to save debugger settings to the specified file. Use the @
file debugger command to restore the saved settings. See the “Debugging Your Synergy Programs”
chapter of Synergy Language Tools for details about these commands.

For information about saving and restoring the current debugger state to a file from Professional
Series Workbench, see “Debugging a project” on page 2-37.

Programming in Synergy Language
Debugging Your Program

5-10 Getting Started with Synergy/DE 9.3 (12/09)

Debugging with bounds checking
Bounds checking is a very powerful feature of the debugging capabilities in Synergy Language.
Running your application with bounds checking enabled will identify any situations in which data
is being stored into structures that are referenced beyond the “bounds” of their normal definition.
Trying to monitor situations like this manually is a debugging nightmare.

Many of the legacy languages (ANSI DIBOL and Synergy DBL) take advantage of the capability
that allows you to reference subsequent data structures as a subscripted array element of a previous
data structure. While this may have been a solution to some problems, it opened the door to a much
bigger problem: unknowingly writing or referencing data beyond expected limits. In some cases
these data reference operations are detected by the system when the program is run, resulting in
errors. In other cases the reference operation goes undetected and remains in the application like a
time bomb, waiting for the most inopportune time to overwrite a critical variable that will cause
another routine that depends on that value to malfunction. Debugging one of these “transient” error
conditions is one of the hardest and most frustrating exercises in software engineering.

Synergy Language will find this class of error for you automatically if you compile your
application with bounds checking enabled. When the program is run, it will report any and all
references that result from an “out-of-bounds” condition.

When you compile your programs with bounds checking enabled, all pseudo arrays (such as a field
defined as 10d5) are converted to real arrays (for example, [10]d5). While you are in development
mode, you should build all routines in your application with bounds checking enabled. When you
are ready to release your application to production, simply compile without bounds checking
enabled, and the size of the image will be reduced significantly. Below are examples of conditions
that will be reported when a program is compiled with bounds checking enabled.

Examples
When the following program is run, the runtime will report an out-of-bounds condition, because the
code is actually referencing var[1](1,10), the first element of the array, which has a “real” length
of 2. Because you are trying to write 10 characters into a two-character field, the runtime will report
an error.

main myroutine
record
 var ,[10]d2

proc
 var(1,10) = "0001020304"
endmain

The following example will report an out-of-bounds condition if the subroutine is compiled with
bounds checking enabled and the calling routine is compiled with bounds checking disabled. This
example illustrates why it’s important to compile all your routines with bounds checking enabled.

Programming in Synergy Language
Debugging Your Program

Getting Started with Synergy/DE 9.3 (12/09) 5-11

record
 var ,10d2
 .
 .
 .
 xcall subr(var)
 .
 .
 .
subroutine subr
 arg ,d
 .
 .
 .
 arg(2) = 10

The first statement below will generate an out-of-bounds condition, because ivar is defined as
being i4. The correct way to clear both of these integer variables at the same time is to reference the
named record as an integer, as the second statement does.

record name
 ivar ,i4
 ivar2 ,i4
 .
 .
 .
 clear ivar(1,8)
 clear ^i(name)

Both of the statements below will generate an out-of-bounds condition. While both types of data
reference are common techniques in many legacy programs, they are references outside the bounds
of the definition of var and, as such, will be reported.

record
 var ,d2
 var2 ,d2
 .
 .
 .
 var(1,4) = 1010
 var(2) = 10

Programming in Synergy Language
Advanced Features

5-12 Getting Started with Synergy/DE 9.3 (12/09)

Advanced Features

Using dynamic memory
Most applications need to allocate space to store varying amounts of data. In the past, this was
accomplished by considering what the “worst case” would be and defining sufficient storage space
to accommodate this situation. This is quite inefficient for two reasons. The first is that it causes the
program to require more memory at runtime and more storage space on the disk. The second is that
if the application at some point in time exceeds the original estimate of the “worst case,” the code
has to be changed, with all of the inherent inconvenience associated with code change.

A better solution is to allocate memory dynamically as it is required by the program. When the
program requires memory, it simply tells the system how much it needs. The system allocates the
memory and returns a pointer to the base of the memory segment. We refer to this pointer as a
handle. All future references to this memory will use this handle. There is no practical restriction
on the amount of memory available, and once used, the memory can be released back to the system.
The amount of memory is totally dynamic: it can grow or shrink as required by the application. As
new memory is allocated, it is logically appended to the existing memory, and as memory is
released, it is logically truncated from the existing memory.

Defining data handles
The pointer for each memory segment must be allocated in the data division. Multiple segments are
allowed, but each segment must have its own handle. A handle is an i4 integer and should be
aligned on an even longword boundary for maximum performance:

.align long
record
 handle1 ,i4 ;The handle for one segment
 handle2 ,i4 ;The handle for another segment

Defining memory structures
Memory allocation and reference is done in conjunction with structures. Structures are defined in
the data division using the STRUCTURE statement and function the same as the Synergy
Language RECORD statement, except they do not allocate any space in the program. Structures
can be .INCLUDEd from the repository, .INCLUDEd from files, or hard-coded in your application.

structure cards
 value ,i4
 suit ,a1
 rank ,a1

Programming in Synergy Language
Advanced Features

Getting Started with Synergy/DE 9.3 (12/09) 5-13

Manipulating dynamic memory
Dynamic memory is manipulated by the %MEM_PROC function, which performs four operations:

Allocation

Resizing

Deallocation

Registration

Allocating memory

Memory allocation is performed by specifying the DM_ALLOC value as the first argument to the
%MEM_PROC function and any decimal expression as the second argument. The function value is
assigned to the i4 variable defined as the handle for the memory segment. The second argument is
the number of bytes of memory that will be allocated. For example:

handle1 = %mem_proc(DM_ALLOC, ^size(cards)*52)

Using the structure definition from the previous example, this code will allocate 312 bytes of
memory (6*52) and return the pointer to the memory in the integer named handle1. The contents
of the memory segment are undefined.

Resizing memory

Existing memory segments can be expanded or collapsed by specifying the DM_RESIZ value as
the first argument to the %MEM_PROC function, a decimal expression representing the new size
of the memory segment as the second argument (either greater than the original or smaller than the
original), and the handle of the original memory segment as the third argument. The return value
will be the new handle of the memory segment. Here’s an example of expanding memory:

handle1 = %mem_proc(DM_RESIZ, ^size(cards)*52*4, handle1)

Using the previous definitions, this code will allocate 1248 bytes of memory and take the contents
of the original 312-byte memory segment and copy it to the first 312 bytes of the new memory
segment. The contents of the remaining memory in the segment is undefined. The pointer to the
new memory segment will be returned in the variable handle1.

To return unwanted memory to the system, simply specify a lesser value as the second argument.
For example:

handle1 = %mem_proc(DM_RESIZ, ^size(cards)*52*2, handle1)

This code will remove the last 624 bytes from the memory segment. The size of the memory
segment will now be 624 bytes. Any information that existed in the returned memory will be lost.
The pointer to the memory segment will be returned in the variable handle1. Do not assume that
this pointer will be unchanged.

Programming in Synergy Language
Advanced Features

5-14 Getting Started with Synergy/DE 9.3 (12/09)

Deallocating memory

To return memory to the system, specify the DM_FREE value as the first argument to the
%MEM_PROC function and the handle of the memory segment as the second argument. The
function value will be returned as zero (0), and we recommend that this value be assigned to the
handle. Any data reference operations against a handle with a zero value will generate an error
condition that can be trapped. For example:

handle1 = %mem_proc(DM_FREE, handle1)

This code releases the memory that was previously allocated and sets the value of handle1 to zero.

Registering memory

Your program may call external routines written in other languages or system functions that return
pointers to memory segments that were allocated outside of Synergy Language. You can reference
these segments from within your program if they are registered within your program. The process
of registration does not allocate memory; it makes memory segments that are allocated externally
available to your program as if they had been allocated by your program.

To register memory, specify the DM_REG value as the first argument to %MEM_PROC, a
decimal expression that represents the size of the memory segment as the second argument, and a
platform-specific-sized integer address of the memory segment as the third argument. The value of
the function will be the handle of the memory segment. For example:

.align quad
record
 addr ,D_ADDR
 size ,i4
 .
 .
 .
proc
 .
 .
 .
 xcall some_routine(%val(size),%ref(addr)) ;Call an external routine
 handle1 = %mem_proc(DM_REG, size, addr) ;Register the memory

This code will register the address that was passed into the variable addr. Expressing the type and
size of this variable by referencing the .DEFINEd value D_ADDR ensures that this variable will
match the system requirement of all platforms. On 64-bit systems it will allocate an i8 field; on
32-bit systems it will generate an i4 field. D_ADDR is conditionally defined for you by the
compiler. After the %MEM_PROC function call, the memory segment will behave exactly as if it
were allocated from within this program.

Programming in Synergy Language
Advanced Features

Getting Started with Synergy/DE 9.3 (12/09) 5-15

Accessing memory
Once memory has been allocated, we use the ^M data reference operation to address the memory
locations. In effect, a memory segment can be considered to be a dynamic array that can be
addressed in the same manner as a multidimensioned group.

The following example uses the %MEM_PROC dynamic memory function to allocate a
dynamically sized array, which will be resized as needed. The routine reads the records from a
customer file into memory and then sorts the records in memory and prints them out in sorted
order. This example presumes that the developer can supply the local routine “print” and the
QSORT sort routine “sort_by_past_due.” (Refer to QSORT in the “System-Supplied Subroutines
and Functions” chapter of the Synergy Language Reference Manual for more information.) Note
that this routine does no error trapping, so it presumes that the customer records will all fit into
available memory.

.align

.define D_INITIAL_ALLOC ,10 ;Initially allocate for 10 records max

.define D_INCR_ALLOC ,5 ;If we need to resize, go up by 5

.define D_CUST_CHAN ,12 ;Customer channel number

.define D_FMT_MONEY ,"Z,ZZZ,ZZZ,ZZX.XX-"

record
 handle ,i4 ;Handle to dynamic memory
 nmalloc ,i4 ;Number of records allocated
 nmloaded ,i4 ;Number of records actually loaded
 ix ,i4 ;A scratch index

structure customer ;Customer record structure
 group rec ,a
 number ,d6
 name ,a30
 address ,[3]a30
 current_due ,d12.2
 over_30 ,d12.2
 over_60 ,d12.2
 over_90 ,d12.2
 endgroup

record pline ;Print line buffer
 pcust ,a6
 ,a2
 pname ,a30
 ,a2
 pover90 ,a17
 ,a2
 pover60 ,a17
 ,a2
 pover30 ,a17

Programming in Synergy Language
Advanced Features

5-16 Getting Started with Synergy/DE 9.3 (12/09)

proc

;First, allocate an array and read in the customer records

 nmalloc = D_INITIAL_ALLOC ;Allocate for 10 records
 handle = %mem_proc(DM_ALLOC, nmalloc)
 clear nmloaded ;None loaded yet

 open(D_CUST_CHAN, "I:I", "DAT:customers") ;Open customer file
 repeat
 begin
 if (nmloaded .ge. nmalloc) ;Need to increase array size?
 begin
 nmalloc += D_INCR_ALLOC ;Bump it by 5
 handle = %mem_proc(DM_RESIZ, nmalloc, handle)
 end
 incr nmloaded;Loading one now
 reads(D_CUST_CHAN, ^m(customer[nmloaded].rec, handle), eof)
 end
eof,
 close D_CUST_CHAN ;Close customer file
 decr nmloaded ;EOF on the last one

;Now do an in-memory sort based on some complex criteria

 xcall qsort(^m(customer.rec, handle), nmloaded, "sort_by_past_due")

;Now print them out in that order

 for ix from 1 thru nmloaded
 begin
 clear pline
 pcust = ^m(customer[ix].number, handle), "XXXXXX"
 pname = ^m(customer[ix].name, handle)
 pover90 = ^m(customer[ix].over_90, handle), D_FMT_MONEY
 pover60 = ^m(customer[ix].over_60, handle), D_FMT_MONEY
 pover30 = ^m(customer[ix].over_30, handle), D_FMT_MONEY
 call print
 end

 xreturn ;Because the allocation was not static, this releases it
end

Programming in Synergy Language
Advanced Features

Getting Started with Synergy/DE 9.3 (12/09) 5-17

Static vs. volatile handles
Handles are classified as one of two types, static or volatile:

Static handles are persistent and do not get released when the activation level of the generating
routine is exited. They are stored as positive numbers.

Volatile handles are dynamic and go away along with the routine activation level. They are
stored as negative numbers.

Both static handles and volatile handles go away when the entire program is exited or the handle is
explicitly released.

Dispatching routines dynamically
Synergy Language provides a system routine (XSUBR) that enables programs to determine at
runtime what external routine will be called. This capability provides a multitude of opportunities
for the application developer to provide flexibility in routines. Consider the case where the name of
a routine to be called is returned to a UI Toolkit program with a special prefix. You could add a
completely new feature to the code simply by changing the menu column in the window library and
adding the routine to an associated executable library. You wouldn’t have to change any code or
even relink the application.

Consider the following script definition:

.column functions, "Functions"

.entry s_rolodex, "Rolodex

.entry s_calculate, "Calculator"

.entry s_diary, "Diary"

.entry s_mailbox, "Mail"

.end

The code to process this script could be as simple as the following:

xcall m_process
if (g_select) ;Menu selection
 case g_entnam of
 begincase
"O_EXIT": exitloop
"O_ABOUT": xcall u_about(TITLE, VERSION,%datecompiled)
"S_": xcall x_subr(g_entnam - "S_")
 endcase

Adding a new routine would not require changing this code at all. For instance, an application
could have matched sets of window libraries and executable libraries, distributed as pairs, that
would work with the same executable image but provide very different capabilities. If the
application went one step further and built the menu columns on-the-fly, simply updating a
database file and the executable library would allow calls to the new routines.

Programming in Synergy Language
Programming Tips

5-18 Getting Started with Synergy/DE 9.3 (12/09)

Programming Tips

Referencing data indirectly
Environment variables (or logicals) give your application tremendous power to reference data in an
indirect manner. You should use environment variables to simplify your coding and standardize the
way you address the location of the files that are opened by your application. In most cases,
environment variables are a convenience, but in some cases they are a necessity. For instance, there
is a 31-character restriction on the file specification for the executable library that is passed to the
Synergy linker. If your full path exceeds this limitation, your link command will return an error.

In terms of convenience, environment variables enable you to reference different file locations
without having to change your source code, which brings with it the associated overhead of
recompiling and relinking your code. In addition to the time lost, there is always the possibility that
you may have made a typographical error, executed an erroneous compile or link command, or
forgotten to include a required file. Using environment variables enables you to adjust where the
database files are located and then execute your program, with the same program referring to a
different set of data.

Three cases for environment variables
One of the most powerful uses of this tool is that you can code your application to point to a data set
that is referenced by an external environment variable and test your application against a test data
base. When you’re done testing, you simply reset the environment variable; the application now
points to the real data, without the need for you to touch the application in any way.

Another great feature of this paradigm is that your application may be installed at multiple
customer sites. Instead of having to go into each program module that contains a file specification
and customize the file references to the individual site, you can just use a set of environment
variables in your application and set them at each customer site. Not only do you have a faster and
more standard installation procedure, but you also have a single set of sources for multiple
installations.

A third reason to use environment variables is that on different operating systems the file
specifications are formatted differently. Consider the following actual file specifications that
reference a Synergy ISAM file that must be opened in an application on three different platforms:

System File specification

Windows c:\myapp\finance\gen_ledg.ism

UNIX /usr/apps/myapp/finance/gen_ledg.ism

OpenVMS user$disk1:[myapp.finance]gen_ledg.ism;20

Programming in Synergy Language
Programming Tips

Getting Started with Synergy/DE 9.3 (12/09) 5-19

You could take advantage of environment variables by coding the OPEN statement to refer to this
file on all systems in a generic manner. Your application would address this file with a statement
like the following:

open(chan_no,"I:I","FINAPP:gen_ledg")

By simply setting an environment variable named FINAPP on each system, your application would
open the correct file regardless of the difference in format for each system. Note also that we have
taken advantage of the default file extension capabilities and have not specified an extension for
the file.

Setting environment variables
How environment variables are set is system-dependent, as each operating system requires a
somewhat different syntax, but the basic concept is the same. On each system, we tell the operating
system the name we are going to use as the environment variable, and we also tell it what we want
the environment variable to mean when we use it in our application or command line references.

In the example above, we would set the environment variables in the following manner:

As you can see, depending on your system, you will need to set the environment variables in
different places and using slightly different syntax. Consult the “Environment Variables” chapter of
Environment Variables and System Options for a more comprehensive discussion on how to set
environment variables on your system. Where you set your environment variables is usually a
function of the scope that your environment variables must have. If they are going to be needed by
everyone who is on the system, it may be useful to set them in some system initialization file. If
they are going to be used by just a few individuals, it may be better to define them in individual
log-in command (or .profile) files. Talk with your system administrator to decide where and how
environment variables should be set in your particular environment.

System Environment variable definition

Windows set FINAPP=c:\myapp\finance

UNIX FINAPP=/usr/apps/myapp/finance ;export FINAPP

or
setenv FINAPP /usr/apps/myapp/finance

OpenVMS define FINAPP user$disk1:[myapp.finance]

Programming in Synergy Language
Programming Tips

5-20 Getting Started with Synergy/DE 9.3 (12/09)

Comparing data
Two separate groups of relational operators are available to the Synergy Language developer to
evaluate the relationship of alpha data. Most developers know of the first group but are not aware
of the significant difference in the behavior of the second group. The two groups and their operators
are as follows:

The difference in behavior between these groups is based on the length of the comparison that is
made. Relational operators perform their comparison based on the shorter of the two operands.
String relational operators perform their comparison based on the longer of the two operands, with
the shorter being logically extended with blanks (spaces) until the shorter operand is the same size
as the larger operand. This means that comparing “A” to “ABC” with .EQS. is logically equivalent
to comparing “A ” to “ABC”, and the resulting truth value is FALSE. Performing the same
comparison with .EQ. is logically equivalent to comparing “A” to “A”, and the resulting truth value
is true. This behavior holds for all of the string relational operators.

This distinction is most important when considering how the CASE and USING statements are
evaluated. These statements use the relational operator .EQ. in performing their comparisons. This
is a double-edged sword: your application may take advantage of this feature to generate matches
for multiple values with a single entry, or your application may not behave as expected and may
match on values that were not intended. Consider the following sample code:

case value of
 begincase
"A": call a_process ;Catches every entry that starts with "A"
"AB": call ab_process ; That means you can never get here!
"ABC": call abc_process ; Or here!
 endcase

Relational operators String relational operators

.EQ. .EQS.

.LT. .LTS.

.GT. .GTS.

.NE. .NES.

.GE. .GES.

.LE. .LES.

Programming in Synergy Language
Programming Tips

Getting Started with Synergy/DE 9.3 (12/09) 5-21

The CASE and USING statements perform evaluations in a top-down manner. Therefore, in the
above code, any value that would match the second or third case would by definition have to match
the first. To make this work correctly, the order of the cases must be reversed as follows:

case value of
 begincase ;Matches the following values
"ABC": call abc_process ; ABC, ABCC, ABCD, ABCDE...
"AB": call ab_process ; AB, ABD, ABE, ABB...
"A": call a_process ; any remaining values starting with A
 endcase

Understanding the behavior of the different relational operators will enhance your productivity and
provide you with more options as you code your application.

Manipulating dates
Synergy Language provides the capability to transform dates to and from a numeric representation,
which enables you to perform mathematical operations on the dates. Adding and subtracting
periods of time, determining differences between dates, and determining what day of the week a
particular date falls are simple function calls. The algorithm is based on the Gregorian calendar and
calculates the days since December 31, 4713 BC.

Four function calls provide this capability:

%JPERIOD converts a date to a numeric value.

%DATE converts a numeric value to DD-MMM-YY (or YYYY) alpha format.

%NDATE converts a numeric value to YYYYMMDD numeric format.

%WKDAY returns the ordinal number of a weekday (Sunday is 1).

Converting dates to a numeric value using %JPERIOD
%JPERIOD accepts either an alpha representation of the date in the form DD-MMM-YYYY or a
numeric representation of the date in the form YYYYMMDD. If a date is not passed as an
argument, the system date is taken as the default.

Consider the following statements:

integer = %jperiod("25-DEC-1997")
integer = %jperiod(19971225)
integer = %jperiod
xcall jperiod(integer, 19970101)

Both the first and second statement are functionally equivalent and would store 2451125 in the
integer variable. The third statement would store the numeric value of the current system date in the
integer variable. The fourth statement is an example of how this function can be called as an
external subroutine, specifying a variable as the first argument. The integer variable would contain
2450767.

Programming in Synergy Language
Programming Tips

5-22 Getting Started with Synergy/DE 9.3 (12/09)

Converting numeric values to alpha dates
%DATE transforms any numeric value to its equivalent alpha representation of the date formatted
as DD-MMM-YYYY, DD-MMM-YY, or a truncated version of the latter. If no value is passed, it
will return the current system date as the default. If the length of the alpha variable is too small to
contain the entire date, it will be truncated.

record
 avar11 ,a11
 avar9 ,a9
 avar6 ,a6
.
.
.
avar11 = %date(2450767) ;avar11 = 01-JAN-1997
xcall date(avar9,2451125) ;avar9 = 25-DEC-97
xcall date(avar6,2451125) ;avar6 = 25-DEC

Converting numeric values or alpha dates to numeric dates
%NDATE transforms any numeric value to its equivalent numeric representation of the date
formatted as YYYYMMDD or YYMMDD. Alternatively, it converts an alpha formatted date to a
numeric formatted date. If no value is passed, it returns the current system date as the default. If the
length of the destination is too small to contain the entire date, the date will be truncated.

record
 avar4 ,a4
 avar6 ,a6
 avar9 ,a9
.
.
.
avar4 = %ndate(2451125) ;avar = 1225
avar6 = %ndate("25-DEC-1997") ;avar = 971225
xcall ndate(avar9,2451125) ;avar = 19971225

Converting numeric and alpha dates to a day of the week
%WKDAY takes either a numeric formatted date or an alpha formatted date and returns the ordinal
day of the week for that date. If the alpha format is used, any portion of the date that is omitted will
default to the system date.

record
 day ,[7]a*, "Sunday", "Monday", "Tuesday", "Wednesday",
 & "Thursday", "Friday", "Saturday"
 group crimbo ,d8
 year ,d4
 month ,d2
 crimbo_day ,d2
 endgroup

Programming in Synergy Language
Programming Tips

Getting Started with Synergy/DE 9.3 (12/09) 5-23

proc
 open(1, o, 'tt:')
 crimbo = %ndate("25-DEC")
 incr year
 writes(1, "Christmas is on a " + %atrim(day[%wkday("25-DEC")]) +
 & "; next year it is on a " + %atrim(day[%wkday(crimbo)]) + ".")
end

If this program were run in the year 1997 (the current year is assumed because the year is omitted),
the result would be “Christmas is on a Thursday; next year it is on a Friday.”

Using compile-time definitions
Your application can take advantage of compile-time definitions to provide a level of indirection in
your code as well as make the code much more self-documenting. An additional benefit is that
compile-time definitions do not allocate any space in the data division. These definitions can be
contained in external files that you can conditionally include into your programs or code directly
into your source programs. Thus, you can edit your code by modifying the value of the definition in
a single-source module that is included in your source programs.

Using integer data
For performance reasons, we recommend that you use longword-aligned i4 variables for any
variable in your program that won’t be stored on disk. This includes, but is not limited to, variables
for things like loop counters, values that are tested for conditionals, and variables used in
mathematical computations. Many RISC platforms do not provide native math instructions that
deal with nonaligned integers, so Synergy Language uses emulated math operations if the integers
are not on a longword boundary. By using aligned integers, you will realize a significant
improvement in performance. We strongly recommend that you do not store integer data in your
data records, as this could impede your ability to migrate your software to other platforms in
the future.

Using CASE vs. USING
Synergex recommends using the USING statement, which always generates the most efficient
code. The structures that are available (matching on ranges, matching on multiple values, matching
on expressions, matching the null case, matching on variables) in the USING statement have
always made it more powerful and more functional; now the performance matches the
functionality.

Using the CASE statement is only practical when the match strings are a series of alpha literals. A
further restriction on the CASE statement is that it must be bounded by a BEGIN-END block if it is
nested within an IF-THEN-ELSE structure. Even if a CASE statement is not currently within an

Programming in Synergy Language
Programming Tips

5-24 Getting Started with Synergy/DE 9.3 (12/09)

IF-THEN-ELSE structure, Synergex recommends encapsulating all CASE statements within a
BEGIN-END block to prevent possible confusion should an IF-THEN-ELSE be introduced into the
code or that code segment be moved or copied to another location.

6-1

6
Implementing Your User Interface
with UI Toolkit

This chapter introduces S/DE UI Toolkit and its relationship to application development with
Synergy/DE. It explains features, describes programming techniques, and provides sample code
that can be used as a template for your own development. S/DE Repository is used to define the
data for our sample application that we began in chapter 3.

What Is UI Toolkit? 6-3

Provides an overview of the capabilities of UI Toolkit.

Starting UI Toolkit 6-4

Explains the UI Toolkit screen and the initialization of the Toolkit environment, as well as the style
of programming necessary for application development with UI Toolkit, how to let Toolkit manage
your files, and using variables and defined values.

Managing Display Levels with Environment Processing 6-8

Defines Toolkit environments and describes techniques to save and restore program displays.

Managing Window Libraries to Store and Retrieve Display Components 6-10

Describes the definition, creation, and use of window libraries.

Creating Script Files and Window Libraries 6-11

Explains how to create menu columns, windows, and lists and how to write code to process them.

Implementing Online Help 6-35

Explains how to add online help to your application.

Organizing Your Display with Tabbed Dialogs 6-39

Describes how to create and process tab sets from within a UI Toolkit application.

Using Composite Windows to Combine Windows and Lists 6-42

Describes how to combine multiple windows and/or lists into a composite window.

Implementing Your User Interface with UI Toolkit

6-2 Getting Started with Synergy/DE 9.3 (12/09)

Using Methods 6-45

Defines methods and how to apply them to add power and flexibility to your UI Toolkit
application.

Implementing Your User Interface with UI Toolkit
What Is UI Toolkit?

Getting Started with Synergy/DE 9.3 (12/09) 6-3

What Is UI Toolkit?
S/DE UI Toolkit is a collection of external subroutines and functions that can be called from your
programs. It is not another language but rather an extension to Synergy Language that enables you
to create and process screens for your applications. The Toolkit is involved in every aspect of the
terminal user interface. Enhanced capabilities include data presentation, interactive data input and
editing, Windows pull-down menu processing, demand-loaded dynamic lists, and tabbed dialogs.
On Windows systems, the UI Toolkit manages mouse interactions, providing your application with
a truly native “Windows” look and feel. (For more information about Windows-specific UI Toolkit
features, refer to the “Developing for Windows” section of your Professional Series
Portability Guide.)

Your application is still a Synergy Language program. UI Toolkit features are contained in an
executable library (WND:tklib.elb on most systems) against which your application is linked.
These Toolkit routines perform the appropriate operation on each of the platforms supported by
Synergy Language. What this means to your application is that your screen I/O is platform
independent. Regardless of where your application is run, your code does not have to change; it lets
the Toolkit routines handle any system differences. It is even possible to create a single set of
source files that runs as a Windows application on Windows systems and as a cell-based
application in a non-Windows environment.

UI Toolkit does not change your program logic beyond the terminal interface. Using Toolkit does
not change the way you handle the data once it has been entered by your user. So if you plan to
convert an existing application, much of your existing code may not need to be replaced.

Performing terminal I/O
To use UI Toolkit, you must change your perception about how terminal I/O is performed. All
terminal I/O is done through the Toolkit routines. Instead of doing I/O at the field level, you will do
it at the record level. Also gone is the need to position the cursor, take the input, refresh the screen
after errors, and then process the data. Most data validation can be handled by Toolkit as well.
Gone is the need to manipulate each field in a record on an individual basis. Your window
definition can specify attributes for an entire record. When processing the window, you specify a
data area and pass control to Toolkit. When Toolkit returns, you have a complete, correct data
record, with all fields entered and verified for accuracy. All that remains for you is to process that
complete record.

Implementing Your User Interface with UI Toolkit
Starting UI Toolkit

6-4 Getting Started with Synergy/DE 9.3 (12/09)

Starting UI Toolkit
To use UI Toolkit, your program must call U_START, the Toolkit’s start-up routine. U_START
initializes the Toolkit’s memory, opens the terminal, opens the window library where window
definitions are contained, and establishes the parameters of the Toolkit screen. Other options set the
size of the display regions, establish upper and lower bounds for Toolkit channel allocation, and set
the maximum number of levels for environment processing.

The Toolkit screen
The Toolkit screen consists of five sections. The default parameters for a terminal screen are 80
characters by 24 lines.

The five screen sections are

Header. On UNIX and OpenVMS, the screen header can be zero to four lines. On Windows
platforms it should be set to one line and becomes the window’s “caption,” or title. The
application name, customer name, date, or other application-specific information is often
displayed in the header.

Menu bar. The menu bar is a single-line mandatory region that appears just below the header.
All active menu columns are placed on the menu bar. When a menu column is placed on the
menu bar, it is placed immediately to the right of the existing columns. When a menu column
is removed, other columns shift to the left to fill in the void.

Figure 6-1. A sample UI Toolkit screen.

Header

Menu bar

Body

Information line
Footer

Implementing Your User Interface with UI Toolkit
Starting UI Toolkit

Getting Started with Synergy/DE 9.3 (12/09) 6-5

Body. This region is where all of your windows, lists, and tabs are displayed. It occupies the
entire area between the menu bar and the information line.

Information line. This single-line section between the body and the footer is used to display
dynamic, screen-specific information. For example, a brief description of the input required for
the current input field might be displayed here.

Footer. This is an optional section that is placed on the bottom of the screen, immediately
beneath the information line. It can be zero to four lines. The footer is used in conjunction with
the header and the information line to present information to your users. Like the header, the
footer usually contains more static, application-specific information.

The following code is executed once, in the start-up routine. It initializes Toolkit and loads
descriptive text into the header and the system date into the footer. No other Toolkit routine can be
called until U_START has been called. As the chapter progresses, more code will be added to this
start-up routine.

startup,
 xcall date(date)
 xcall u_start("cust_lib", 1, 1) ;Initialize
 xcall e_sect("C U S T O M E R P R O F I L E",
 & D_HEADER, D_CENTER) ;Place text in header
 xcall e_sect(date, D_FOOTER, D_LEFT) ;Place text in footer
 return

Letting Toolkit manage your files
UI Toolkit needs to manage the files that are open on the system. Not only does it open your
window library, it opens some files of its own as well. Toolkit keeps track of all your files and
closes them automatically when you no longer need them. To take advantage of Toolkit’s file
management capabilities, and to avoid conflicts with the files Toolkit opens, you need to go
through Toolkit to open and close your database files.

UI Toolkit’s open routine is U_OPEN. U_OPEN opens your file on the next available channel and
registers the file. When you are done with the file, you close it with the U_CLOSE subroutine.
U_CLOSE closes the file and deallocates it (removes it from Toolkit memory).

Take a look at the sample code below. Notice the similarity between U_OPEN and Synergy
Language’s OPEN statement. (See the “Synergy Language Statements” chapter of your Synergy
Language Reference Manual.) The first argument is the channel, but instead of specifying the
channel, we pass a variable that is returned by U_OPEN with the next available channel. The
second argument is an alpha literal that specifies the open mode. Next is the filename.

The primary difference between U_OPEN and OPEN is the way errors are handled. Because
U_OPEN is an external subroutine, ONERROR or the I/O error list doesn’t work. Instead, open
errors are handled by passing an error variable in the sixth position. If an error occurs on the open,
it is trapped and the error number is returned in the error variable. The loop we have set up doesn’t

Implementing Your User Interface with UI Toolkit
Starting UI Toolkit

6-6 Getting Started with Synergy/DE 9.3 (12/09)

exit until the error variable returns false. If the error variable returns true, control returns to the top
of the loop and a new file is created. All calls to U_OPEN should pass an error variable and test it
before continuing.

do
 if (error)
 begin ;Create data file only if it doesn't exist
 xcall isamc("cdat", ^size(customer), 2, "start=1, length=45",
 & "start=127, length=32, DUPS, MODIFY")
 xcall u_open(customer_ch, "u:i", "cdat",,, error)
 end
until (.not.error)

U_CLOSE is refreshingly simple. To close the file we just opened, we call U_CLOSE and pass the
file’s channel variable. If we had other files to close, we could pass their IDs here as well.

xcall u_close(customer_ch)

Using event-style programming
To realize the full benefit of UI Toolkit, you should incorporate an “event-driven” style of
programming. Event-style programming means that after all the components are in place, your
program will call a Toolkit routine to get its user input. This routine will manage all interaction
with the user until one of a set of special events causes it to exit. Your program then tests to
determine the event that occurred and takes the appropriate action. Usually, after the action has
taken place, your program will want to return to the Toolkit routine that generated the event to get
further input from the user. Therefore most Toolkit routines that get input from the user are placed
at the top of a loop.

Including tools.def
Every UI Toolkit program must .INCLUDE “WND:tools.def.” Contained in tools.def are the
global variables that enable your application to communicate with the Toolkit routines. With these
global variables, your programs can test for the event that caused a Toolkit routine to exit,
determine the current state of a Toolkit component, instruct a Toolkit routine to perform a task or
function in a particular way, specify to a Toolkit load routine the channel on which the primary
window library is open, and pass or retrieve many other pieces of valuable information.

Also in tools.def are the defined values (with .DEFINE) used as arguments to the Toolkit routines.
Most of these arguments are just a numerical value. If you examine tools.def, you can see most of
the defined arguments consist of a descriptive name preceded by D_. For instance, the defined
values for D_FOOTER, D_CENTER, and D_CLEAR are 3, 12, and 6. Using these definitions
makes your code more self-documenting than if the corresponding numbers were used.

Implementing Your User Interface with UI Toolkit
Starting UI Toolkit

Getting Started with Synergy/DE 9.3 (12/09) 6-7

Consider the following:

xcall e_sect("Synergex", D_FOOTER, D_CENTER, D_CLEAR)

and

xcall e_sect("Synergex", 3, 12, 6)

Both of these statements do exactly the same thing: erase the footer region and center the text
“Synergex” on the first line of the footer section. But the first example is much more expressive
and far easier to maintain.

Using variables for identifiers
Just as channel numbers are assigned to designate files and devices in your Synergy Language I/O
statements, every UI Toolkit component (window, menu column, list, toolbar, or tab set) has a
unique identifier. These identifiers are integer variables you define in the data division of your
program. When a UI Toolkit component is loaded, the Toolkit load routine assigns the next
available value to that component and returns it in the identifier you passed. From that point on,
when your application needs to reference that component, you will specify its ID variable (not its
name). For performance reasons, we suggest you use longword-aligned i4 variables for these
identifiers.

TIP
In our sample programs, you will notice that we try to convey information about the type of
variable and its use by the name we choose. Defined values are uppercased and begin
with D_, global variables begin with g_, subroutine arguments begin with a_, menu column
IDs have a _col suffix, input window IDs an _inp suffix, list IDs a _lst suffix and so on. We
encourage you to adopt a similar approach in the applications you develop.

Implementing Your User Interface with UI Toolkit
Managing Display Levels with Environment Processing

6-8 Getting Started with Synergy/DE 9.3 (12/09)

Managing Display Levels with Environment
Processing
Among the most tedious tasks an application programmer must deal with is writing the code that
captures the current screen so it can be restored after some interruption has taken place. In fact,
many applications simply do not allow any external interference with the display during input. But
no matter what kind of application you write, there will be situations in which you would like to
alter some or all of the screen to display information or perform input, and then, when done, return
the screen to its former state.

This ability to take a “snapshot” of the screen and then clean up and restore its original state at
some future point is called environment processing. Instead of writing hundreds of lines of code
each time you need to alter the screen, you simply make a single Toolkit subroutine call to enter a
new environment. When you enter a new environment, a snapshot is taken of the screen, saving all
of the characteristics of the previous environment. In the new environment, you can alter the
display—add or remove screen components, open files, get input, modify screen sections. When
you’re done, another simple subroutine call exits the environment and restores the original screen.

What makes this capability so powerful is that you can “nest” this processing. If you need to save
multiple layers, you simply take multiple snapshots. By encapsulating your code in callable
routines with a single point of entry and a single point of exit, you can have display routines
themselves save and restore the screen. It does not matter which routine calls a display routine; the
routine starts by entering a new environment, thus preserving the existing screen. When the routine
is done, it simply exits the environment, restoring the screen to its former state.

You cannot skip environments. Environment levels are not identified; they are managed on a stack
and are exited in the reverse order from which they were created. The routines that are used to save
and restore environments are the simplest routines in UI Toolkit.

To save a copy of the current screen and enter a new environment:

xcall e_enter

To exit an environment and restore the screen to its previous state:

xcall e_exit

These routines have no arguments.

Implementing Your User Interface with UI Toolkit
Managing Display Levels with Environment Processing

Getting Started with Synergy/DE 9.3 (12/09) 6-9

Local and global screen components
By default, when you load a window or column, it is local to the current environment. This means
that any subsequent environment cannot delete it from Toolkit memory (although it can be
removed from the screen), and when the environment that loaded it is exited, the window or
column is deleted. If you want any environment to be able to delete a window or column, or if you
don’t want a window or column to be deleted when the environment that loaded it is exited, you
can promote the window or column to global status by passing an argument to the Toolkit routine
that loads it.

See also
The “Environment Routines” chapter of your UI Toolkit Reference Manual for more information
about environment processing.

Implementing Your User Interface with UI Toolkit
Managing Window Libraries to Store and Retrieve Display Components

6-10 Getting Started with Synergy/DE 9.3 (12/09)

Managing Window Libraries to Store and Retrieve
Display Components
Much of what you will do as you develop with UI Toolkit is to separate your procedural code from
your display information. The procedural code will remain in your program source, but the display
information will reside in script files. These script files will be processed into special ISAM files,
called window libraries, that store the definitions of Toolkit screen components: input windows,
text windows, selection windows, menu columns, and list classes. These definitions are in a special
binary format that is optimized for processing by Toolkit.

Benefits of window libraries
Window libraries enable you to make changes to the visual portion of your application without
having to rebuild the associated code. Because the joining of these two parts is not done until the
program is executed, you can change the visual portion of your application by changing your script
files and rebuilding the associated window library.

A further benefit of window libraries is that you can have multiple libraries that use the same
procedural code. Your basic application can be exactly the same, but you can have a different
window library for each customer or department. For example, your procedural code could process
a module that determines a user’s security level. Based on this information, you could open a
different window library that matches the security level associated with that user. One window
library has an opening menu with 10 choices; another has an opening menu with 5 choices. Your
application’s procedural code does not require any change to restrict access to choices that are not
on the menu: the choices simply do not exist for a user if the associated menu entries are not
displayed.

Specifying a window library
When you initialize UI Toolkit (using U_START), the first argument you specify is the name of
your primary window library. The channel number on which this library file is opened is stored in
the global variable g_utlib. Our examples contain many references to this variable.

However, your application can also have other window libraries open. To do so, simply use
Toolkit’s open routine, U_OPEN, to open the library in input mode. To access any secondary
window library, simply pass the channel variable you passed to U_OPEN to the load routine.

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

Getting Started with Synergy/DE 9.3 (12/09) 6-11

Creating Script Files and Window Libraries
Script files are text files created by Composer or a text editor. You can create window libraries
using Composer, Script, or Proto. For information on how to use Composer, see chapter 4,
“Designing Your User Interface.” For information on how to use Script and Proto, refer to the
“Script” and “Proto” chapters of your UI Toolkit Reference Manual.

Creating and using menu columns, windows, and lists

Creating menu columns
UI Toolkit provides windows-style pull-down menus in both Windows and non-Windows
environments.

A menu column is a list of entries that pull down from the menu bar. The menu bar can
accommodate many menu columns, although only one can be pulled down at any given time. The
menu bar (and its associated columns) are activated by pressing ALT (on Windows) or CTRL+P (on
UNIX and OpenVMS). Navigation through the columns is controlled by the arrow keys and by
each entry’s “quick-select” character. In Windows environments, full mouse support is enabled. In
addition, when a menu column is not pulled down, special key shortcuts can be assigned to select a
particular menu entry.

Step 1 - Defining menus

The first thing you must do to use Toolkit menu processing is define your menu columns. You can
define menu columns with Composer or a text editor.

Assigning shortcuts
An optional menu shortcut enables the associated entry to be selected when the menu column is not
pulled down (for example, while the user is doing input or viewing a list). Pressing a shortcut is the
equivalent of pulling down a menu column, highlighting an entry, and pressing ENTER. For an
entry’s shortcut to be accessible to the user, its menu column must be “placed” (visible) on the
menu bar. Valid shortcut keys include control, function, and arrow keys.

Assigning quick-select characters
When a menu column is pulled down, pressing an entry’s quick-select character selects that entry if
the quick-select character is unique. If the quick-select character is not unique, the entry will be
highlighted. By default the quick-select character is the first character in the displayed text.
Multiple entries can use the same quick-select character; the entries will be dealt with sequentially.
Thus, in the sample menu script below, pressing an “a” (or “A”) when the first menu is pulled down
would position you to the “Abort” choice. Pressing “a” again would position you to the “About”
choice.

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

6-12 Getting Started with Synergy/DE 9.3 (12/09)

Using reserved entry names
The menu entries described so far return as events to be processed by your program. But another
class of entries is handled automatically by UI Toolkit, without ever exiting the Toolkit routine
from which they were selected. These are called reserved entries. When any menu selection is
made, Toolkit checks the entry name before returning to your program. If it recognizes the entry as
one of the set of reserved entry names, Toolkit performs the associated task and then resumes
processing without returning to your program.

These reserved entries are used to activate many of the standard functions of UI Toolkit, so you
don’t have to. Commands to control text editing, field navigation, context-sensitive help, and list
navigation are among those enabled by reserved entries.

To take advantage of these capabilities,

1. Choose the functions you want to enable.

2. Include the appropriate reserved entry name in a menu column.

3. Place the column on the menu bar.

You don’t have to write any code, you don’t have to call any routines—just activate the feature by
enabling your user to select it from the menu bar.

Below is a list of reserved prefixes to avoid when naming a menu entry that you want to return as
an event to your program. A detailed list of each reserved entry and its associated function can be
found in Appendix B of the UI Toolkit Reference Manual.

C_ Composite window functions

E_ Editing routine functions

I_ Input routine functions

O_ Key mapping or renditions

S_ Selection window and list navigation functions

T_ Text window viewing and display functions

TS_ Tab set functions

U_ Hot-entry processing

Sample menu script
The following commands define three menu columns. This code would reside in a script file.

.column general, "General"

.entry o_help, "Help", key(F1)

.entry o_exit, "Exit", key(F4)

.entry o_abandon, "Abort", key(^A)

.entry g_about, "About"

.end

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

Getting Started with Synergy/DE 9.3 (12/09) 6-13

.column main, "Main"

.entry customer, "Customers"

.entry vendor, "Vendors"

.end

.column input, "Input"
.entry i_prev, "Previous field", key(UP)
.entry i_next, "Next field", key(DOWN)
.entry e_left, "Move left", key(LEFT),select(l)
.entry e_right, "Move right", key(RIGHT),select(r)
.end

The first three qualifiers in each menu column definition (the command, the name, and the text) are
required and must be specified in order. In each .COLUMN line, the first qualifier after .COLUMN
is the column name. This name is used in the program to load the column. The second qualifier (in
quotation marks) is the header text. This text is visible on the menu bar when the column is placed,
or made available to your user.

In the .ENTRY line, the qualifier in the second column is the entry name. When an entry is
selected, the entry name is returned in uppercase to the program (using the Toolkit global variable
g_entnam) so the program can determine the event that caused the Toolkit routine to exit. The
third qualifier in the .ENTRY line contains the text that is displayed in the menu column. The entry
options begin in the fourth column and can be specified in any order. The key keyword indicates
the shortcut to be associated with the menu entry; select is the entry’s quick-select character.

In most applications, a general menu column is available at all times to provide the basic functions
the user can enter at any time (Help, Exit, Abandon, About, and any application-specific functions
you choose). The first column in the sample script is an example of a general menu column.

The third menu column in our example (input) contains only reserved menu entries. When
selected, these entries are processed automatically by UI Toolkit without returning to the program.

Note that each column definition is terminated with a .END. This is required.

Compiling script files
The next step is to add your definitions into a window library. See “Managing Window Libraries to
Store and Retrieve Display Components” on page 6-10 for more information about window
libraries.

Step 2 - Loading the menus

To use menus in your program, you first have to load their definitions into UI Toolkit’s memory
using the M_LDCOL subroutine. This Toolkit routine locates the specified menu column in the
window library and loads its definition into the Toolkit memory area. It then returns a value in the
variable you have passed as the first argument. From this point on, every reference to this menu
column is accomplished by referencing this variable. Like all other identifiers used by Toolkit,
column and window IDs should be i4 variables. The following code loads several menu columns:

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

6-14 Getting Started with Synergy/DE 9.3 (12/09)

startup,
 xcall date(date)
 xcall u_start("cust_lib", 1, 1) ;Initialize--1 header line,
 ; 1 footer line
 xcall e_sect("C U S T O M E R P R O F I L E",
 & D_HEADER, D_CENTER) ;Place text in header
 xcall e_sect(date, D_FOOTER, D_LEFT) ;Place text in footer
 xcall m_ldcol(gen_col, g_utlib, "general",,, D_GLOBAL)
 xcall m_ldcol(options_col, g_utlib, "options")
 xcall m_ldcol(input_col, g_utlib, "input", D_NOPLC)
 xcall m_ldcol(select_col, g_utlib, "select", D_NOPLC)
 return

U_START places the channel for the primary window library (the first argument) in the global
variable g_utlib. All of the columns loaded above reside in cust_lib. In this example, the input and
select menu columns are loaded but not placed on the menu bar. Because this is the only place in
the application that loads these columns, and this code is only executed once, there is no need to
pass the optional search argument.

Notice too that the general column is promoted to global status. All global menu columns are
placed on the menu bar to the left of local columns, regardless of their placement order. By making
the general column global, we can also take advantage of UI Toolkit features that allow placement
and removal of columns by their local or global status.

Step 3 - Processing menus

The following sample code demonstrates basic menu processing. While placed menu columns and
their entries are accessible in almost every UI Toolkit routine that receives input from the user,
M_PROCESS is the Toolkit routine that forces the menu bar to process. Below is one method for
giving your user a list of options at the start of an application. It assumes that the entry names
returned by M_PROCESS match the name of the programs they activate.

do
 begin
 xcall m_process("[customer]")
 if (g_select)
 begin
 xcall e_enter
 xcall m_column(D_REMOVE, D_LOCAL)
 xcall xsubr(g_entnam)
 xcall e_exit
 end
 end
until (done_flg)

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

Getting Started with Synergy/DE 9.3 (12/09) 6-15

The code starts a loop that explicitly processes the menu bar until the user makes a selection. When
the menu bar is first activated, the customer menu entry is highlighted. Until a selection is made,
UI Toolkit controls the interface. When a selection is made, M_PROCESS exits and the program
needs to determine the event that occurred.

We start by testing the global variable g_select. If this variable is true (in other words, nonzero)
UI Toolkit is telling us that the reason it returned from M_PROCESS was that a menu entry was
selected. Next we enter a new environment and prepare for the new program to be called by
removing all local columns (those columns that are no longer valid now that a selection has been
made). Since a new environment has been entered, whatever program gets called by the XSUBR
subroutine can modify the Toolkit screen in any way necessary; these changes are reversed when
the program exits and E_EXIT is called. When the user is done, he or she selects “Exit,” which
returns O_EXIT in g_entnam. Our external subroutine O_EXIT sets the global variable done_flg
equal to true, and the program exits the loop.

Another way of processing a menu column is with a CASE or USING statement. Consider the
following example:

repeat
 begin
 xcall m_process("[customer]")
 if (g_select)
 begin
 xcall e_enter
 xcall m_column(D_REMOVE, D_LOCAL)
 using (g_entnam) select
 ("CUSTOMER, VENDOR"), xcall customer
 ("OTHER"), xcall other
 ("O_EXIT"), exitloop
 endusing
 xcall e_exit
 end
 end

Each of the menu selections has a corresponding match value except o_help. O_help is a reserved
entry that UI Toolkit processes directly. We will discuss help in “Implementing native Toolkit help”
on page 6-36.

Note that the “OTHER” label has no corresponding menu entry. This entry can never be accessed
by this program while the menus are defined as they are in this example. To enable this selection, a
menu choice would have to be added to an existing menu column, or another menu column that
contains this entry would need to be placed on the menu bar. This is a prime example of how you
can distribute a complete application and only enable certain portions of the code, based solely on

UI Toolkit uppercases the return values before moving them to g_entnam. If you specify
your match values in lowercase, they will not match.

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

6-16 Getting Started with Synergy/DE 9.3 (12/09)

the composition of the window libraries. If your customer wanted to pay for the additional features,
you would simply have to provide a window library with a column that contains the additional
entry—the customer would have access to that entry, and you wouldn’t need to change any code.

While the CASE or USING approach may require a little more code, it is more self-explanatory:
anybody looking at this code can see exactly what happens with each menu event. Of course, if the
number of possible menu selections is large, the selection statement can become quite unwieldy,
making the XSUBR approach more desirable. XSUBR is also more flexible, enabling you to create
a generic menu processing routine and also to add an unlimited number of menu entries without
modifying your code.

What has been discussed here is only a portion of the capabilities of UI Toolkit menu processing.
Consult the “Menu Routines” chapter of your UI Toolkit Reference Manual for a comprehensive
description of the Toolkit routines that affect menu processing. Additional options offer such
features as menu creation at execution time, manipulation of menus in environments, and
submenus. Because menu processing drives all Toolkit processing, a thorough understanding of
how menus work is essential.

Creating input windows
With an understanding of menu processing, we are ready for the next logical step. How do we
display and retrieve information from our users? The answer: input windows.

To use a UI Toolkit input window, your perspective has to change. In your old style of
programming, you had to deal with each field as a separate entity, taking care to position the cursor
correctly, display the prompt, and then read the data. Once your program had the data, you had to
decide if the data was valid and perhaps reformat it. If an input error was detected, you had lots of
code to erase the screen section, reposition the cursor, acquire the input again, redo the edits—until
you got acceptable data. Only when this process was complete could you move on to the next field.

With UI Toolkit input windows, you no longer have to think in terms of processing individual
fields in a record. Instead, you deal with them as a group that is managed by Toolkit on your behalf.

Field information originates as an input window definition in a script file. The script file can either
define field options locally, pull information from the repository, or do a combination of both.
Since most fields in an input window have a corresponding field in the data area of your program, it
makes sense to define this data once, in the repository, and reference the definition in both your
source and script files. If you have input fields that will be used in more than one window, it’s also
helpful to use S/DE Repository to store field information (such as position, prompt, and validation).
UI Toolkit’s ability to extract information from Repository is one of its most useful features.

Most of the edits that you are used to making on input data can now be done automatically by
UI Toolkit’s input processor. For instance, you can specify that a particular field is decimal and
must contain a value between 100 and 1000. If the user enters a value that is outside that range, or
that is not decimal data, Toolkit will detect the error, display the appropriate message, erase the
field, and reposition the cursor for input. For alpha fields, you can create a list of correct entries to
be displayed for the user; the user will be able to select only from that list of valid options.

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

Getting Started with Synergy/DE 9.3 (12/09) 6-17

Of course, many other data validation options are available: you can require nonblank or nonzero
input to a field, specify the help window for the field, provide text to be displayed on the
information line when the field is processed, define a field’s paint character, specify a field’s
display format string, identify routines to call when the user enters or leaves a field, and more. (For
more information on arrive and leave methods, see “Using Methods” on page 6-45.)

With Repository you can define a field’s characteristics once, and all input script references to that
field definition are assured the same characteristics. If you need to change a field attribute (for
instance, you have a department field that has an associated selection list and you want to add
another department) all you need to do is add that department to the selection list in your repository
and rebuild your window library. The next time your application is run, every instance of that field,
on every screen in the application, will contain the additional department. You can also override
any Repository characteristic (except the data type and size) in your script file.

Navigating an input window

To handle interfield and intrafield movement in a non-Windows environment, UI Toolkit provides
you with a number of reserved menu entries. The three primary reserved entry types are those that
apply to every field (I_ and some E_), those that apply to selection windows and lists (S_), and
those that apply to text fields (E_). Define a separate menu column for each of these entry types.

Load (but don’t place) each of these columns at start-up. When you call I_INPUT, pass the ID for
the “input” column in the fourth argument position, the “select” column in the fifth position, and
the “text” column as the sixth argument. I_INPUT will place and remove each column when
appropriate, and when a selection is made from any of these columns, it will perform the designated
task without returning to your program.

Because these tasks are handled automatically on Windows, UI Toolkit on Windows does not place
these menu columns. If you plan to run your application as both Windows and non-Windows, don’t
mix reserved and nonreserved (to be returned as events to be processed by your application) menu
entries in a column to be placed by I_INPUT. If you do, that column will not be placed on
Windows, and events your program expects will never be generated.

Step 1 - Defining input windows

Like all other UI Toolkit screen components, input windows are defined in script files and
processed into window libraries. To define an input window, you can use Composer or a text
editor. The following is a script file definition of an input window. In this example, all the field
information is defined locally. This approach gives you the ability to view the entire structure of the
input window, including the .FIELD options, at a glance.

.input customer, 14, 71

.placement 3, 5

.title "Customer Folder", color(3)

.line WndLin1, 65, pos(5, 4)

.line WndLin2, 65, pos(10, 4)

.line WndLin3, 65, pos(14, 4)

.repository_structure CUSTOMER

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

6-18 Getting Started with Synergy/DE 9.3 (12/09)

.field cmpny, a45, prompt("Company "), pos(2, 8), fpos(2, 16), break, -
 drill_method("cmpny_drill"), hyperlink_method("hyperlink")
.field address, a45, prompt("Address "), pos(3, 8), fpos(3, 16), -
 hyperlink_method("hyperlink")
.field city, a25, prompt("City "), pos(4, 8), fpos(4, 16), -
 hyperlink_method("hyperlink")
.field state, a2, prompt("State "), pos(4, 44), fpos(4, 50), -
 hyperlink_method("hyperlink")
.field zip, d5, prompt("Zip "), pos(4, 55), fpos(4, 59), -
 hyperlink_method("hyperlink")
.field a4, salutation, fpos(6, 3), -
 select(0, 0, 4, "Mr. ", "Mrs.", "Miss","Ms. "), radio, -
 select(0,0,1, "Mr.", "Mrs.", "Miss", "Ms.", -
 hyperlink_method("hyperlink")
.field lname, a16, prompt("Last "), pos(6, 11), fpos(6, 19), -
 help("h_lname"), drill_method("contact_drill"), -
 hyperlink_method("hyperlink")
.field fname, a16, prompt("First "), pos(6, 41), fpos(6, 47), -
 hyperlink_method("hyperlink")
.field phone, d10, prompt("Phone "), pos(7, 11), fpos(7, 19), -
 hyperlink_method("hyperlink"), format("XXX/XXX-XXXX")
.field fax, d10, prompt("Fax "), pos(7, 33), fpos(7, 37), -
 hyperlink_method("hyperlink"), format("XXX/XXX-XXXX")
.field modem, d10, prompt("Modem "), pos(7, 51), fpos(7, 57), -
 hyperlink_method("hyperlink"), format("XXX/XXX-XXXX")
.field email, a47, prompt("E-mail "), pos(8, 11), fpos(8, 19), -
 hyperlink_method("hyperlink")
.field notes, a47, prompt("Notes "), pos(9, 11), fpos(9, 19), -
 hyperlink_method("hyperlink")
.field type, a10, fpos(11, 4), hyperlink_method("hyperlink")
.field status, a10, fpos(13, 4), hyperlink_method("hyperlink")
.field sl, d1, prompt("Licensed for SL "), fpos(11, 22), checkbox
.field tk, d1, prompt("Licensed for Tk "), fpos(12, 22), checkbox
.field rps, d1, prompt("Licensed for RPS "), fpos(13, 22), checkbox
.field pvcs, d1, prompt("Licensed for PVCS "), fpos(11, 42), checkbox
.field odbc, d1, prompt("Licensed for ODBC "), fpos(12, 42), checkbox
.field dte, d1, prompt("Licensed for DTE"), fpos(13, 42), checkbox
.button I_OK, text("OK")
.button O_ABANDON, text("Cancel")
.button O_HELP, text("Help")
.button_set bottom(3)
.set customer, CUSTOMER, cmpny, address, city, state, zip, salutation, -
 lname, fname, phone, fax, modem, email, notes, type, status, sl, -
 tk, rps, pvcs, odbc, dte
.set nokey, CUSTOMER, address, city, state, zip, salutation, lname, -
 fname, phone, fax, modem, email, notes, type, status, sl, tk, rps -
 pvcs, odbc, dte
.end

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

Getting Started with Synergy/DE 9.3 (12/09) 6-19

Take a look at the input window below. It’s the same input window, but in this example its field
information is pulled from the repository. The advantage to defining your fields in Repository is
that all the qualifiers for each field are defined only once, no matter how many times the field is
referenced. There is no need for the .STRUCTURE command, because the structure information is
part of the repository definition. If you include the repository definition in your program as well (as
you should), a match between the data in your program and the fields in your window definition is
ensured: the input processor will automatically know where to put the data for each field, regardless
of the order specified or gaps left by the exclusion of any fields. A downside to the repository
approach is that to view field information, you must select the structure in Repository and look at
each field definition separately.

Notice in the example that the lname and fname fields have a required qualifier. Any qualifier not
specified in the repository can be added in the script file. If any qualifiers conflict, the one in the
script file takes precedence. You can also turn off repository qualifiers in the script file.

.input customer, 14, 71

.placement 3, 5

.title "Customer Folder", color(3)

.line WndLin1, 65, pos(5, 4)

.line WndLin2, 65, pos(10, 4)

.line WndLin3, 65, pos(14, 4)

.repository_structure CUSTOMER

.field cmpny

.field address

.field city

.field state

.field zip

.field salutation

.field lname, required

.field fname, required

.field phone

.field fax

.field modem

.field email

.field notes

.field type

.field status

.field sl

.field tk

.field rps

.field pvcs

.field odbc

.field dte

.button I_OK, text("OK")

.button O_ABANDON, text("Cancel")

.button O_HELP, text("Help")

.button_set bottom(3)

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

6-20 Getting Started with Synergy/DE 9.3 (12/09)

.set customer, CUSTOMER, cmpny, address, city, state, zip, salutation, -
 lname, fname, phone, fax, modem, email, notes, type, status, sl, -
 tk, rps, pvcs, odbc, dte
.set nokey, CUSTOMER, address, city, state, zip, salutation, -
 lname, fname, phone, fax, modem, email, notes, type, status, sl, -
 tk, rps, pvcs, odbc, dte
.end

Note that both input window definition methods have some things in common. Anything that does
not pertain to a field definition is specified entirely in the script file. A default screen position is set,
a title is specified, and lines are drawn to organize the screen into logical sections. The .SET
commands create input sets: groups of fields to be processed or accessed as a unit. And on
Windows systems, three buttons, “OK,” “Cancel,” and “Help” will be displayed. The
.BUTTON_SET command specifies that these buttons will appear horizontally at the bottom of the
screen (three buttons per row).

Step 2 - Loading input windows

Just like we had to load our menu columns with UI Toolkit, we also must load our input windows.
The routine that does this is I_LDINP.

xcall i_ldinp(customer_inp, g_utlib, "customer", D_NOPLC)

Notice in the sample that the definition of the window is taken from the default window library (the
file open on the channel contained in g_utlib), and that we are not placing it on the screen at this
time (D_NOPLC). It is a common practice to load all windows and menu columns in your
initialization code and then place them only when needed.

Step 3 - Displaying an existing record

To display read-only data to a user, use I_DISPLAY to “display” or load the data into the window.
Then the U_POPUP routine can be used to hold the information on the screen until the user
presses ENTER.

display_record,
 xcall e_enter ;So we can restore the screen
 xcall u_window(D_REMOVE, D_ALL, D_PLACE, customer_inp)
 xcall e_sect("View customer info", D_INFO, D_CLEAR, D_LEFT)
 xcall i_display(customer_inp,, customer) ;Fill the window with data
 xcall u_popup(g_utlib, "customer") ;Freeze the screen
 xcall e_exit ;Then restore the screen
 return ;Return to where we were

In this example, a new environment is entered to enable us to reverse screen changes when we are
done. Next, U_WINDOW is called to remove all other windows and place the customer window.
I_DISPLAY is then called to load the window with data. Once the window contains the data to
display, U_POPUP is called to update and freeze the screen. When the user presses ENTER, the new
environment is exited, returning the screen to the state it was in when display_record was called.

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

Getting Started with Synergy/DE 9.3 (12/09) 6-21

Step 4 - Adding a new record

An input window that is used to get user input is processed in a loop. Consider this example:

process_window,
 xcall e_enter
 xcall u_window(D_PLACE, customer_inp) ;Place at default position
 do
 begin ;Begin input loop
 xcall i_input(customer_inp, "customer", customer, input_col,
 & select_col, text_col)
 if (g_setsts) then ;Menu entry or break field
 begin

 if (g_select) then
 call menu_choices ;Menu selection

 else
 call break_fields ;Break field
 end

 else
 call record_complete ;Input set complete
 end ;End input loop
 until done
 clear done
 xcall e_exit
 return

break_fields,
 using (g_fldnam) select
 ("CMPNY"), begin ;Check after each field
 if (C_LNAME.and.C_FNAME) ;Is key complete?

 call test_for_duplicates
 if (duplicate) then
 call init ;Initialize for next input
 end
 endusing
 return

init,
 xcall u_message(%atrim(cmpny)+" already exists")
 xcall i_init(customer_inp, "customer", customer)
 return

menu_choices,
 using (g_entnam) select
 ("O_EXIT","O_ABANDON"), done = TRUE
 ("G_ABOUT"), xcall u_about(TITLE, VERSION, %datecompiled)
 endusing
 return

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

6-22 Getting Started with Synergy/DE 9.3 (12/09)

record_complete,
 store(customer_ch, customer) [$ERR_NODUPS=store_error]
 call init
 return

Here the input processor has control of all input until one of three events occur:

The user makes a menu selection.

A “break” field is processed.

Every field in the input set has been input to.

After the call to I_INPUT, we test for one of these three events and call an internal subroutine to
handle the event.

The key to understanding input processing is understanding the structure of the input processing
loop and the tests performed to determine the exit event. As we did in menu processing, we use
global variables provided by UI Toolkit to determine the event that caused I_INPUT to exit. In our
example we first examine g_setsts to find out if input processing is incomplete. If the value is true
(nonzero), we know input processing is incomplete—either a menu selection or a break has
occurred. Next we test g_select. If it is true, we know the user made a menu selection. A USING
statement determines the menu selection that was made. If g_select is false, the exit event was a
break field; this time the USING statement determines the field that activated the break. If g_setsts
is false, no further processing needs to be done on this input set. We store the completed record and
initialize the window in preparation for the next record.

When I_INPUT exits, it retains the context for the next time it is called. The context is simply the
next field to process. By default, it is always the field after the field that caused I_INPUT to exit. So
after a break field is processed or a menu selection is made, when the program returns to the top of
the loop and calls I_INPUT again, processing resumes right where it left off. I_NEXT (see the
example below) changes the input context, and I_INIT resets the input window to its initialized
state. The context for an initialized window is the first field in the input set.

See step 5 for another example of how to add a record.

Step 5 - Modifying an existing record

To use your input window to modify an existing record, load the data into the window with
I_DISPLAY. Use I_NEXT to set the context (the input field to be processed with the next call to
I_INPUT).

process,
 xcall e_enter
 set = "customer"
 do
 begin
 xcall i_input(customer_inp, set, customer, input_col, select_col)
 if (g_setsts) then ;Check for incomplete input processing
 if (g_select) then ;Menu processing

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

Getting Started with Synergy/DE 9.3 (12/09) 6-23

 xcall xsubr(g_entnam) ;Entry name matches subroutine name
 else
 begin ;Break processing
 using (g_fldnam) select
 ("CMPNY"), call dup_chck
 endusing
 end ;Break processing
 else
 begin ;Input set complete
 if (load_flg) then ;Either MODIFY mode...
 begin
 read(customer_ch, cmpny, cmpny) [$ERR_TOOBIG=cont]

cont,
 write(customer_ch, customer)
 clear load_flg
 end
 else ;... or ADD mode
 using (set) select
 ("customer"), store(customer_ch, customer) [ERR=updterr]
 ("nokey") , write(customer_ch, customer) [ERR=updterr]
 endusing
 if (FALSE)
 begin ;Store failed

updterr,
 xcall u_message("Error updating customer file")
 end
 xcall init ;Initialize window, enable cmpny field
 end ;Input set complete
 end
 until (done_flg)
 xcall e_exit
 return

dup_chk,
 find(customer_ch, customer, cmpny) [$ERR_KEYNOT=newrec,
 & $ERR_EOF=newrec]
 reads(customer_ch, customer)
 xcall i_display(customer_inp, set="nokey", customer)
 xcall i_next(customer_inp, set, "*FRST*")

newrec,
 return

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

6-24 Getting Started with Synergy/DE 9.3 (12/09)

In this example we take advantage of multiple input sets to either add or modify data. If we
determine in the dup_chk internal subroutine that the record exists, we read the data and load it
into the input window with I_DISPLAY. Notice that we change the input set from customer to
nokey. This is because we will be modifying an existing record and don’t want the user to modify
the primary key. If you look in the script definition for the customer window, you’ll see that the
nokey input set contains all fields except the primary key, cmpny. Because I_DISPLAY flags
every field as having input entered in it, I_NEXT is called to set the context to the first field in the
nokey input set. When dup_chk returns to the input processing loop and re-executes I_INPUT, the
input window will contain the data to modify, and the user will not be able to access the cmpny
field.

If the FIND statement fails to find a matching record, it skips the code that updates the input
window and returns to the input loop to continue “add” processing.

Creating selection windows
Selection windows are a powerful way to present a set of valid options to your user. If you specify
a list of values for a field (in either its script or repository definition), when that field is processed, a
selection window containing those choices appears. Your user can only select from those choices.

If several of your input windows contain fields that share a set of valid choices, you can create a
single selection window and associate it with each of those fields. Thus, you maintain the list of
choices in only one place, and by changing just that window, every field that uses the window is
changed.

Step 1 - Defining selection windows

Selection windows are quite simple to create and maintain. You can use Composer or a text editor
to create selection windows. (Composer uses its own text editor to create selection windows.) The
following sample code defines two selection windows:

.select yes_no

.placement 2, 2

.border on, color(1)

.item "Yes"

.item "no"

.end

.select marital_stat, 2

.placement 2, 2

.border on, color(1)

.item "Married"

.item "Divorced"

.item "Widowed"

.item "Single"

.end

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

Getting Started with Synergy/DE 9.3 (12/09) 6-25

The first selection window is a generic window for yes or no answers. The choices are displayed
vertically. In most applications, you would also create a no_yes selection window with the items
reversed. This is because the default choice is the first one listed; assigning the appropriate
selection window to your fields (with the selwnd .FIELD qualifier) makes your application more
user-friendly. The second window is a marital status list. It has four entries. The “2” on the
.SELECT command is the number of rows to display; the entries in this column are split into two
two-row columns.

Step 2 - Processing selection windows

To move about in your selection windows in a non-Windows environment (it is handled
automatically on Windows), create a menu column that contains the selection window reserved
menu entries (S_). In most cases, you will associate each entry with a shortcut. (The arrow keys are
a logical choice.) If you pass the column ID as the fifth argument to I_INPUT, the column will be
placed whenever a selection field is processed and removed as soon as that selection field is exited.
The sample below uses the reserved entries and associates them with the arrow key shortcuts. It is
to be loaded (but not placed) at start-up.

.column sel_col, "Selection keys"

.entry s_up, "Up", key(UP)

.entry s_down, "Down", key(DOWN)

.entry s_right, "Right", key(RIGHT)

.entry s_left, "Left", key(LEFT)

.end

Dynamic selection windows

We have only discussed static selection windows in this section. UI Toolkit also provides routines
that enable you to build selection windows at runtime. This feature enables your application to
create and modify selection windows based on factors that are not determined until the program
executes. For example, selections can be loaded from a file, based on security or license status. See
the “Selection Routines” chapter in your UI Toolkit Reference Manual for more information.

Creating text windows
One of the most difficult things to code is an editor for text entry. Many applications require editing
capabilities, whether it be to allow entry of comments on a purchase order, special instructions on a
delivery order, or justification on a General Ledger entry. Some applications address the problem
by calling a system utility to perform the editing. But what happens when you move to another
platform and that utility is not available? Or you upgrade your system and the utility you previously
used is not yet available on the new version? Your application doesn’t work, or its capabilities are
severely diminished. To address this problem, and to give your application true platform
independence, UI Toolkit provides text-editing capabilities.

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

6-26 Getting Started with Synergy/DE 9.3 (12/09)

Step 1 - Define the functions

UI Toolkit enables you to edit or simply view text. Both capabilities are handled via text windows
and reserved menu entries. Edit functions are activated by the E_ reserved entries, and the text view
functions (scrolling) by the T_ reserved entries. Each set of entries should reside in its own column,
with a unique shortcut key assigned to each entry. This script shows typical edit and view columns:

.column textedit, "Edit text"

.entry e_left, "Move left", Key(left)

.entry e_right, "Move right", Key(right)

.entry e_emov, "End of line", Key(end)

.entry e_bmov, "Beginning of line", Key(home)

.entry e_xup, "Move up", Key(up)

.entry e_xdown, "Move down", Key(down)

.line

.entry e_cdel, "Delete character", Key(del)

.entry e_lclr, "Clear line", Key(^X)

.entry e_edel, "Clear to EOL", Key(^E)

.entry e_ilin, "Insert a line", Key(ins)

.entry e_join, "Join lines", Key(^J)

.end

.column textview, "View text"

.entry t_top, "Top of window", Key(^T)

.entry t_bottom, "Bottom of window", Key(^B)

.entry t_lside, "Left side of window", Key(^L)

.entry t_rside, "Right side of window", Key(^R)

.line

.entry t_pagup, "Scroll up page", Key(prev)

.entry t_pagdwn, "Scroll down page", Key(next)

.entry t_scrup, "Scroll up half page", Key(f8)

.entry t_scrdwn, "Scroll down half page", Key(f7)

.end

Step 2 - Define the text window

The text window should be large enough to contain the text to be viewed or edited. If the window is
too large for the screen, you must specify a display area that fits the screen. UI Toolkit will use the
reserved entries your user selects to manage the scrolling of the display. This script window
definition can be created in Composer or a text editor.

.window text, 99, 73

.display_area 1, 1, 20, 73

.placement 2, 2

.end

The sample above defines a window that is 99 lines long and 73 characters wide. The display area
is 20 by 73, and starts in row 1, column 1 of the window. By default, the window will be placed at
row 2 column 2 of the display region. U_WINDOW can be used to change the default placement.

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

Getting Started with Synergy/DE 9.3 (12/09) 6-27

Step 3 - Load the windows and menu columns

Just as we have done with all of our other Toolkit objects, we need to load our window and our
menu columns. The routine used to load a display (noninput) window is U_LDWND. Notice in the
example below that neither the window nor the columns are placed. The window is placed when it
is time to use it, and the UI Toolkit text routine places and removes the columns automatically.

xcall u_ldwnd(text_win, g_utlib, "text", D_NOPLC)
xcall m_ldcol(view_col, g_utlib, "textview", D_NOPLC)
xcall m_ldcol(edit_col, g_utlib, "textedit", D_NOPLC)

Step 4 - Convert the window

Once the window is loaded, it must be converted into a text window. T_SETUP establishes the
controls for the display of the window and the default behavior for subsequent data that is loaded
into the window. Display characteristics such as margin settings, paragraph treatment, display color
and renditions, text wrapping, and display size can all be set with T_SETUP.

For our example, the window is placed as specified in the script file. We use the T_SETUP defaults
and clear the window of any text that might have remained from the previous edit.

xcall e_enter
u_window(D_PLACE, text_winid) ;Place at default position
xcall t_setup(text_winid, D_INIT) ;Initialize the window

Step 5 - Add data to the text window

To edit the text window, we place the call to T_EDIT in a loop. Exit from the loop is controlled by
menu entries in a column placed before the call to T_EDIT (a column that doesn’t contain any
reserved menu entries). We allow T_EDIT to load our reserved entry menu columns for us. The
example takes all of the default text processing modes (start at row 1, column 1; set insert mode;
edit in a forward direction; allow lowercase input). By passing the variables in the row, column,
insert, and case positions, we save the exit value for each. When the program returns to the top of
the loop and calls T_EDIT, editing resumes in exactly the same place, in the same mode.

repeat
 begin
 xcall t_edit(text_win, row, col, insert, dir, case, edit_col,
 & view_col,, "text_help")
 if (g_select)
 case g_entnam of
 begincase
"SAVE": begin ;Save and resume
 call write_data
 exitloop
 end
"O_ABANDON": exitloop
 endcase
 end

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

6-28 Getting Started with Synergy/DE 9.3 (12/09)

xcall e_exit
return

Step 6 - View the contents of the text window

Use T_VIEW to enable the user to scroll through the contents of a text window without editing it.
The example below does not put T_VIEW in a loop because the only event that causes it to exit is
“Exit.” When the user selects “Exit,” there is no reason to re-enter. Scrolling through the window is
handled by the reserved menu entries contained in the view_col column.

view_text,
 xcall e_enter
 u_window(D_PLACE, text_winid, 1, 1)
 xcall t_view(text_win, view_col, "view_help")
 xcall e_exit
 return

Extracting data from a text window
Once the user has finished editing, we can do one of two things to save the input:

Store the contents of the window into a window library.

Extract the information from the window into our program’s data area so it can be processed in
some manner.

Our example extracts the data to the program. To store the window and its contents to a window
library, see the U_SAVE subroutine in the “Utility Routines” chapter of the UI Toolkit Reference
Manual.

Step 7 - Define a data structure to hold the window contents

The first thing needed to extract the data from a text window is an alpha array with at least as many
elements as there are rows in the text window. The size of each element should match the number
of columns in the window. In the example, we allocate an alpha array whose dimension is based on
a compiler definition (NUMLINES). We use a .DEFINE so we can use the same value as an upper
boundary when we unload the window data into the array. If at some point in the future the text
window needs to change size, we only have to change the value in the .DEFINE; all references to
this value will remain synchronized.

.define NUMLINES, 99 ;Number of lines in text window
record
 textline ,[NUMLINES]a73

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

Getting Started with Synergy/DE 9.3 (12/09) 6-29

Step 8 - Unload the data

To unload the data, we call the UI Toolkit routine T_GETLIN. Our example routine transfers the
data from the text window into the textline array, starting with line 1 and continuing through line
99 (NUMLINES). Because the user may not have filled the entire window with text, it might be
beneficial to know exactly how many lines were retrieved; this value is returned in the lines_input
variable. This variable is used as the upper boundary in the routine that stores the data.

write_data,
 xcall t_getlin(text_win, textline, NUMLINES, start_line=1,
 & lines_input)
 for ivar from 1 thru returned ;Now store the data records
 begin
 entry_number = hold_entry
 entry_line = ivar
 entry_text = textline[ivar]
 store(text_ch, diary)
 end
 return

See also

The “Text Routines” chapter in your UI Toolkit Reference Manual for more information about
other text processing features that include the ability to load text into a window and store data with
the window in a window library.

Processing lists
A list is a virtually unlimited collection of identically formatted items, its size limited only by the
disk space available. In its most basic form, a list is a visual representation of a file. But a list
doesn’t have to derive its contents from a single file—you can construct the items in a list of data
from any source or any combination of sources. But, like the records in a file, while the contents of
each item are different, each item is structured the same.

An input window defines the structure of a single list item. Usually you create this input window
for the sole purpose of associating it with a list. To display the list on the screen, the list processor
makes multiple copies of this input window, each with its own data.

Of course, you may want to do some things a little differently for your list input windows. If you
want your application to be portable to Windows platforms and want to use multiline list items, you
will need to use the ActiveX list control when processing your list. With a UI Toolkit list, you are
restricted to single-line list items (and thus a single-line list input window). In most cases, your list
will have a header, so having prompts in your window will not make much sense. Also, if you pull
the field definitions from your repository and the repository contains default values for pos and
fpos, make sure you override them in the script definition.

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

6-30 Getting Started with Synergy/DE 9.3 (12/09)

In your script file you will also define the list class. While an input window defines the structure of
a list’s items, the list class defines the characteristics for the entire list. Things like the number of
items visible at one time, the list’s position on the screen, any methods (special subroutines called
by the list processing routines) associated with the list, and the number of header and footer lines
are all part of the list class.

When the list processor is called, it tries to perform the request your program passed to it. If this
request requires an item that hasn’t been loaded onto the list, the list processor calls your load
method. A load method is a subroutine written by you that the list processor calls each time it needs
a new item. Once an item is loaded, the list processor manages that item itself, storing its
information in its own temporary files. The load method is called only once per item, regardless of
the number of times that item is accessed.

A list item consists of two components:

The display component, which is the formatted information as it is displayed on the screen

The data component, which is data that you associate with the item

In the simplest case, the display component matches the data component, but there is no
requirement that they be related. Your load method should load the list’s display component into its
input window and the data component into its data area.

Step 1 - Define your display window

Our sample window contains a field that will be loaded (as the title indicates) with the company
and contact names. The data to be loaded into this field is constructed in the load method, from the
company, fname, and lname fields.

.input cstlst_inp, 1, 64

.placement 2, 2

.title "Company, Contact"

.field display, a64, fpos(1,1)

.end

Step 2 - Define your list class

As you can see, there isn’t much to a list class definition. In the sample below, we define a page as
containing five items, reserve one line for the header, and specify the load method. The list will be
placed at row 1, column 15.

.listclass customer_list, items(5), -
 headers(1), -
 load_method("load_cust")
.placement 1, 15
.end

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

Getting Started with Synergy/DE 9.3 (12/09) 6-31

Step 3 - Create the load method

Because your application does not call the load method directly, you do not control the arguments
passed to it—you must write the routine to conform to the arguments that the list processor passes.
The arguments must match the format below exactly.

Communication between the subroutine and the list processor is accomplished through the request
argument (a_request). A list can be expanded (a new item added) at the top, at the bottom, or at the
top or bottom, depending on settings specified when the list is loaded from the window library. If
the list is being loaded in both directions, your load method will check the request argument to
determine whether the next new item is to be added to the top or the bottom.

In the example below, each new item is added to the bottom, so you don’t need to check a_request.

Using a global variable for the input channel (the file was opened at start-up in the main routine),
the load method reads sequentially through customer.ism from top to bottom (one record per call),
constructs the display string, and calls I_DISPLAY to update the list’s input window with the
display for each new item.

In addition to the visible portion, data must also be associated with each item. A_data is the data
area passed to the list processor (L_SELECT or L_PROCESS) and the list creation routine
(L_CREATE). Once the item’s data has been returned by the load method to the list processor,
your program can use it to search the list for a specific item, determine the current list item, perform
file look-ups, load an input window for modification or viewing—just to name a few things. It is
important that you pass the data area to be associated with the list to all the list routines and that you
load it with the appropriate data in your load method.

When the load method READS encounters end of file, it skips the load logic and sets a_request
equal to D_LEOF. This tells the list processor that no more items are to be added to the list. From
this point on, the list processor will not call the load method again, and instead will manage all list
items itself.

subroutine load_customer
 a_listid ,n ;List ID
 a_request ,n ;RETURNED - LP communication variable
 a_data ,a ;Data area (customer record)
 a_inpid ,n ;Input window ID
 a_disabled ,n ;Flag for disabling an entry
 a_itemindex ,n ;The item’s ordinal position in the list

.include "WND:tools.def"

.include "ids.gbl"

Do not depend on the order in which items are requested when two-way loading is enabled,
because the user can change the order in which items are loaded for any given list.

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

6-32 Getting Started with Synergy/DE 9.3 (12/09)

record
 display ,a65

proc
 begin
 reads(custload_ch, customer, eof)
 xcall i_display(a_inpid,,(display=%atrim(cmpny)+",
 & "+%atrim(fname)+" "+lname))
 a_data = customer
 exit

eof,
 xcall i_init(list_inp)
 a_req = D_LEOF
 end
 xreturn
endsubroutine

Because load methods are just external subroutines, your application program can use all of the
power of Synergy Language to select or construct the items to add to the list. If you choose not to
specify the load method in your .LISTCLASS definition, or if you want to use a different load
method, the L_METHOD subroutine enables you to specify or change the load method at runtime.

If your load method loads items sequentially from a file, the record pointer must be on the next
record to be loaded. If the load method retrieves data on the same channel used to update the
database file, there is no assurance that the pointer is on the correct record. Therefore, you must
open the input file on a channel dedicated to the load method. No other I/O can occur on this
channel. If the list is being expanded in both directions, the file must be opened twice: once for the
forward READS, and once for the reverse READS. In other words, a channel must be dedicated to
the list load method for each load direction.

Step 4 - Load your list input window and selection column

Before you can associate your list input window with a list, the window must be loaded. And, like
other UI Toolkit routines that get input from the user, the list processor’s selection routine
recognizes a set of reserved menu entries. The following statements to load both of these list
components appear in the program’s start-up routine. Make sure you load your list input window
and selection column with the D_NOPLC argument—the input window and selection column will
be placed and removed with the list, automatically.

xcall m_ldcol(lsel_col, g_utlib, "list_sel", D_NOPLC)
xcall i_ldinp(customer_lst_inp, g_utlib, "cont_l_inp", D_NOPLC)

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

Getting Started with Synergy/DE 9.3 (12/09) 6-33

Step 5 - Create the list

All of the components are in place and ready to be assembled. We create our list with a call to the
UI Toolkit routine L_CREATE. Although the syntax is different, L_CREATE can be compared to
Toolkit’s load routines, in that it goes out to the window library, finds the specified definition, and
loads it into memory.

The creation of the list establishes the controls that will be used by UI Toolkit to manage the list.
This is where the list’s display and data components are assigned—the second argument to
L_CREATE is the ID of the list input window, and the third argument is the data area to be
associated with the list. Each of these variables is passed by the list processor as arguments to your
load method.

xcall l_create(customer_lst, customer_lst_inp, customer, g_utlib,
 & "listclass",,, D_NOPLC)

This sample code creates a simple list that will be loaded from top to bottom (the default). The list
is loaded into UI Toolkit memory at start-up but is not placed on the screen. The customer record
is established as its data area—it must be passed in all calls to the list processor as well.

L_CREATE also has additional arguments that control such things as the manner in which the list
is loaded and its placement on the screen.

Step 6 - Process the list

The template for processing a list is quite similar to that for processing other UI Toolkit objects.
A loop structure calls the Toolkit processing routine, L_SELECT. This routine processes the list
selection-style. The first time L_SELECT is called, the list processor determines that it needs an
item. It calls the load method, which returns with an item to be added to the list. The list processor
adds the item, and because the list class says there are five items on a page, it repeats this step four
more times.

As soon as a page has been filled, L_SELECT puts a selection window on the screen. The user can
move around through all the visible items (using the shortcuts associated with the reserved menu
entries, or on Windows, using the mouse and arrow keys). With any request for an item not yet
loaded—for example, if the user presses the shortcut to move down a page—the list processor once
again calls the load method until the request has been filled. A request for an item (or page of
items) that’s already loaded does not initiate a call to the load method. Instead the list processor
retrieves the item (or items) from the file stack, a temporary file management system the list
processor uses to manage the list.

repeat
 begin
 xcall l_select(customer_lst, request, customer,,,,,, lsel_col)
 using (g_entnam) select
 ("G_ABOUT"), xcall u_about(TITLE, VERSION, %datecompiled)
 ("O_EXIT"), exitloop
 ("P_REMOVE"), call remove_entry

Implementing Your User Interface with UI Toolkit
Creating Script Files and Window Libraries

6-34 Getting Started with Synergy/DE 9.3 (12/09)

 ("P_MODIFY"), call modify_entry
 ("P_ADD"), call add_entry
 (), if (request) ;No menu entry
 call process_request ;Process list request
 else
 call display_entry ;Display selection
 endusing
 end
return

L_SELECT exits when a menu selection is made or when the user selects an item by highlighting it
and pressing ENTER. Though it isn’t displayed here, the display_entry routine determines the item
selected by checking the data area passed to L_SELECT (as the third argument). It is essential that
you pass to L_SELECT the same data area specified in the third argument to L_CREATE. If you
don’t, there is no way to determine which item was selected.

See also

The “List Routines” chapter in your UI Toolkit Reference Manual. List processing is truly the most
powerful display tool in UI Toolkit. The example here demonstrates only the most basic aspects.
The possibilities for managing the display of data, from doing input directly into an existing list to
advanced search capabilities, are extensive.

Implementing Your User Interface with UI Toolkit
Implementing Online Help

Getting Started with Synergy/DE 9.3 (12/09) 6-35

Implementing Online Help
Toolkit has routines that support three types of online help: native Toolkit help, HTML Help
(.chm), and WinHelp (which is now obsolete). Native Toolkit help is the default mechanism for
displaying context-sensitive help. It uses Toolkit windows to display autonomous help topics (as
opposed to a help system). To implement native Toolkit help, you’ll associate help windows with
fields and/or some routines, and you’ll use the O_HELP menu entry to activate help. See
“Implementing native Toolkit help” below.

With HTML Help and WinHelp, on the other hand, your help system can include a table of
contents, index, and search (as well as different types of windows). Once the help system is open,
users can use these and other features to navigate to other help topics. To implement HTML Help or
WinHelp, you’ll call %U_HTMLHELP or %U_WINHELP. These routines wrap most of the
functionality of the Microsoft HTML Help API and WinHelp API. The state of the help system
when it opens depends on the options you pass in the call and the features available in the help
system (table of contents, index, etc.).

No matter which of these help formats you use, you can use Toolkit’s built-in context-sensitive help
features to associate a field and, in some cases, a routine with a help topic. These features include a
replaceable help method, the O_HELP reserved menu entry, and context IDs for fields and some
routines (as discussed in “Implementing native Toolkit help” below).

One way to implement HTML Help or WinHelp is to register your own Toolkit help method, and
have that help method make the %U_HTMLHELP or %U_WINHELP call. If you do this, the
O_HELP menu entry invokes your help method, and context IDs you’ve defined are automatically
passed to the method. For example, with the following code an, HTML Help system (myhelp.chm)
opens when the user presses F1 or selects Help from the menu. A context ID may be passed to the
help method, so the help method has an argument that accepts a context ID. (For information on the
cases in which a context ID is passed to the method, see EHELP_METHOD in the “Environment
Routines” chapter of the UI Toolkit Reference Manual.) If a context ID is passed to the subroutine,
the %U_HTMLHELP call displays the help topic for the context ID. If no context ID is passed (or
if there’s no help topic for the context ID), the help system opens with the table of contents
displayed.

proc

xcall e_method(D_METH_HELP, "help_method") ;This registers the help
 ; method defined below.
.
.
.
xcall mb_entry(cont, "O_HELP", "Help", F1_KEY)
.
.
.
xcall ib_field(build_id, 'select1', D_FLD_SIZE, 10, D_FLD_TYPE,

Implementing Your User Interface with UI Toolkit
Implementing Online Help

6-36 Getting Started with Synergy/DE 9.3 (12/09)

& D_DECIMAL, D_FLD_POS, 2, 2, D_FLD_PROMPT,
& "Enter a number:", D_FLD_FPOS, 2, 19,
& D_FLD_HELP, "Alink_B")
.
.
.
;--
;Help Method

subroutine help_method
 a_ident ,a ;Context ID. This is what you specify
 ; with the help qualifier for .FIELD,
 ; the help_id argument for AX_INPUT, etc.

.include 'WND:tools.def'

proc

if (^passed(a_ident)) then
 u_htmlhelp(D_HH_HELP_CONTEXT, "myhelp.chm", a_ident)
else
 u_htmlhelp(D_HH_DISPLAY_TOC, "myhelp.chm")

xreturn
endsubroutine

Implementing native Toolkit help
Toolkit includes features that enable you to easily provide context-sensitive help in your
application. You define your help windows in a script file and then compile them into a window
library. Toolkit enables you to specify (with a .FIELD option or a Toolkit subroutine argument)
which help window to display when your user requests help. When help is requested, UI Toolkit
displays the help window specified for the context and removes it when the user clicks the close
button on the help window.

Step 1 - Activating context-sensitive help

As we stated earlier, o_help is the reserved entry that activates the UI Toolkit help routine. You
need to make this menu entry available wherever you want the user to have access to help
information. We suggest that the O_HELP reserved entry be included in your General menu
column.

Implementing Your User Interface with UI Toolkit
Implementing Online Help

Getting Started with Synergy/DE 9.3 (12/09) 6-37

Step 2 - Creating the help windows

Creating the text for your help windows may be easier than you think. In fact, you may already
have the bulk of the work done and simply need to reformat existing text into window definitions.
For example, you may be able to borrow text directly from existing documentation, using an editor
to place it in a UI Toolkit script window definition. As you will see from the example below, you
can create a template for your help windows that will give all of them the same “look and feel” and
yet allow for variable-length text in each window. Modifications can be made to the window
contents without having to worry about reformatting the data for presentation.

A special window called h_general

Your window script should contain a text window named h_general. This is a generic help window
to be displayed when the UI Toolkit help routine can’t find the specified help window or when no
help window was specified. This window should contain a generic message that is appropriate
across the entire application. If Toolkit cannot find h_general, it displays an error message. Your
application will have a more professional look if h_general is defined.

Below is an example of a general help window. Although it is defined to have 10 rows, the .TRIM 1
command removes the empty lines at the bottom, leaving one blank line after the text.

.window h_general, 10, 40

.placement 10, 20

.text WndTxt2, position(1, 1)
There is no help available for this function.
.trim 1
.end

Two typical help windows are shown below:

.window h_lname, 10, 40

.placement 10, 20

.text WndTxt3, position(1, 1)
This field contains the contact’s last name. The last name is used to
identify the record and therefore cannot be left blank.
.trim 1
.end

.window h_tk, 10, 40

.placement 10, 20

.text WndTxt4, position(1, 1)
Check the Tk box if this customer is licensed for UI Toolkit.
.trim 1
.end

Notice that all of the help windows are defined as being 10 rows by 40 columns and are placed at
location 10, 20 in the display region. Using the .TRIM command eliminates the need for you to
determine how the text fits in the window. And if you ever modify the text in the window, the
resizing will take place automatically when the script file is processed.

Implementing Your User Interface with UI Toolkit
Implementing Online Help

6-38 Getting Started with Synergy/DE 9.3 (12/09)

You may want to define your help windows in a separate script file, or you may choose to place
them in the script file of the window with which they are associated. If you want to use UI Toolkit’s
help routine as it is distributed, your help windows should reside in the library specified in
U_START. Otherwise, you can replace Toolkit’s help routine with your own. See the
EHELP_METHOD documentation in the “Environment Routines” chapter of the UI Toolkit
Reference Manual for the details on how to do this.

Step 3 - Associating help windows with fields

To simplify the association of help windows with the fields in your input windows, UI Toolkit
provides the ability to identify the help window for each field. You can define this association once
in your repository, and every instance of that field will inherit this information. Or you can specify
it directly with the .FIELD help qualifier. The following is extracted from our previous input
window script definition:

.field lname, a16, pos(1, 4), prompt("Last"), pos(6, 11), fpos(6, 19), -
 help("h_lname"), hyperlink_method("contact_drill")

If the window named h_lname exists in the primary window library and the user selects the o_help
reserved menu entry while positioned on the field lname, the input processor calls the Toolkit help
routine, which displays the appropriate help window and waits for a user response. When the user is
done reading the help window, Toolkit removes it, restores the original screen, and resumes
processing the input field.

Most UI Toolkit routines that prompt the user for input have a similar mechanism to activate the
help routine and display a specific help window. For example, M_PROCESS, T_EDIT, T_VIEW,
and L_SELECT all have an optional argument for the name of the help window to display if the
user selects the help menu entry. I_INPUT uses the .FIELD help qualifier. You can even have a
help window for each menu entry.

Implementing Your User Interface with UI Toolkit
Organizing Your Display with Tabbed Dialogs

Getting Started with Synergy/DE 9.3 (12/09) 6-39

Organizing Your Display with Tabbed Dialogs
With UI Toolkit, you can organize windows and lists into a set of tabbed dialogs. While tabs are
primarily a Windows feature, Toolkit makes tabs available on both Windows and non-Windows
platforms. Each tab element or dialog contains an input window or list. All tabs in a group of tabs
(called a tab set) are placed simultaneously, in an organized stack. Your user can select, via mouse
or menu entry, any tab in the current set. The selected tab is brought to the front and its element is
available to process.

Step 1 - Create a tab set

When a tab set is processed, each member tab and its associated element (a window or list) is
accessible to the user. Before a tab can be created, you must define a tab set. The example below
creates a tab set. The tab set ID is returned in contact_tab. Each tab will be 8 rows by 71 columns.
No tab element can be larger than this.

contact_tab = %ts_tabset(DTS_CREATE, "contact_tab", 8, 71)

Step 2 - Load the input windows

Below we create three copies of the same input window, one for each of the three tabs to be created.
(To create a copy of an input window, your call to I_LDINP must pass a window name in the eighth
position; the load routine loads a copy of the window and assigns it the name passed in position
three.) Of course a tab set doesn’t need to use the same window—it can consist of a mixture of
completely unrelated input windows and lists.

Next we call W_BRDR to create a title for the input window. This is important because the
identifying text that displays on the tab is actually the title of the associated input window. Without
a title on the associated input window, your user will have no way of distinguishing one tab from
another (without selecting it).

for cntr from 1 thru 3
 begin
 xcall i_ldinp(contact_inp(cntr), g_utlib, "contact"+%string(cntr),
 & D_NOPLC,,, "contact")
 xcall w_brdr(contact_inp(cntr), WB_TITLE, cont_grp[1].c_lname)
 end

Step 3 - Populate the tab set

With the elements in place, we are ready to create a set of tabs. Below is the same code we used to
load the input windows—with one addition. To the loop we added a
%TS_TABSET(DTS_WINDOW…) function call. The DTS_WINDOW argument to
%TS_TABSET creates a tab and associates an input window with it. (To create a tab and associate
a list, use DTS_LIST instead.) When the user selects this tab, the window in contact_inp(cntr) is
brought to the front, and our PROCESS_INPUT routine is called to process it. Since we have three

Implementing Your User Interface with UI Toolkit
Organizing Your Display with Tabbed Dialogs

6-40 Getting Started with Synergy/DE 9.3 (12/09)

identical input windows, we can use the same process routine. If you need to process each tab
differently (or are mixing different input windows or input windows and lists in the same tab set),
you may want to specify a unique process routine for each tab.

for cntr from 1 thru 3
 begin
 xcall i_ldinp(contact_inp(cntr), g_utlib, "contact"+%string(cntr),
 & D_NOPLC,,, "contact")
 xcall w_brdr(contact_inp(cntr), WB_TITLE, cont_grp[1].c_lname)
 end
tabindx(cntr) = %ts_tabset(DTS_WINDOW, contact_tab,
 & contact_inp(cntr), "process_input")

Step 4 - Processing the tab set

TS_PROCESS is the tab processing routine. It controls the placement of the current tab and calls
the appropriate tab method. Like most UI Toolkit routines, TS_PROCESS is called in an event
loop. When called, TS_PROCESS processes the current tab: it brings the associated window or list
to the front and calls the tab method. When the user selects another tab, the tab method returns to
TS_PROCESS, which brings the selected tab (and its associated element) to the front and calls that
tab’s designated tab method. If a menu entry or button was selected, TS_PROCESS exits so your
processing loop can test for and handle the exit event.

The sample below calls TS_PROCESS, and tests for an exit event. The cont_key method data is a
group that contains an array of key values that identify the record to be loaded into each tab input
window. See the code segment in step 5 for an example of how this method data is used.

If, in the tab method, the user selects the “Exit” menu entry or the “Cancel” button, TS_PROCESS
loads g_entnam with the name of the selected event (O_EXIT or O_ABANDON) and returns
immediately to this processing loop. If, on the other hand, another tab was selected, g_entnam is
loaded with the name of the tab, in the form TS_TABxxxx, where xxxx is the tab number.
TS_PROCESS moves that tab to the front and again calls the tab method, PROCESS_INPUT, this
time without returning to the processing loop.

tab_num = 1
repeat
 begin ;Processing loop
 xcall ts_process(contact_tab, cont_key)
 if (g_entnam.ne."TS_TAB")
 exitloop
 end ;Processing loop

Step 5 - Create the tab method

The tab method below is called by TS_PROCESS for each of the tabs. We can use the same tab
method because each tab contains a copy of the same input window, an input window that is
processed in exactly the same way. PROCESS_INPUT starts by using the DTS_ACTIVE option to
determine the current or “active” tab. (DTS_ACTIVE can also be used to change the active tab.) It

Implementing Your User Interface with UI Toolkit
Organizing Your Display with Tabbed Dialogs

Getting Started with Synergy/DE 9.3 (12/09) 6-41

uses the tab number or “index” to determine the appropriate key to the record to be processed in the
current input window. Once it has this data, PROCESS_INPUT loads it and calls the input
processor. If the method determines that I_INPUT exited with the input set complete, it updates the
record and returns to TS_PROCESS. Because the current tab set hasn’t changed, TS_PROCESS
calls PROCESS_INPUT again with the same tab set active.

If the user selects another tab, I_INPUT exits with g_setsts and g_select true; g_entnam contains
the name of the selected tab set. PROCESS_INPUT returns to TS_PROCESS, which calls
PROCESS_INPUT again with the new tab active (at the front).

If I_INPUT exits because a menu entry or button was selected, again g_setsts and g_select are true,
but this time TS_PROCESS doesn’t recognize the entry in g_entnam. It exits to the processing
loop in the calling program.

subroutine process_input
 a_inpid ,n
 group contkey ,a
 key_val ,9a77
 endgroup
.include "WND:tools.def"
.include "ids.gbl"
static record
 key ,i4 ,1
record
 contact_dat ,a198

proc
 key = %ts_tabset(DTS_ACTIVE, contact_tab)
 read(contact_ch, contact_dat, key_val(key), KRF=1)
 xcall i_display(a_inpid, "all", contact_dat)
 xcall i_next(a_inpid, "data", "*FRST*")
 xcall i_input(a_inpid, "data", contact_dat)
 if (.not.g_setsts)
 write(contact_ch, contact_dat)
 xreturn
endsubroutine

See also

The “Tab Set Routines” chapter of your UI Toolkit Reference Manual for more information on
using tab sets.

Implementing Your User Interface with UI Toolkit
Using Composite Windows to Combine Windows and Lists

6-42 Getting Started with Synergy/DE 9.3 (12/09)

Using Composite Windows to Combine Windows and
Lists
UI Toolkit enables you to combine multiple windows and/or lists into a single window, called a
composite window. For example, you could create a composite window that includes an input
window, a table, an ActiveX control, and buttons. To the user, a composite window looks and
functions as a single window.

A composite window consists of a parent window (called the composite container window) and
child windows or lists. A child can be any type of UI Toolkit window or list, including ActiveX
windows, tab set windows, ActiveX Toolkit lists, and other composite windows. This section
contains the general steps for creating and using composite windows. For details on these steps,
additional composite window tasks, and a complete example, see “Creating and Processing
Composite Windows” in the “Composite Window Routines” chapter of the UI Toolkit Reference
Manual.

Step 1 - Create the composite container window

Start by using the DC_CREATE subfunction for %C_CONTAINER to create the composite
container window. The example below creates a composite container window that

has a Toolkit-assigned name. (Passing a null string for the name argument causes Toolkit to
assign a unique name to the composite window.)

fills the entire body of the application window. (Passing g_bdysiz, a global variable defined in
tools.def, instructs Toolkit to use the number of rows in the body of the application window,
and passing %W_INFO with WIF_SCOLS instructs Toolkit to use the number of columns in
the application window.)

Additionally, this example returns the ID of the new composite container window in the id_contain
variable.

id_contain = %c_container(DC_CREATE, "", g_bdysiz, %w_info(WIF_SCOLS))

Step 2 - Add child windows and/or lists

To add child windows and lists to the composite window, use the DC_ADD subfunction for
%C_CONTAINER. In this call, you specify the ID of the container window as well as the ID of the
window or list you want to add as a child. Additionally, you can set properties for the child,
including placement, tabbing position, and a menu column to be loaded when the child is
processed. For example, the following adds a list that starts on the first column of the first row of
the composite window and loads a menu column with the ID id_selcol:

xcall c_container(DC_ADD, id_contain, DC_LIST, id_list, 1, 1,,,,id_selcol)

Implementing Your User Interface with UI Toolkit
Using Composite Windows to Combine Windows and Lists

Getting Started with Synergy/DE 9.3 (12/09) 6-43

Step 3 - Placing the composite window

To place a composite window, place its container window. Note, however, that when a container
window is placed, only child windows and lists that have been placed are displayed in the window.
Unplaced child windows and lists remain invisible. Additionally, when you place a child, it remains
invisible until its container window is placed. For example, the following call places the composite
window whose container window has the window ID id_contain. If a window or list was placed,
the window or list will be visible in the composite window.

xcall u_window(D_PLACE, id_contain, 1, 1)

Note that there are a couple of ways to place child windows and lists. One is to pass the row and col
arguments in the DC_ADD call for the child, as in the DC_ADD example above. This instructs
Toolkit to automatically place the child. The other is to use the D_PLACE operation for
U_WINDOW or to use L_PLACE after the window or list has been added to the container window.

Step 4 - Processing the composite window

To process a composite window, call C_PROCESS. This routine calls the method for the active
child. Toolkit includes default composite window processing methods, but you can create your own
methods and specify one in the DC_ADD call for a child. The following is an example processing
loop that tests for menu entries and calls C_PROCESS, which passes the variables chan_icontacts,
chan_contacts, list_contact, and inp_contact to the method for the active child.

;
; do_process - run input loop for composite window
do_process,
 xcall c_process(id_contain, chan_icontacts, chan_contacts,
 & list_contact, inp_contact)
 if (g_select)
 begin
 using g_entnam select
("O_ADD "), call add
("O_DEL "), call delete
("O_SEL "), call select
("O_EXIT "), call update ;leaves g_select == TRUE
 endusing
 end
 return

Implementing Your User Interface with UI Toolkit
Using Composite Windows to Combine Windows and Lists

6-44 Getting Started with Synergy/DE 9.3 (12/09)

Step 5 - Removing and deleting composite windows

To remove a composite window, remove the composite container window with the D_REMOVE
operation for U_WINDOW. Use D_REMOVE to remove child windows as well. For a child list,
use L_REMOVE. Note the following:

Removing a composite window doesn’t remove its child windows and lists; it makes them
invisible.

Removing a child with D_REMOVE or L_REMOVE removes the child from the display but
doesn’t disassociate it from the composite window. To remove a child from the display and
disassociate it from the container, use the DC_REMOVE subfunction for %C_CONTAINER.
To delete a composite window, delete its container window. To delete a child, leave the
environment it’s logged in, or use the D_DELETE operation for U_WINDOW. Note that
deleting a composite container window removes all child windows and lists but does not delete
them.

Implementing Your User Interface with UI Toolkit
Using Methods

Getting Started with Synergy/DE 9.3 (12/09) 6-45

Using Methods
A method is a program that you write and UI Toolkit calls. You generally do not call a method
directly. Instead, you give Toolkit the name of the method and let it make the call. Methods are used
for a number of things: by the list processor to load an item and do item entry and exit processing;
by the input processor to do field display and change processing; and by U_START to do special
initialization processing—just to name a few.

Using input methods
Input field methods are very powerful tools that enable you to set up a field prior to input or to
validate input before continuing to the next field. While break processing will accomplish many of
the things input methods are designed to handle, an application running on Windows cannot assume
that fields will be processed sequentially. Your user could be on field A and click on field C,
completely bypassing field B. If field C depends on a break activated by field B, your perfectly
functional UNIX application doesn’t work on Windows. But an input method is specific to the field
that activates it and is totally independent of any other field.

Input methods are useful in a non-Windows environment as well. While break processing is
handled within the program that calls I_INPUT, your input methods are a function of the field that
activates them, handled externally to the routine that called I_INPUT. In the method, you can
determine the window and field that activated it and process accordingly. This means you can write
a single method for a given field, to be called wherever that field is used. You can even write a
single method to perform all of your file look-ups, attach the method to any field on which you
need to do a look-up, and in the method itself, determine the data and file for the look-up.

.field cmpny, a45, prompt("Company "), pos(2, 8), fpos(2, 16), -
 change_method("lookup_lmeth")

Input methods are specified as .FIELD options in a script or are registered with IB_FIELD. The
sample script definition above defines a change method for the company name field. When the user
completes input to this field, the input processor calls the subroutine LOOKUP_LMETH, a generic
function we have created to validate input data. When LOOKUP_LMETH returns to I_INPUT,
input processing resumes without returning to your input program.

In the example below, the call to I_INPUT passes arguments that are passed on to the change
method. Customer_ch tells the change method where to perform the look-up; cmpny is passed so
the change method can disable this field if the find succeeds. The change method returns success if
the find succeeds or an error if the find fails.

xcall i_input(customer_inp,, customer,,,,,,, customer_ch, "cmpny")

When an asynchronous input method is called, g_fldnam hasn’t been loaded with the name of the
current field (the field that activated the method). Instead, an argument passed to your method
contains information (and pointers to information) about the current field. (See Appendix D in the
UI Toolkit Reference Manual for a description of asynchronous methods.)

Implementing Your User Interface with UI Toolkit
Using Methods

6-46 Getting Started with Synergy/DE 9.3 (12/09)

The following code demonstrates the method for receiving the arguments passed to your change
method. A_inprec is the data area passed to I_INPUT. WND:inpinf.def contains a group layout
that matches the data passed as an argument to your method. We use %I_GETSTRING to get the
name of the set the data will be displayed in.

function lookup_lmeth, ^val
 a_data_entered ,n ;Data entered by user
 a_data_stored ,n ;Data in storage format
 a_pending_status ,n ;Result of Toolkit field validation
.include 'WND:inpinf.def' ;Structure for input information
 a_inprec ,a ;Input record
 a_chn1 ,n ;Method data parameter from i_input call
 a_disfield ,a ;Method data parameter from i_input call

.include "WND:tools.def"

proc
 if (a_pending_status .ne. D_OK)
 freturn(a_pending_status)
 fld_name = %i_getstring(inp_wndid, inp_fldnam)
 find(a_chnl, a_inprec, a_data_entered) [$ERR_KEYNOT=notfound,
 & $ERR_EOF=notfound]
 reads(a_chnl, a_inprec)
 xcall i_display(inp_wndid, %i_getstring(inp_wndid, inp_setnam),
 & a_inprec)
 if ^passed(a_disfld)
 xcall i_disable(inp_wndid, a_disfld) ;Can’t modify the key field
 freturn(D_OK)

notfound,
 xcall u_msgbox('Entry not found')
 freturn(D_EMITTEDERR)
endfunction

The contents of WND:inpinf.def are displayed below.

group inputinfo ,a
 inp_wndid ,i4 ;Input window ID
 inp_setnum ,i4 ;Set number
 inp_setndx ,i4 ;Set index (field number within set)
 inp_fldnum ,i4 ;Field number within input window
 inp_nulinp ,i4 ;Performing null input? (TRUE/FALSE)
 inp_fldtype ,i4 ;Field type:

; D_ALPHA, D_DECIMAL, D_FIXED, D_TEXT,
; D_INTEGER, D_USERTYPE

 inp_empty ,i4 ;Is the field empty?
 inp_setnam ,i4 ;Pointer to name of current input set
 inp_fldnam ,i4 ;Pointer to name of current input field

Implementing Your User Interface with UI Toolkit
Using Methods

Getting Started with Synergy/DE 9.3 (12/09) 6-47

 inp_usertype ,i4 ;Pointer to user-defined data type
 inp_usertext ,i4 ;Pointer to user text string
 inp_prc_atr ,i4 ;Input processing attributes
 inp_prc_clr ,i4 ;Input processing color
 inp_dsp_atr ,i4 ;Field display attributes
 inp_dsp_clr ,i4 ;Field display color
 inp_clr_atr ,i4 ;Field clear attributes
 inp_clr_clr ,i4 ;Field clear color
 inp_entered ,i4 ;Data modified?
 inp_return ,i4 ;RETURN key pressed?
 inp_navevent ,i4 ;Type of navigation occurring (see tools.def)
endgroup

See also

The UI Toolkit Reference Manual for information on all Toolkit methods, including input methods,
list methods, and environment methods.

7-1

7
Accessing Data Remotely with
xfServer

What Is a Client/Server System? 7-2

Defines a client/server system and identifies its benefits.

What Is xfServer? 7-5

Explains what you can expect from your xfServer system operation, the basic requirements for
setting up your system, and the client and server components of your system.

Accessing Data Remotely with xfServer
What Is a Client/Server System?

7-2 Getting Started with Synergy/DE 9.3 (12/09)

What Is a Client/Server System?
A client/server system is a computer network in which one or more computers act as clients,
requesting services or access to data, and one or more computers act as servers, processing the
clients’ requests. The primary objective behind setting up a client/server system is to set up some
computers on a network as user-interface specialists and some computers as shared-data specialists.

A basic client/server model
In a basic two-tier client/server model, the bulk of the application, including the user interface and
logic processing, resides on the client machine. (See figure 7-1.) The client is usually a PC, but it
can also be a workstation connected to a multiuser system. The data—as well as the logic that
maintains the data’s integrity—is centralized on the server. When a client application needs to
access remote data, it sends the request over the network to the server.

The server can wait for client requests while processing requests from connected client
applications. The computer selected to be the server must be capable of pre-emptive multitasking.

Any computer hosting a client application becomes a client. A client application is simply an
application that uses client capabilities (such as the runtime included with Synergy Language
version 6.1 or greater or Synergy/DE xfODBC).

Figure 7-1. A two-tier client/server configuration.

record retrieval
processing

application logic processing
user interface processing

database
query

requested
records only

Accessing Data Remotely with xfServer
What Is a Client/Server System?

Getting Started with Synergy/DE 9.3 (12/09) 7-3

A multi-tier client/server model
The first multi-tier client/server architecture was the three-tier model (see figure 7-2), which
divides processing into essentially three layers:

User interface (collecting data from the user)

Database serving (accessing data)

Business logic (processing data)

The three-tier architecture led to an n-tier architecture, in which many application servers can be
created to perform parts of the processing involved in any of the three layers, but most commonly in
the application logic processing area. An n-tier configuration uses a distributed network and has
different layers of business presentation and database access logic, each running where it is most
appropriate.

This chapter addresses only the S/DE xfServer product and data access. For information about logic
processing and the other Synergy products that enable you to create true multi-tier software
solutions, see chapter 8, “Accessing Logic Remotely with xfServerPlus.”

Figure 7-2. A three-tier client/server configuration.

record retrieval processing
application logic processing

user interface
processing

database
query

requested
records only

Accessing Data Remotely with xfServer
What Is a Client/Server System?

7-4 Getting Started with Synergy/DE 9.3 (12/09)

Benefits of a client/server system
Client/server architectures are popular for several reasons:

Your users can share data. This is the same benefit you get from traditional multiuser
environments. Data requests and transfers between the client and the server can be concurrent
and are transparent to the user. Supported file types include relative, stream, sequential, and
ISAM. Any file I/O function supported by the server’s “native file” system can be performed
from the client application.

You can optimize existing systems. When you network various types of computers in the
same client/server system, you can set up each to execute the function(s) it performs best.
Client/server tools enable you to use both the network connections and serial terminal
connections at the same time, so you don’t need a PC workstation for every user. Furthermore,
a client/server system allows both the client and the server to make the most efficient use of
their power:

The client application manages the user interface.

The server system handles shared file or data access requests.

Freeing the server from interface tasks reduces processing time and memory usage.

You can take advantage of less expensive PCs when you expand your system’s
capabilities. Today’s microprocessors (PCs) rival the power of larger mainframes and they are
faster and less expensive. Instead of adding resources when you need to add users, “offload”
some or all of the system users to PCs.

Accessing Data Remotely with xfServer
What Is xfServer?

Getting Started with Synergy/DE 9.3 (12/09) 7-5

What Is xfServer?
S/DE xfServer is the technology that enables S/DE developers to add client/server capabilities to
their Synergy applications. It provides the connectivity layer for remote access to corporate data
from Synergy client applications. It consists of a server, which can run on Windows, UNIX, and
OpenVMS, and clients, which can be Synergy applications running on Windows and UNIX.

How the xfServer system operates
Let’s say we have a business contact application that is used by the account managers and support
representatives in a large software company. The Synergy application is located on the PCs (the
client systems) of the sales and support staff, while the data about customers (because it needs to be
shared) resides on the server in the MIS department. xfServer is what enables the server to accept
client requests for data and send data back to the client PCs.

This section describes how the xfServer system works locally (at the client application level) and
remotely (at the server level).

How your application works locally

Access files using a server “address”

To access remote files, you must specify the server name in your file specifications. You can do
this directly or using a logical. The direct file specification method is to append the server “name”
to the filename in your Synergy Language statements and subroutines. The server name, in the
form @server, can be either the host name of the server or the server’s fully qualified domain
name. An alternate form of a server file specification is @address, where address is the server’s IP
address on the network. For example, if your server’s host name is “yubby” and the IP address is
234.52.47.128, you can specify the file using either of the following forms:

file@yubby
or file@234.52.47.128

If you are accessing a file on a separate domain, you can specify the file in the following form:

file@yubby.subdomain.com

We recommend that you use a logical to specify the server address rather than using a direct
specification. It is much easier to maintain your code and keep up with potential changes in the
client/server system architecture if your application uses logicals. Ultimately, your system will
translate your file specification to the direct form and use it to access the data, but under most

A remote file specification cannot reference another remote file specification when the first
file specification is on Windows.

Accessing Data Remotely with xfServer
What Is xfServer?

7-6 Getting Started with Synergy/DE 9.3 (12/09)

circumstances, your program should not hard-code the file location. See “Getting Started with
xfServer” in the “Configuring xfServer” chapter of the Installation Configuration Guide for more
information about setting up logicals.

I/O limitations

You are restricted to the I/O limitations of the xfServer system. See the Professional Series
Portability Guide for more information on system-specific limitations.

How the server works remotely

WIN, UNIX
The design for the Windows and UNIX xfServer platforms are similar, with only a few differences.
On UNIX systems, xfServer operates as follows:

1. The server receives a request from a client application.

2. The server’s dispatcher starts a new session server process (server thread on Windows).

3. The new session server completes the connection to the client application.

4. The session server processes the client’s requests. After the process has completed all of the client’s
requests, the session server process (server thread on Windows) terminates. See figure 7-3.

We do not recommend using GET and PUT statements in a heterogeneous client/server
environment. Remote fixed I/O (GET and PUT) is not transparent between client/server
systems with different native line terminators (for example, Windows and UNIX). To allow
for this, you may have to change client applications to support multiple operating system
file types. Your client application must know where the file is located and account for either
zero, one, or two line terminators when specifying the destination record size.

Because Windows and UNIX servers can handle multiple clients’ requests quickly, and
starting a new session server process is transparent to the user, “standby” session servers
are not needed. Instead, a Windows or UNIX server starts a new session server only when
it receives a new client request.

Accessing Data Remotely with xfServer
What Is xfServer?

Getting Started with Synergy/DE 9.3 (12/09) 7-7

VMS
xfServer starts a pool of session server processes at server startup. These processes maintain and
communicate their status (“I’m busy” or “I’m waiting for a client request”) to the server connection
manager.

As the session server pool is depleted by client requests, connection manager starts additional
servers in order to maintain the free pool. If there are a sufficient number of session servers in the
free pool, these temporary processes are deleted after servicing the client’s request.

xfServer operates on OpenVMS as follows:

1. The connection manager receives a request from a client application.

2. The connection manager assigns a session server process (from the pool of processes).

3. The assigned process completes the connection to the client application.

4. The process services the client’s request. During processing, the connection manager won’t assign
the process to another request. After the process has completed the client’s request, the process
sends a message back to the connection manager and waits to be reassigned. See figure 7-4.

Figure 7-3. Windows and UNIX server processing.

Server receives
client request

Process
completes
connection

Actual
client/server
processing

1

4

3

2 Start
process

Accessing Data Remotely with xfServer
What Is xfServer?

7-8 Getting Started with Synergy/DE 9.3 (12/09)

How the user seesz the system
You may be asking yourself, “Will my users have to perform any extra steps to access the files on
the server?” Your users will see the application operate exactly as it did before. Data requests and
transfers between the client and the server will be completely transparent to the user.

The TCP/IP Protocol
xfServer uses a fixed-port TCP/IP implementation. xfServer clients and servers include an option to
override the port number used to connect to xfServer. This override enables users to resolve port
conflicts and run multiple servers on a single host.

Figure 7-4. OpenVMS server processing.

Connection manager

Process pool

Waiting for
assignment

Waiting for
assignment

Process
completes
connection

Actual
client/server
processing

Status

Server receives
client request

1

2

3

4

Assign
process

Accessing Data Remotely with xfServer
What Is xfServer?

Getting Started with Synergy/DE 9.3 (12/09) 7-9

Basic requirements
To set up your xfServer system, you’ll need the following:

Network hardware (network cards, cables, and connectors)

Network software (TCP/IP) for all client and server hosts

Your Synergy application

Synergy Language with client support (version 6.1 or higher) for your client machine

xfServer for your server system

Log-ins and home directories for each client on the server system

Basic xfServer model

The basic xfServer system consists of a Windows and/or UNIX client connected by a TCP/IP-based
network to a Windows, UNIX, or OpenVMS server system.

About the client and server components

Synergy Language Client

The client portion of xfServer is incorporated into the runtime of Synergy Language (version 6.1
and higher) for Windows and UNIX systems. Refer to the REL_SRV.TXT file (included with your
Professional Series distribution) for any version requirements.

xfServer

xfServer is a background process that resides on any Windows, UNIX, or OpenVMS computer you
select to be a server. Once started in the background, the server program continually accepts
requests from any client computers.

The server program’s executable file is rsynd.exe, rsynd (UNIX), or rsynd.exe and rsdmse.exe
(OpenVMS).

WIN
You can optionally log information related to xfServer. To view the log, choose Event Viewer from
the Administrative Tools window. The log of events appears under the rsynd source.

You can also monitor which files are open, who opened them, and whether they are locked by using
the Monitor utility. See “The Monitor Utility for Windows” in the “General Utilities” chapter of
Synergy Language Tools.

The event log fills up quickly. Remember to clear your event logs.

Accessing Data Remotely with xfServer
What Is xfServer?

7-10 Getting Started with Synergy/DE 9.3 (12/09)

UNIX
xfServer includes utilities you can use to manage your client/server system. To use these utilities,
add the appropriate option specification when you invoke the rsynd command. For example, to
start the Monitor function so you can track client/server activity, use the -m option when you
execute the server command:

rsynd -m

The rsynd options -m and -v do not restart the existing rsynd daemon. They merely return the
server version (-v) or enable monitoring (-m).

See “The Monitor Utility for UNIX” in the “General Utilities” chapter of Synergy Language Tools
for additional information about monitoring the client/server system.

VMS
xfServer includes a utility called servstat that you can use to manage your OpenVMS server
system. See “The servstat Program” in the “General Utilities” chapter of Synergy Language Tools
for more information.

See also
The “Configuring xfServer” chapter of your Installation Configuration Guide for additional
information about setting up your xfServer system.

Chapter 8, “Accessing Logic Remotely with xfServerPlus,” for information about logic access.

8-1

8
Accessing Logic Remotely with
xfServerPlus

Overview 8-2

What Are xfServerPlus and xfNetLink? 8-3

Describes xfServerPlus and the four xfNetLink editions.

Design Considerations 8-8

Discusses some of the issues you will need to consider to create a successful distributed
application.

Accessing Logic Remotely with xfServerPlus
Overview

8-2 Getting Started with Synergy/DE 9.3 (12/09)

Overview
Synergy/DE enables you to create robust two-tier and multi-tier distributed applications—including
web-enabled, thin-client solutions—using xfServerPlus, xfNetLink, and Professional Series
Workbench. Using these tools, you can update your existing Synergy applications by adding a
modern interface, without completely rewriting your Synergy code.

The user interface can be handled through applications written in Synergy, Visual Basic®, Java, or
a .NET capable language such as C# or VB.NET. Or, you may choose to develop a web solution
using Active Server Pages (ASP), ASP.NET, JavaServer Pages™ (JSP), or Web services. The
xfNetLink edition that your application requires depends on what type of user interface you want
to provide.

The application logic can be written in Synergy Language, and the database can be accessed by
routines written in Synergy Language. You can use Professional Series Workbench to edit your
Synergy server code and to generate Synergy type libraries, JAR files, and assemblies. (See
chapter 2, “Developing Your Application in Workbench,” for details about Workbench.)

See chapter 7, “Accessing Data Remotely with xfServer,” for an overview of basic distributed
computing and a list of its benefits.

Accessing Logic Remotely with xfServerPlus
What Are xfServerPlus and xfNetLink?

Getting Started with Synergy/DE 9.3 (12/09) 8-3

What Are xfServerPlus and xfNetLink?
xfServerPlus and xfNetLink enable you to access Synergy routines and data remotely from a
Synergy, Java, COM, or .NET client. The four xfNetLink editions serve as clients to xfServerPlus
and provide the ability to access Synergy logic from a variety of front-ends. Together, xfNetLink
and xfServerPlus handle creating a connection and translating data between the client machine and
your Synergy server machine.

xfServerPlus
xfServerPlus is the Synergy business logic server that handles the remote execution of Synergy
routines. The routines are made available for remote calling by including them in an ELB or shared
image and defining them in the Synergy Method Catalog (SMC). (Routines that have been defined
in the SMC are referred to as Synergy methods.) xfServerPlus receives a request to execute a
Synergy routine from the remote client, translates the request, executes it, and returns the results to
the client. xfServerPlus uses the dbs service runtime.

The Synergy Method Catalog

The Synergy Method Catalog identifies each Synergy subroutine or function that you want to be
able to call remotely and the ELB or shared image in which it can be found. For Java, COM, and
.NET clients, routines are assigned a method name that is used by the client application, and then
grouped into interfaces. The SMC also provides detailed information on the type and length of the
input and output parameters, as well as the type and length of the function results that are
transmitted back to the client.

xfServerPlus uses the information in the SMC to allocate adequate memory for data that is passed
to (and possibly updated by) the Synergy Language routines; to ensure that data from xfNetLink
clients is translated into the correct Synergy Language data types; and to ensure that function
results are translated into the correct xfNetLink return types. Data in the SMC is also used to create
JAR files for use with xfNetLink Java, type libraries for use with xfNetLink COM, and assemblies
for use with xfNetLink .NET.

To populate the SMC with information about your routines, you will add attributes that describe the
routines to your Synergy code. Then, you will run the dbl2xml utility using your Synergy source
files as input. The dbl2xml utility outputs an XML file containing information about the routines,
which can then be imported into the SMC. You can also populate the SMC manually using the
Method Definition Utility. (See the “Defining Your Synergy Methods” chapter of your Developing
Distributed Synergy Applications manual for details on the SMC.)

Accessing Logic Remotely with xfServerPlus
What Are xfServerPlus and xfNetLink?

8-4 Getting Started with Synergy/DE 9.3 (12/09)

xfNetLink Synergy Edition
xfNetLink Synergy is a set of routines distributed with Synergy/DE Professional Series. These
routines work in conjunction with xfServerPlus to execute Synergy routines stored on a remote
machine. Using xfNetLink Synergy, you can create a two-tier distributed application consisting of a
Synergy user interface on the client accessing Synergy logic residing on a remote Synergy server.
(See figure 8-1.) A Synergy front-end provides your users with a familiar look. Because the client
API is provided by Synergy Language, you can use it on all supported Synergy platforms. The
Synergy runtime must be deployed on the client.

There are two ways to use xfNetLink Synergy: %RXSUBR (and the xfNetLink Synergy API) and
the routine call block API. You can use other Synergy/DE tools to develop your xfNetLink Synergy
application: Composer provides drag-and-drop GUI development, as well as platform
independence, and Workbench can be used to edit your Synergy code.

For more information see the “xfNetLink Synergy Edition” section of your Developing Distributed
Synergy Applications manual. For details on making remote calls using a routine call block, see the
“Synergy Routine Call Block API” chapter of the Synergy Language Reference Manual.

Figure 8-1. xfNetLink and xfServerPlus in a two-tier configuration.

xfServerPlus

Synergy
Method
Catalog

Synergy routines
in ELBs

Client
application

xfNetLink

Client Workstation Remote Synergy Server

standard ELB
routine call

routine
information

provided here

socket connection for
transmission of function

calls and results

Accessing Logic Remotely with xfServerPlus
What Are xfServerPlus and xfNetLink?

Getting Started with Synergy/DE 9.3 (12/09) 8-5

xfNetLink Java Edition
xfNetLink Java is a Java client for xfServerPlus that works in conjunction with Sun Microsystems’
Java programming language. Java is an interpreted language and is supported on a wide variety of
platforms, including Windows, UNIX, and OpenVMS. Using xfNetLink Java, Synergy business
logic can be accessed from any Java-capable environment, including Java applications, JavaServer
Pages, and Java applets in web pages. (We discuss two of these options below.) Together, xfNetLink
Java and xfServerPlus handle the creation of a connection between the client machine and your
Synergy machine, as well as the translation of data from Java to Synergy and back to Java.

The xfNetLink Java tools (version 7.5 and higher) enable you to create a Java JAR file that
references your Synergy methods in the SMC. If you’re developing on Windows, you can create a
JAR file from within Workbench. The JAR file presents a familiar interface for Java developers and
can be used in a Java application, JSP application, or any other Java environment.

Java application

Using a Java application, you can create a two-tiered solution that consists of a Java application
running on the client and accessing Synergy logic on a remote Synergy server. (See figure 8-1.)
The Java runtime must be deployed on the client.

JSP

JavaServer Pages are a combination of HTML and programming code written in JavaScript and
Java. When a user’s browser requests a JSP page, the web server executes the embedded program
and returns a pure HTML page to the browser. Using JSP provides you with a three-tier distributed
system, which includes an end-user machine running a web browser, a web server where xfNetLink
and your JSP pages are located, and a Synergy server. (See figure 8-2.) JSP works with many
Windows and UNIX web servers. A servlet container for the web server is required.

Refer to the “xfNetLink Java Edition” section of your Developing Distributed Synergy Applications
manual for more information.

xfNetLink COM Edition
xfNetLink COM enables a client to call Synergy routines residing on a remote server machine using
a standard COM calling mechanism. The user interface can be written in any language that supports
COM, such as Visual Basic or Active Server Pages (ASP). Because COM was developed by
Microsoft, xfNetLink COM is a Windows solution. (Note, however, that your Synergy routines can
reside on any supported Synergy platform.)

Using xfNetLink COM’s component generation tools, you can create a COM type library that
references Synergy methods defined in the Synergy Method Catalog. (These tools can be accessed
from within Workbench or from the command line.) The type library you create can be used with
Visual Basic, ASP, and other COM-compliant client applications to call routines residing on the
Synergy server. We discuss two of these options below.

Accessing Logic Remotely with xfServerPlus
What Are xfServerPlus and xfNetLink?

8-6 Getting Started with Synergy/DE 9.3 (12/09)

Visual Basic

Visual Basic (VB) is a Windows front-end development tool that enables you to write applications
in the Visual Basic language. Using Visual Basic enables you to develop a two-tier application: a
VB application on the client accessing Synergy logic residing on a remote Synergy server. (See
figure 8-1.) VB is an interpreted language, so the VB runtime must be deployed on the client.

ASP

ASP is similar to JSP in that it is a combination of HTML coding and scripting language—either
Visual Basic Script or JScript®. The page returned to the user’s browser is pure HTML. Using
Active Server Pages enables you to create a three-tier distributed system, which includes an
end-user machine running a web browser, a web server where xfNetLink and your ASP pages are
located, and a Synergy server. (See figure 8-2.) Because ASP is a Microsoft solution, it requires a
web server that supports ASP, such as Microsoft IIS.

See the “xfNetLink COM Edition” section of your Developing Distributed Synergy Applications
manual for detailed instructions on using xfNetLink COM.

Figure 8-2. xfNetLink and xfServerPlus in a three-tier configuration.

Client Workstation Web Server Remote Synergy Server

xfServerPlus

Browser

xfNetLink

JSP or ASP
files

Synergy routines
in ELBsWeb Server

socket connection
for transmission of
function calls and

results

standard ELB
routine call

routine
information

provided here

Synergy
Method
Catalog

HTML

HTML

Accessing Logic Remotely with xfServerPlus
What Are xfServerPlus and xfNetLink?

Getting Started with Synergy/DE 9.3 (12/09) 8-7

xfNetLink .NET Edition
xfNetLink .NET, in conjunction with Microsoft’s .NET Framework SDK, enables you to create a
.NET client for xfServerPlus. .NET is a multi-faceted technology that provides numerous solutions.
See the Microsoft website or one of the many third-party resources available for detailed
information about .NET.

Using the component generation tools in xfNetLink .NET, you can create a Synergy .NET assembly
that references Synergy methods defined in the SMC. (These tools can be accessed from within
Workbench or from the command line.) The assembly can be used in any .NET environment to call
routines residing on the Synergy server. For example, the client might be a Windows application
written in a .NET-capable language such as C# or Visual Basic .NET, or a web application that uses
ASP.NET, or a Web service. We discuss a few of these options below. The .NET redistributable
(i.e., runtime) must always be deployed on the Windows client machine. Although .NET is a
Microsoft solution, your Synergy routines can reside on any supported Synergy platform.

Visual Basic .NET

Visual Basic .NET (VB.NET) is a Windows front-end development tool that enables you to write
applications in the Visual Basic .NET language. While VB.NET is similar to Visual Basic,
Microsoft has made significant changes. (See the Microsoft web site for details.) Using VB.NET
provides you with a two-tier solution: a VB.NET desktop application on a Windows client
accessing Synergy logic residing on a remote Synergy server. (See figure 8-1.)

ASP.NET

Active Server Pages .NET are similar to Active Server Pages. They are a combination of HTML
coding and scripting language. For ASP.NET that language can be any Common Language
Runtime-compliant language; the most commonly used languages are C# and VB.NET. Using
ASP.NET enables you to create a three-tier distributed system, which includes an end-user machine
running a web browser, a web server where xfNetLink and your ASP.NET pages are located, and a
Synergy server. (See figure 8-2.) ASP.NET requires a Windows web server running Microsoft IIS.

Web services

Web services are business components that provide functionality to a web or desktop application.
They serve as “black boxes”: callers use the API that you publish and don’t need to know anything
about the inner workings of the component. Web services provide you with discreet, reusable
components. They are easily upgraded and can be called by multiple applications. Because Web
services are a .NET solution, you can write them in any language that supports .NET; however, they
can be deployed only on Windows servers running Microsoft IIS.

A Web service is not a complete solution. It is simply a component that is called by another
application. Web services must be published on the web so that anyone can use them, which
requires that you establish and adhere to strict security protocols.

See the “xfNetLink .NET Edition” section of your Developing Distributed Synergy Applications
manual for detailed instructions on using xfNetLink .NET.

Accessing Logic Remotely with xfServerPlus
Design Considerations

8-8 Getting Started with Synergy/DE 9.3 (12/09)

Design Considerations
Regardless of which edition of xfNetLink you are using, the only way to take advantage of a
distributed processing environment is to use modular, encapsulated code that can be distributed
independently in a software system. If you are designing an application from the ground up, it
makes sense to think in terms of completely modularizing your entire system right from the start.
However, in many cases, the goal is to improve an existing application or to make several routines
accessible from the Web. This makes things more complex, and the task may seem overwhelming.

The first step is to think about where you most need the benefits of modularization. What pieces of
functionality do you want to make available on an intranet or the Web? What routines can you
centralize into a utilities library that can be used by many or all of your applications? Do you want
to have multiple user interfaces—perhaps a cell-based user interface and a web or GUI interface?

In a distributed application, processing is divided into three layers:

User interface processing occurs on the end-user’s machine.

Business logic processing occurs on the server system. When you’re building a system with
xfServerPlus and xfNetLink, this is the xfServerPlus machine.

Database processing occurs on the database server—the machine (or machines) where the data
resides.

Some routines control what the user sees (for example, forms, error messages, and prompts) and
other routines handle data access, calculations, validations, report generation, and so forth. When
you want to display the result of a piece of application logic in the user interface, the user interface
logic can call a function that performs the required task and then display the result.

For example, if you wanted to perform a log-in operation in a distributed processing environment,
you would probably separate the processing layers as follows:

User interface processing:

Draw a log-in screen.

Perform field input.

Validate field contents and write error messages to the screen.

Business logic processing:

Validate the username.

Validate that the password is correct for the specified username.

Database processing:

Read user information from the database.

Accessing Logic Remotely with xfServerPlus
Design Considerations

Getting Started with Synergy/DE 9.3 (12/09) 8-9

You will likely need to modify your Synergy server code before it can work effectively in a
distributed environment. Once you identify the areas where modularization is needed, you can start
redesigning the required functionality with your objectives in mind.

If supporting multiple user interfaces is your priority, the first step is separating the user
interface from the application logic.

If you want to support multiple databases, the first step is separating the file access from the
other application logic.

If you plan to expose your system to your customers on the Internet, you will first need to
modularize the system’s application logic so that it can be called remotely from the user’s
browser. Another option is to write a few modular routines that perform the functions you want
customers to have access to, and then integrate them into your system at a later date.

As with any other significant code modification, you can handle the move to modularity in chunks,
slowly moving your system to a more modular state. Keep in mind that you don’t need to
modularize all of your code—just what needs to be called remotely. For specific suggestions, refer
to the Modularizing Your Synergy Code: The First Step to Distributed Computing white paper,
available on the Online Manuals CD.

Separating the user interface from application logic
UI Toolkit, which supports event-style programming, effectively separates much of the user
interface from the data management. However, Toolkit event loops are candidates for revision if
you are planning to support multiple user interfaces. When you process user events using arrive and
leave methods or break processing, be sure to handle those events with a call to a function in an
ELB. This function must return a result that your user interface logic processes.

Error messages are an often overlooked part of the user interface. Your routines should return a
success or failure status, and the user interface code should handle the actual generation of the error
message on the screen. See “Handling errors” on page 8-10 for additional ideas on error handling.

Separating data access from application logic
Separating the database from the application logic involves writing routines to handle all file I/O.
This is probably the most commonly modularized area in existing applications because it hides the
details of file organization, data access, and so on from the user of the routine. Since file structures
change frequently, the benefits of writing routines to handle file I/O have been obvious for a long
time. Again, be sure to check carefully for error messages, data validations, or other functionality
that belongs in other layers of the distributed client/server system or web application model.

Accessing Logic Remotely with xfServerPlus
Design Considerations

8-10 Getting Started with Synergy/DE 9.3 (12/09)

Using ELBs or shared images
Executable libraries (ELBs) and shared images (on OpenVMS) provide a means of storing related
routines in a common library that can be called by multiple Synergy programs. When you build a
distributed system with xfServerPlus and xfNetLink, your Synergy routines must be contained in an
ELB or shared image and placed on the xfServerPlus machine.

The ideal approach to modularizing your system is to create a set of routines with defined interfaces
(formal argument lists) and then group related routines into ELBs. For example, you might group
your utility routines (such as string handling and date calculations) into one ELB, your order entry
application logic into another ELB, and your order entry data access into yet another ELB. These
routines can be called by any application that can make use of them, particularly if you do not
maintain global or common data inside the ELBs. With remote execution of ELBs, you can position
each ELB where the application that uses it is located.

See the “Preparing Your Synergy Server Code” chapter of the Developing Distributed Synergy
Applications manual for more information on using ELBs and shared images with xfServerPlus.

Handling errors
Because a distributed computing system has multiple points of failure, it is more complex to debug.
Therefore, you should design your application with failure in mind.

For robust server-side code,

trap for all possible errors on the server side.

test your logic locally before calling it remotely. After you have modularized your Synergy
code, you can test it by using the test skeleton generator utility to generate test code from your
SMC definitions. It is much easier to debug your code and find problems at this point than it
will be when you are calling it remotely. For more information about the test skeleton
generator utility, see “Testing Your Synergy Code” in the “Preparing Your Synergy Server
Code” chapter of the Developing Distributed Synergy Applications manual.

return status information, in the form of status codes, as well as results, rather than displaying
an error message. If you are modifying existing routines, you may want to convert them to
^VAL functions to do this, which enables you to return a status value without altering your
argument list. See “^VAL functions” in the “Understanding Routines” chapter of the Synergy
Language Reference Manual.

For robust client-side code, write your client-side code to check for errors (both xfServerPlus errors
and errors from your client code).

Accessing Logic Remotely with xfServerPlus
Design Considerations

Getting Started with Synergy/DE 9.3 (12/09) 8-11

Guidelines to improving performance and resilience
Minimize the number of trips to the server.

Minimize expensive operations such as starting your xfServerPlus connection.

Plan for multiple points of failure.

When determining what to include in your client-side script, keep in mind that client-side
script can be edited in a web browser or even disabled by the user. Avoid including business
logic that you don’t want the user to tweak.

Favor client-side processing over server-side processing for simple field-level validations that
don’t require server-side data.

Take into account that information must travel back and forth across the wire, especially for
web applications. For example, you should limit the number of records displayed on the user’s
browser, or display them in reasonably-sized chunks, rather than sending hundreds of records.

Getting Started with Synergy/DE 9.3 (12/09) Glossary-1

Glossary

access key A true key in a database file, which is used to specify relationships
between files.

Active Server Pages (ASP) A web page that combines HTML and programming code written in
Visual Basic Script or JScript. When a browser requests an Active
Server Page, the web server executes the embedded program, allowing
the web page to interact with databases and other programs.

ActiveX A set of technologies developed by Microsoft that provides the ability
to develop active, executable objects for Windows applications and
web sites.

alias A name that represents a directory path or a section of code. A
directory alias expands to a complete directory path, which means you
don’t have to type the entire path when prompted for a filename or a
directory. An extension-specific alias expands to the syntax for a
routine or to an entire method or processing loop.

Application window An area in Composer in which you can design your user interface.

arrive method A subroutine called to perform special processing before an input field
is processed.

attribute A characteristic of an object. For example, width is an attribute of a
window.

bounds checking A feature of the Synergy debugger that identifies situations in which
data is being stored into structures that are referenced beyond the
“bounds” of their normal definition.

break field A sort field on which a report break and possibly a page break is set in
ReportWriter.

check box An input field displayed as a small box with accompanying text to its
right. When a check box is selected, an “x” is displayed in the box.

client A computer hosting a client application, which is an application that
requests services or access to data from another computer.

Glossary

Glossary-2 Getting Started with Synergy/DE 9.3 (12/09)

client/server system A computer network in which one or more computers act as “clients,”
requesting services or access to data, and one or more computers act
as “servers,” processing the clients’ requests.

COM Component Object Model. The binary, interoperability standard
developed by Microsoft that allows component objects developed in
different languages to call one another. COM objects can be accessed
by any COM-compliant application.

command button The rectangular button in a dialog box that carries out a command or
initiates an action (for example, OK, Help, or Cancel).

compile-time definition An expression that can be completely evaluated at compile time.

compiler directive A statement that instructs the Synergy compiler and is evaluated only
when a program is compiled.

compiling The process of translating source files containing Synergy Language
statements into object files containing system-level information.

component One or more related methods grouped together as a named entity.

context The next input field to process OR whatever object your mouse
pointer is over when you click to access the context menu in
Composer.

context-sensitive help “What is it?” and “What can I do with it?” information about the
current context. For example, if the cursor is in an input field,
context-sensitive help would provide information about what to enter
in that field.

Control Bar The Composer window that contains Composer’s menu bar and
toolbars.

cross-reference file A file that contains name link associations, which ReportWriter uses
to provide access to related files and data structures.

data division The part of a Synergy Language program in which you define the data
structures that will be used in the program.

display method A subroutine called whenever the associated field is about to be
displayed by Toolkit.

distributed application Software whose tasks are split (i.e., distributed) between client and
server machines.

Glossary

Getting Started with Synergy/DE 9.3 (12/09) Glossary-3

drill method A subroutine called when the user clicks a drilldown button (on
Windows) or selects a drilldown menu entry (in non-Windows
environments). A drill method is primarily used to look up additional
information or display a dialog box.

dynamic memory Memory that is allocated as the program requires it. The system
allocates the memory and returns a pointer to the base of the memory
segment.

edit format method A subroutine called by Toolkit whenever the text in the field is being
formatted for editing purposes.

ELB See executable library.

environment A program state that consists of the current definition of the screen
and any terminal settings.

environment variable An abbreviation defined at the operating system level for a device,
directory, or path name. Also called a logical.

escape sequence The set of characters emitted by a keyboard when a key is pressed.

executable library A group of subroutine executable modules in a single file created by
the Synergy linker.

file stack A temporary file management system consisting of a single physical
file that contains multiple logical scratch files accessed in a stack
manner.

font A design for a set of characters, comprised of typeface, point size,
width, and spacing. For example, within the Helvetica typeface there
are many different fonts (10-point italic, 12-point bold, and so forth).

format The way data will be displayed in an input field or the way a field will
be displayed in a report.

function code The internal value assigned by UI Toolkit that associates a keyboard’s
escape sequences with menu entries.

function name The name of a function code. For example, on a PC, the default name
of Function 1 is “F1.”

global format A repository format that can be used by a field definition in any
structure.

handle A pointer to the base of the memory segment.

Glossary

Glossary-4 Getting Started with Synergy/DE 9.3 (12/09)

HTML HyperText Markup Language, the authoring language used to create
documents on the World Wide Web.

hyperlink method A subroutine that’s called when the user clicks on an input field
prompt.

information line A single line at the bottom of the screen body that is used to display
messages and general information.

input field A window field associated with a set of characteristics that defines
how terminal input and display are to occur.

input information Determines how input must be entered and how it will be displayed
and interpreted.

input set A list of one or more fields in an input window. It defines the default
order for processing fields.

input window A window that contains one or more input fields.

integer data A byte-oriented, binary representation of a signed whole number.

Java An interpreted language used to write applications and applets.

JavaServer Pages (JSP) A web page that combines HTML and programming code written in
JavaScript. When a browser requests a JavaServer Page, the web
server executes the embedded program, allowing the web page to
interact with databases and other programs.

key The portion of the data record that identifies the record and is used to
access it.

key map A record that defines the correspondence between the function keys or
other special keys on the user’s keyboard and the functions they
perform.

key map file A file that contains the escape sequences for each defined terminal
type.

leave method A subroutine called to perform additional processing after an input
field is processed.

License Manager A set of utilities that controls the installation and use of Synergy/DE
products.

linking The process that combines one or more routines into an executable
program or library.

Glossary

Getting Started with Synergy/DE 9.3 (12/09) Glossary-5

list A collection of identically formatted items.

list class A nonvisual entity that defines the characteristics for an entire list.

load method A subroutine called by the list processor each time it needs a new
item.

menu entry name The internal name for a menu entry.

method A program that you write and that UI Toolkit or ReportWriter calls
when necessary.

method information Specifies any arrive, leave, drill, or hyperlink method subroutine
associated with a field.

modularization A programming technique that requires code to be an isolated
functional unit with a well-defined, published interface (i.e., an
argument list).

name link An association between fields in different structures that is used by
ReportWriter to access related files.

object Any window, list class, menu column, window field, input field,
selection window entry, menu entry, text, line, box, or button.

object library A group of subroutine object modules in a single file created with the
Synergy librarian. Object libraries are linked into an executable file by
the Synergy linker.

Object Manager The Composer window that displays a visual representation of the
project file, script file(s), and user interface object hierarchy.

OLB See object library.

palette entry One in a set of colors (or fonts) available to Synergy programs.

procedure division The part of a routine that contains the executable statements and
defines the processing algorithms.

project A collection of one or more related files (for example, all of the files
for a particular application) and the build parameters that operate on
those files.

Properties window The Composer window that contains a list of design object attributes,
followed by the property, or value, for each attribute.

property The value of an attribute of an object.

Glossary

Glossary-6 Getting Started with Synergy/DE 9.3 (12/09)

quick-select character A single character that accesses a menu column, menu entry, or
selection window entry, or a key that when pressed simultaneously
with the ALT key accesses a command button in a dialog box. The
quick-select character is underlined on a menu or list.

radio button An input field displayed as a set of round buttons. The user selects one
button to make a choice from among several items.

relation An association between structures that enables you to link the keys of
one structure with the keys of the other structure.

relational operator An operator that compares two operands (equal to, not equal to,
greater than, less than, greater than or equal to, or less than or
equal to).

rendition A set of attributes and color of a screen display item. Rendition
attributes are boldface, blinking, reverse video, and underscore.

rendition scheme A record that defines the display attributes and colors for your screen.

Repository The Synergy/DE application that orders and defines your data
structures, files, and attributes.

repository The location where your data definitions are stored.

reserved entry One of a class of menu entries that is handled automatically by
UI Toolkit and that is used to activate many of the standard Toolkit
functions.

runtime terminal binding The process that binds the keyboard to the shortcuts at runtime instead
of during script processing.

script file An editable text file that contains special script commands to define
and control user interface objects and their characteristics.

selection list A pull-down list of options for an input field.

server A computer that processes client requests.

shared image The functionality of an executable library on OpenVMS.

shortcut A key or key sequence that is associated with a specific menu column
entry. A shortcut provides a quick way to access a menu item,
bypassing the standard menu entry selection method.

static handle A persistent memory handle that does not get released when the
activation level of the generating routine is exited.

Glossary

Getting Started with Synergy/DE 9.3 (12/09) Glossary-7

string relational operator An operator (equal to, not equal to, greater than, less than, greater than
or equal to, less than or equal to) that compares two alpha operands for
the length of both.

structure An entire record definition, or the combination of field and key
characteristics.

structure-specific format A repository format that is defined for a particular structure and can
only be used by the fields in that structure.

Synergy Control Panel A visual tool that enables you to customize message text, screen
renditions, and key mapping.

Synergy Method Catalog
(SMC)

Identifies the Synergy routines that you have prepared for remote
calling. The SMC includes information such as the function or
subroutine name, the ELB or shared image it is stored in, and the type
and length of its parameters.

tab method A subroutine called to process a tab in a dialog box.

tab set A set of toolbar buttons that is accessed by clicking on the tab that
extends above the top of the toolbar OR a group of tabs that are placed
simultaneously, in an organized stack, in a dialog box.

tabbed dialog A dialog box that is organized into more than one screen of fields,
prompts, and buttons. Each screen is accessed by clicking the tab at
the top of the screen.

tag file A database that stores the information displayed for a routine when the
user requests function help.

template In Workbench, a method of expanding syntax automatically by
generating predefined code into the editor. In Repository, a set of field
characteristics that can be assigned to one or more field definitions or
templates.

text window A special window that contains variable-length, editable text.

token A keyword that represents and is replaced with a specific name.

type library A file that describes interfaces (methods and properties) exposed by
objects, which allows developers to use these interfaces. Type
libraries are part of Microsoft’s implementation of COM.

Glossary

Glossary-8 Getting Started with Synergy/DE 9.3 (12/09)

user-overloadable subroutine A subroutine that you write and register so that UI Toolkit calls it
automatically at the appropriate time. If you do not register your
routine, Toolkit will use its default implementation.

validation information Defines what input is considered valid.

volatile handle A dynamic memory handle that goes away along with the routine
activation level.

window library An ISAM file with a specific format to which Synergy/DE windows
are saved.

workspace A group of related projects in Workbench.

Getting Started with Synergy/DE 9.3 (12/09) Index-1

Index

Numerics
32-bit configuration 2-10, 2-14
64-bit configuration 2-10, 2-14

A
access key 3-17
accessing memory 5-15
activating menu 6-11
Active Server Pages 8-6
Active Server Pages .NET 8-7
ActiveX Diagnostic Utility, starting 2-8
adding record 6-21 to 6-22
address, server 7-5
advantages of Synergy/DE 1-2
alias 2-28 to 2-32

customizing 2-30
expanding 2-28
parameters 2-28

alias.slk file 2-28
aligned integer 5-23
allocating memory 5-13
allowable entry, specifying 3-12
alpha date, converting

from numeric value 5-21, 5-22
to numeric date 5-21, 5-22

Application window, Composer 4-4
application, developing 1-7, 1-9
array, defining for text window contents 6-28
arrive method 3-13, 4-15

in distributed application 8-9
receiving arguments 6-46
using 6-45 to 6-47

ASP. See Active Server Pages
attribute 4-2, 4-5

B
behavior of field, defining 3-9 to 3-13
bitmap graphic on command button 4-12
blank, allowing in input field 3-12
body of screen 6-5
bounds checking 5-10
break processing 3-12, 8-9
building program 5-6

customizing commands for 2-40 to 2-42
from Workbench 2-37

button
adding to input window 4-11
bitmap graphic on 4-12
defining 6-20

.BUTTON_SET script command 6-20

C
caption, window 6-4
case

converting 3-11
matching 3-12

CASE statement
processing menu column 6-16
USING vs. 5-23

change method 3-13, 4-15
channel, load method 6-32
check box

adding in Composer 4-14
specifying in Repository 3-10

client 7-2
job of 7-4
xfServer 7-9

client/server 7-1 to 7-10
benefits 7-4
defined 7-2 to 7-4
two-tier model 7-2

client-side code 8-10, 8-11

D

Index-2 Getting Started with Synergy/DE 9.3 (12/09)

closing
Composer project 4-16
file 6-5
script file 4-17

code
completion 2-17
formatting 2-17
generating 2-28
template 2-31

collapsing
attribute in Properties window 4-5
files or objects in Object Manager 4-6

column
heading, in report 3-16
menu 6-4

creating 6-11 to 6-16
defining 6-11

.COLUMN script command 6-13
COM

calling Synergy routines from 8-5
creating component project 2-11

combo box, adding 4-14
command button

adding to input window 4-11
bitmap graphic on 4-12
defining 6-20
with bitmap graphic 4-12

command line, accessing in Workbench 2-5
comparing data 5-20
compile-time definition 5-23
compiling

checking errors 2-37
customizing commands for 2-40 to 2-42
from editor 5-5
from Workbench 2-37
program 5-5
script file 4-17

components in Synergy/DE 1-4
Composer 1-5, 4-3 to 4-17

exiting 4-18
help online 4-6
screen elements 4-3
starting 2-8, 4-3
terminology 4-2
using 4-8 to 4-17

composite window 6-42 to 6-44

configuration 2-14
understanding 2-10

connection manager 7-7
context 6-22
context-sensitive help 2-21, 2-24, 6-35, 6-36 to 6-38

activating 6-36
Control Bar, Composer 4-3
Control Panel. See Synergy Control Panel
converting

dates 5-21 to 5-23
window to text window 6-27

copying
field 3-6
object 4-5

creating
input field

Composer 4-13
UI Toolkit 6-16 to 6-20

input window 4-12
Composer 4-8
UI Toolkit 6-16 to 6-24

list 6-33
load method 6-31
menu column 6-11 to 6-16
object 4-8
script file 6-11
selection window 6-24 to 6-25
tab set 6-39
tabbed dialog 6-39 to 6-41
text field 4-14
text window 6-25 to 6-29
window library 6-11

cross-referencing data between files 3-18
#CURSOR# token 2-33
cursor, retaining position in text field 3-11
customizing

commands in Workbench 2-40 to 2-42
Workbench 2-39 to 2-46

D
data

comparing 5-20
cross-referencing between files 3-18
displaying to user 6-20
field, defining 3-3 to 3-6
referencing indirectly 5-18
sharing 7-4

E

Getting Started with Synergy/DE 9.3 (12/09) Index-3

structure, defining 6-28
unloading 6-29

data access, separating from logic 8-9
data division 5-3, 5-4
data type

integer 5-23
specifying 3-4

date
converting 5-21, 5-22
defaulting to current 3-11
performing mathematical operations on 5-21

%DATE routine 5-21, 5-22
day of the week, returning 5-21, 5-22
DBG_INIT environment variable 2-38
.dbl filename extension 5-5
dbl2xml utility 8-3
dbl.als file 2-28
.dbo filename extension 5-5, 5-6
.dbr filename extension 5-6
dbs 8-3
deallocating

file from memory 6-5
memory 5-14

debug configuration 2-10, 2-14
debugger, saving settings 2-37
debugging 5-9 to 5-11

bounds checking enabled 5-10
customizing commands for 2-40 to 2-42
project in Workbench 2-10, 2-14, 2-37
restoring debugger settings 5-9
saving debugger settings 5-9

decimal point, omitting 3-11
.DEFINE compiler directive 6-6
defining

command buttons 6-20
display window 6-30
field 3-4, 3-9, 3-15

appearance 3-9
behavior 3-9 to 3-13
copying 3-6

file 3-19
input set 6-20
input window 6-17
key 3-16
list class 6-30
menu column 6-11
relation 3-18

selection windows 6-24
structure 3-3
text window 6-26

definition, compile-time 5-23
designing user interface 4-1 to 4-18
dialog box, tabbed 6-39 to 6-41
display

components, managing 6-10
information 3-9, 3-15
method 4-15

displaying
data to user 6-20
input in a field 3-8

distributed application 1-8
designing 8-8 to 8-11
performance guidelines 8-11
user interface 8-2

DM_ALLOC value 5-13
DM_FREE value 5-14
DM_REG value 5-14
DM_RESIZ value 5-13
documentation, using 1-9 to 1-10
drill method 3-13, 4-15
drilldown 4-12
duplicate value for key 3-17
dynamic

memory 5-12 to 5-17
selection window 6-25

E
E_ENTER routine 6-8
E_EXIT routine 6-8, 6-15
edit format method 4-15
editable text field 4-14
editing

capabilities in your application 6-25
code 2-17 to 2-27
file 2-19
selecting editor 5-2

editor 2-17 to 2-27
ELB

comparing to SMC 2-9
creating 5-7
extension 5-6
using in distributed application 8-10

.elb filename extension 5-6

.END script command 6-13

F

Index-4 Getting Started with Synergy/DE 9.3 (12/09)

END statement 5-4
ENDFUNCTION statement 5-4
ENDMAIN statement 5-4
ENDMETHOD statement 5-4
ENDSUBROUTINE statement 5-4
.ENTRY script command 6-13
entry, reserved. See reserved entry
enumerated field 3-12
environment

entering new 6-8
processing 6-8

environment variable
benefits of using 5-18
resetting in Workbench 2-7
setting 2-5, 2-6, 5-19
using 5-18

error
compilation 2-37
handling 6-5

in distributed application 8-9, 8-10
event-driven programming 6-6
executable file 5-6

xfServer 7-9
executable library

creating 5-7
filename extension 5-6
restrictions 5-8

exiting
Composer 4-18
environment 6-8

expanding
attribute in Properties window 4-5
files or objects in Object Manager 4-6
list 6-31

extension, adding to Workbench 2-42

F
field

appearance 3-9
behavior 3-9 to 3-13
changing order in structure 3-6
copying 3-6
data type 3-4
default action 3-11

defining 3-4, 3-9, 3-15
by copying 3-6
for Composer 3-7 to 3-13
for ReportWriter 3-15 to 3-21
in Repository 6-19

displaying 3-8, 3-10
format 3-15
input

entry and display 3-10
justification 3-10
validation 3-11

method subroutines 3-12
moving 4-11
positioning 3-10
prompt 4-11, 4-13
properties 4-13
setting up prior to input 6-45
size 3-4, 4-13
See also input field; text field

.FIELD script command 6-45
#FIELD# token 2-33
file 5-5

defining 3-19
editing 2-19
extension 2-42
moving between in editor 2-26
sharing 2-16
stack 6-33

footer, UI Toolkit screen 6-5
format

assigning 3-10, 3-16
field input, defining 3-8
global 3-8
structure-specific 3-8

formatting code automatically 2-17
FTP 2-48 to 2-51
function

%DATE 5-21, 5-22
%JPERIOD 5-21
%NDATE 5-21, 5-22
%TS_TABSET 6-39
%WKDAY 5-21, 5-22
beginning 5-3

FUNCTION statement 5-3

G

Getting Started with Synergy/DE 9.3 (12/09) Index-5

G
g_entnam 6-15
g_fldnam 6-45
g_select 6-15, 6-22
g_setsts 6-22
g_utlib 6-10
generating code segments 2-28
GET statement, in client/server environment 7-6
global

format 3-8
screen components 6-9
variable 6-6

H
h_general window 6-37
handle, memory 5-17
header, UI Toolkit screen 6-4
help

associating window with field 6-38
Composer 1-9, 4-6
context-sensitive 6-36 to 6-38
creating window 6-37
displaying on information line 4-15
identifier, specifying 3-10
message, generic 6-37
online, implementing 6-35 to 6-38
Repository 3-2
Workbench 2-27

routine syntax 2-21 to 2-23
routines outside current file 2-24, 2-25

HTML Help 6-35
hyperlink

input field prompt 4-13
method 3-13, 4-15

I
I/O

limitations of xfServer 7-6
terminal 6-3

I_DISPLAY routine 6-20
I_INIT routine 6-22
I_INPUT routine 6-17, 6-25, 6-46
I_LDINP routine 6-20
I_NEXT routine 6-22
i4 variable 5-23
identifier, variable as 6-7
include file, extension 2-42

indenting code automatically 2-17
information line 6-5

specifying text on 3-10, 4-15
initialization setting 2-5
initializing input window 6-22
input

defining display format 3-8
entry and display 3-10
information 3-9
justifying 3-10
method subroutines 3-12
processing 6-21 to 6-24
saving 6-28
validating 3-11, 6-16, 6-45

input field
creating

Composer 4-13
UI Toolkit 6-16 to 6-20

data type 3-4
defining 3-4, 3-9, 3-15

in Repository 6-19
hyperlink prompt 4-13
moving

Composer 4-11
within and between 6-17

prompt 4-11, 4-13
properties 4-13
size 3-4, 4-13

input set, defining 6-20
input window

adding
command button 4-11
field from repository 4-9
line 4-11

creating
Composer 4-8
UI Toolkit 6-16 to 6-24

defining 6-17
initializing 6-22
loading 6-20
navigating 6-17

integer data 5-23
interface, designing 4-1 to 4-18
intrinsic function. See function
ISAM. See Synergy DBMS

J

Index-6 Getting Started with Synergy/DE 9.3 (12/09)

J
JAR file 8-5
Java

calling Synergy routines from 8-5
creating a component project 2-11
JAR file 8-5

JavaServer Pages 8-5
%JPERIOD routine 5-21
JSP. See JavaServer Pages
justifying

data in report 3-16
input in field 3-10

K
key

defining 3-16
duplicates 3-17
null value 3-17
relation 3-18
segment type 3-17

keyword completion 2-20

L
L_CREATE routine 6-31, 6-33
L_METHOD routine 6-32
L_PROCESS routine 6-31
L_SELECT routine 6-31, 6-33
Language. See Synergy Language
leave method 3-13, 4-15

in distributed application 8-9
receiving arguments 6-46
using 6-45 to 6-47

library
executable 5-6, 5-7, 5-8
object 5-5, 5-6, 5-8
storing routines 8-10
window 6-10, 6-11

line
adding to input window 4-11
terminator 7-6

linking program 5-5, 5-6, 5-7
customizing commands for 2-40 to 2-42
from editor 5-7
from Workbench 2-37

.lis filename extension 5-5

list 6-29
characteristics of 6-30
combining with window(s) 6-42 to 6-44
creating 6-33
expanding 6-31
loading

input window 6-32
item into 6-30

processing 6-29, 6-33
structure of items in 6-29

list class 6-30
listing file 5-5
load method 6-30

changing at runtime 6-32
channel requirements 6-32
creating 6-31

loading
item into list 6-30
list input window 6-32
menu column 6-13, 6-27
text window 6-27

local screen components 6-9
logic, separating

from data access 8-9
from user interface 8-9

logical
benefits of using 5-18
setting 5-19
using 5-18

longword-aligned integer variable 5-23
lowercase, converting to uppercase 3-11

M
^M data reference operation 5-15
M_LDCOL routine 6-13
M_PROCESS routine 6-14
main routine, beginning 5-3
MAIN statement 5-3
manual, accessing online 2-8
map file 5-6
.map filename extension 5-6
matching

all characters 3-12
case 3-12

maximum value, specifying 3-12
%MEM_PROC routine 5-13 to 5-14

N

Getting Started with Synergy/DE 9.3 (12/09) Index-7

memory
accessing 5-15
allocating 5-13
deallocating 5-14
defining structure 5-12
dynamic 5-12 to 5-17
registering 5-14
resizing 5-13

menu
activating 6-11
navigating 6-11
processing 6-14, 6-15
selecting from x

menu bar 6-4
menu column 6-4

creating 6-11 to 6-16
defining 6-11, 6-13
loading 6-13, 6-27

menu entry
defining 6-13
name prefixes to avoid 6-12
predefined by UI Toolkit 6-12

method 6-30
arrive 3-13, 4-15
change 3-13, 4-15
display 4-15
drill 3-13, 4-15
edit format 4-15
generating in Workbench 2-31
hyperlink 3-13, 4-15
information 3-9
leave 3-13, 4-15
subroutine, specifying 3-12, 4-12, 4-15
using 6-45 to 6-47
See also arrive method; leave method; load method;

tab: method
Method Definition Utility 8-3

starting 2-8, 2-9
METHOD statement 5-3
minimum value, specifying 3-12
minus sign

Object Manager 4-6
Properties window 4-5

modifying record 6-22 to 6-24
modular code 8-8 to 8-9

using ELBs 8-10
moving input fields 4-11

N
naming

object 4-5
variables 6-7

native Toolkit help 6-35, 6-36 to 6-38
%NDATE routine 5-21, 5-22
negative, allowing values 3-12
.NET

calling Synergy routines from 8-7
Configuration utility. See Synergy .NET

Configuration utility
Web services 8-7

network, hardware and software requirements 7-9
NFS-based mapped drives 2-47
numeric, converting

from date 5-21
to alpha date 5-21, 5-22
to date 5-21, 5-22

O
O_HELP menu entry 6-35
o_help menu entry 6-15, 6-36
object 4-2, 5-5

copying 4-5
creating 4-8, 4-13
renaming 4-5
size 4-13

object library 5-5
creating 5-6
filename extension 5-6
tip 5-8

Object Manager 4-5
OK button, adding to input window 4-11
.olb filename extension 5-6
OLB. See object library
online help

Composer’s 1-9, 4-6
implementing 6-35 to 6-38
providing context-sensitive 6-36

Open Command tab 2-39
OPEN statement 6-5
opening file 6-5
operator, relational and string relational 5-20
order, fields in structure 3-6

P

Index-8 Getting Started with Synergy/DE 9.3 (12/09)

P
paint character, specifying 3-10
Parameter Entry dialog box 2-28
philosophy of Synergy/DE 1-2
phone number, formatting 3-8
plus sign

Object Manager 4-6
Properties window 4-5

popping up window 6-20
portability 5-2
positioning input field 3-10, 4-11
primary key 3-17
PROC statement 5-4
procedure division 5-3, 5-4
processing

input 6-21 to 6-24
lists 6-29, 6-33
menu 6-14, 6-15
selection windows 6-25
tab sets 6-40

product support, contacting x
Professional Series 1-4 to 1-5
Professional Series Workbench. See Workbench
programming

event-driven 6-6
tips 5-18 to 5-24

project
Composer 4-2

closing 4-16
understanding 2-10
Workbench

adding files to 2-13
adding to workspace 2-16
benefits 2-11
compiling, building, and running 2-37 to 2-41
configurations of 2-14
creating 2-11 to 2-13
customizing 2-39, 2-40
debugging 2-37
moving between files in 2-26
opening 2-39

prompt
hyperlink 3-13
specifying 3-10, 4-11, 4-13

Properties window 4-5
property 4-2

setting in Composer 4-13

protocol, TCP/IP 7-8
Prototype utility 2-9
PUT statement 7-6

Q
quick-select character 6-11, 6-13
quitting Composer 4-18

R
radio button, specifying in Repository 3-10
RDBMS, accessing 1-6
record

adding new 6-21 to 6-22
layout, defining 3-3 to 3-6
modifying 6-22 to 6-24

referencing data indirectly 5-18
registering memory 5-14
relation, defining 3-18

keys 3-16
relational operator 5-20
release configuration 2-10, 2-14
renaming object 4-5
reordering fields 3-6
report

defining fields for 3-15
displaying field in 3-15
justifying data 3-16

ReportWriter 1-5
defining fields in Repository 3-15 to 3-21

Repository 1-5, 3-1 to 3-21
defining

record layout 3-3 to 3-6
ReportWriter files 3-15 to 3-21
user interface characteristics 3-7 to 3-13

displaying list of valid data 3-2
getting help 3-2
input fields in 6-16, 6-17, 6-19
starting 2-8, 3-2

repository
converting from script file 2-8
field, adding to input window 4-9

requirements, xfServer 7-9
reserved entry

defining column for 6-17
loading 6-17
prefixes 6-12

S

Getting Started with Synergy/DE 9.3 (12/09) Index-9

text editing 6-26
using 6-12

resizing
field 4-13
memory 5-13
object 4-13

restriction, executable library 5-8
routine

dispatching dynamically 5-17
displaying argument list 2-21
identifying type 5-3
moving between in Workbench editor 2-23

#ROUTINE# token 2-33
running

Composer 4-3
program 5-5, 5-8

customizing commands for 2-40 to 2-42
from editor 5-8
from Workbench 2-37

Repository 3-2
runtime 1-5

service 8-3

S
SAVE debugger command 2-37
saving

script file 4-16
structure 3-6
work, Composer 4-16

screen
default UI Toolkit 6-4
restoring 6-8

script command
.BUTTON_SET 6-20
.COLUMN 6-13
.END 6-13
.ENTRY 6-13
.SELECT 6-25
.SET 6-20

script file 4-2
closing 4-17
compiling 4-17
converting to repository 2-8
creating 6-11
extension 2-42
saving 4-16

Script utility, starting 2-8

scrolling through text window 6-28
segmented key 3-17
.SELECT script command 6-25
selection list

field, adding 4-14
specifying in Repository 3-12

selection window
creating 6-24 to 6-25
defining 6-24
dynamic 6-25
processing 6-25

server 7-1 to 7-10
accessing remote files 7-5
defined 7-2
job of 7-4
See also xfServer

server-side code 8-11
error handling 8-10

service runtime 8-3
.SET script command 6-20
SFWINIPATH environment variable 2-39
shared image 5-8, 8-10
sharing data 7-4
shortcut 6-11, 6-13
size

field 3-4, 4-13
object 4-13

SMC/ELB Comparison utility 2-9
source code, creating 5-2, 5-3
SQL Connection 1-6
SQL OpenNet 1-6
stack 6-8
starting UI Toolkit 6-4, 6-5
static handle 5-17
string relational operator 5-20
structure

adding 4-9
assigning to file 3-20
changing field order 3-6
defining 3-3

data 6-28
memory 5-12

saving 3-6
#STRUCTURE# token 2-33
structure-specific format 3-8
subattribute, viewing or modifying 4-5

T

Index-10 Getting Started with Synergy/DE 9.3 (12/09)

subroutine
beginning 5-3
dispatching dynamically 5-17

SUBROUTINE statement 5-3
support, contacting x
Symbol tab 2-27
syn_init_proj 2-7
syn_set command 2-6
syn_set_synergy_ini command 2-7
Synergy Control Panel 2-8
Synergy DBMS 1-5
Synergy Language 1-5, 5-1 to 5-24

benefits 5-2, 5-3
defined 5-2
program structure 5-3

Synergy Method Catalog 8-3
Synergy .NET Configuration utility 2-9
Synergy Prototype utility. See Prototype utility
Synergy runtime 1-5
Synergy Type Library Configuration utility 2-9
Synergy/DE 1-1 to 1-10

advantages of 1-2
components 1-4
definition 1-2
philosophy 1-2

synergy.ini file 2-5, 2-39
synfunc 2-30
syninp 2-30
synlist 2-30
synmeappmove 2-29
synmeappsize 2-29
synmeappstate 2-29
synmecentury 2-29
synmechkfld 2-29
synmeclose 2-29
synmedspfld 2-29
synmeedtdsp 2-29
synmeentrst 2-29
synmefkey 2-29
synmehelp 2-29
synmeutils 2-29
synmiarrive 2-29
synmichange 2-29
synmidisplay 2-29
synmidrill 2-29
synmieditfmt 2-29
synmihyper 2-29

synmileave 2-29
synmlarrive 2-29
synmldblclk 2-29
synmlleave 2-29
synmlload 2-29
synmtab 2-29
synmwbutton 2-30
synmwclick 2-30
synmwclose 2-30
synmwevent 2-30
synmwmax 2-30
synmwmin 2-30
synmwmove 2-30
synmwrest 2-30
synmwscroll 2-30
synmwsize 2-30
synsub 2-30
syntab 2-30
syntax expansion 2-20

T
T_GETLIN routine 6-29
T_SETUP routine 6-27
T_VIEW routine 6-28
tab

method 6-40 to 6-41
set

changing active tab 6-40
creating 6-39
populating 6-39
processing 6-40

tabbed dialog 6-39 to 6-41
tag file 2-24 to 2-25

adding files to 2-24
creating extension-specific 2-25
custom 2-24
including database from another project 2-26

TCP/IP protocol 7-8
telephone number, formatting 3-8
template file 2-31

customizing 2-32
tokens in 2-32

terminal I/O 6-3
Terminal Services, Workbench on 2-7
terminology, Composer 4-2

U

Getting Started with Synergy/DE 9.3 (12/09) Index-11

text 6-27
editing capabilities 6-25
editor, selecting 5-2

text field
creating 4-14
retaining cursor position 3-11

text window
adding data to 6-27
converting 6-27
creating 6-25 to 6-29
defining 6-26

data structure 6-28
extracting input from 6-28
loading 6-27
setting up 6-27
unloading data from 6-29
viewing contents of 6-28

time, defaulting to current 3-11
tip, programming 5-18 to 5-24
title, window 4-9, 6-4
tklib.elb file 6-3
Toolkit. See UI Toolkit
tools.def file 6-6
.tpl file extension 2-32
TS_PROCESS routine 6-40
%TS_TABSET routine 6-39
Type Library Configuration utility. See Synergy Type

Library Configuration utility

U
U_CLOSE routine 6-5, 6-6
%U_HTMLHELP routine 6-35
U_LDWND routine 6-27
U_OPEN routine 6-5
U_POPUP routine 6-20
U_START routine 6-4
%U_WINHELP routine 6-35
UI Toolkit 1-4, 6-1 to 6-47

defined 6-3
reserved menu entries 6-12
screen 6-4
starting 6-4, 6-5

uncompiled object or script 4-6
unloading data from text window 6-29
uppercasing input 3-11

user interface
defining fields in Repository 3-7 to 3-13
designing 4-1 to 4-18
distributed application 8-2

Active Server Pages 8-6
Active Server Pages .NET 8-7
Java application 8-5
JavaServer Pages 8-5
Synergy 8-4
Visual Basic 8-6
Visual Basic .NET 8-7

separating from logic 8-9
USING statement

CASE vs. 5-23
processing menu column 6-16

V
validating input 6-16, 6-17
validation information 3-9
variable

environment 5-18
benefits of using 5-18
setting 5-19

global 6-6
naming convention 6-7
using for identifier 6-7

Variable Reference Utility 2-9
version control, accessing from Workbench 2-44
viewing

text 6-26
text window contents 6-28

Visual Basic 8-6
Visual Basic .NET 8-7
volatile handle 5-17
.vpj file 2-12
.vtg file 2-24, 2-25

W
Web services (.NET) 8-7
weekday, returning number of 5-21, 5-22
window 4-2

composite 6-42 to 6-44
converting to text window 6-27
defining display 6-30
input processing 6-16 to 6-24
See also input window; selection window; text

window

X

Index-12 Getting Started with Synergy/DE 9.3 (12/09)

window library 6-10, 6-11
WinHelp 6-35
%WKDAY routine 5-21, 5-22
word processor, selecting 5-2
Workbench 1-4, 2-1 to 2-41

accessing tools from 2-8
adding command to menu 2-40 to 2-42
customizing 2-39 to 2-46
distributed applications and 8-2
editor 2-17 to 2-27
non-Windows development 2-47 to 2-51
project 2-11 to 2-13

compiling, building, and running 2-37 to 2-41
resetting environment variables 2-7
setting environment variables 2-6
starting 2-4

workspace
adding project to 2-16
creating 2-10
understanding 2-10

.wsc file 2-42

X
xfNetLink 1-6, 8-4 to 8-7

COM Edition 8-5
Java Edition 8-5
.NET Edition 8-7
Synergy Edition 8-4

xfODBC 1-6
xfSeries 1-6
xfServer 1-6, 7-1 to 7-10

executable file 7-9
I/O limitations 7-6
OpenVMS 7-7
operation of 7-5 to 7-8
requirements 7-9
UNIX 7-6

xfServerPlus 1-6, 8-3
XSUBR routine 5-17, 6-15, 6-16

	Getting Started with Synergy/DE
	Contents
	Preface
	1 What Is Synergy/DE?
	What Is Synergy/DE?
	An underlying philosophy
	Advantages of Synergy/DE

	Elements of Synergy/DE
	Professional Series
	Connectivity Series
	xfSeries

	Developing an Application
	Developing a distributed application

	Using the Documentation
	Getting Started with Synergy/DE
	Online Help
	Synergy/DE reference manuals and user’s guides
	Other documents

	2 Developing Your Application in Workbench
	What Is Professional Series Workbench?
	Where Do You Begin?
	Starting Workbench
	Defining the startup environment
	Running Workbench on a Terminal Services machine or in a shared configuration

	Accessing Synergy/DE Tools
	Setting Up Your Development Environment
	Understanding workspaces, projects, and configurations
	Creating a workspace
	Creating a project

	Editing Synergy Code with the Workbench Editor
	Setting up automatic code formatting and completion
	Editing a file
	Working with tag files
	Moving between files in your project
	Displaying online Help

	Generating Synergy Code Segments
	Using aliases
	Using code templates

	Analyzing Your Code
	Viewing a call tree of external routines
	Viewing where a method is called
	Browsing an ActiveX control

	Compiling, Building, Running, and Debugging
	Checking compilation errors
	Debugging a project

	Customizing Your Development Environment
	Customizing the way a project is opened
	Customizing and adding commands
	Adding file extensions to Workbench
	Customizing keyword color coding
	Changing the tagging delay
	Turning tagging off
	Interfacing with version control tools
	Changing the version of the .NET Framework SDK used by Workbench
	Copying customization settings

	Using Workbench for Non-Windows Development
	Using NFS-based mapped drives
	Using FTP

	3 Setting Up Your Repository
	What Is Repository?
	Starting Repository
	Getting help
	Displaying a list of valid data for a field

	Defining a Record Layout for Use in an Application
	Defining a structure
	Defining fields
	Saving your structure

	Defining User Interface Characteristics
	Defining a structure
	Defining how input is redisplayed in a field
	Defining fields
	Defining field attributes

	Defining Files for ReportWriter
	Defining a structure
	Defining fields
	Determining how each field will be displayed in a report
	Defining a format
	Defining a key to your record
	Defining a relation between two structures
	Defining a file
	Assigning a structure to a file

	Defining a Database Schema for xfODBC

	4 Designing Your User Interface
	Important Terminology
	What Is Composer?
	Starting Composer
	What’s on your Composer screen?
	Using Help

	Using Composer
	Designing an input window using repository fields
	Designing an input window from scratch
	Saving your work
	Compiling your script
	Exiting Composer

	5 Programming in Synergy Language
	What Is Synergy Language?
	Creating a source file
	Structure of a Synergy Language program

	Compiling, Linking, and Running Your Program
	Compiling your program
	Creating object libraries
	Linking your program
	Running your program

	Debugging Your Program
	Saving and restoring debugger settings
	Debugging with bounds checking

	Advanced Features
	Using dynamic memory
	Dispatching routines dynamically

	Programming Tips
	Referencing data indirectly
	Comparing data
	Manipulating dates
	Using compile-time definitions
	Using integer data
	Using CASE vs. USING

	6 Implementing Your User Interface with UI Toolkit
	What Is UI Toolkit?
	Performing terminal I/O

	Starting UI Toolkit
	The Toolkit screen
	Letting Toolkit manage your files
	Using event-style programming
	Including tools.def
	Using variables for identifiers

	Managing Display Levels with Environment Processing
	Local and global screen components

	Managing Window Libraries to Store and Retrieve Display Components
	Benefits of window libraries
	Specifying a window library

	Creating Script Files and Window Libraries
	Creating and using menu columns, windows, and lists

	Implementing Online Help
	Implementing native Toolkit help

	Organizing Your Display with Tabbed Dialogs
	Using Composite Windows to Combine Windows and Lists
	Using Methods
	Using input methods

	7 Accessing Data Remotely with xfServer
	What Is a Client/Server System?
	A basic client/server model
	A multi-tier client/server model
	Benefits of a client/server system

	What Is xfServer?
	How the xfServer system operates

	8 Accessing Logic Remotely with xfServerPlus
	Overview
	What Are xfServerPlus and xfNetLink?
	xfServerPlus
	xfNetLink Synergy Edition
	xfNetLink Java Edition
	xfNetLink COM Edition
	xfNetLink .NET Edition

	Design Considerations
	Separating the user interface from application logic
	Separating data access from application logic
	Using ELBs or shared images
	Handling errors
	Guidelines to improving performance and resilience

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Send us your comments

