
xfNetLink & xfServerPlus
User’s Guide

Version 10.3.3

Printed: May 2016

The information contained in this document is subject to change without notice and should not be construed as a
commitment by Synergex. Synergex assumes no responsibility for any errors that may appear in this document.

The software described in this document is the proprietary property of Synergex and is protected by copyright and trade
secret. It is furnished only under license. This manual and the described software may be used only in accordance with the
terms and conditions of said license. Use of the described software without proper licensing is illegal and subject to
prosecution.

© Copyright 1998, 1999, 2001–2016 by Synergex

Synergex, Synergy, Synergy/DE, and all Synergy/DE product names are trademarks or registered trademarks of Synergex.

Java is a trademark or registered trademark of Oracle and/or its affiliates in the U.S. and other countries. Windows and
Visual Studio are registered trademarks of Microsoft Corporation. All other product and company names mentioned in
this document are trademarks of their respective holders.

DCN NL-01-10.3_05

Synergex
2330 Gold Meadow Way
Gold River, CA 95670 USA

www.synergex.com
tel 916.635.7300
fax 916.635.6549

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  iii

Contents

Introduction
Components Required for Distributed Computing with Synergyxi
Other Resources..xii
Product Support Information ..xii
Synergex Professional Services Group..xiii
Comments and Suggestions..xiii

Part I: xfServerPlus
1. Preparing Your Synergy Server Code

Modularizing Your Code ... 1-1
Attributing Your Code ... 1-2
Using ELBs and Shared Images .. 1-3

Defining Logicals ...1-4
Removing User Interface Elements ... 1-5

UI Toolkit Routines .. 1-5
Specifying a Base Channel Number... 1-7
Passing Structures as Parameters... 1-8

How Overlays Are Handled...1-9
Passing Enumerations .. 1-12
Handling Variable-Length and Large Data... 1-13

Passing a Single Parameter as a Memory Handle.. 1-13
Passing a System.String Parameter .. 1-14
Returning a Collection of Structures .. 1-15
Passing a System.Collections.ArrayList Parameter... 1-16
Passing Arrays Larger Than 64K.. 1-18

Passing Binary Data .. 1-18
Handling Errors... 1-19
Testing Your Synergy Code.. 1-21

Generating Test Skeletons with Workbench ... 1-22
Generating Test Skeletons from the Command Line .. 1-24
The gensyn Utility.. 1-25
Using the Test Skeletons ... 1-26

Using the xfServerPlus Application Program Interface .. 1-30
SET_XFPL_TIMEOUT.. 1-31
XFPL_LOG.. 1-33
XFPL_REGCLEANUP .. 1-34

Contents

iv  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

2. Defining Your Synergy Methods
Understanding Routine Name, Method Name, and Method ID 2-2
Using Attributes to Define Synergy Methods .. 2-3

General Procedure .. 2-4
xfMethod Attribute .. 2-8
xfParameter Attribute .. 2-13
Attribute Examples ... 2-16
Documentation Comments... 2-20

Using the MDU to Define Synergy Methods .. 2-22
Creating New Methods ... 2-22
Specifying a Method ID .. 2-28
Defining Parameters ... 2-28
Modifying Methods and Parameters ... 2-35
Deleting Data from the SMC .. 2-36
Searching for Methods and Parameters .. 2-37
Setting the Catalog Location.. 2-37

Importing and Exporting Methods ... 2-38
Verifying Repository Structure Sizes and Enumerations 2-41
Defining Multiple Synergy Method Catalogs... 2-42

Creating New SMC Files .. 2-42
Specifying Which SMC to Update... 2-44
Setting the XFPL_SMCPATH Environment Variable for xfServerPlus 2-44

The Method Definition Utility... 2-48
The SMC/ELB Comparison Utility... 2-53

Windows and UNIX ... 2-53
OpenVMS... 2-55
Running an SMC/ELB Comparison from Workbench .. 2-56

3. Configuring and Running xfServerPlus
The Big Picture ... 3-1
Running xfServerPlus ... 3-2

Running xfServerPlus on Windows .. 3-2
Running xfServerPlus on UNIX ... 3-8
Running xfServerPlus on OpenVMS ... 3-11

Testing xfServerPlus ... 3-15
xfServerPlus Status Codes .. 3-16
Using the xfpl.ini File ... 3-19

Using an Alternate xfpl.ini File... 3-19
Setting the XFPL_INIPATH Environment Variable... 3-20

Configuring Compression.. 3-23
Using Encryption .. 3-24

Setting up the xfServerPlus Machine for Encryption .. 3-25
Setting up the xfNetLink Synergy Machine for Encryption.............................. 3-27

Contents

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  v

Setting up the xfNetLink Java Machine for Encryption 3-27
Setting up the xfNetLink .NET Machine for Encryption.................................... 3-30
Specifying the Data to Encrypt for Slave Encryption... 3-31

Using Server-Side Logging ... 3-33
Setting Options for the xfServerPlus Log .. 3-34
Error Messages in the xfServerPlus Log.. 3-43

Debugging Your Remote Synergy Routines ... 3-45
Debugging Remote Synergy Routines via Telnet .. 3-47

Deploying Your Distributed Application .. 3-49
Deploying the Server... 3-49
Deploying the Client ... 3-50

Configuring xfServerPlus for Remote Data Access ... 3-51
Remote Data Access When xfServerPlus Is on Windows................................... 3-51
Remote Data Access When xfServerPlus Is on UNIX.. 3-53

Part II: xfNetLink Synergy Edition
4. Configuring & Testing xfNetLink Synergy

System Overview .. 4-1
The Big Picture.. 4-2
Configuring xfNetLink Synergy ... 4-4

Specifying the Host Name and Port Number ... 4-4
Specifying Time-out Values...4-5
Specifying Debug Options .. 4-7

Testing xfNetLink Synergy ... 4-8

5. Calling Synergy Routines Remotely from Synergy
Making Remote Calls ... 5-1

Making Remote Calls with %RXSUBR ..5-1
Making Remote Calls Using a Routine Call Block.. 5-3

Handling Errors... 5-3
Troubleshooting Techniques ... 5-4

Running an xfServerPlus Session in Debug Mode ... 5-4
Viewing Packets... 5-8

6. xfNetLink Synergy API
%RX_CONTINUE ...6-2
%RX_DEBUG_INIT .. 6-4
%RX_DEBUG_START .. 6-5
RX_GET_ERRINFO ... 6-8
RX_GET_HALTINFO... 6-10
%RX_RMT_ENDIAN .. 6-12
%RX_RMT_INTSIZE ... 6-13

Contents

vi  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

%RX_RMT_OS .. 6-14
%RX_RMT_SYSINFO... 6-15
%RX_RMT_TIMOUT ... 6-16
RX_SETRMTFNC .. 6-17
RX_SHUTDOWN_REMOTE ... 6-18
%RX_START_REMOTE.. 6-19
%RXSUBR ... 6-24

Part III: xfNetLink Java Edition
7. Creating Java Class Wrappers

System Requirements... 7-1
System Overview .. 7-1
The Big Picture ... 7-3
Setting the Classpath ... 7-6
Creating a Java JAR File in Workbench .. 7-6

Creating a Synergy/DE Java Component Project ... 7-7
Generating Java Class Wrappers .. 7-10
Building the JAR File ... 7-11

Creating a Java JAR File from the Command Line ... 7-12
The genxml Utility ... 7-12
The genjava Utility .. 7-15
Building the JAR File ... 7-17

Understanding the Generated Classes.. 7-18
Procedural Classes ... 7-18
Structure Classes.. 7-19
Enumeration Classes ... 7-19
Editing the Java Source Files .. 7-20

Generating Javadoc ... 7-20

8. Calling Synergy Routines from Java
Setting up Your Environment for Development.. 8-1
Configuring the xfNetLink Java Properties File.. 8-2

Creating and Naming a Properties File .. 8-3
Using a Properties File vs. Using the “set” Methods... 8-4
Specifying the Host Name and Port Number... 8-6
Specifying Logging Options.. 8-6
Specifying Time-out Values .. 8-7
Specifying Encryption Options ... 8-9

Using Your JAR File.. 8-10
Using Structures .. 8-14
Using Enumerations .. 8-16
Passing Binary Data... 8-18

Contents

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  vii

Setting a Call Time-Out .. 8-20
Writing to the xfServerPlus Log ... 8-21

Understanding Java Pooling.. 8-22
Implementing Pooling ... 8-24

Using Your JAR File with Connection Pooling... 8-24
Setting Up a Pooling Properties File... 8-26
Pool Maintenance.. 8-33
Using the Pooling Support Methods .. 8-34

Deploying Your xfNetLink Java Application... 8-37
Method Reference.. 8-38
Class Reference ... 8-44

Synergex.util.SWPConnect .. 8-44
Synergex.util.SWPManager .. 8-46
Synergex.util.xfJCWException ... 8-50
Synergex.util.xfPoolException ... 8-51

9. Error Handling and Troubleshooting in xfNetLink Java
Handling Errors... 9-1
Troubleshooting Techniques ... 9-7

Using Client-Side Logging... 9-7
Using Pooling Logging .. 9-10
Testing xfNetLink Java .. 9-12
Running an xfServerPlus Session in Debug Mode ... 9-14

Part IV: xfNetLink .NET Edition
10. Creating Synergy .NET Assemblies

System Requirements ... 10-1
System Overview .. 10-2
The Big Picture.. 10-3
Creating an Assembly in Workbench .. 10-7

Creating a Synergy/DE .NET Component Project ... 10-7
Controlling the .NET Environment ...10-12
Generating C# Classes ... 10-12
Building the Assembly... 10-13

Creating an Assembly from the Command Line... 10-15
The genxml Utility ... 10-15
The gencs Utility .. 10-18
Building the Assembly... 10-22

Understanding the Generated Classes .. 10-24
Procedural Classes.. 10-24
Structure Classes .. 10-25
DataTable Classes .. 10-25

Contents

viii  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Enumerations .. 10-26
Custom Attributes ... 10-26

Using Your Own Key File ... 10-27
Editing the Generated Files ... 10-28

Editing Information in AssemblyInfo.cs ... 10-28
Generating API Documentation.. 10-29

Adding Documentation Comments ... 10-29
Generating an XML File .. 10-30
Creating the API Documentation... 10-30

11. Calling Synergy Routines from .NET
Setting up Your Environment for Development.. 11-1
Using an Application Configuration File .. 11-2

Creating and Editing Configuration Files .. 11-4
Using Your Synergy .NET Assembly... 11-8

Using Multiple Copies of the Same Class ... 11-11
Using Structures .. 11-12
Using DataTables... 11-16
Using Enumerations .. 11-20
Passing Binary Data... 11-21
Setting a Call Time-Out .. 11-22
Writing to the xfServerPlus Log .. 11-23

Understanding .NET Pooling ... 11-24
Implementing Pooling ... 11-26

Implementation Overview.. 11-26
Creating a Pool .. 11-27
Configuring the Pool .. 11-27
Starting the Pool ... 11-30
Using the Pooling Support Methods.. 11-31
Writing Code That Uses Pooled Objects .. 11-34

Deploying Your xfNetLink .NET Application.. 11-37
Method Reference ... 11-38

Procedural Methods.. 11-38
Structure Methods .. 11-41
DataTable Methods... 11-41

12. Error Handling and Troubleshooting in xfNetLink .NET
Handling Errors .. 12-1
Troubleshooting Techniques ... 12-7

Using Client-Side Logging .. 12-7
Testing xfNetLink .NET.. 12-9
Running an xfServerPlus Session in Debug Mode... 12-10

Contents

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  ix

Appendices
A. Configuration Settings

xfServerPlus.. A-1
xfNetLink Synergy ... A-3
xfNetLink Java ... A-4
xfNetLink .NET ... A-8

B. Data Type Mapping
xfNetLink Java ..B-1
xfNetLink .NET ..B-6

C. xfNetLink Synergy Sample Code
Client Application (synclt.dbl)..C-1
Server-Side Code (HELLO Subroutine)...C-4
Running the Hello Program...C-4

D. xfNetLink Java Sample Code
Client Application (hello.jsp and hello.java).. D-1
Server-Side Code (HELLO Subroutine).. D-4
Running the Hello Program.. D-4

Glossary

Index

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  xi

Introduction

xfNetLink and xfServerPlus, part of the xfSeries™ family, enable you to access
Synergy routines and data remotely from a Synergy™, Java™, or .NET client. There
are three xfNetLink clients from which you can access Synergy logic.

 xfNetLink Synergy Edition is a set of routines distributed with Synergy/DE
Professional Series. These routines work in conjunction with xfServerPlus to
execute Synergy routines stored on a remote machine. The user interface is in
a Synergy application on the client machine.

 xfNetLink Java Edition works in conjunction with the Java programming
language or JavaScript™ scripting language. Using the component generation
tools, you can generate Java class wrappers and build them into a JAR file that
references your Synergy routines. The user interface can be presented by a Java
application, a Java applet, or JavaServer Pages™.

 xfNetLink .NET Edition enables a .NET client to call Synergy routines
residing on a remote server. Using the component generation tools, the .NET
Framework, and Microsoft® Visual Studio®, you can create an assembly that
references Synergy routines. xfNetLink .NET is supported only on Windows
platforms; however, you can create an assembly from Synergy routines that
reside on UNIX and OpenVMS.

Components Required for Distributed Computing with
Synergy

To build a distributed computing system with Synergy/DE®, you’ll need the items
listed below.

 Professional Series Development Environment or Professional Series
Workbench

 xfNetLink. You’ll need one of the following:
 xfNetLink Synergy: Synergy routines for connecting a Synergy client to a

remote Synergy server.
 xfNetLink Java: tools to generate Java class wrappers and create a JAR file

for connecting a Java client to a remote Synergy server.
 xfNetLink .NET: tools to generate .NET assemblies for connecting a

.NET client application to a remote Synergy server.

Introduction
Other Resources

xii  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

 xfServerPlus. You must have at least one xfServerPlus license for each machine
you want to use a server. The xfServerPlus installation also includes
 The Method Definition Utility (MDU) for defining Synergy functions

and subroutines that you wish to call remotely.
 xfServerPlus Application Program Interface (API) for setting remote

execution options.

Other Resources
These resources may be useful as you use xfNetLink and xfServerPlus:

 Release notes for xfNetLink Java, xfNetLink .NET, andó xfServerPlus.
 Synergy DBL release notes for information about xfNetLink Synergy.
 Installation Configuration Guide for information about the rsynd program.
 Getting Started with Synergy/DE for information about using Professional

Series Workbench.
 Tutorials for the xfNetLink products. Check the Synergex website to see

which tutorials are currently available.

Product Support Information
If you cannot find the information you need in this manual or in the resources
listed above, you can reach the Synergy/DE Developer Support department at the
following numbers:

800.366.3472 (in the U.S. and Canada)
916.635.7300 (in all other locations)

To learn about your Developer Support options, contact your Synergy/DE
account manager at one of the above numbers.

Before you contact us, collect as much of following information as possible:

 Version of Synergy/DE, xfServerPlus, and xfNetLink you are running.
 Name and version of the operating systems and hardware platforms you are

running for xfServerPlus, the xfNetLink client, and (if applicable) the web
server.

If you are using xfNetLink Java or xfNetLink .NET you’ll need additional
software, such as the Java Development Kit, a web server, or the .NET
Framework.

Introduction
Synergex Professional Services Group

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  xiii

 Error number and associated error text.
 Statement at which the error occurred.
 Exceptions thrown by xfNetLink Java or xfNetLink .NET.
 Contents of the xfServerPlus log or the application event log (Windows) or

syslog (UNIX).
 Contents of the client-side log.
 Exact steps that preceded the problem.
 Anything that changed (e.g., code, data, hardware) before this problem

occurred.
 Whether the problem happens every time and can be reproduced in a small

test program.

Synergex Professional Services Group
If you would like assistance implementing new technology or would like to bring
in additional experienced resources to complete a project or customize a solution,
Synergex Professional Services Group (PSG) can help. PSG provides
comprehensive technical training and consulting services to help you take
advantage of Synergex’s current and emerging technologies. For information and
pricing, contact your Synergy/DE account manager at 800.366.3472 (in the U.S.
and Canada) or 916.635.7300.

Comments and Suggestions
We welcome your comments and suggestions for improving this manual. Send
your comments, suggestions, and queries, as well as any errors or omissions you’ve
discovered, to doc@synergex.com.

mailto:doc@synergex.com

Part I: xfServerPlus

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-1

Chapter 1

Preparing Your Synergy Server Code
xfNetLink and xfServerPlus enable you to access existing Synergy code within your
Synergy applications from a remote client. You can call both functions and
subroutines remotely. However, your Synergy server code may require some
alterations in order to work effectively with xfNetLink and xfServerPlus: it should
be modularized, routines must be contained in executable libraries (ELBs) or
shared images (on OpenVMS), and you will need to remove all user interface
elements, including error messages.

This chapter gives an overview of changes you may need to make to your Synergy
server code and includes information on passing different types of data and testing
your modularized Synergy code. It also describes the Synergy DBL
system-supplied subroutines that you can use to set remote execution options for
xfServerPlus.

Modularizing Your Code
Modular code is contained in an isolated functional unit with a well-defined,
published interface (i.e., an argument list). The published interface tells the
programmer how to use the code, and all functionality is provided through that
interface.

In modular code, routines are usually short and perform single tasks. They do not
rely on global data to accomplish their tasks. Data is passed via arguments, and
global or common data is kept to a minimum.

For more information on designing a modular distributed application, see “Design
Considerations” in the “Accessing Logic Remotely with xfServerPlus” chapter of
Getting Started with Synergy/DE.

Preparing Your Synergy Server Code
Attributing Your Code

1-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Attributing Your Code
Attributes (introduced in version 9.3) are a feature of Synergy DBL that enable
you to automate the population and maintenance of the Synergy Method Catalog
(SMC). The SMC identifies the Synergy routines that you have prepared for
remote calling. The most efficient way to populate the SMC with details about
your routines is by attributing your code. (You can also populate the SMC by
entering data manually using the Method Definition Utility.)

xfServerPlus supports two attributes—xfMethod and xfParameter—each of which
has a number of properties that are used to describe your Synergy routines. The
xfMethod attribute is required, but xfParameter may be optional, depending on
the type of parameter you are defining. The example below shows a simple
xfMethod attribute statement for the function ReturnError.

{xfMethod(interface="ConsultApp", elb="EXE:Consult")}
function ReturnError ,string

req in userToken ,a22

 endparams

Once you have added attributes to your Synergy code, you will run the dbl2xml
utility using one or more Synergy source files as input. (Some additional changes
to your code may be necessary before you can use dbl2xml. For example, you may
need to add parameter modifiers [IN, OUT, REQ, etc.], as shown in the example
above.) The dbl2xml utility outputs an XML file containing information about
your routines. This XML file is then imported into the SMC.

All of the options for defining routines and parameters that are available in the
MDU, including documentation comments, are also available when you attribute
your code. Attributes can be used regardless of the xfNetLink client you are using.

For more information about the SMC, see chapter 2, “Defining Your Synergy
Methods”. For detailed instructions on attributing your code, see “Using
Attributes to Define Synergy Methods” on page 2-3. For the dbl2xml syntax,
see “The Dbl2xml Utility” in the “General Utilities” chapter of Synergy Tools.

Preparing Your Synergy Server Code
Using ELBs and Shared Images

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-3

Using ELBs and Shared Images
Your Synergy server routines must reside in one or more ELBs or shared images.
(Although we use the term “ELB”, the information in this section applies to both
ELBs and shared images, except where noted.) When you define your routines in
the Method Definition Utility or attribute your code, you will include the name of
the ELB, so that xfServerPlus can find the routine. The ELBs are opened and
closed by xfServerPlus.

Considerations and restrictions
 If you have a Synergy routine in one ELB that calls a routine in a second

(dependent) ELB, the dependent ELB will not be opened by xfServerPlus.
(Note that the dependent ELB may be your own ELB or an ELB distributed
with Synergy/DE, such as tklib.elb.) To ensure that the dependent ELB is
opened, do one of the following:
 (Windows and UNIX only) When you create the primary ELB, link it

against the dependent ELB(s). The dependent ELBs will be opened when
the primary ELB is opened. For details on linking ELBs, see “Invoking
the linker on Windows and UNIX” in the “Building and Running
Synergy Applications” chapter in Synergy Tools.

 (OpenVMS) When you create the primary shared image, link it against
the secondary shared image. Note that if the call to the routine in the
secondary shared image is made directly or with XCALL, you’ll get an
error if the secondary shared image is not linked. However, if the call is
made with XSUBR, you won’t get an error, and will simply have to
remember to link the shared images or use one of the other options listed
below to access the routine in the secondary shared image.

 Modify the routine in the primary ELB to open the dependent ELB
before calling any routines in the dependent ELB.

 Call an initialization routine that opens all the ELBs that will be needed.
 Put all routines in a single ELB.

 You can include an initialization routine that sets up global data, as long as the
global data is contained within the ELB.

 Do not chain from within an ELB.
 Do not use the EXEC subroutine to call a non-Synergy program from within

an ELB.

Preparing Your Synergy Server Code
Using ELBs and Shared Images

1-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

 Routines in an OpenVMS shared image must not contain any XCALLs to
routines that require the command line interpreter. These include PURGE,
RUNJB (unless it creates another detached process, in which case it may be
used), SETLOG, SHELL, SPAWN, VMCMD, and any OpenVMS library
routine that requires a CLI be present.

For more information on ELBs and shared images, see the “Building and Running
Synergy Applications” chapter in Synergy Tools.

Defining Logicals
If you use logicals to point to the directories that your ELBs or shared images
reside in, and you use those logicals when defining routines in the Synergy
Method Catalog, you must define the logicals so that xfServerPlus knows how to
resolve them.

Defining logicals on Windows and UNIX
On Windows and UNIX, define logicals in the xfpl.ini file, which is located by
default in DBLDIR. (Note that it is possible to specify a different location for
xfpl.ini, as well as to have more than one xfpl.ini file; see “Using the xfpl.ini File”
on page 3-19.)

The maximum length for an XFPL_LOGICAL translation value is 1,024
characters.

Define logicals like this:

XFPL_LOGICAL:LOGICAL_NAME=path

Defining logicals on OpenVMS
We recommend defining logicals in the file DBLDIR:SERVER_INIT.COM.

 To specify logicals for system-wide visibility:
$ DEFINE/SYS LOGICAL_NAME value

 To specify logicals for a specific instance of xfServerPlus:
$ DEFINE/TABLE=LNM$RSDMS$MGR_port /USER LOGICAL_NAME value

where port is the port number on which xfServerPlus is running.

If any of your ELBs are linked to dependent ELBs (see page 1-3), you must
define the logicals for both the primary and the dependent ELBs in the
xfpl.ini file.

Preparing Your Synergy Server Code
Removing User Interface Elements

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-5

For additional information about defining logicals on OpenVMS, see “Defining
logical names for xfServer processes” in the “Configuring xfServer” chapter of the
Installation Configuration Guide.

Removing User Interface Elements
xfServerPlus runs as a background process using the non-interactive dbs runtime,
which does not include support for console operations. Consequently, Synergy
routines that you prepare for remote access should not include user interface
elements because the user interface will be located on the client machine. If any of
the Synergy routines you want to access remotely require input from or send
messages to the user, use the Synergy windowing API, or may generate untrapped
errors, they should be adjusted to work as server-level logic. (See “Non-interactive
runtimes” in the “Building and Running Synergy Applications” chapter of Synergy
Tools for more information about dbs, including specifics on limited and
unavailable functionality.)

UI Toolkit Routines
In general, you should remove UI Toolkit routines from code that you plan to call
remotely. Do not use routines that require use of the computer console (e.g.,
U_MESSAGE, U_POPUP) or that create or use windows (e.g., I_LDINP,
T_PUTTXT). However, you can use U_START and U_FINISH, as well as file
I/O and channel maintenance routines such as U_OPEN and U_CLOSE.

To use Toolkit routines with xfServerPlus, you must set the WND and SYNTXT
environment variables in the xfpl.ini file (DBLDIR:SERVER_INIT.COM on
OpenVMS), so that xfServerPlus knows how to resolve them. See “Defining
Logicals” on page 1-4 for instructions. In addition, you must explicitly open the
Toolkit library, tklib.elb, with a call to OPENELB or link tklib.elb to your ELB
(Windows and UNIX only). See OPENELB in the “System-Supplied Subroutines
and Functions” chapter of the Synergy DBL Language Reference Manual for details.

If you use the U_START subroutine, you need to .INCLUDE the tools.def file.
To do this, include the following code in the routine that calls U_START:

.define TOOLS_INIT

.include "WND:tools.def"

You may want to exclude the global data sections of the tools.def file by defining
D_NO_GLOBAL_DATA prior to including tools.def. This means that only the
definitions and function declarations from tools.def will be included.

Preparing Your Synergy Server Code
Removing User Interface Elements

1-6  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

For example:

.define D_NO_GLOBAL_DATA

.include "WND:tools.def"

U_START closes all channels in use from 1 through 255 if the first_channel and
last_channel arguments are not set. If those arguments are set, it closes only
channels in use in the range defined by those arguments. Either way, there’s a
chance that U_START will close the channels in use by the Synergy Method
Catalog files or the XFPL_LOG routine, which may result in an “Invalid
operation for file type” error ($ERR_FILOPT). There are two possible solutions
to this problem:

 If xfServerPlus is using the default base channel (243; see next page) you can
set last_channel to a value less than 243.

 If you are using XFPL_BASECHAN to specify a non-default base channel
number for xfServerPlus, set the value for XFPL_BASECHAN outside the
range of channels specified by the first_channel and last_channel arguments.
(See “Specifying a Base Channel Number” below for more information.)

Preparing Your Synergy Server Code
Specifying a Base Channel Number

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-7

Specifying a Base Channel Number
By default, xfServerPlus uses 243 as the base channel number. This is the channel
number that xfServerPlus tries first whenever it needs to open a channel.

For example, when opening the SMC files (cdt.ism and cmpdt.ism), xfServerPlus
attempts to use channels 243 and 244. If 243 is not available, it tries 244, then
245, and so on until an open channel is found.

If your Synergy server applications use hard-coded channels that are in the range
used by xfServerPlus, you may receive a “Channel is in use” error
($ERR_CHNUSE). To avoid this problem, you can set XFPL_BASECHAN in
the xfpl.ini file to specify that a different base channel number be used. Valid
values are 2 through 254.

For example, if you set

XFPL_BASECHAN = 150

xfServerPlus will attempt to open the SMC files on channels 150 and 151. If 150
is currently in use, xfServerPlus will try 151, then 152, and so on until it finds an
open channel. Should xfServerPlus reach channel 255 without finding an open
channel, it will go to XFPL_BASECHAN–1 (149 in our example) and continue
down from there to channel 1.

If you use hard-coded channels in your code, you should select a base channel
number that is not likely to cause interference with your applications. You may
also want to consider modifying your code to use available channels rather than
hard-coded channels.

Preparing Your Synergy Server Code
Passing Structures as Parameters

1-8  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Passing Structures as Parameters
You can pass repository structures as parameters when using xfNetLink Java or
xfNetLink .NET. xfNetLink supports passing structures of primitive, date, and
time types; structures with embedded structures (that is, groups or struct data
types) or embedded arrays; arrays of structures; and enumeration types within
structures. User-defined fields are generally treated as strings, except for some
specific datetime formats. See “Appendix B: Data Type Mapping” for complete
information on supported data types and for details on how repository field data
types are mapped from Synergy to xfNetLink.

Regardless of whether you create a JAR file or an assembly, during the component
generation process, the repository structure becomes a class (named with the
structure name), and each field in the structure becomes a property of that class.
(In xfNetLink .NET, you can choose to generate repository structure fields as
properties or as public fields. See “Creating a Synergy/DE .NET Component
Project” on page 10-7 or “The gencs Utility” on page 10-18.)

By default, the repository field name becomes the property name. To specify an
alternate name, enter it in the “Alt name” field (on the Display tab) in Repository.
Then, indicate you want to use the alternate name by selecting the “Use alternate
field names” option in the Component Information dialog box in Workbench, or
by specifying the -n option when you run genxml from the command line.

When using structures with xfNetLink, the sum of the sizes of the fields in the
structure must always equal the total size of the structure as calculated by
Repository. (This value displays at the bottom of the Field Definitions list in
Repository.) Similarly, the sum of the sizes of the fields in a group must equal the
size of the group (if the group size is declared). In most circumstances, this will not
be an issue. The only time it is likely to become a problem is when you are using
the Excluded by Web flag (see page 1-10).

If you intend to attribute your Synergy code and use the XML file output by
dbl2xml to populate the SMC, structures passed as ordinary parameters
and as arrays must be defined as structfields in your Synergy code. See
“Structure” in the “Defining Data” chapter of the Synergy DBL Language
Reference Manual for more information on structfields. Structures passed as
ArrayLists and structure collections are identified by attributes. See “Using
Attributes to Define Synergy Methods” on page 2-3.

Preparing Your Synergy Server Code
Passing Structures as Parameters

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-9

For more information on using structures with the individual xfNetLinks, refer to
the following:

 Java, see page 8-14
 .NET, see page 11-12

If your Java or .NET client passes structures as parameters, and you want to also
use an xfNetLink Synergy client, you can do so without altering your server-side
code. Simply create a separate SMC entry for the Synergy server routine and
define the parameter as an alpha rather than a structure.

How Overlays Are Handled
If your structure definition in Repository includes overlays, you can either accept
the default behavior or explicitly indicate which fields should be
included/excluded by using the “Excluded by Web” flag when defining fields. The
explanations below apply to both structures and groups.

The default behavior
By default, the way your fields are defined in Repository determines which fields
will be accessible to someone using your Synergy component. The structure is read
from the top down, and the “real” fields (overlaid fields)—rather than the
overlays—are used. To determine whether you can use your repository structures
as they are currently defined, you need to first determine which fields you want to
make available in your client application.

For example, if you have this structure in your repository

customer
firstname ,a20
mi ,a1
lastname ,a30
name ,a51 @ firstname

the default behavior enables you to access the firstname, mi, and lastname fields
from your client application. For example:

Customer.Firstname
Customer.Mi
Customer.Lastname

However, if you have this structure in your repository

customer
name ,a51
firstname ,a20 @ name

Preparing Your Synergy Server Code
Passing Structures as Parameters

1-10  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

mi ,a1 @ name + 20
lastname ,a30 @ name + 21

the default behavior enables you to access only the name field from your client
application. For example:

Customer.Name

Using the “Excluded by Web” flag
If the default behavior is undesirable, you can use the “Excluded by Web” flag in
Repository to explicitly indicate which fields are included/excluded. (See “Basic
field information” in the “Working with Fields” chapter of the Repository User’s
Guide for information on this flag.) Fields for which the Excluded by Web flag is
set will not be included in your Synergy component. Once you select the Excluded
by Web flag for a field in a structure, genxml will cease to use the default behavior
for that structure and will honor the Excluded by Web flag instead.

The sum of the sizes of the selected fields must always equal the size of the entire
structure as calculated by Repository. Note that Repository does not recalculate the
structure size when you exclude fields with the Excluded by Web flag. (The
structure size, as calculated by Repository, is displayed at the bottom of the Field
Definitions list. See “The Field Definitions list” in the “Working with Fields”
chapter of the Repository User’s Guide.)

For example, if you have this structure in your repository

customer
name ,a51
firstname ,a20 @ name
mi ,a1 @ name + 20
lastname ,a30 @ name + 21

and you want to be able to access the firstname, mi, and lastname fields like this
from your client application

Customer.Firstname
Customer.Mi
Customer.Lastname

you would set the Excluded by Web flag for the name field.

The Excluded by Web flag is intended for use only with overlays and
overlaid fields. Do not attempt to use it with other repository fields.

Preparing Your Synergy Server Code
Passing Structures as Parameters

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-11

 To prepare structures for passing as parameters

1. Define the structure in the repository or use an existing structure. See the
“Working with Structures” and “Working with Fields” chapters of the Repository
User’s Guide for instructions.

2. If your structures include overlays, decide how you want to handle them and set
the “Excluded by Web” flag if necessary.

3. If you are using the MDU to populate the SMC,

 Specify the repository when you start the Method Definition Utility (MDU).
See “Using the MDU to Define Synergy Methods” on page 2-22.

 Select the structures when you define parameters in the MDU. See step 1 on
page 2-29.

4. If you are attributing your code and using the XML file output by dbl2xml to
populate the SMC, .INCLUDE the repository structure in your Synergy source
code and define the structure as a structfield. See “Using Attributes to Define
Synergy Methods” on page 2-3.

5. When you create your Synergy component, specify the repository in the
Component Information dialog box in Workbench or on the command line when
running genxml. For details, refer to the chapter for the xfNetLink client you are
using:

 Java, see chapter 7, “Creating Java Class Wrappers”
 .NET, see chapter 10, “Creating Synergy .NET Assemblies”

If you include structures in your parameter definitions in the SMC, and then
later alter those structures in Repository, they are not automatically
updated in the SMC. You can use the MDU’s Verify Catalog utility to update
the structure sizes. See “Verifying Repository Structure Sizes and
Enumerations” on page 2-41 for more information.

Preparing Your Synergy Server Code
Passing Enumerations

1-12  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Passing Enumerations
You can pass enumerations defined in the repository as parameters or return
values, as well as include them as fields in a structure passed as a parameter. This
feature is supported on xfNetLink Java and xfNetLink .NET. In Java,
enumerations are included in your JAR file as enum type classes; in .NET, they are
included in the assembly as enumeration types, or enums.

Regardless of whether you are creating a JAR file or an assembly, the repository
enumeration becomes a class (named with the enumeration name), and each
member of the enumeration is accessible from your client application.

If you assign numerical values to the members in the repository, they are used for
the integer equivalents assigned to the values in the generated class; else, values are
assigned automatically starting with 0 and incrementing by 1.

When you create a new instance of an enumeration in your client code, it has a
default value of the enumerator that has been assigned 0, if you do not explicitly
assign a value. Consequently, when defining your enumeration in the repository,
you should specify as the first member the value you would like to be the default.

In your Synergy code, you must .INCLUDE the enumeration.

For more information on using enumerations with the individual xfNetLinks,
refer to the following:

 Java, see page 8-16
 .NET, see page 11-20

Preparing Your Synergy Server Code
Handling Variable-Length and Large Data

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-13

Handling Variable-Length and Large Data
Normally, you must define the size of each parameter in your Synergy server
routines in the Synergy Method Catalog (SMC) so that xfServerPlus knows what
to expect. (See chapter 2 for details on defining data in the SMC.) Sometimes,
though, you may not know exactly what size the data will be, or you may know
that it will vary in size, or your application may need to handle data that exceeds
the usual size limits. If your application needs to support such cases, you may be
able to use one of the following methods:

 Use a memory handle to pass a single, non-array parameter of variable length
and/or larger than 64K. See “Passing a Single Parameter as a Memory
Handle”, below.

 (Java and .NET clients only) Use a Synergy System.String class to pass a single
parameter of variable length and/or larger than 64K. See “Passing a
System.String Parameter” on page 1-14.

 (Java and .NET clients only) Use a memory handle to pass a collection of
structures, which can vary in the number of elements it contains, to an
ArrayList on the client. See “Returning a Collection of Structures” on
page 1-15.

 (Java and .NET clients only) Use a Synergy System.Collections.ArrayList class
to pass an ArrayList of structures or other types of elements to the client or
receive an ArrayList from the client. See “Passing a
System.Collections.ArrayList Parameter” on page 1-16.

 Use a memory handle on a Synergy client to pass an array larger than 64K.
(All xfNetLink clients can handle arrays larger than 64K, but only the Synergy
client requires a special technique to do so.) See “Passing Arrays Larger Than
64K” on page 1-18.

Passing a Single Parameter as a Memory Handle
Use this method to pass a non-array parameter that is of variable length and/or
larger than 64K (65,535 bytes) in size. This method is supported on all xfNetLink
clients.

Note the following:

 Your Synergy server routine must declare the argument that receives the data
as a memory handle (i4; do not use int). xfServerPlus will place the data in a
memory area and pass the memory handle allocated to that area to your

Preparing Your Synergy Server Code
Handling Variable-Length and Large Data

1-14  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Synergy server routine. (You must use the memory handle provided by
xfServerPlus; do not attempt to allocate your own.) After the data has been
returned to xfNetLink, xfServerPlus will free the memory area.

 If you are defining parameters in the MDU, specify a data type of handle. The
length will default to 0.

 If you are attributing your code, set the type property in the xfParameter
attribute to SynType.handle. See the type property on page 2-13.

 On a Java client, the parameter is handled as a String (or StringBuffer); on a
.NET client, it is handled as a string. See the data type mapping tables in
“Appendix B: Data Type Mapping” for details.

 On a Synergy client, the argument is handled as a memory handle.
Consequently, you must use the RCB_xxx routines to make remote calls. You
cannot use %RXSUBR. When setting the arguments in the routine call block
with either RCB_SETARG or RCB_INSARG, use the D_TYPE_HANDLE
define and pass as the data argument the memory handle where the data is
stored on the client. Returned data will be placed back into the same memory
area. For details on using the RCB_xxx routines, see the “Synergy Routine
Call Block API” chapter of the Synergy DBL Language Reference Manual.

 If you are using xfNetLink Synergy and the memory area allocated to the
handle is resized within the Synergy routine on the server, it will be resized
accordingly on the client upon returning from the routine. Trailing blanks will
be trimmed, so the resized memory area on the client may be smaller than it
was on the server.

Passing a System.String Parameter
When using a Java or .NET client, you can use a Synergy System.String to pass a
parameter that is of variable length and/or larger than 64K. This method is an
alternative to using a memory handle, as described above. System.String can also
be used as a function return value.

Note the following:

 In your Synergy server routine, the parameter is declared as @System.String.
For more information on using string data in Synergy DBL see “Data Types”
in the “Defining Data” chapter of the Synergy DBL Language Reference Manual
and System.String in the “System-Supplied Classes” chapter of that same
manual.

 If you are defining parameters in the MDU, specify a data type of
System.String. The length will default to 0.

Preparing Your Synergy Server Code
Handling Variable-Length and Large Data

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-15

 If you are attributing your code, the data type will be obtained from your
Synergy code.

 In your client code, instantiate a string. Refer to your Java or .NET
documentation for more information.

Returning a Collection of Structures
When using a Java or .NET client, you can return a structure collection parameter
to the client from Synergy. A structure collection is an array of structures with a
variable number of elements. The structure collection can only be used to send
data from Synergy to the client.

On the client side, the structure collection is handled as an ArrayList; on the
xfServerPlus side, the data is placed in a memory area. When the call returns from
xfServerPlus, the ArrayList will be filled with structures and will know its own size
(number of elements).

Note the following:

 Your Synergy server routine must declare the argument that will return the
structure collection as a memory handle (i4; do not use int). xfServerPlus will
create an empty memory area and pass the memory handle allocated to that
area to your Synergy server routine. (You must use the memory handle
provided by xfServerPlus; do not attempt to allocate your own.) Your routine
must resize the area and place the structures in it. After the data has been sent
to xfNetLink, xfServerPlus will free the memory area.

 If you are defining parameters in the MDU, specify a data type of structure,
select the structure by name, and then select the Structure collection check
box. The Data passed field will automatically be set to Out.

 If you are attributing your code, in the xfParameter attribute, set the
collectionType property to xfCollectType.structure and specify the structure
name with the structure property. See the collectionType property on
page 2-15.

For a .NET client, you can choose to have the ArrayList on the client
created as a DataTable by selecting the DataTable check box in the MDU
or setting the dataTable property of the xfParameter attribute to
“true” if you are attributing your code. See “Using DataTables” on
page 11-16 for more information.

Preparing Your Synergy Server Code
Handling Variable-Length and Large Data

1-16  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

 On your Java client, instantiate an empty ArrayList (if there is any data in the
list, it will be cleared) and pass it to the Synergy method that will return the
structure collection. If you set the “Generate classes as version” option in
Workbench to 1.5 (or run genjava with the -c 1.5 option), the ArrayList will
be generic, so you must instantiate an ArrayList of structures. When the
structure collection parameter is returned, use the ArrayList.size()
method to get the size. Then you can enumerate through the ArrayList to
access the structures or access them by position (index). Refer to your Java
documentation for more information on ArrayLists.

 On your .NET client, instantiate an empty ArrayList (if there is any data in
the list, it will be cleared) and pass it to the Synergy method that will return
the structure collection. If you run gencs with the -w option, you will need to
instantiate a List<T> instead of an ArrayList. When the structure collection
parameter is returned, use the ArrayList.Count (or List<T>.Count)
property to get the size. Then you can enumerate through the ArrayList to
access the structures or access them by position (index). Refer to your .NET
documentation for more information on ArrayLists.

If you have defined a structure collection parameter in the SMC for use with your
Java or .NET client, and you want to also use a Synergy client with your
server-side code, note the following:

 Write your Synergy client code as though you were passing variable length
data. That is, create a memory area on the client and pass the memory handle
(as the parameter that is defined as a structure collection in the SMC) to
xfServerPlus using the RCB_xxx routines. (See “Passing a Single Parameter as
a Memory Handle” on page 1-13.)

 Do not alter the method definition in the SMC. When you make the call
from your Synergy client, xfServerPlus will not give a “parameter mismatch”
error because it has been programmed to permit a mismatch when a Synergy
client passes a memory handle to a parameter that is defined as a structure
collection in the SMC.

Passing a System.Collections.ArrayList Parameter
When using a Java or .NET client, you can use a Synergy
System.Collections.ArrayList class to pass an ArrayList parameter either from
Synergy to the client or from the client to Synergy. This method is an alternative to
the one described in “Returning a Collection of Structures” on page 1-15. In
addition to allowing data to be passed in either direction, the other advantage to
this method is that the elements in the ArrayList are not limited to structures.

Preparing Your Synergy Server Code
Handling Variable-Length and Large Data

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-17

You may also pass data defined as alpha, decimal, implied-decimal, integer, or
System.String data types. The ArrayList may vary in the number of elements it
contains.

Note the following:

 In your Synergy server routine, declare the parameter as
@System.Collections.ArrayList. See System.Collections.ArrayList in the
“System-Supplied Classes” chapter of the Synergy DBL Language Reference
Manual for details.

 If you are defining parameters in the MDU, in the Data type field, select the
data type of the elements in the ArrayList. If the data type is structure, select
the structure by name. Select the ArrayList check box and set Data passed to
either In or Out. (In/Out is not supported.)

 If you are attributing your code, set the collectionType property of the
xfParameter attribute to the data type of the array elements. If the data type is
structure, you must also specify the structure name with the structure
property. See the collectionType property on page 2-15.

 For Java, you must set the “Generate classes as version” option in Workbench
to 1.5 (or run genjava with the -c 1.5 option). In your client code, instantiate
an ArrayList (generic, of the specified type). Mixed type ArrayLists are not
supported.

 For .NET, in your client code, instantiate an ArrayList or, if you ran gencs
with the -w option, a List<T>. Mixed type ArrayLists are not supported. Refer
to your .NET documentation for more information on Lists and ArrayLists.

In xfNetLink .NET, if the ArrayList contains structures, you can choose to
have it created as a DataTable on the client by selecting the DataTable
check box in the MDU or setting the dataTable property to “true” if you
are attributing your code. See “Using DataTables” on page 11-16 for
more information.

Preparing Your Synergy Server Code
Passing Binary Data

1-18  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Passing Arrays Larger Than 64K
You can pass an array parameter larger than 64K (65,535 bytes) as long as no
element in the array exceeds 64K. The maximum size for an arrayed field in
Synergy DBL is 256 MB. This feature is supported on all clients.

Note the following:

 Your Synergy server routine should declare the argument that receives the
array in the normal manner (that is, as an array argument of a particular data
type).

 For a Java or .NET client, you do not need to do anything special on the client
side to pass large arrays.

 For a Synergy client, the array must be placed in a memory handle, and you
must use the RCB_xxx routines to make the remote call. You cannot use
%RXSUBR. When setting the arguments in the routine call block with either
RCB_SETARG or RCB_INSARG, you will use the D_TYPE_MEMARG
define and pass as the data argument the memory handle where the array is
stored on the client. Returned data will be placed back into the same memory
area. For details on using the RCB_xxx routines, see the “Synergy Routine
Call Block API” chapter of the Synergy DBL Language Reference Manual.

Passing Binary Data
You can pass binary data, such as JPEG files, when using a Java or .NET client. On
the client side, the binary data is handled as an ArrayList for a Java client and as a
byte array for a .NET client.

In the MDU, define the parameter as a “Binary (handle)” data type. (If you are
attributing your code, set the type property of the xfParameter attribute to
SynType.binaryhandle; see page 2-13.) Your Synergy server routine must declare
the argument that receives the data as a memory handle (i4; do not use int).
xfServerPlus will place the data in a memory area and pass the memory handle
allocated to that area to your Synergy server routine. (You must use the memory
handle provided by xfServerPlus; do not attempt to allocate your own.) After the
data has been returned to xfNetLink, xfServerPlus will free the memory area.

Preparing Your Synergy Server Code
Handling Errors

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-19

For details on passing binary data, including code samples, refer to the following:

 Java, see page 8-18
 .NET, see page 11-21

If you have defined a binary (handle) parameter in the SMC for use with your Java
or .NET client, and you want to also use an xfNetLink Synergy client with your
server-side code, note the following:

 Write your Synergy client code as though you were passing variable length
data. That is, create a memory area on the client and pass the memory handle
(as the parameter that is defined as a binary (handle)) to xfServerPlus using the
RCB_xxx routines. (See “Passing a Single Parameter as a Memory Handle” on
page 1-13.)

 You do not need to alter the method definition in the SMC. When you make
the call from your Synergy client, xfServerPlus will not give a “parameter
mismatch” error because it has been programmed to permit a mismatch when
a Synergy client passes a memory handle to a parameter that is defined as a
binary (handle) parameter in the SMC.

Handling Errors
A distributed computer system has multiple points of failure, making it complex
to debug. Because the user interface is on the client machine, errors in your server
application cannot be handled by writing a message to the screen of the machine
on which your Synergy routines are executed. (This could be the screen of a server
that no one is looking at.) Nor can you rely on information from tracebacks. You
must trap and handle errors in some other manner. The best way to do this is to
trap for all possible errors on the server side and have your routines return status
information (success, failure, or an error number) via the return result or the
argument list. This allows processing to continue even though an error occurred.
On the client side, your code should check for errors—both xfServerPlus errors
and errors from the client code.

If you are using a .NET client, binary fields in structures are converted to
byte arrays by default. However, you should use the procedure described in
this section to pass binary data such as JPEG files rather than a binary field in
a structure, because the latter requires that you specify a size. See also the
description of the gencs -nb option on page 10-20.

Preparing Your Synergy Server Code
Handling Errors

1-20  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

To help you deal with the complexities of troubleshooting in a distributed
environment, errors detected by xfServerPlus are always logged to the application
event log (Windows), syslog (UNIX), or operator console (OpenVMS). Errors
may also be logged to the xfServerPlus log if you have server-side logging turned
on. (See “Using Server-Side Logging” on page 3-33.) This enables the system
administrator to track problems that have occurred even if they are not reported by
a user. You can also activate client-side logging. For information on handling errors
for the individual xfNetLink clients, refer to the following:

 Synergy, see page 5-3
 Java, see page 9-1
 .NET, see page 12-1

Preparing Your Synergy Server Code
Testing Your Synergy Code

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-21

Testing Your Synergy Code
Once your code is modularized and contained in ELBs, you should test it
thoroughly in a stand-alone configuration. It will be easier to troubleshoot and run
the debugger now, than it will be when there is a client and a remote connection
involved. When you are sure that your code is working locally, we recommend that
you test it with a remote connection using an xfNetLink Synergy client before
adding a Java or .NET client to the picture.

To make it easier to test your code, we’ve included a test skeleton generator utility
(gensyn.dbr), which can be run from Workbench or from the command line. This
utility generates skeletal code from your Synergy Method Catalog (SMC)
definitions, which you can edit to create a test program. You can choose to create
test skeletons that contain local, remote, or debug calls to the Synergy routines you
have modularized and contained in an ELB. The local calls are made with
XSUBR; the remote and debug calls use the routines in the xfNetLink Synergy
API.

Before generating test skeletons, your code should be modularized and contained
in ELBs, and you must define your Synergy routines in the Synergy Method
Catalog. See chapter 2 for information about the SMC.

The generated code is not a complete, ready-to-run, test program. For example,
you will have to edit the generated code to ensure that calls are made in the proper
sequence and that parameters are initialized. Items that require your attention are
marked with “TO_DO” in the code. Once the TO_DOs are completed, you can
compile, link, and run the test programs.

The test skeletons are intended primarily for developers who want to test their
Synergy code before building a component with xfNetLink Java or
xfNetLink .NET. If you are using xfNetLink Synergy, you can still generate test
skeletons, as long as you complete the Interface name field when defining routines
in the MDU.

You cannot generate test skeletons if your Synergy routines defined in the
SMC include any of the following:

 parameters with a data type of handle, binary (handle), System.String, or
enumeration

 parameters that are flagged as structure collections or ArrayLists
 routines with a return value of System.String or enumeration

Preparing Your Synergy Server Code
Testing Your Synergy Code

1-22  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Generating Test Skeletons with Workbench

1. From within the Synergy/DE project that contains your modularized code, select
Build > Generate Synergy Test Skeletons.

2. Complete the following fields in the Generate Synergy Test Skeleton Options
dialog box:

Directory. Specify the directory to which you want the test skeleton files saved. If
you enter a logical in this field, it must be followed by a colon (e.g., DBLDIR:).
The default is the directory where the project is stored.

Local. Select Local if you want to generate a test skeleton that makes local calls to
the routines in your ELBs.

In version 9.3 and later, the Generate Synergy Test Skeletons menu entry is
not included in new projects. The entry will still appear on the Build menu
in older projects. You can access the dialog in any Synergy project by typing
SynStartSkeletonGen on the Workbench command line, or you can generate
test skeletons from the command line (see page 1-24). If you use this feature
frequently, you may want to add it as a menu option (using Project > Project
Properties > Tools) in Workbench.

You can also generate test skeletons by selecting Build > Generate Synergy
Test Skeletons in a Synergy/DE Java or .NET Component project.

Figure 1-1. The Generate Synergy Test Skeletons Options dialog box.

Preparing Your Synergy Server Code
Testing Your Synergy Code

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-23

Remote. Select Remote if you want to generate a test skeleton that uses
xfNetLink Synergy and xfServerPlus to make remote calls to the routines in your
ELBs.

Debug. Select Debug if you encountered errors while running the remote test
program and want to run your xfServerPlus session in debug mode. This option is
applicable only if the operating system of your xfServerPlus machine is Windows
or UNIX. For OpenVMS, see the note on page 1-28. To perform remote
debugging via Telnet, you do not need a debug test skeleton; use the remote
skeleton instead. (See “Debugging Your Remote Synergy Routines” on page 3-45
for information about the Telnet method.)

Repository main file. If any of the methods that will be included in the test
skeletons pass structures as parameters, specify the location of the repository main
file for those structures. This must match the repository that was used when
entering data in the SMC. If you specify a main file, you must also specify a
text file.

The default is the value of the environment variable RPSMFIL. If it is not defined,
the default is RPSDAT:rpsmain.ism. If neither RPSMFIL nor RPSDAT are
defined, the default is rpsmain.ism in the path specified in the Working directory
property of the project. If the Working directory is not defined, the default is
rpsmain.ism in the location where the project is stored.

Repository text file. If any of the methods that will be included in the test
skeletons pass structures as parameters, specify the location of the repository text
file for those structures. This must match the repository that was used when
entering data in the SMC. If you specify a text file, you must also specify a main
file.

The default is the value of the environment variable RPSTFIL. If it is not defined,
the default is RPSDAT:rpstext.ism. If neither RPSTFIL nor RPSDAT are defined,
the default is rpstext.ism in the path specified in the Working directory property
of the project. If the Working directory is not defined, the default is rpstext.ism in
the location where the project is stored.

Use alternate field names. Check this box if you want the field names in your
structures to use the value in the Alternate name field in Repository instead of the
value in the Name field.

SMC directory. This field displays the path for the Synergy Method Catalog that
will be used to generate the code for the test skeletons. The default is
XFPL_SMCPATH; if it is not set, the default is DBLDIR. To change the SMC
directory, click the Change Directory button to display the Browse for SMC

Preparing Your Synergy Server Code
Testing Your Synergy Code

1-24  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Directory dialog box. Navigate to the directory, double-click to select it, and click
OK. The selected path will display in the SMC directory field and the list of
interfaces will be refreshed, displaying all interfaces in the selected SMC.

Interfaces. Select the interfaces for which you want to generate test skeletons by
clicking in the box to the left of the interface name. The test skeleton utility will
create a DBL file of each type you requested (local, remote, debug) for each
interface. The DBL files are named with the interface name plus the type of
skeleton. For example, if the interface is named “Consultant”, the local test
skeleton will be named Consultant_local.dbl.

3. Click OK to generate the test skeletons.

4. Open the .dbl files and edit the TO_DO items. See “Using the Test Skeletons” on
page 1-26 for specifics on what you need to edit, as well as information on
compiling, linking, and running the three types of test programs.

Generating Test Skeletons from the Command Line
Generating test skeletons from the command line is a two-step process. First, you
will run genxml to create an XML file. Then, you’ll run gensyn to create the test
skeletons. Both genxml and gensyn are located in DBLDIR and run on all
supported Windows, UNIX, and OpenVMS platforms.

1. Run genxml with the -f and -i options. You may also need to use the -d, -s, and -n
options. See “The genxml Utility” on page 7-12 or page 10-15 for detailed
information on the genxml syntax. For example, on Windows:

dbr DBLDIR:genxml -f temp -i Consultant -d c:\work
-s c:\work\SMC

This will use the SMC located in the c:\work\SMC directory to create an XML file
named temp.xml, which contains information about the Consultant interface.
The XML file will be placed in the c:\work directory.

2. Run gensyn, passing the name of the XML file output by genxml. See “The
gensyn Utility” on page 1-25 for the complete syntax. For example, on Windows:

dbr DBLDIR:gensyn -f c:\work\temp.xml -d c:\work -l -r

Continuing our example from above, this command will produce two
files—Consultant_local.dbl and Consultant_remote.dbl—and place them in the
c:\work directory.

Preparing Your Synergy Server Code
Testing Your Synergy Code

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-25

3. Open the .dbl files and edit the TO_DO items. See “Using the Test Skeletons” on
page 1-26 for specifics on what you need to edit, as well as information on
compiling, linking, and running the three types of test programs.

The gensyn Utility
The gensyn utility creates test skeletons from an XML file created by genxml.

Syntax dbr gensyn -f xmlFilename [-d targetDir] [-l] [-r] [-b]
[-v msgLevel] [-?]

Arguments -f xmlFilename

The name of the XML file generated by genxml. Include the full path if
necessary; if the path is not included, the current directory is assumed.

-d targetDir

(optional) The directory for the DBL files. This must be the full path of an
existing directory; do not use logicals. If not specified, the files are created in
the current directory.

-l

(optional) Generate test skeletons that make local calls to the routines in your
ELBs.

If no test skeleton type is specified with -l, -r, or -b, all three types will be
generated.

-r

(optional) Generate test skeletons that use xfNetLink Synergy and
xfServerPlus to make remote calls to the routines in your ELBs.

-b

(optional) Generate debug test skeletons. Debug test skeletons are useful if
you encountered errors while running the remote test program and want to
run your xfServerPlus session in debug mode. This option is applicable only if
the operating system of your xfServerPlus machine is Windows or UNIX. For
OpenVMS, see the note on page 1-28. To perform remote debugging via
Telnet, you do not need a debug test skeleton; use the remote skeleton instead.
See “Debugging Your Remote Synergy Routines” on page 3-45 for
information about the Telnet method.

Preparing Your Synergy Server Code
Testing Your Synergy Code

1-26  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

-v msgLevel

(optional) Level of verbosity in messages.

0 = no messages
1 = error messages
2 = error messages and the names of generated files (default)

-?

(optional) Displays a list of options and the version number for gensyn.

Using the Test Skeletons
The generated code includes a subroutine for each method in the selected
interface. For each subroutine there is a local record structure, which defines the
parameters passed by the method.

Using the local test skeleton
The local test skeleton makes calls using XSUBR.

1. Complete the TO_DO items in the *_local.dbl file.

 Put the method calls in the correct sequence. You may also want to comment
out some calls, depending upon the requirements of your application. For
example, in some applications, it may not be valid to make all calls in
sequence. Instead, you may need to test the method calls a few at a time.

 Supply dimensions if any of your methods pass array parameters.
 Initialize input parameters with valid data. In the test skeleton, input

parameters and structure field values are initialized to zero or blank. You
should initialize any parameters for which the Synergy routine expects to
receive a value. Structure parameters are treated as alpha strings in the test
skeleton. This means that integer data in structures will be considered alpha
data and will be passed “as is”.

2. Compile and link *_local.dbl. You should not link against your ELB because the
code in *_local.dbl includes a call to OPENELB.

If you regenerate the test skeleton, the changes you have made to the .dbl
file will be lost.

Preparing Your Synergy Server Code
Testing Your Synergy Code

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-27

3. Run *_local.dbr. The program will call OPENELB and then call each routine in
the interface.

If you encounter errors, there is likely a problem in the modularized Synergy
routines. Correct the code, recompile it into an ELB, and run the local test
program again.

For errors that require changes to the SMC (e.g., a missing parameter), you will
need to correct the SMC and then either regenerate the test skeleton or modify the
test program by hand. When you regenerate the test skeletons, you will lose the
edits you made. So, depending on the extent of the changes, it may be more
efficient to modify the program by hand than to regenerate.

Using the remote test skeleton
The remote test skeleton code makes calls using the xfNetLink Synergy API. The
API, along with information on setting up your system, making remote calls, and
troubleshooting xfNetLink Synergy is documented in Part II of this manual.

1. Edit the TO_DO items in *_remote.dbl.

 Modify the IP define statement to be the IP address or host name of your
xfServerPlus machine. (It defaults to the name of the machine on which the
test skeletons were generated.)

 Modify the PORT define to be the port on which xfServerPlus is running.
 Put the method calls in the correct sequence. You may also want to comment

out some calls, depending upon the requirements of your application. For
example, in some applications, it may not be valid to make all calls in
sequence. Instead, you may need to test the method calls a few at a time.

 Supply dimensions if any of your methods pass array parameters.
 Initialize input parameters with valid data. In the test skeleton, input

parameters and structure field values are initialized to zero or blank. You
should initialize any parameters for which the Synergy routine expects to
receive a value. Structure parameters are treated as alpha strings in the test
skeleton. This means that integer data in structures will be considered alpha
data and will be passed “as is”.

If you regenerate the test skeleton, the changes you have made to the .dbl
file will be lost.

Preparing Your Synergy Server Code
Testing Your Synergy Code

1-28  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

2. Compile and link *_remote.dbl.

This is the client part of the application, which will make remote calls to the ELBs
on your xfServerPlus machine. Note that you do not have to use a separate
machine for the client; if you do, however, Core Components (Windows) or
Synergy DBL (UNIX and OpenVMS) must be installed on the client to run
xfNetLink Synergy.

3. Verify that xfServerPlus is installed, configured, and running on your Synergy
server machine. We recommend that you turn logging on while running the test
programs. See chapter 3 for information on configuring and running xfServerPlus.

4. Verify that your SMC files and ELBs are on the Synergy server machine.

5. Run *_remote.dbr on the client. The program will start an xfServerPlus session,
call each of the methods in the interface, and then shut down the session.

If you encounter errors while running the remote program, check the table on
page 6-21 for status codes returned during session start-up or the table on
page 6-27 for errors signaled by the %RXSUBR call.

If the problem is in your Synergy code, correct it and re-run the remote test
program. If the problem is in the method definitions in the SMC, you must
correct the SMC and then either regenerate and re-edit the test skeleton or modify
the test skeleton by hand before retesting. Depending on the extent of the changes,
it may be more efficient to modify the program by hand than to regenerate and
re-edit the test skeleton.

If the problem appears to be related to the setup of xfServerPlus, you may want to
run the xfNetLink Synergy test program and the xfServerPlus test program. See
“Testing xfNetLink Synergy” on page 4-8 and “Testing xfServerPlus” on
page 3-15.

Using the debug test skeleton
The debug test skeleton makes calls using the xfNetLink Synergy API. It enables
you to manually connect an xfServerPlus session to your client so that you can run
the debugger on the Synergy code in your ELBs. See “Running an xfServerPlus
Session in Debug Mode” on page 5-4 for detailed information.

If the operating system of your xfServerPlus machine is OpenVMS, you do
not need to use the debug test skeleton to run in debug mode. Instead, use
the remote skeleton. See “Running in debug mode on OpenVMS” on
page 5-7.

Preparing Your Synergy Server Code
Testing Your Synergy Code

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-29

1. Edit the TO_DO items in *_debug.dbl.

 Put the method calls in the correct sequence. You may also want to comment
out some calls, depending upon the requirements of your application. For
example, in some applications, it may not be valid to make all calls in
sequence. Instead, you may need to test the method calls a few at a time.

 Supply dimensions if any of your methods pass array parameters.
 Initialize input parameters with valid data. In the test skeleton, input

parameters and structure field values are initialized to zero or blank. You
should initialize any parameters for which the Synergy routine expects to
receive a value. Structure parameters are treated as alpha strings in the test
skeleton. This means that integer data in structures will be considered alpha
data and will be passed “as is”.

2. Compile and link *_debug.dbl.

This is the client part of the application, which will make remote calls to the ELBs
on your xfServerPlus machine.

3. Verify that xfServerPlus is installed, configured, and running on your Synergy
server machine. We recommend that you turn logging on while running the test
programs. See chapter 3 for information on configuring and running xfServerPlus.

4. Verify that your SMC files and ELBs are on the Synergy server machine.

5. Run *_debug.dbr. The program will start a connection to xfServerPlus with
%RX_DEBUG_INIT and display the IP and port for listening. You will then
need to manually start the xfServerPlus session in debug mode. See the
instructions in “Running an xfServerPlus Session in Debug Mode” on page 5-4.

If you encounter errors while running the debug program, check the table on
page 6-21 for status codes returned during session start-up or the table on
page 6-27 for errors signaled by the %RXSUBR call.

If you regenerate the test skeleton, the changes you have made to the .dbl
file will be lost.

Preparing Your Synergy Server Code
Using the xfServerPlus Application Program Interface

1-30  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Using the xfServerPlus Application Program Interface
Three xfServerPlus API subroutines, SET_XFPL_TIMEOUT, XFPL_LOG, and
XFPL_REGCLEANUP, are available for use in your Synergy applications. These
subroutines are stored in xfpl_api.elb (XFPL_API.EXE on OpenVMS) in
DBLDIR.

Preparing Your Synergy Server Code
SET_XFPL_TIMEOUT

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-31

SET_XFPL_TIMEOUT
xcall SET_XFPL_TIMEOUT(minutes[, seconds])

This subroutine sets a time-out value for the remote execution server
in xfServerPlus. The time-out period starts over after each call–confirm cycle.

Arguments minutes

The number of minutes to wait before shutting down xfServerPlus. (n)

seconds

(optional) The number of seconds to wait before shutting down
xfServerPlus. (n)

Discussion SET_XFPL_TIMEOUT can be used to handle cases where the client exits or
shuts down abnormally and xfServerPlus does not receive a shutdown message. For
example, when you are developing or testing, it may be helpful to set a small
time-out value so that open ELBs are closed promptly and can be updated. (The
ELBs and shared images that have been opened by xfServerPlus are closed when it
shuts down.)

We do not recommend using SET_XFPL_TIMEOUT if you are using pooling
because it can cause connections in the pool to time out. We recommend using the
client-side time-out options instead (see below).

Ideally, your client should always send a shutdown message to xfServerPlus.
However, if no shutdown message is sent, and no time-out is specified with
SET_XFPL_TIMEOUT, xfServerPlus may continue running until the machine
on which it resides is shut down or the keepalive timer value is reached and the
daemon shuts down the connection. On Windows and UNIX, because the default
keepalive time is usually about two hours, we set it to ten minutes each time a
socket is open. This setting temporarily overrides the system keepalive setting.
(For more information on the keepalive timer, see “Rsynd: shutting down and
timing out” in the “Configuring xfServer” chapter of the Installation Configuration
Guide or your operating system documentation.) As long as xfServerPlus continues
running, one of your xfServerPlus sessions is in use, tying up a license.

If SET_XFPL_TIMEOUT is called and XFPL_SESS_INFO is set to “all” in the
xfpl.ini file, an entry is made in the xfServerPlus log file (xfpl.log), recording the
time-out value (assuming logging is turned on, of course). If xfServerPlus times
out, that fact will be recorded in the log. The error you will see in your program
depends on the state of the client application when it attempts to access the
timed-out connection. Your client application should be prepared to handle this.

Preparing Your Synergy Server Code
SET_XFPL_TIMEOUT

1-32  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

You can also set time-out values for several operations in the xfNetLink clients:

 Synergy, see “Specifying Time-out Values” on page 4-5
 Java, see “Specifying Time-out Values” on page 8-7
 .NET, see “Setting a Call Time-Out” on page 11-22

Preparing Your Synergy Server Code
XFPL_LOG

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-33

XFPL_LOG
xcall XFPL_LOG(text_string)

This subroutine makes an application-defined entry in the xfServerPlus log file.

Arguments text_string

The text that you want to write to the log. (a)

Discussion To use this routine, you must activate logging in the xfpl.ini file by setting
XFPL_LOG to ON and supplying a log filename. See “Using Server-Side
Logging” on page 3-33 for more information.

The Synergy Method Catalog is pre-loaded with an entry for XFPL_LOG, so that
it can be called from the client. If this entry is missing, you can import it from the
defaultsmc.xml file. See “Importing and Exporting Methods” on page 2-38.

XFPL_LOG must be included in the SMC if you are using the setUserString()
methods in xfNetLink Java or xfNetLink .NET.

This routine opens and closes a channel. If you get a “Channel is in use” error
when using XFPL_LOG, see “Specifying a Base Channel Number” on page 1-7.
If you are using U_START, also see the discussion on page 1-6.

Preparing Your Synergy Server Code
XFPL_REGCLEANUP

1-34  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

XFPL_REGCLEANUP
xcall XFPL_REGCLEANUP(methodID)

This subroutine registers a cleanup method that will be run automatically on the
server when xfServerPlus unexpectedly loses socket communication with the
client. On OpenVMS, the cleanup method also runs when communication with
the rsynd process is lost. The cleanup method is called by xfServerPlus after the
remote execution server has timed out. You can set a time-out value for
xfServerPlus with SET_XFPL_TIMEOUT (see page 1-31).

Arguments methodID

The method ID (as entered in the SMC) of the cleanup method to run. The
method ID is case sensitive. (a)

Discussion XFPL_REGCLEANUP can be used with any xfNetLink client following the steps
in “To use XFPL_REGCLEANUP” below. If you have an xfNetLink Java or
xfNetLink .NET client and are using the pooling support methods,
XFPL_REGCLEANUP and the corresponding cleanup method work differently;
see “To use XFPL_REGCLEANUP with the pooling support methods” on
page 1-35.

The default SMC is pre-loaded with an entry for XFPL_REGCLEANUP. If this
entry is missing, you can import it from the defaultsmc.xml file. See “Importing
and Exporting Methods” on page 2-38.

 To use XFPL_REGCLEANUP

Follow these instructions to use XFPL_REGCLEANUP when you are using a
Synergy client or are not using the pooling support methods with a Java or .NET
client.

xfServerPlus calls the cleanup method registered by XFPL_REGCLEANUP only
when there is a failure that causes socket communication to be lost. xfServerPlus
does not call this cleanup method when a session is ended in the normal manner.
If you want to perform any cleanup tasks during normal session shutdown, you
will need to explicitly call either this cleanup method or a separate cleanup
method, depending on the needs of your application.

Preparing Your Synergy Server Code
XFPL_REGCLEANUP

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  1-35

1. Run the MDU to verify that there is an entry for XFPL_REGCLEANUP in the
Synergy Method Catalog. If you’re creating a Java JAR file or .NET assembly,
assign the XFPL_REGCLEANUP routine an interface name, and then include
that interface when you create your component.

2. Write a Synergy routine to perform the cleanup. Cleanup may include closing or
releasing files, writing to a log, and so forth. The cleanup routine must be a
subroutine (that is, it cannot have a return value) and must have no parameters.

3. Use the MDU to add your cleanup routine to the Synergy Method Catalog.

If you are creating a JAR file or assembly and the cleanup method will be used only
with XFPL_REGCLEANUP, you do not have to specify an interface name for the
cleanup method because you do not need to include it in your component. If you
will call this same cleanup method from your client program to do cleanup on a
normal shutdown, you will need to specify an interface name for it and then
include it in your component.

4. Call XFPL_REGCLEANUP from your client program and pass the method ID of
the cleanup method. You should do this right after starting a session, so that the
cleanup method is registered on the server and ready to use should it be needed.
If XFPL_REGCLEANUP is called more than once, the most recently registered
method will be called when socket communication is lost.

 To use XFPL_REGCLEANUP with the pooling support methods

These instructions apply only when you are using the pooling support methods
with a Java or .NET client. (For general information about pooling, see
“Understanding Java Pooling” on page 8-22 or “Understanding .NET Pooling” on
page 11-24.)

When you are using pooling, the cleanup method that you write is called both
when a session ends abnormally because socket communication has been lost and
when a session ends normally.

You can also call XFPL_REGCLEANUP from your server code after the session
has started. If you plan to call XFPL_REGCLEANUP only from the server code,
it does not require an entry in the SMC, so you can skip step 1.

Preparing Your Synergy Server Code
XFPL_REGCLEANUP

1-36  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

1. Run the MDU to verify that there is an entry for XFPL_REGCLEANUP in the
Synergy Method Catalog. Because XFPL_REGCLEANUP is called automatically
when the pool is created, you do not need to assign it an interface name, nor do
you need to include it in your Synergy component.

2. Write a Synergy routine to perform the cleanup tasks. For details on writing and
using a cleanup method, refer to the relevant sections for your client.

 Java, see “Using the Pooling Support Methods” on page 8-34 and “Cleanup
method” on page 8-36

 .NET, see “Using the Pooling Support Methods” on page 11-31 and
“Cleanup method” on page 11-33

3. Use the MDU to add your cleanup routine to the Synergy Method Catalog.

 For Java, do not put the cleanup routine in an interface. You do not need to
include it in your JAR file, and there are no restrictions on how it should be
named.

 For .NET, the method name must be “Cleanup” (case sensitive). Add the
cleanup routine to the interface for the object it applies to so that it can be
included when you build your assembly.

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-1

Chapter 2

Defining Your Synergy Methods
The Synergy Method Catalog (SMC) identifies the Synergy functions and
subroutines that you have prepared for remote calling. These functions and
subroutines are referred to as Synergy methods. The SMC identifies each Synergy
method, the interface it is associated with, its subroutine or function name, and
the ELB or shared image in which it can be found. The SMC also provides
detailed information on parameters and function return values.

The SMC consists of the files cdt.is? and cmpdt.is?. You cannot change these
filenames; however, you can create additional SMCs in different directories if
desired. (See “Defining Multiple Synergy Method Catalogs” on page 2-42.) The
SMC must be located on the machine running xfServerPlus. A default SMC is
installed with xfServerPlus in the DBLDIR directory. It contains methods used by
the test programs, as well as entries for XFPL_LOG and XFPL_REGCLEANUP.

The SMC data is used by xfServerPlus to

 allocate adequate memory for data that is passed to and updated by Synergy
routines.

 ensure that data from xfNetLink clients is translated into the correct Synergy
DBL data types.

 ensure that data returned to the clients is translated into the correct xfNetLink
data types.

Data in the SMC is also used to create the following:

 JAR files for use with xfNetLink Java
 assemblies for use with xfNetLink .NET
 test skeletons used to test your Synergy server code

Defining Your Synergy Methods
Understanding Routine Name, Method Name, and Method ID

2-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Populating the SMC
There are two ways to populate the SMC with data about your routines:

 Load data directly into the SMC from an XML file generated by dbl2xml.
The dbl2xml utility reads information about your routines from your Synergy
source code and generates an XML file, which you can import into the SMC.
See “Using Attributes to Define Synergy Methods” on page 2-3.

 Use the Method Definition Utility (MDU), which provides a graphical user
interface for data entry. See “Using the MDU to Define Synergy Methods” on
page 2-22.

Understanding Routine Name, Method Name, and
Method ID

Whether you load data from an XML file or use the MDU to populate the SMC,
you will be dealing with the routine name, method name, and perhaps method
ID. The purpose of this section is to explain what the routine name, method
name, and method ID are and also to offer some suggestions on how best to use
these fields depending on which xfNetLink client you are using.

The routine name is simply the name of your Synergy subroutine or function.

The method name (introduced in version 8.3) is a 50-character value that you
create to reference the Synergy routine. It is used by xfNetLink Java and
xfNetLink .NET to invoke the Synergy routine within your client code. Methods
are grouped into interfaces for inclusion in a Synergy component; consequently,
the method name must be unique within an interface. When you generate a JAR
file or assembly, the interface name becomes the class name, and the method name
in the SMC is used as the name of the generated method within that class. Prior to
8.3, the routine name was used as the name of the generated method; adding a
separate field for the method name provides much-needed flexibility, as it allows
the method name in the client code to differ from the routine name on the
server side.

The method ID is a unique, 31-character value that is used to identify the Synergy
routine. xfServerPlus uses this value to look up the routine to call in the SMC;
consequently, the method ID must be unique within the method catalog. Prior to
8.3, you had to explicitly specify a method ID; starting with version 8.3, the
method ID is generated for you from the value in the Method name field. (This is
also the case when using attributes to define your methods: the method ID
defaults from the method name.) You can change the generated method ID if

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-3

desired. Users of xfNetLink Java and xfNetLink .NET never directly reference the
method ID in the client code. (However, Java connection pooling does require
that you reference the method ID in the pooling properties file.) Users of
xfNetLink Synergy reference the method ID in the client code to invoke the
associated Synergy routine. Although you can use the routine name as the method
ID, there are advantages to using a different value for the method ID. If the
Synergy routine name is cryptic, you can use a more meaningful name as the
method ID. In addition, you can define the same routine multiple times in the
SMC, in case your client program needs to call it in different ways.

Because xfNetLink Synergy uses the method ID to invoke the Synergy routine, it
does not use the value in the Method name field. However, because the MDU
copies the value you enter in the Method name field to the Method ID field, we
recommend that when you are entering new methods, you enter the value you
want to use for the method ID in the Method name field. Keep in mind that while
the method name may be up to 50 characters long, the method ID is limited to 31
characters. If the method name is longer than 31 characters, it will be truncated
when it is copied to the method ID.

Using Attributes to Define Synergy Methods
The recommended method for populating the SMC is to attribute your Synergy
code, use the dbl2xml utility to produce an XML file, and then import definitions
from the XML file into the SMC. The dbl2xml utility (installed with Synergy/DE
Professional Series) parses information about the routines you want to use with
xfServerPlus from your Synergy source code. The utility outputs an XML file,
which is then imported into the SMC using the MDU’s import facility. When
using this method, you are not required to use the MDU to perform data entry.

The dbl2xml utility obtains much of the basic information about your routines,
such as the routine name and return value data type, from the code itself; however,
some types of information, such as the interface name, must be provided by
adding attribute statements to your code. There are two attributes, xfMethod and
xfParameter, each of which has a number of properties. xfMethod is required, but
xfParameter may be optional, depending on the type of parameter you are
defining.

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

2-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

The example below shows a simple xfMethod attribute statement for the function
ReturnError. (See “Attribute Examples” on page 2-16 for additional examples.)

{xfMethod(interface="ConsultApp", elb="EXE:Consult")}
function ReturnError ,string

req in userToken ,a22

 endparams

The advantage to attributing your code and using dbl2xml over using the MDU
to perform data entry is that your code and SMC are less likely to get out of sync.
You may, of course, need to alter the attributes and properties if you change your
code, but because the attributes are right there in the source file, you are unlikely
to forget to do so. Additionally, you can add the command to run the dbl2xml
utility to a build script so that it runs every time you compile. You can also add the
MDU command line option to update the SMC to your build script, thereby
automating the SMC update process. Although there is some up-front work to
implement the attributes, once you have done so, using attributes should prove
more efficient and accurate than using the MDU to input and maintain data
about your routines.

The dbl2xml utility also processes documentation comments in your Synergy
code. These comments are imported along with your method definitions into the
SMC and can be used to create API documentation for your Java or .NET
component. See “Documentation Comments” on page 2-20.

General Procedure
1. Modify your code to include attributes, parameter modifiers, and documentation

comments. See the table on page 2-6 for assistance in determining what additions
or changes you need to make to your code. For example, if your code does not
currently use direction modifiers in parameter definitions, you will need to add
them. The only required properties are interface and elb in the xfMethod
attribute, but you may need to add others depending on your code and the desired
results on the client side.

If you are attributing an existing xfServerPlus–xfNetLink application, pay
special attention to how methods are named so that you don’t break
existing client code. See the table on page 2-6 for the rules on defaulting.

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-5

2. Compile your code and fix any resulting problems.

3. Run the dbl2xml utility on your source files. It will create an XML file that
contains interface definitions, and which is named (by default) with the first
interface in the first source file. If desired, you can specify a name for the XML file
with the -out option. for example:

dbl2xml VendorMaint.dbl -out c:\work\Vendor.xml

See “The Dbl2xml Utility” in the “General Utilities” chapter of Synergy Tools for
the complete dbl2xml syntax.

4. Run the MDU from the command line with the -u option or open the MDU
application and select Utilities > Import Methods to import the data from the
XML into the SMC. For example,

dbr dbldir:mdu d:\synergy\smcFiles -u c:\work\Vendor.xml

5. In the future, when you make changes to your Synergy code, make the
corresponding changes to the attributes (if necessary), and then repeat step 2
through step 4.

The XML generated by dbl2xml is very similar to that generated by
genxml, but it is not exactly the same. The file generated by dbl2xml can
be used only to update the SMC; it cannot be read by genjava or gencs.

TIP
You may want to check your results in the MDU after importing the XML file
to ensure methods and parameters are defined as you intended. Pay special
attention if you rely on default sizes for return values and parameters, as
the data type conversion for the client sometimes depends on the size
defined in the SMC. See the type mapping tables in “Appendix B: Data Type
Mapping”.

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

2-6  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Routine metadata and where it comes from
The table below summarizes the information we need to know about the routines
you want to use with xfServerPlus and indicates whether that information is
obtained from source code, attributes, or default values. The applicable attributes
and properties are included in the table; see the referenced pages for the exact
syntax and details on usage.

Item Source/Comments Attribute Property

Routine name The function or subroutine name is obtained from
the source code.

N/A N/A

Method name Defaults to the Synergy routine name, but can be
overridden with the name property. See page 2-9.

xfMethod name=”xxx”

Method ID Defaults to the Synergy routine name or to the
method name if the name property is used. Can be
overridden with the id property. See page 2-10.

xfMethod id=”xxx”

Interface name Specified with the interface property. This property
is required. See page 2-8.

xfMethod interface=”xxx”

ELB name Specified with the elb property. This property is
required. See page 2-9.

xfMethod elb=”xxx”

Return value
data type

Obtained from the function definition or, if not
specified there, defaults to the data type of the
variable or literal of the first FRETURN statement. (In
other words, the same way the compiler determines
the return value data type.)
To coerce the data type to a non-default type on
the client, use the cType property; see page 2-11.
Return values that are coerced to DateTime data
type require the format property; see page 2-12.
DateTime return values can be created as nullable
types on the client using the nullable property; see
page 2-12.

xfMethod cType=xfType.xxx

format=xfFormat.xxx
nullable=true

Return value size Obtained from the function definition or, if not
specified there, a default value is used for most data
types; else, you must specify it with the length
property (and precision property, if necessary). See
page 2-10.

xfMethod length=xxx
precision=xxx

Parameter name Defaults to the declared Synergy parameter name,
but can be overridden with the name property. See
page 2-13.

xfParameter name=”xxx”

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-7

Parameter data
type

Obtained from the parameter definition for most
data types. In some cases, must be specified with
the type property. See page 2-13.

To coerce the parameter to a non-default type on
the client, use the cType property; see page 2-15.
Parameters that are coerced to DateTime require
the format property; see page 2-15. A DateTime
parameter can be created as a nullable type on the
client using the nullable property; see page 2-15.
For structures passed as parameters or arrays, the
data type is obtained from the parameter definition
(which must be defined as a structfield). See
example B on page 2-16 (parameter) and example J
on page 2-19 (array). For structures passed as
ArrayLists or structure collections, use the
collectionType and structure properties. See
page 2-15.
To specify that an array or ArrayList of structures be
created as a DataTable on the client, use the
dataTable property. See page 2-16.
Group arguments defined in the data division are
processed as a single field of the type and size
specified. If no type is specified, it defaults to alpha.

Group arguments included from the repository are
processed as a single field of type alpha, with the
size taken from the repository. See the note on
page 2-17.

xfParameter type=SynType.xxx
cType=xfType.xxx

format=xfFormat.xxx
nullable=true
collectionType=

xfCollectType.xxx
structure=”xxx”

dataTable=true

Parameter size Obtained from the parameter definition or, if not
specified there, a default value is used for some
data types; else, you must specify it with the length
property (and precision property, if necessary). See
page 2-14.

xfParameter length=xxx
precision=xxx

Parameter
direction

Obtained from parameter modifiers (IN, OUT,
INOUT) in the source code. If not supplied, defaults
to IN. See “Parameter definitions” in the “Defining
Data” chapter of the Synergy DBL Language
Reference Manual.

N/A N/A

Parameter
required/optional

Obtained from parameter modifiers (REQ, OPT) in
the source code. If not supplied, defaults to
required. (For Java and .NET clients, any parameter
marked optional in the SMC is changed to required
when the component is built.)

N/A N/A

Item Source/Comments Attribute Property

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

2-8  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

xfMethod Attribute
{xfMethod(property=value, property=value, ...)}

The xfMethod attribute describes a subroutine or function (Synergy
object-oriented methods are not supported). It indicates that the subroutine or
function following the attribute is intended for use with xfServerPlus and should
be included in the generated XML when dbl2xml is run. xfMethod must be used
before each subroutine or function that you want included in the SMC. A routine
may have more than one xfMethod attribute to indicate that it needs to be
included in more than one interface. The properties that can be used with
xfMethod are listed below. The interface and elb properties are required.
Depending on the routine, you may need to specify other properties as well.

interface=”name”
(required) The interface in which you want this method to be included. The
quotation marks are required. Valid values for interface name are alphanumeric
characters and the underscore character (_); it must begin with an alpha character.
The interface name is case sensitive within the SMC, but see the note on
page 2-25.

You may have only one instance of the interface property within an xfMethod
attribute, so if a routine is to be included in more than one interface, you must
create a separate instance of the xfMethod attribute for that routine. See example B
on page 2-16.

Methods are grouped into interfaces for inclusion in a Synergy component. The
interface name will be used to select interfaces to include in the component, and
users will see it as the class name when they use your JAR file or assembly.

If you are attributing your code for use with a Synergy/DE Interop project in
Visual Studio, only the interface property of the xfMethod attribute is
required. The elb, id, and encrypt properties of the xfMethod attribute are
not used. Other properties may be necessary depending on your code. For
more information about interop projects, see “Converting xfServerPlus
routines for native .NET access” in the “Developing with Synergy .NET”
chapter of Getting Started with Synergy/DE.

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-9

Although the interface is not used by xfNetLink Synergy, it is required for the
XML that dbl2xml generates. Since interface name has no meaning for
xfNetLink Synergy, you can use the same interface name for all methods if desired.

elb=“path”
(required) The ELB or shared image in which the Synergy subroutine or function
is implemented. You may use a complete path or a logical. The file extension (.elb
or .exe) is not required. Maximum length is 255 characters.

name=“methodName”
Overrides the default method name, which is the same as the Synergy routine
name. Valid values for method name are alphanumeric characters and the
underscore character (_). The method name must begin with an alpha character.
The maximum length is 50 characters. The name must be unique for the interface.
(This comparison is case insensitive.) The name value is also used as the method
ID, unless the id property is specified (see below). If the method name is longer
than the maximum size of the method ID (31 characters), it is truncated to create
the ID. Note that truncation could result in non-unique IDs, which are not
permitted. For more information about method name and routine name, see
“Understanding Routine Name, Method Name, and Method ID” on page 2-2.

TIP
To reduce the amount of typing you have to do, you may want to use
.DEFINEs to specify values for properties that occur numerous times in your
code, such as interface name and elb name. For example,

.define myinterface interface="Login"

.define myelb elb="EXE:utils"

{xfMethod(myinterface, myelb)}

If you use a logical in the elb property, you must define the logical in the
xfpl.ini file (SERVER_INIT.COM on OpenVMS) so that xfServerPlus knows
how to resolve it. See “Defining Logicals” on page 1-4.

Although the $ character is valid in routine names in Synergy DBL, it is not
valid for method names (or method IDs) in the SMC. If you use $ in your
routine names, be sure to use the name property to specify a valid method
name.

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

2-10  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

id=“methodID”

Overrides the default method ID, which is either the Synergy routine name or,
if the name property is used, the method name. Valid values for method ID are
alphanumeric characters and the underscore character (_). The method ID must
begin with an alpha character. The maximum length is 31 characters. The method
ID must be unique for the SMC.

In most circumstances, you will not need to specify the id property. But there may
be cases where defaulting the method ID from the routine name or method name
results in a non-unique method ID; in these cases, you need to specify the id
property. See example B on page 2-16 for an instance in which you must use the id
property. Because the method ID must be compared with any method IDs that are
already in the SMC, the check for uniqueness cannot take place until the XML file
is imported into the SMC. For more information on the method ID and how it is
used by xfServerPlus, see “Understanding Routine Name, Method Name, and
Method ID” on page 2-2.

length=##

precision=##
The size of the function return value. For most data types, the size is obtained
from the function definition, and if the size cannot be so obtained, a default value
is used. (See table below.) You can override this default by specifying the size in the
function definition or with the length and (for implied-decimal) the precision
properties. For alpha data types, you must use the length property if the size is not
specified in the function definition, as there is no default value. Supported data
types that are not included in the table below either have a size of 0 in the XML or
have a default size that cannot be overridden.

Data type Default if not specified in code

Alpha (a) N/A - Must be specified in code or with
the length property.

Decimal (d) 18

Implied-decimal (d.)
Decimal (decimal)

28.10

Integer (i, int, or integer) 4

^VAL 4

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-11

cType=xfType.ret_type

Specifies a non-default data type for the return value to be coerced to on the client
side. This feature is supported for Java and .NET clients only. Decimal,
implied-decimal, and integer data types can be coerced. See the table below for the
valid ret_type values for each data type. See example D on page 2-18. (This
example shows type coercion for a parameter, but the principal is the same for the
return value.) See “Appendix B: Data Type Mapping” for more information on
data type mapping and coercion.

TIP
Data types byte, sbyte, short, int, long, and Boolean are built-in data types
in Synergy DBL that map to integers. Consequently, you can use these data
types directly in the function definition, rather than specifying an integer
and then using the cType property to specify a non-default coerced type.
See “Data types” in the “Defining Data” chapter of the Synergy DBL
Language Reference Manual for more information on these types.

Return value data type
Valid coerced types

xfNetLink Java xfNetLink .NET

Decimal (d) byte

short
int (coerced to Integer)
long

Boolean
DateTime (coerced to Calendar)
decimal (coerced to BigDecimal)

byte

short
int
long

sbyte
ushort
uint

ulong
Boolean
DateTime

decimal

Implied-decimal (d.) decimal (coerced to BigDecimal)
double
float

decimal
double
float

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

2-12  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

format=xfFormat.format
The format for a DateTime return type. The format property is required when the
cType property is DateTime. The valid values for format are shown below. These
values are case insensitive.

 YYYYMMDD
 YYMMDD
 YYYYJJJ
 YYJJJ
 HHMMSS
 HHMM
 YYYYMMDDHHMISS
 YYYYMMDDHHMISSUUUUUU

nullable=true
Indicates that a nullable DateTime or decimal return type is desired on the client
side. This option is supported for .NET clients only. The nullable property is valid
only when the cType property is DateTime or decimal. “False” is a valid value and
is the same as not setting the property.

Integer (i) byte
short

int (coerced to Integer)
long
Boolean

byte
short

int
long
sbyte

ushort
uint
ulong

Boolean

Return value data type
Valid coerced types

xfNetLink Java xfNetLink .NET

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-13

encrypt=true

Indicates that encryption is desired for this method. If you are using slave
encryption and want the parameter and return value data for this method to be
encrypted, set the encrypt property to true. “False” is a valid value and is the same
as not setting the property. See “Using Encryption” on page 3-24 for more
information.

xfParameter Attribute
{xfParameter(property=value, property=value, ...)}

The xfParameter attribute describes the parameters in a routine. xfParameter is not
required; use it when the necessary metadata for the parameter cannot be
determined from the code. Only one instance of the attribute is permitted per
parameter. The properties that can be used with xfParameter are listed below.

name=“paramName”
Overrides the default parameter name, which is the name of the declared Synergy
parameter. Valid values for parameter name are alphanumeric characters and the
underscore character (_). The name must begin with an alpha character. The
maximum length is 50 characters. The name must be unique for the method.
(This comparison is case sensitive.)

type=SynType.data_type
Specifies the data type. The valid values for data_type are shown below:

 handle. Indicates non-array data of variable length or larger than 64k.
See example F on page 2-18.

 binaryhandle. Indicates binary data such as a JPEG file or Synergy RFA.
Supported on Java and .NET clients only. See example G on page 2-19.

When using this property, the Synergy parameter must be a memory handle (i4;
do not use int). For more information on using a memory handle to pass large,
variable length, or binary data see the following:

 “Passing a Single Parameter as a Memory Handle” on page 1-13
 “Passing Binary Data” on page 1-18

Although the $ character is valid in parameter names in Synergy DBL, it is
not valid in parameter names in the SMC. If you use $ in parameter names,
be sure to use the name property to specify a valid name for the SMC.

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

2-14  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

length=##

precision=##
The size of the parameter. If the size is included in the parameter definition, it is
used. If the size is not included in the definition, a default value is used for some
data types. (See table below.) You can override this default by specifying the size in
the definition or with the length property (and, for implied-decimal data, the
precision property). For alpha data types, you must use the length property if the
size is not specified in the parameter definition, as there is no default value. This
includes System.Collections.ArrayList parameters in which the elements are
alphas.

Supported data types that are not included in the table below either have a size of
0 in the XML or have a default size that cannot be overridden.

Data type Default size

Alpha (a) N/A - Must be specified in parameter
definition or with the length property.

Decimal (d) 18

Implied-decimal (d.)
Decimal (decimal)

28.10

Integer (i, int, or integer) 4

Numeric (n) 18

Implied numeric (n.) 28.10

Not all parameter data types are supported on all clients. See the
“Supported Parameter Data Types and Collection Types by Client” table on
page 2-32.

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-15

cType=xfType.data_type

Specifies a non-default data type for the parameter to be coerced to on the client
side. Decimal, implied-decimal, and integer data types can be coerced. This
feature is supported for Java and .NET clients only. See the table on page 2-11 for
the valid cType values for each data type. See example D on page 2-18. See
“Appendix B: Data Type Mapping” for more information on data type mapping
and coercion.

format=xfFormat.format
Indicates the format for a DateTime parameter. The format property is required
when the cType property is DateTime. See page 2-12 for the list of valid values for
format.

nullable=true
Indicates that a nullable DateTime or decimal parameter is desired on the client
side. This option is supported for .NET clients only. The nullable property is valid
only when the cType property is DateTime or decimal. “False” is a valid value and
is the same as not setting the property. See example E on page 2-18.

collectionType=xfCollectType.data_type
Indicates the data type of the elements when the parameter is a
System.Collections.ArrayList or a structure collection. This feature is supported
on Java and .NET clients only. For structure collections, the collectionType
property is always “structure” and is used in conjunction with the structure
property. (See below.) For an ArrayList of structures, you must also use the
structure property to specify the structure name.

Valid values for data_type are as follows:

 alpha
 decimal (for decimal or implied-decimal)
 integer
 string (for System.String)
 structure

TIP
Data types byte, sbyte, short, int, long, and Boolean are built-in data types
in Synergy DBL that map to integers. Consequently, you can use these data
types directly in the parameter definition, rather than specifying an integer
and then using the cType property to specify a non-default coerced type.
See “Data types” in the “Defining Data” chapter of the Synergy DBL
Language Reference Manual for more information on these types.

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

2-16  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

See example H on page 2-19 for a structure collection, example C on page 2-18
for an ArrayList of structures, and example I on page 2-19 for an ArrayList of
alphas.

structure=“structureName”
Specifies the structure name when the parameter is a structure collection or
ArrayList of structures. Used only in conjunction with the collectionType
property. See example H on page 2-19.

dataTable=true
Indicates that the System.Collections.ArrayList or structure collection parameter
should be created as a DataTable on the client. This feature is supported on .NET
clients only. “False” is a valid value and is the same as not setting the property.
Used only in conjunction with the collectionType property. See “Using
DataTables” on page 11-16 for more information on DataTables.

Attribute Examples
A. This is a basic example that shows the xfMethod attribute for a function. The

xfMethod attribute includes the interface name and ELB path (which uses a
logical); no other properties are required. The method and method ID will default
to the function name. No xfParameter attribute is required because all the
necessary parameter information (name, direction, data type, size) is included in
the definition.

{xfMethod(interface="ConsultApp", elb="EXE:Consult")}
function ReturnError ,string

req in userToken ,a22

 endparams

B. This example shows the xfMethod and xfParameter attributes for a function that is
included in two interfaces. The method name (Login) will be the same in both
interfaces. The method ID for the first xfMethod attribute will default from the
method name, but we must supply an ID for the second attribute, as the ID must
be unique.

If your code renames structures using a .INCLUDE directive like this

.include "STRUCT_1" REPOSITORY, structure="STRUCT_2" ,end

use the new name (STRUCT_2 in the example) in the property, not the
original name. The dbl2xml utility will map the name in the property to the
original name and write the latter to the XML. See example C on page 2-18.

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-17

For the three parameters, the xfParameter attribute includes the name property,
since the declared parameter name includes the character $, which is invalid in the
SMC. The third parameter is a structure; the associated repository structure is
.INCLUDEd. When using dbl2xml, structures passed as ordinary parameters and
as arrays must be defined as structfields in your Synergy code. (See “Structure” in
the “Defining Data” chapter of the Synergy DBL Language Reference Manual for
information on structfields.)

.include "USER" REPOSITORY, structure, end

{xfMethod(interface="Cust", name="Login", elb="EXE:Consult")}

{xfMethod(interface="Vendor", name="Login", id="loginV",
& elb="EXE:Consult")}

function alogin ,^val

{xfParameter(name="userID")}
req in a$id ,a10 ;User id

{xfParameter(name="userPword")}
req in a$password ,a8 ;User password

{xfParameter(name="userData")}
req out a$user ,USER ;User info record

endparams

When an attribute follows a .INCLUDE directive, as in the example below,
the END qualifier is required. (Normally, when you .INCLUDE a global
structure, the END qualifier is not required, though it is recommended, and
the compiler will issue a warning if it’s not specified.)

If you do this in your code

.subroutine mysub
req in arg1 ,a10
.include "fred" repository, req out group="arg2"
req out arg3 ,d8

endparams

the parameter included from the repository will not be processed as a
structure. Rather, it will be processed as a single alpha field of the size
specified in the repository. If you want to preserve the fields in a group
argument when you generate classes for the client side, you should
.INCLUDE the structure globally and then define the parameter as a
structfield, as shown above in example B.

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

2-18  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

C. This example shows a function with two parameters. The function returns a
Boolean data type (see the tip on page 2-11). For the first parameter, we don’t need
an attribute because all the necessary information is in the code. The second
parameter is an ArrayList in the Synergy code; on the client, we want to create an
ArrayList of structures as a DataTable. To accomplish this, we specify the
collectionType property (which specifies the type of elements in the ArrayList), the
structure name, and the dataTable property. Note that we use the redefined
structure name (country), not the original name (cntry) in the property.

.include "CNTRY" REPOSITORY, structure="country", end

{xfMethod(interface="ConsultApp", name="getCountryTable",
& elb="EXE:Consult")}

function get_country_table ,boolean

req in userToken ,a22

{xfParameter(collectionType=xfCollectType.structure,
& structure="country", dataTable=true)}
req out countryTable ,@System.Collections.ArrayList

 endparams

D. This parameter example shows a parameter defined as a d8, which is coerced to a
DateTime data type, using the cType and format properties.

{xfParameter(cType=xfType.DateTime, format=xfFormat.YYYYMMDD)}

req out updateDate ,d8

E. This example is the same as above, but the DateTime data type will be created as a
nullable DateTime on the client:

{xfParameter(cType=xfType.DateTime, format=xfFormat.YYYYMMDD,
& nullable=true)}

req out updateDate ,d8

F. This parameter example shows a parameter that will be used to pass large or
variable size data. The parameter is a memory handle (i4) in the Synergy code, and
we set the type property to “handle”. (See “Passing a Single Parameter as a
Memory Handle” on page 1-13 for more information on using this feature.)

{xfParameter(name="largeParam", type=SynType.handle)}

req inout memHandle ,i4 ;Mem handle for large param

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-19

G. This parameter example shows a parameter that will be used to pass binary data.
The parameter is a memory handle (i4) in the Synergy code, and we set the type
property to “binaryhandle”. This will result in an ArrayList on a Java client and a
byte array on a .NET client. (See “Passing Binary Data” on page 1-18 for more
information on using this feature.)

{xfParameter(name="fileData", type=SynType.binaryhandle)}

req out memHandle ,i4 ;Mem handle for binary data

H. This parameter example shows a parameter that will be used to pass a structure
collection, which will be created as a DataTable on the .NET client. In the Synergy
code, the parameter is defined as a memory handle (see page 1-15). The
xfParameter attribute includes the structure property (for the structure name), the
collectionType property to indicate the data type (which is structure in this case),
and the dataTable property.

.include "USER" REPOSITORY, structure, end

.

. ;routine definition and xfMethod attribute go here

.

{xfParameter(name="CustList", structure="User",
& collectionType=xfCollectType.structure, dataTable=true)}

req out memHandle ,i4 ;Mem handle for structure collection

I. This parameter example shows an ArrayList of alphas. The collectionType
property specifies that the data type of the elements in the ArrayList is alpha.
Because there is no default size for alphas, we include the length property.

{xfParameter(collectionType=xfCollectType.alpha, length=30)}

req inout cityList ,@System.Collections.ArrayList

J. This parameter example shows an array of structures and an alpha array. The
arrays must be real arrays, not pseudo arrays or dynamic arrays. Include the size
of an array element in the parameter definition or with the length property. The
structure must be defined as a structfield. Because all the information is included
in the parameter definition, the xfParameter attribute is not required.

.include "USER" REPOSITORY, structure, end

.

. ;routine definition and xfMethod attribute go here

.

req inout myStructArray ,[*]user ;Array of structures

req inout myAlphaArray ,[*]a10 ;Alpha array

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

2-20  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Documentation Comments
When attributing your code, you can include documentation comments, which
will be processed by dbl2xml, included in the XML file, and then imported into
the SMC. When you generate classes for xfNetLink Java or xfNetLink .NET, the
comments are included in the generated code. You can then use the comments to
generate Javadoc or API documentation. Documentation comments are not
supported for xfNetLink Synergy. (Their presence in the SMC does not represent
an error condition; they are just ignored.)

For details on using comments to generate documentation, see the following:

 Java, see “Generating Javadoc” on page 7-20
 .NET, see “Generating API Documentation” on page 10-29

You can add comments for methods, return values, and parameters. Each type of
comment is distinguished by a particular tag, as explained in “Comment tags”
below. Note the following:

 Start each comment line, including lines that contain only comment tags,
with three semi-colons:
;;; <summary>This is a comment</summary>

 The text for each type of comment is limited to 6 lines of 50 characters each.
 The comment tags may be placed on the same line as the text or on separate

lines.
 The comment text may include numbers, letters, and special characters.

Comment placement
Comments apply to the routine that they precede. For readability, we recommend
that you put them together in a block either immediately before or immediately
after the associated xfMethod attribute. Do not put a documentation comment on
the same line as the xfMethod attribute; it will be ignored.

Comment tags

<summary> </summary>
Use the <summary> tag for comments that describe the function or subroutine.
Only one tag is permitted per routine.

<returns> </returns>
Use the <returns> tag for return value comments. Valid only for functions. Only
one tag is permitted per function.

Defining Your Synergy Methods
Using Attributes to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-21

<param name=”paramName”> </param>

Use the <param> tag for parameter comments. Use a separate tag for each
parameter and use the name property to specify which parameter the comment
pertains to. The name in the comment tag should match the value of the name
property in the xfParameter attribute, if it is used; else, it should match the name
of the parameter in the source code. This comparison is case sensitive.

Examples
The example below includes comments for the method (summary), return value,
and each of the three parameters. Comments longer than 50 characters are broken
into two lines. Note that for the third parameter, the name in the <param> tag
matches the name specified with the name property of the xfParameter attribute.

{xfMethod(interface="ConsultApp", elb="EXE:Consult")}
;;;<summary>
;;;Logs user into application and verifies ID and
;;; password
;;;</summary>

;;;<returns>Indicates success or failure</returns>
;;;<param name="a_id">User ID</param>
;;;<param name="a_password">User password</param>
;;;<param name="User">
;;;User record containing user first name, last name,
;;; and maximum billing rate.
;;;</param>

.function alogin, ^val
req in a_id ,a10
req in a_password ,a8
{xfParameter(name="User")}
req out a_user ,user ;USER structure

endparams

Defining Your Synergy Methods
Using the MDU to Define Synergy Methods

2-22  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Using the MDU to Define Synergy Methods
The Method Definition Utility (MDU) can be used to add, change, and delete
data in the Synergy Method Catalog. The utility displays a list of all methods in
the SMC and has two main data input screens: one for entering information about
the method and one for entering information about each parameter. The MDU
includes a search function for both methods and parameters, as well as options to
import and export data (see “Importing and Exporting Methods” on page 2-38)
and to verify repository structure sizes (see “Verifying Repository Structure Sizes
and Enumerations” on page 2-41).

On Windows, you can start the MDU from Workbench or—on 32-bit
platforms—by double-clicking on mdu.dbr from Windows Explorer. On all
platforms, you can start the MDU using the command line syntax; see “The
Method Definition Utility” on page 2-48.

Creating New Methods

1. Start the Method Definition Utility. See page 2-48 for the command line syntax.

When the MDU opens, the methods list (see figure 2-1) displays the methods
already in the catalog. The SMC is pre-loaded with several methods: XFPL_LOG,
XFPL_REGCLEANUP, and a number of methods needed to run the xfNetLink
and xfServerPlus test programs. (The methods for the test programs are in the
interface xfTest.)

By default, the methods list displays the method name. You can toggle between
displaying the method name and the method ID, by pressing CTRL+V or selecting
Functions > Toggle View.

Data displayed on the methods list can be sorted by interface name (the default),
method name (or method ID, depending on the toggle view setting), routine
name, or ELB/shared image name. To change the sort order, click on the column
headings (Windows only) or use the options on the Sort menu.

Data about your Synergy routines must be entered correctly in the SMC! In
addition, the SMC must remain in sync with your Synergy code. If you
change your code (e.g., change the data type of a function return value,
add a new parameter, or alter a structure size in the repository), don’t
forget to update the SMC. (You can quickly update structure size changes
with the Verify Catalog utility; see page 2-41.)

Defining Your Synergy Methods
Using the MDU to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-23

2. To add a new method do one of the following:

 Click the Add button.
 Press the INSERT key.
 Select Functions > Add Method.

The Method Definition window will display (see figure 2-2).

3. Specify the following information in the Method Definition window.

Method name. Enter a name for the method. The method name must be unique
for the interface in which it is included. (This comparison is case insensitive.)
Valid values for this field are alphanumeric characters and the underscore character
(_). The method name must begin with an alpha character. The maximum length
is 50 characters.

When you exit the Method name field, the MDU copies the value you entered to
the Method ID field. If the method name is longer than 31 characters (which is
the maximum length for method ID), it will be truncated. If the MDU cannot

Figure 2-1. Displaying the methods list.

Defining Your Synergy Methods
Using the MDU to Define Synergy Methods

2-24  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

create a valid and unique method ID from the method name, it will prompt you
to supply a method ID. See “Specifying a Method ID” on page 2-28 for
instructions on specifying or changing the method ID.

See “Understanding Routine Name, Method Name, and Method ID” on page 2-2
for details on the role of the method name and how it differs from method ID.

Interface name. (optional) If this method is going to be included in a Java JAR file
or a .NET assembly, enter the name of the interface that this method is part of.
Valid values for this field are alphanumeric characters and the underscore character
(_). The interface name must begin with an alpha character. This field is case
sensitive.

Methods are grouped into interfaces for inclusion in a Synergy component. The
interface name will be used to select interfaces to include in the component, and
users will see it as the class name when they use your JAR file or assembly.

The interface name is also used to select methods when you generate test
skeletons. (See “Testing Your Synergy Code” on page 1-21.) Although this field is
optional for xfNetLink Synergy users, if you want to generate test skeletons, you
must complete it.

Figure 2-2. Completing the Method Definition window.

Defining Your Synergy Methods
Using the MDU to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-25

Method desc. (optional) Enter a description of the method. If you are using a Java
or .NET client, the information in this field will be included in the generated code
as a documentation comment and, subsequently, in your generated Javadoc or API
documentation, should you choose to create it. (See “Generating Javadoc” on
page 7-20 or “Generating API Documentation” on page 10-29 for more
information on generating documentation.) If you are using a Synergy client, this
field is ignored.

The Method desc field will hold six lines of 50 characters each. Only the first line
can be edited on the Method Definition window. To access all six lines, press F9 or
select Functions > Edit Description while your cursor is in this field. (On
Windows, you can also click the drilldown button.) The Description dialog box
will display. Text in this dialog box word-wraps automatically. Pressing Return will
move the cursor to the next line, resulting in a line break that will be preserved in
the generated code. Special characters (e.g., < and >) will be handled by genxml,
genjava, and gencs, so you should enter these characters as you want them to
appear in the Javadoc or API documentation. When you have completed the
description text, select OK or press F3 in the Description dialog box to save the
text and return to the Method Definition window.

Routine name. Enter the name of the Synergy subroutine or function. Valid values
are alphanumeric characters, the underscore character (_), and the dollar sign ($).
The routine name must begin with an alpha character

ELB name. Enter the name of the ELB or shared image in which the Synergy
routine is stored. Include the full path or logical; don’t include the .elb or .exe
filename extension.

Although the Interface name field is case sensitive, we do not recommend
creating interface names that differ only in case. If you attempt to generate
a component that contains two or more interfaces that differ only in case,
the genjava or gencs utility will append a number (starting with 1 and
incrementing) to the end of each of the additional interfaces to make the
class names unique (e.g., MYINTFACE, MyIntFace1, myintface2, etc.). You
will also see numbers appended to class names when there is a structure
name that is the same as an interface name. Because structure classes are
processed first, it is the procedural class name that will be altered.

If you are using xfNetLink .NET, the interface name must be different than
the method name. Matching interface and method names will result in a
“member names cannot be the same as their enclosing type” error when
the classes are compiled.

Defining Your Synergy Methods
Using the MDU to Define Synergy Methods

2-26  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

On UNIX and OpenVMS, if the ELB or shared image name is longer than 51
characters, press F10 or select Functions > Edit ELB Name while your cursor is in
this field to display the ELB Name dialog box. Enter the complete ELB or shared
image name and press F3 or select Main > Exit to save changes and return to the
Method Definition window.

Return type. If you are defining a function, select the Synergy DBL data type of
the returned data. For subroutines, select “No return value”. System.String and
Enumerations are supported only on Java and .NET clients; all other return types
are supported on all clients.

If you select Enumeration, a list of enumerations defined in the current repository
will display. Select an enumeration from the list by highlighting it and pressing
ENTER (on Windows, you can also double-click).

The MDU will display the enumeration name in a read-only field below the
return type.

Length. If you specified a return type, enter the size of the return value. Note the
following:

 For decimal return values coerced to DateTime or nullable DateTime data
types, the length is determined by the selected DateTime format.

 For System.String data types, this field is set to blank.
 For Enumeration data types, this field is set to 4.

If you use logicals in the ELB name field, you must define them in the
xfpl.ini file (SERVER_INIT.COM on OpenVMS) so that xfServerPlus knows
how to resolve them. See “Defining Logicals” on page 1-4.

TIP
While the list of enumerations is displayed, you can select Functions > Find
to locate an enumeration in the list.

To check the location of the current repository, select Main > Repository
Location. If the fields are blank, the MDU was unable to locate a repository
on start-up. To change the repository, you must restart the MDU. See the
MDU syntax on page 2-48.

Defining Your Synergy Methods
Using the MDU to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-27

Precision. If you specified that the return type is implied-decimal, enter the
precision. For example, if the return value is a d6.2, enter 6 in the Length field and
2 in the Precision field.

Coerced type. If the return type is decimal, implied-decimal, or integer, you can
optionally select a non-default data type for the return value to be coerced to on
the client side. Supported on Java and .NET clients only. On Java, a DateTime
coerced type is mapped to the Calendar class and decimal is mapped to
BigDecimal; nullable types are not supported on Java. Select “Default” to use
default type mapping. See “Appendix B: Data Type Mapping” for more
information on data type mapping and coercion.

Format. If the coerced type is DateTime or nullable DateTime, select the desired
format.

Return desc. (optional) Enter a description of the return value. If you are using a
Java or .NET client, the information in this field will be included in the generated
code as a documentation comment and, subsequently, in your generated Javadoc
or API documentation, should you choose to create it. If you are using a Synergy
client, this field is ignored. See the description of the Method desc field on
page 2-25 for details on creating a multi-line description.

Enable encryption. Select this checkbox if you are using slave encryption and want
the parameter and return value data for this method to be encrypted. See “Using
Encryption” on page 3-24 for more information.

4. Select OK or press F3 to save your work.

5. If this is a new method, you will be prompted to define parameters. If there are no
parameters for this method, select No at the prompt. If there are parameters, select
Yes and see “Defining Parameters” on page 2-28 for instructions.

Defining Your Synergy Methods
Using the MDU to Define Synergy Methods

2-28  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Specifying a Method ID
When you enter a method name on the Method Definition window, the MDU
copies that value to the Method ID field, which is a display-only field on the
Method Definition window. You can edit or change the method ID by accessing
the Method ID dialog box.

1. When the Method Definition window is displayed, select the Method ID button,
or press F8, or select Functions > Method ID to display the Method ID dialog
box.

2. Enter a method ID. This field is case sensitive. The method ID must be unique for
the method catalog. Valid values for this field are alphanumeric characters and the
underscore character (_). The method ID must begin with an alpha character.

3. Select OK or press F3 in the Method ID dialog box to save changes and return to
the Method Definition window.

Defining Parameters
Follow these instructions to define parameters for a new method or add
parameters to an existing method. A method can have a maximum of 253
parameters. You should define parameters in the order in which they are passed;
the MDU assigns a sequence number to each parameter as you define it. See “To
resequence parameters” on page 2-34 for instructions on changing the sequence.

The first time you define parameters for a method, the Parameter Definition
window displays in creation mode, as shown in figure 2-3. When this window is in
creation mode, each time you select the Next button (or press CTRL+N or select
Functions > Next Parameter), the data you entered will be saved and the window
refreshed so that you can enter another parameter. When you have entered all
parameters for the method, select Done.

If you are adding parameters to a method that already has parameters, the
Parameters list window displays the currently defined parameters. Highlight the
line above where you want the new parameter to be added, and then click the Add
button, press the INSERT key, or select Functions > Add to display the Parameter

The method ID must be unique. If the MDU cannot create a valid and
unique method ID by copying the value in the Method name field, it will
prompt you to supply your own method ID and display the Method ID
dialog box.

Defining Your Synergy Methods
Using the MDU to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-29

Definition window in modify mode. When the window is in modify mode,
selecting OK will save the parameter data and return you to the Parameters list
window.

 To define parameters

1. Complete the fields in the Parameter Definition window.

Parameter name. Enter an identifying name for the parameter.

Valid values for this field are alphanumeric characters and the underscore character
(_). The parameter name must begin with an alpha character and must be unique
for the method. (This comparison is case sensitive.) You may want to use the name
of the Synergy argument as the parameter name.

It is crucial that you define parameters correctly in the SMC! When making a
call, xfServerPlus checks what you send in the call against what you defined
in the SMC. If there are discrepancies, xfServerPlus will signal a non-fatal
error. xfServerPlus cannot check what you send against what the Synergy
routine requires, nor can it check what is defined in the SMC against the
Synergy routine. If you define parameters incorrectly in the SMC and send
data as it is defined, the error will not be detected until the routine is called
on the server, and the result may be a fatal error.

Figure 2-3. Completing the Parameter Definition window.

Defining Your Synergy Methods
Using the MDU to Define Synergy Methods

2-30  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

 If the parameter you are defining is a structure (supported on Java and .NET
clients only), press F7 or select Functions > Select Structure to display a list of
structures in the current repository. Select a structure from the list by
highlighting it and pressing ENTER (on Windows, you can also double-click).

The MDU will enter the structure name as the parameter name and display
the structure name in a read-only field below the data type. You can change
the parameter name if desired. (If you enter a parameter name before
displaying the list of structures, it will not be overwritten with the structure
name.) The MDU also fills in the data type and the length with information
from the repository.

 If the parameter you are defining is an enumeration (supported on Java and
.NET clients only), press F6 or select Functions > Select Enumeration to
display a list of enumerations in the current repository. Select an enumeration
from the list by highlighting it and pressing ENTER (on Windows, you can also
double-click).

The MDU will enter the enumeration name as the parameter name and
display the enumeration name in a read-only field below the data type. You
can change the parameter name if desired. (If you enter a parameter name
before displaying the list of enumerations, it will not be overwritten with the
enumeration name.) The MDU fills in the data type and the length with
information from the repository.

TIP
While the list of structures is displayed, you can select Functions > Find
to locate a structure in the list.

TIP
You can also display the list of structures in the current repository by
selecting “Structure” from the Data type selection list.

TIP
While the list of enumerations is displayed, you can select Functions >
Find to locate an enumeration in the list.

TIP
You can also display the list of enumerations in the current repository
by selecting “Enumeration” from the Data type selection list.

Defining Your Synergy Methods
Using the MDU to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-31

Description. (optional) Enter a description of the parameter. If you are using a Java
or .NET client, the information in this field will be included in the generated code
as a documentation comment and, subsequently, in your generated Javadoc or API
documentation, should you choose to create it. (See “Generating Javadoc” on
page 7-20 or “Generating API Documentation” on page 10-29 for more
information on generating documentation.) If you are using a Synergy client, this
field is ignored.

This field will hold six lines of 50 characters each. Only the first line can be edited
on the Parameter Definition window. To access the additional lines, press F9 or
select Functions > Edit Description while your cursor is in this field. (On
Windows, you can also click the drilldown button.) The Description dialog box
will display. Text in this dialog box word-wraps automatically. Pressing Return will
move the cursor to the next line, resulting in a line break that will be preserved in
the generated code. Special characters (e.g., < and >) will be handled by genxml,
genjava, and gencs during code generation, so you should enter these characters as
you want them to appear in the Javadoc or API documentation. When you have
completed the description text, select OK or press F3 in the Description dialog
box to save the text and return to the Parameter Definition window.

Data type. Select the Synergy DBL data type of the parameter. If you selected a
structure or enumeration while you were in the Parameter name field, the MDU
sets this field to the correct data type. Not all parameter types are supported on all
clients; see the table below.

For information on when to specify a parameter type of Handle, see “Passing a
Single Parameter as a Memory Handle” on page 1-13 and “Returning a Collection
of Structures” on page 1-15.

To pass binary data (such as a JPEG file or Synergy RFA), select “Binary (handle)”.
See “Passing Binary Data” on page 1-18 for more information.

Length. Enter the size of the parameter. Note the following:

 For structures and enumerations, the Length field is completed automatically
with information from the repository.

 For arrays and ArrayLists that are not made up of structure elements, enter the
element length, not the total array size.

To check the location of the current repository, select Main > Repository
Location. If the fields are blank, the MDU was unable to locate a repository
on start-up. To change the repository, you must restart the MDU. See the
MDU syntax on page 2-48.

Defining Your Synergy Methods
Using the MDU to Define Synergy Methods

2-32  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

 For decimal parameters coerced to DateTime or nullable DateTime data
types, the length is determined by the selected DateTime format.

 For handle, binary (handle), and System.String parameters, this field is blank.

Precision. If the data type is implied-decimal, enter the precision. For example,
for a d10.3 parameter, enter 10 in the Length field and 3 in the Precision field.

Coerced type. If the data type is decimal, implied-decimal, or integer, you can
optionally select a non-default data type for the parameter to be coerced to on the
client side. Supported on Java and .NET clients only. On Java, a DateTime
coerced type is mapped to the Calendar class and decimal is mapped to
BigDecimal; nullable types are not supported on Java. Select “Default” to use the
default type mapping. See “Appendix B: Data Type Mapping” for more
information on data type mapping and coercion.

Format. If the coerced type is DateTime or nullable DateTime, select the desired
format.

Supported Parameter Data Types and Collection Types by Client

Data/collection type in MDU Synergy Java .NET

Alpha   

Decimal   

Implied-decimal   

Integer   

Structure  

Handle   

Binary (handle)  

System.String  

Enumeration  

Array   

ArrayList  

Structure collection  

DataTable 

Defining Your Synergy Methods
Using the MDU to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-33

Array. If the parameter is an array, select this field. The parameter must be defined
as a real array in your Synergy code; if you use pseudo arrays, you should convert
them to real arrays. Arrays are supported for all data types except handle, binary
(handle), System.String, and enumeration.

xfNetLink Synergy supports multi-dimensional arrays (up to 9 dimensions); the
number of dimensions and elements per dimension are calculated from the data
passed. xfNetLink Java and xfNetLink .NET support only one-dimensional arrays.
The total size of an array passed to the Synergy server may be greater than 64K,
but each element in the array must be less than 64K. See “Passing Arrays Larger
Than 64K” on page 1-18 for more information.

ArrayList. If the parameter is a Synergy System.Collections.ArrayList class, select
this field. Supported on Java and .NET clients only. ArrayLists are supported for
all data types except handle, binary (handle), and enumeration. When using an
ArrayList, Data passed can be set to In or Out, but not In/Out. See “Passing a
System.Collections.ArrayList Parameter” on page 1-16 for more information.

Structure collection. If the parameter is a structure, indicate if you want to pass it
as a structure collection. A structure collection is a memory handle on the
xfServerPlus side and an ArrayList on the client side. Supported on Java and .NET
clients only. When you select this option, Data passed is set to Out, as structure
collection parameters can be used only to pass data from Synergy to the client.
See “Returning a Collection of Structures” on page 1-15 for more information.

DataTable. If the parameter is a structure and you selected ArrayList or Structure
collection, indicate if you want the parameter to be created as a DataTable on the
client. Supported on .NET clients only. See “Using DataTables” on page 11-16 for
more information.

Data passed. Indicate if the parameter is passed in, out, or both in and out.

 In indicates this parameter is used to pass data from the client to xfServerPlus.
Select In when the parameter is sending input that is not changed by the
Synergy routine. This is the default.

 Out indicates this parameter is used to pass data from xfServerPlus to the
client. Select Out when the parameter is used to return output information
created by the Synergy routine to the client.

 In/Out indicates that this parameter is used to pass data from the client to
xfServerPlus and to return an updated version of that data to the client. Select
In/Out when the parameter is sent as input, updated by the Synergy routine,
and then returned to the client.

Defining Your Synergy Methods
Using the MDU to Define Synergy Methods

2-34  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Pass by. Indicate if the parameter is passed by descriptor (i.e., normally), value
(^VAL), or reference (^REF). The default is Descriptor. If the data type is handle
or binary (handle), the MDU sets this field to Descriptor.

Required. If the parameter is required, select this field. The default is Required.
If the parameter is optional, clear this field.

Optional parameters are not supported in xfNetLink Java and xfNetLink .NET.
When genjava or gencs is run, any parameters marked as optional will be
converted to required and a warning message will be generated. (This is because
these languages do not support optional parameters.)

2. If the window is in creation mode and you need to add another parameter, select
the Next button (or CTRL+N or Functions > Next Parameter). The information for
the current parameter will be saved, and the window will be refreshed so that you
can add another parameter.

If you are finished adding parameters, select the Done button (or F3 or Functions
> Done). The Parameters list window will display, with the new parameter(s)
added to the list.

3. If the window is in modify mode, select OK or press F3. The Parameters list
window will display, with the new parameter added to the list.

4. Select Done or press F3 in the Parameters list window. The MDU calculates the
total number of parameters and the number of required parameters and updates
the count on the Method Definition window.

5. Select OK or press F3 in the Method Definition window.

 To resequence parameters

The numbers on the left side of the Parameters list window reflect the order in
which the parameters are passed when this routine is called. New parameters are
inserted below the parameter that is highlighted when you select Add. (The
parameter sequence number also appears on the Parameter Definition window
below the method name or method ID.)

To resequence parameters, highlight the parameter you want to move and do one
of the following to move it to the correct location:

 Use the Move up and Move dn buttons in the Parameters list window.
 Press CTRL+U to move it up or CTRL+D to move it down.
 Use the Move Up and Move Down commands on the Functions menu.

Defining Your Synergy Methods
Using the MDU to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-35

Modifying Methods and Parameters

 To modify methods

Use this procedure to change any data on the Method Definition window or on
the dialog boxes accessed from that window, such as the Method ID dialog box
and the Description dialog boxes.

1. In the methods list, highlight the method you want to change.

2. Select it by clicking the Modify button, pressing ENTER, or selecting Functions >
Modify Method.

3. Modify the method data as needed. See “Creating New Methods” on page 2-22
for details on completing the fields. For information on changing the method ID,
see “Specifying a Method ID” on page 2-28.

4. Select OK or press F3 to exit and save your changes.

 To modify parameters

1. In the methods list, highlight the method that the parameter is associated with and
then click the Modify button, press ENTER, or select Functions > Modify Method.

2. On the Method Definition window, select the Parameter button, press F7, or
select Functions > Parameters.

3. In the Parameters list window, highlight the parameter to change and then click
the Modify button, press ENTER, or select Functions > Modify.

4. Modify the parameter data as needed. See “Defining Parameters” on page 2-28 for
details on completing the fields.

5. Select OK or press F3 in the Parameter Definition window.

6. Select Done or press F3 in the Parameters list window.

7. Select OK or press F3 in the Method Definition window.

The Date Last Updated field in the upper right corner of the Method
Definition window reflects the date that this record was last changed. It is
updated automatically when you change and save the record.

Defining Your Synergy Methods
Using the MDU to Define Synergy Methods

2-36  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Deleting Data from the SMC

 To delete an interface

This procedure deletes an interface and all methods associated with it.

1. In the methods list, highlight one of the methods that is in the interface you want
to delete.

2. Select Functions > Delete Interface.

3. Select Yes at the prompt to confirm the deletion.

 To delete a method

This procedure deletes a method and all parameters associated with it.

1. In the methods list, highlight the method you want to delete.

2. Click the Delete button, press the DELETE key, or select Functions > Delete
Method.

3. Select Yes at the prompt to confirm the deletion.

 To delete a parameter

1. In the methods list, highlight the method that the parameter is associated with and
then click the Modify button, press ENTER, or select Functions > Modify Method.

2. On the Method Definition window, select the Parameter button, or press F7, or
select Functions > Parameters.

3. In the Parameters list window, highlight the parameter you want to delete.

4. Click the Delete button, press the DELETE key, or select Functions > Delete.

5. Select Yes at the prompt to confirm the deletion.

6. Select Done or press F3 in the Parameters list window.

7. Select OK or press F3 in the Method Definition window.

Defining Your Synergy Methods
Using the MDU to Define Synergy Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-37

Searching for Methods and Parameters
There are search functions associated with both the methods list and the
Parameters list window.

1. In the methods list or the Parameters list window, click the Find button, press
CTRL+F, or select Functions > Find.

2. For methods, select the search type. You can search for methods by method name
(or method ID, depending on the toggle view setting), interface name, routine
name, or ELB/shared image name. You can search for parameters only by
parameter name.

3. Enter the search criteria. You can enter a partial name if desired.

4. Press ENTER. The methods list or Parameters list window redisplays, and the first
entry that matches the search criteria is highlighted. (The search is case
insensitive.)

5. To find the next entry matching the search criteria, press CTRL+N or select
Functions > Find Next.

Setting the Catalog Location
You can change which SMC the MDU is currently updating without restarting
the MDU. This function is available only when the methods list is the active
window.

1. From the methods list select Main > Catalog Location. The Catalog Location
dialog box displays the location of the currently selected SMC.

2. Type in a new path or select Functions > Browse to select the directory. (On
Windows, you can also click the drilldown button to browse for a directory.) A
remote catalog can be specified with an xfServer file specification (e.g.,
c:\smcDir\@machineName).

3. Select OK or press F3. If a catalog does not exist in the directory you specify, you
will be prompted to create a new catalog in that location. Assuming that the file
DBLDIR:defaultsmc.xml is present, the newly-created catalog will include the
default methods.

If you access the Catalog Location dialog box from other windows in the
MDU, you can view the location of the current catalog but not change it.

Defining Your Synergy Methods
Importing and Exporting Methods

2-38  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Importing and Exporting Methods
Using the MDU’s import/export feature, you can export entries from one SMC
and then import them into a different SMC. The export feature writes all the
methods in the SMC to an XML file. You can then use the import feature to
replace the entire catalog, update and add selected interfaces, or add selected
methods. You can perform an import/export from within the MDU (see below)
or from the command line, without displaying the MDU user interface (see
page 2-40).

You might use import/export to

 populate or update your SMC by importing interfaces in an XML file
generated by the dbl2xml utility.

 import the default methods normally distributed with the SMC. You can
import these methods from defaultsmc.xml. This file, located in DBLDIR,
contains XFPL_REGCLEANUP, XFPL_LOG, and the methods required by
the test programs.

 update your deployment SMC with data from your development SMC.
 make global updates, such as changing an ELB name, by exporting the

catalog, searching and replacing in the XML file, and then re-importing it.
When editing the contents of the XML file, take care not to alter the XML
structure.

 create a new catalog that includes the methods in an XML file. This must be
done from the command line. See “To create new files by importing an XML
file” on page 2-43 for details.

 To import methods

Before importing, you should verify that no one else is using the SMC files you are
importing into.

1. Open the SMC that you want to import methods into. You can do this from
Main > Catalog Location, or you can restart the MDU and specify the catalog
location on the command line.

2. From the methods list, select Utilities > Import Methods.

Defining Your Synergy Methods
Importing and Exporting Methods

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-39

3. Complete the fields in the Import Details window:

Select mode. Select the type of import desired:

 Replace entire SMC. Select this option to replace the existing SMC with the
data in the XML file. Note that this option completely deletes the existing SMC
and then imports all the methods from the XML file.

 Update interfaces. Select this option to update individual existing interfaces
in the current SMC, as well as add new interfaces.

 Add new methods. Select this option to add individual methods to the
current SMC. You must use this option if you need to import only the
XFPL_REGCLEANUP or XFPL_LOG method, as those methods are not in
an interface.

XML file. Type the filename of the XML file that contains the data to import or
select Functions > Browse to select it. (On Windows, you can click the drilldown
button to select the file.) To import the default methods such as
XFPL_REGCLEANUP, choose the defaultsmc.xml file located in your DBLDIR
directory.

Log file. Enter a filename for the error log or accept the default name
(import_smc.log). If no path is specified, the log will be created in the current
working directory on OpenVMS and in the location specified with the TEMP
environment variable on Windows and UNIX.

4. Select OK or press F3.

If you selected “Replace entire SMC”, the data in the XML file will be imported
immediately. See step 7.

If you selected “Update interfaces” or “Add new methods”, a list of items will
display. On the Select Interfaces list, an X in the “In SMC” column indicates that
the interface is present in the current SMC. If you select this interface for import,
the existing interface in the SMC will be deleted and the one in the XML file will
be imported.

If you selected “Add new methods”, you’ll see a list of either method names
or method IDs, depending on the current toggle view setting. You can press
CTRL+v or select Functions > Toggle View while this list is displayed to switch
the display.

Defining Your Synergy Methods
Importing and Exporting Methods

2-40  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

5. Press ENTER (on Windows, you can also double-click) to mark items on the list for
import. An asterisk in the left column indicates an item is selected. To unselect an
item, double-click or press ENTER again.

6. Once you’ve selected all the items, select OK or press F3 to complete the import.

7. The import function validates the information in the XML file before importing
it. If errors are found, you’ll see a message to that effect, a log file will be created,
and the SMC will not be updated. Check the log file to see what the problems are,
correct them in the XML file, and then re-import.

 To export methods

If your SMC includes references to repository structures or enumerations, the
repository must be present to do an export. This is because the export function
reads the structure and enumeration details from the repository.

Upon export, structure sizes in the SMC are checked against the corresponding
structures in the repository and the utility returns an error if there are any size
discrepancies or if there are missing structures or enumerations. You can use Verify
Catalog utility to update the structure sizes in the SMC. See “Verifying Repository
Structure Sizes and Enumerations” on page 2-41 for details.

1. Verify that the current SMC is the one that you want to export methods from. You
can select Main > Catalog Location to check (or change) the location of the
current catalog.

2. From the methods list, select Utilities > Export Methods.

3. At the prompt, type a name for the XML file, and then select Save or press ENTER.

 To import and export methods from the command line

The mdu -i, -u, and -e options enable you to import and export SMC definitions
from the command line without displaying the MDU user interface. You can use
these options to include import/export functionality in a script or batch file.
When importing from the command line, you do not have as many options as you
do when using the MDU user interface: you can either replace the entire SMC or
update the SMC using the interfaces in the XML file. You cannot select individual
interfaces or methods for import. See the MDU command line syntax on
page 2-48 for details.

Defining Your Synergy Methods
Verifying Repository Structure Sizes and Enumerations

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-41

Verifying Repository Structure Sizes and Enumerations
The Verify Catalog utility enables you to quickly update structure sizes in the
Synergy Method Catalog after making changes in your repository. This utility
compares the structures in the SMC against the structures in the repository and
updates the structure sizes in the SMC if necessary. All changes are logged, as are
any other problems that are encountered, such as structures missing from the
repository.

The utility also verifies that enumerations selected as parameters or return values
in the MDU are present in the current repository. If there are any discrepancies,
they are recorded in the log file.

You can run the utility from within the MDU or from the command line.

 To verify a catalog

1. Open the SMC that you want to verify. You can do this from Main > Catalog
Location, or you can restart the MDU and specify the new catalog location on the
command line.

2. From the methods list, select Utilities > Verify Catalog.

3. Provide a log file name or use the default, smc_verify.log. If no path is specified,
the log will be created in the current working directory on OpenVMS and in the
location specified with the TEMP environment variable on Windows and UNIX.

4. Select OK or press F3. If problems are found, a message to that effect is displayed.
Check the log file to see which structure sizes were corrected and to check for
problems that the utility could not correct.

 To verify a catalog from the command line

You can use the mdu -v option to run the Verify Catalog utility from the
command line without displaying the MDU user interface. You can use the -v
option to include verification functionality in a script or batch file. See the MDU
command line syntax beginning on page 2-48.

Defining Your Synergy Methods
Defining Multiple Synergy Method Catalogs

2-42  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Defining Multiple Synergy Method Catalogs
By default, the Method Definition Utility and xfServerPlus read the SMC files
from the DBLDIR directory. However, there may be times when you want to use
an alternate SMC. For example, you could create additional SMCs to allow users
to work with their own versions of data during testing or training. Or, you may
want to have a development SMC and a production (deployment) SMC. Note
that at runtime, each instance of xfServerPlus can reference only a single SMC.

To define an alternate SMC, or to use an SMC that is not in the default location,
you need to

 create the SMC files in a different location.
 specify the location of the files when you run the MDU.
 set the XFPL_SMCPATH environment variable on your server machine so

that xfServerPlus can find the SMC files.

Creating New SMC Files
The SMC consists of the data files cdt.is? and cmpdt.is?. Because you cannot
change these filenames, additional SMCs must be created in separate directories.
You can do this either by creating new files or by copying existing files.

 To create new files from within the MDU application

This procedure creates new SMC files in a new location. The new SMC will
include the default methods (XFPL_REGCLEANUP, XFPL_LOG, and the
methods for the test programs), which are imported from
DBLDIR:defaultsmc.xml. If this file is not in DBLDIR, you’ll see a message and
the new SMC files will be empty.

1. Create a directory for the SMC files.

2. Start the MDU.

3. Go to Main > Catalog Location and type the new directory path in the Catalog
Location field or select Functions > Browse to select a directory. (On Windows,
you can also click the drilldown button to browse for a directory.) Select OK or
press F3.

4. Select Yes at the prompt to create new files in the specified location.

Defining Your Synergy Methods
Defining Multiple Synergy Method Catalogs

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-43

 To create new files by importing an XML file

From the command line, you can create a new catalog and import method
definitions from an XML file into it in one step using the -i option.

The newly created catalog will include all methods in the XML file. If the default
methods such as XFPL_REGCLEANUP are not in the XML file, you can import
them from defaultsmc.xml after the new catalog is created. (See “Importing and
Exporting Methods” on page 2-38.)

These instructions assume that you already have an XML file, created either by
exporting from the MDU (see “To export methods” on page 2-40) or by running
dbl2xml (see “Using Attributes to Define Synergy Methods” on page 2-3).

1. Create a directory for the SMC files.

2. Run the MDU from command line with the -i and -l options. Specify the location
of the directory you created for the SMC files, the path and filename of the XML
file to import from, and the path and filename for the log file. For example:

dbr DBLDIR:mdu c:\work\NewSMC -i c:\temp\catalog.xml
-l c:\temp\myLog.txt

Note that this command will run without the MDU displaying on the screen. See
“Using the MDU to Define Synergy Methods” on page 2-22 for details on the
command line syntax.

 To copy existing files

When you copy files, all the data in the current SMC is copied to the new one.
You can then delete some of the methods, if desired, or delete all the methods by
clearing the copied files with isload. (See isload in the “Synergy DBMS” chapter of
Synergy Tools for instructions.)

1. Create a directory for the SMC files.

2. Copy the existing files from DBLDIR to the new directory. The files are named
cdt.is? and cmpdt.is?.

3. If desired, open the MDU in the new location and delete some of the methods.

You can also create a new catalog by running MDU with the -u option.
However, because -u imports only methods in named interfaces, if there are
methods in the XML file that are not assigned to an interface (e.g.,
XFPL_REGCLEANUP), they will not be imported.

Defining Your Synergy Methods
Defining Multiple Synergy Method Catalogs

2-44  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Specifying Which SMC to Update
If you have more than one SMC, or an SMC that is not in the default location,
you need to specify which SMC to update when running the MDU. There are
two ways to do this.

 Specify the SMC location on the command line when you start the MDU.
See “Using the MDU to Define Synergy Methods” on page 2-22 for
information on starting the MDU from the command line.

 Set XFPL_SMCPATH in the environment to point to the location of the
SMC files. For instructions on setting environment variables on your
operating system, see “Setting Environment Variables and Initialization
Settings” in the “Environment Variables” chapter of Environment Variables &
System Options. Note that if you have set XFPL_SMCPATH in the Windows
registry, the synrc file (UNIX), or the SERVER_INIT.COM file
(OpenVMS), the MDU will ignore it; only xfServerPlus reads
XFPL_SMCPATH from those locations (see “Setting the XFPL_SMCPATH
Environment Variable for xfServerPlus” on page 2-44).

If you don’t specify the SMC location on the command line or with
XFPL_SMCPATH, the MDU will load the files from DBLDIR. If necessary, you
can then change the files being read by selecting Main > Catalog Location. See
“Setting the Catalog Location” on page 2-37.

Setting the XFPL_SMCPATH Environment Variable for
xfServerPlus
If you’re using more than one SMC, or an SMC that is not in the default location,
you need to set the environment variable XFPL_SMCPATH on your Synergy
server machine to point to the directory that contains the SMC files.

At runtime, each instance of xfServerPlus can reference only a single SMC;
however, if you have multiple instances of xfServerPlus running on different ports,
they can each reference a separate SMC if desired. This enables you to maintain,
for example, SMC files for testing and development and separate SMC files for
production.

To verify the location of the SMC you’re updating, in the MDU select
Main > Catalog Location.

Defining Your Synergy Methods
Defining Multiple Synergy Method Catalogs

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-45

Setting XFPL_SMCPATH on Windows
On Windows, use the Synergy Configuration Program to set environment
variables for xfServerPlus. You can set XFPL_SMCPATH for all instances of
xfServerPlus or for a specific instance of xfServerPlus.

You can specify an SMC on a remote machine using an xfServer file specification
(e.g., c:\smcDir\@machineName).

 To set XFPL_SMCPATH for all instances of xfServerPlus

This procedure sets XFPL_SMCPATH in the Windows registry under
HKEY_LOCAL_MACHINE\SOFTWARE\Synergex\Synergy xfServer\Synrc.

1. Start the Synergy Configuration Program (from the Windows Control Panel,
select Synergy Control Panel > Synergy Configuration Program) and go to the
xfServer/xfServerPlus tab.

2. Select Default from the list of services, select the Modify Service button, and then
select the Environment Settings button.

3. Select the Add button that is grouped with the “Settings for all services” list.

4. Type the variable name (XFPL_SMCPATH) and value in the Add Environment
Setting dialog box, and select OK.

5. Select OK in the xfServer Information dialog box, and then select Apply in the
Synergy Configuration Program.

6. You’ll be prompted to stop and restart all services so that the new settings take
effect. Select Yes.

This section explains only how to set XFPL_SMCPATH so that it can be read
by xfServerPlus. To set XFPL_SMCPATH so that it can be read by the MDU,
see “Specifying Which SMC to Update” on page 2-44.

Defining Your Synergy Methods
Defining Multiple Synergy Method Catalogs

2-46  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

 To set XFPL_SMCPATH for a specific instance of xfServerPlus

This procedure sets XFPL_SMCPATH in the Windows registry under
HKEY_LOCAL_MACHINE\SOFTWARE\Synergex\Synergy xfServer\
serviceName\Synrc. This setting overrides the “all instances” setting for a specific
instance of xfServerPlus.

1. Start the Synergy Configuration Program (from the Windows Control Panel,
select Synergy Control Panel > Synergy Configuration Program) and go to the
xfServer/xfServerPlus tab.

2. Select the service from the list, select the Modify Service button, and then select
the Environment Settings button.

3. Select the Add button that is grouped with the “Settings for service name” list.

4. Type the variable name (XFPL_SMCPATH) and value in the Add Environment
Setting dialog box, and select OK.

5. Select OK in the xfServerPlus Information dialog box, and then select Apply in the
Synergy Configuration Program.

6. You’ll be prompted to stop and restart the selected service so that the new settings
take effect. Select Yes.

Setting XFPL_SMCPATH on UNIX
On UNIX, the xfServerPlus service reads settings from the environment and from
the synrc file. There are synrc files at the system level (/etc/synrc) and at the user
level (/usr/username/.synrc). At the system level, xfServerPlus supports both a
generic synrc file and a port-specific synrc file. See below for details.

 To specify the SMC location for all instances of xfServerPlus, do one of the
following:
 Set XFPL_SMCPATH as an environment variable. (Note that the MDU

will also read XFPL_SMCPATH set in the environment.)
 Set XFPL_SMCPATH in the generic synrc file (/etc/synrc). This setting

overrides XFPL_SMCPATH set in the environment.

We do not recommend setting XFPL_SMCPATH in the xfpl.ini file because it
overrides both settings shown above.

To include comments in the synrc file, precede the comment with a number
sign (#).

Defining Your Synergy Methods
Defining Multiple Synergy Method Catalogs

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-47

 To specify the SMC location for a specific instance of xfServerPlus by port
number, create a file named synrc.####, where #### is the port number that
xfServerPlus is running on, and put it in the /etc directory. If you have
multiple instances of xfServerPlus running on multiple ports, you can create a
file for each instance and then set XFPL_SMCPATH differently in each file.
This setting overrides XFPL_SMCPATH set either in the environment or in
the generic synrc file.

 To specify the SMC location for xfServerPlus by user name, set
XFPL_SMCPATH in the .synrc file for the user account that xfServerPlus
sessions run under (/usr/username/.synrc). If you create several xfServerPlus
accounts, each one could have a different .synrc file with different settings.
Setting XFPL_SMCPATH (or any environment variable) in the user’s .synrc
file overrides XFPL_SMCPATH set in the environment, the generic synrc file,
and the port-specific synrc file.

Setting XFPL_SMCPATH on OpenVMS
We recommend setting XFPL_SMCPATH in DBLDIR:SERVER_INIT.COM.

 To specify the SMC location for all instances of xfServerPlus, use
$ DEFINE/SYS XFPL_SMCPATH altdir

where altdir is the directory in which the SMC files are located.

 To specify the SMC location for a specific instance of xfServerPlus, use
$ DEFINE/TABLE=LNM$RSDMS$MGR_port /USER - XFPL_SMCPATH altdir

where port is the port number on which the specific xfServerPlus session is
running, and altdir is the directory in which SMC files are located. This
setting overrides the system-level setting.

We do not recommend setting XFPL_SMCPATH in the xfpl.ini file because it
overrides all settings shown above.

We do not recommend setting XFPL_SMCPATH in the xfpl.ini file because it
overrides both settings shown above. For additional information on
defining rsynd logicals on OpenVMS, see “Defining logical names for
xfServer processes” in the “Configuring xfServer” chapter of the Installation
Configuration Guide.

Defining Your Synergy Methods
The Method Definition Utility

2-48  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

The Method Definition Utility
The Method Definition Utility (MDU) is used to add, change, and delete data in
the Synergy Method Catalog. It also includes functions for importing and
exporting data and for verifying repository structures and enumerations. See the
examples starting on page 2-51.

Syntax dbr mdu [smc_path] [-r rps_path]|[-m rps_main -t rps_text]
[-e XMLfilename]|[-i XMLfilename -l logfile]|[-u XMLfilename
-l logfile]|[-v -l logfile] [-?]

Arguments smc_path

(optional) Specify the directory where the SMC files are located. If not passed,
the environment variable XFPL_SMCPATH is used (see “Specifying Which
SMC to Update” on page 2-44). If that is not set, the SMC files in DBLDIR
are used. If smc_path is specified, it must be the first argument.

You can use an xfServer file specification if the SMC files are located on a
remote machine. See example D on page 2-51.

If you specify an existing directory path, either on the command line or with
XFPL_SMCPATH, and there are no SMC files in that location, you will be
prompted to create them. If you specify no directory path and there are no
files in DBLDIR, you will be prompted to create them in DBLDIR.

You can change the SMC directory from within the MDU. See “Setting the
Catalog Location” on page 2-37.

-r rps_path

(optional) Specify the directory where the repository files are located. The
MDU will look for the files rpsmain.ism and rpstext.ism in this directory.
You can use an xfServer file specification if the repository files are located on a
remote machine.

If rps_path is not passed, the environment variables RPSMFIL and RPSTFIL
are used to determine the two repository filenames. If they are not defined, the
repository files in RPSDAT are used.

You cannot change the repository once the MDU is running; you must restart
the MDU to specify a different repository. We recommend that you use only
one repository per SMC.

Defining Your Synergy Methods
The Method Definition Utility

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-49

-m rps_main

(optional) Specify the complete path and filename for the repository main file.
Use with -t. If rps_main and rps_text are not passed, the environment variables
RPSMFIL and RPSTFIL are used to determine the two repository filenames.
If they are not defined, the repository files in RPSDAT are used. You can use
an xfServer file specification if the repository files are located on a remote
machine. See example E on page 2-52.

-t rps_text

(optional) Specify the complete path and filename for the repository text file.
Use with -m. If rps_main and rps_text are not passed, the environment
variables RPSMFIL and RPSTFIL are used to determine the two repository
filenames. If they are not defined, the repository files in RPSDAT are used.
You can use an xfServer file specification if the repository files are located on a
remote machine. See example E on page 2-52.

-e XMLfilename

(optional) Export the SMC definitions to the specified file. The file will be
created in the current working directory unless you specify the complete path.
If the SMC includes structure parameters or enumeration parameters or
return values, the repository must be present. This option exports the entire
SMC and writes it to an XML file without displaying the MDU user
interface. You can use the -e option to incorporate export functionality into a
batch file. Cannot be used with -i, -u, or -v. See example G on page 2-52.

-i XMLfilename

(optional) Import all definitions in the specified XML file. Specify the
complete path or use a logical if the file is not in the current working directory.
This option replaces the entire catalog with the definitions in the specified XML
file. (See -u, below, for an update option.) The MDU user interface does not
display, so you can use the -i option to incorporate import functionality into a
batch file. Cannot be used with -e, -u. or -v. See example H on page 2-52.
Before importing, you should verify that no one else is using the SMC files. If

The MDU will attempt to open the repository files on start-up. If you
explicitly specify the repository path (-r) or main and text filenames (-m and
-t) on the command line, and the repository cannot be found or either of
the repository files cannot be opened, the MDU will generate an error and
terminate. If you don’t use the -r option or the -m and -t options, and the
repository cannot be found or opened, the MDU will start anyway and the
Repository Location dialog box will display blank.

Defining Your Synergy Methods
The Method Definition Utility

2-50  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

you want to import only selected interfaces or methods from the XML file,
use the Import Methods menu option; see “Importing and Exporting
Methods” on page 2-38.

-u XMLfilename

(optional) Update an existing catalog with the interface definitions in the
specified XML file. Specify the complete path or use a logical if the file is not
in the current working directory. This option causes existing interfaces in the
SMC to be replaced with the interface of the same name in the XML file. Any
new interfaces in the XML file are added to the SMC. See example I on
page 2-52.

This option imports only methods in named interfaces; methods that are in an
unnamed interface are ignored. (An “unnamed interface” means that in the
XML file, the method is nested within an interface tag, but that tag has no
name property. In the MDU, such a method would have no interface
assigned, as is the case with XFPL_REGCLEANUP and XFPL_LOG.)

The MDU user interface does not display with -u, so you can use this option
to incorporate update functionality into a batch file. Cannot be used with -e,
-i, or -v. Before updating, you should verify that no one else is using the SMC
files.

-v

(optional) Verify and update the repository structure sizes in the SMC. This
option compares the structure sizes in the SMC with those in the repository
and updates the SMC as necessary without displaying the MDU user
interface. Cannot be used with -e, -i, or -u. Also reports enumerations that are
present in the SMC but not the repository. See example J on page 2-52. For
more information about this function, see “Verifying Repository Structure
Sizes and Enumerations” on page 2-41.

When using the -i or -u option to update an existing SMC, pay close
attention to the SMC you are updating, as these options overwrite data in
the target SMC. You may want to make a habit of always specifying the SMC
path on the command line when using these options.

TIP
You can use the -i or -u option to create a new SMC from definitions in an
XML file. See “To create new files by importing an XML file” on page 2-43.

Defining Your Synergy Methods
The Method Definition Utility

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-51

-l logfile

(optional) Specify a log file to be used for logging errors during an import or
logging changes made during repository verification. Use only with -i, -u, or
-v. If -l is not specified, the default log file (import_smc.log or verify_smc.log)
will be created in the current working directory on OpenVMS and in the
location specified with the TEMP environment variable on Windows and
UNIX. (Note that these log files are created only when there are actually
errors, warnings, or changes to log.)

-?

(optional) Display a list of options for the utility.

Examples The examples below show various ways to start the MDU and run MDU utilities.

A. The example below shows how to start the MDU using the default SMC files and
repository files. This command will use the SMC files in the location specified by
XFPL_SMCPATH. If XFPL_SMCPATH is not set, mdu will use the files in the
location specified by DBLDIR. The logic used to determine the default repository
files is explained under the rps_path argument on page 2-48.

dbr DBLDIR:mdu

B. To start the MDU using SMC files in the work\smc directory and the
rpsmain.ism and rpstext.ism files in the work\rps directory, use this command
line:

dbr DBLDIR:mdu c:\work\smc -r c:\work\rps

C. To start the MDU using SMC files in the work\smc directory and specify the
repository files by name, use this command line:

dbr DBLDIR:mdu c:\work\smc -m c:\work\rps\MyMain.ism
-t c:\work\rps\MyText.ism

D. The two examples below show how to start the MDU using SMC files on a
remote machine that is running xfServer. You can use the full path or a logical
with the xfServer file specification. When specifying a path, be sure to use the
correct path syntax (delimiters) for the operating system where the files are
located—not the path syntax for the local system.

dbr DBLDIR:mdu /usr/SMClocation/@elmo

dbr DBLDIR:mdu XFPL_SMCPATH:@elmo

Defining Your Synergy Methods
The Method Definition Utility

2-52  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

E. To start the MDU using repository files on a remote machine, use the xfServer file
specification:

dbr DBLDIR:mdu XFPL_SMCPATH:@elmo -m RPSMFIL:@elmo
-t RPSTFIL:@elmo

F. To start the MDU on OpenVMS, you must define MDU as a foreign command
and then execute it. In the example below, the MDU will look for the files
rpsmain.ism and rpstext.ism in the DEV:[work] directory.

$ MDU:==$DBLDIR:MDU
$ MDU -R DEV:[work]

G. In this example the contents of the SMC file located in c:\work\smc are exported
to a file named CatalogA.xml. We have specified the repository location so that
the correct structure and enumeration definitions are exported.

dbr DBLDIR:mdu c:\work\smc -r c:\work\rps
-e c:\temp\CatalogA.xml

H. In this example, the definitions in CatalogA.xml are imported into the SMC
located in d:\synergy\smc, replacing the entire catalog in that location. If there are
any errors, they will be recorded in myImpLog.txt, and the import will be
canceled.

dbr DBLDIR:mdu d:\synergy\smc -i c:\temp\CatalogA.xml
-l c:\temp\myImpLog.txt

I. This example updates the definitions in the SMC located in d:\synergy\smc with
the definitions in CatalogB.xml; interfaces of the same name will be replaced and
new interfaces will be added.

dbr DBLDIR:mdu d:\synergy\smc -u c:\temp\CatalogB.xml
-l c:\temp\myImpLog.txt

J. The example below shows how to run the Verify Catalog utility, specifying the
SMC and repository file locations. All changes made, as well as any problems
encountered, will be logged to myVLog.txt.

dbr DBLDIR:mdu c:\work\smc -r c:\work\rps -v
-l c:\temp\myVLog.txt

Defining Your Synergy Methods
The SMC/ELB Comparison Utility

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-53

The SMC/ELB Comparison Utility
The SMC/ELB Comparison utility (smc_elb.exe) reads methods and their
associated ELBs (or shared images) in the SMC, and then verifies that there is an
ELB containing those methods. This utility can be useful at deployment time to
help ensure that you have all the necessary files. Smc_elb.exe is installed in the
dbl\bin directory.

If you’re using Workbench, the SMC/ELB Comparison utility runs automatically
when you generate Java class wrappers or C# classes. You can also run it
independently in Workbench or from the command line on any platform.
Running a comparison from the command line enables you to specify which
SMC, interface, and method ID you want to check and how you want to receive
the output (see below for Windows and UNIX instructions; see page 2-55 for
OpenVMS). Running a comparison from Workbench enables you to verify the
interfaces selected in a particular project (see page 2-56).

Windows and UNIX

Syntax smc_elb [-s smc_path] [-i interface_name] [-m method_id]
[-o filename] [-e] [-b] [-l line_length] [-v] [-h]

Arguments none

Run without any arguments, smc_elb will verify all methods in the SMC (in
the location specified by DBLDIR) and display the output to the screen.

-s smc_path

(optional) The path where the SMC files are located. If not specified, smc_elb
looks for the SMC files in the location specified by DBLDIR. If DBLDIR is
not set, smc_elb looks in the current working directory.

The SMC/ELB Comparison utility checks only for the ELBs that are referenced
in the SMC. It does not check for any dependent ELBs that may be linked to
the ELBs in the SMC.

If you used logicals in the SMC to point to the directories that your ELBs or
shared images reside in, those logicals must be defined in the environment
in order for smc_elb to be able to resolve them. Smc_elb does not read
xfpl.ini, SYNRC.COM, or DBLDIR:SERVER_INIT.COM.

Defining Your Synergy Methods
The SMC/ELB Comparison Utility

2-54  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

-i interface_name

(optional) Verify only the methods in the specified interface name. If you do
not specify an interface name (or a method ID; see below), all methods in the
SMC are verified.

- m method_id

(optional) A specific method ID you want to verify. If you specify both an
interface name and a method ID, the interface name overrides the method ID
and all methods in the interface are verified. If you do not specify a method
ID (or an interface name; see above), all methods in the SMC are verified.

-o filename

(optional) File that you want the output written to. If the file does not exist, it
is created. If it exists, it is overwritten. If -o is not specified, output is directed
to the screen.

-e

(optional) Display all output to the screen while also writing it to a file.
Use with -o.

-b

(optional) Display only errors to the screen or, if -o is specified, write only
errors to a file. Success and informational messages are not displayed.

-l line_length

(optional) Number of characters per line for output. You can use this option
when writing to a file (-o option) or the screen. The default line length is 255
characters, the maximum is 256, and the minimum is 20.

-v

(optional) Display the version number.

-h

(optional) Display a list of options.

Defining Your Synergy Methods
The SMC/ELB Comparison Utility

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  2-55

OpenVMS

Syntax smc_elb [/smc_path=smc_path] [/interface=interface_name]
[/method=method_id] [/output=filename] [/verbose] [/brief]
[/line_length=value] [/version]

Arguments none

Run without any arguments, smc_elb.exe will verify all methods in the SMC
(in the location specified by DBLDIR) and display the output to the screen.

/smc_path=smc_path

(optional) The path where the SMC files are located. If not specified,
smc_elb.exe looks for the SMC files in the location specified by DBLDIR. If
DBLDIR is not set, smc_elb.exe looks in the current working directory.

/interface=interface_name

(optional) Verify only the methods in the specified interface name. If you do
not specify an interface name (or a method ID; see below), all methods in the
SMC are verified.

/method=method_id

(optional) A specific method ID you want to verify. If you specify both an
interface name and a method ID, the interface name overrides the method ID
and all methods in the interface are verified. If you do not specify a method
ID (or an interface name; see above), all methods in the SMC are verified.

/output=filename

(optional) File that you want output written to. If the file does not exist, it is
created. If it exists, a new file is created. If /output is not specified, output is
directed to the screen.

/verbose

(optional) Display all output to the screen while also writing it to a file. Use
with /output.

/brief

(optional) Display only errors to the screen or, if /output is specified, write
only errors to a file. Success and informational messages are not displayed.

/line_length=value

(optional) Number of characters per line for output. You can use this option
when writing to a file (/output option) or the screen. The default line length is
255 characters, the maximum is 256, and the minimum is 20.

Defining Your Synergy Methods
The SMC/ELB Comparison Utility

2-56  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

/version

(optional) Display the version number.

Running an SMC/ELB Comparison from Workbench
When you run the SMC/ELB Comparison utility from Workbench, it uses the
SMC specified in the SMC directory field in the Component Information dialog
box, and checks all methods in the interfaces that are selected in that dialog box.

1. Open a Java or .NET component project in Workbench.

2. Select Synergy/DE > Utilities > SMC/ELB Comparison. The utility runs and
displays output in the Build tab of the Output toolbar.

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-1

Chapter 3

Configuring and Running xfServerPlus
This chapter explains how to start, stop, and test xfServerPlus. It also includes
information on the xfpl.ini file, using a log file, deploying xfServerPlus, debugging
remote routines, and configuring xfServerPlus for remote data access.

The Big Picture
This section lists the steps required to configure and start xfServerPlus. For an
overview of the entire process of developing a distributed application, see “The Big
Picture” section for your client:

 Synergy, see page 4-2
 Java, see page 7-3
 .NET, see page 10-3

1. Create a user account on the xfServerPlus machine to run xfServerPlus sessions.
For details on creating an account, see “Running xfServerPlus on Windows” on
page 3-2, “Running xfServerPlus on UNIX” on page 3-8, or “Running
xfServerPlus on OpenVMS” on page 3-11. (Note: On OpenVMS, you must
specify this account during installation. On Windows and UNIX, you can create
the account after installation.)

2. Install xfServerPlus on your Synergy server machine. The xfServerPlus installation
includes the Method Definition Utility and the Synergy Method Catalog files.

3. Add the necessary settings to the xfpl.ini file:

 Set logging options for the xfServerPlus log. You can set options to turn
logging on and off, specify the name of the log file, specify single or multiple
log files, and determine the type of information that is logged. See “Setting
Options for the xfServerPlus Log” on page 3-34.

 If you use logicals in the SMC to point to the directories that your ELBs or
shared images reside in, define those logicals in the xfpl.ini file (Windows and
UNIX) or DBLDIR:SERVER_INIT.COM (OpenVMS). See “Defining
Logicals” on page 1-4.

Configuring and Running xfServerPlus
Running xfServerPlus

3-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

 If you need to specify a base channel number for xfServerPlus to use when
opening files, set XFPL_BASECHAN to the desired value. See “Specifying a
Base Channel Number” on page 1-7.

 If you plan to use data compression, set XFPL_COMPRESS to ON. See
“Configuring Compression” on page 3-23.

4. If you choose to put the xfpl.ini file somewhere other than DBLDIR, set the
XFPL_INIPATH environment variable. See “Setting the XFPL_INIPATH
Environment Variable” on page 3-20.

5. If you choose to put your Synergy Method Catalog somewhere other than
DBLDIR, set the XFPL_SMCPATH environment variable so that xfServerPlus
can find it. See “Setting the XFPL_SMCPATH Environment Variable for
xfServerPlus” on page 2-44.

6. Start xfServerPlus. See “Running xfServerPlus on Windows” on page 3-2,
“Running xfServerPlus on UNIX” on page 3-8, or “Running xfServerPlus on
OpenVMS” on page 3-11.

Running xfServerPlus
By default, xfServerPlus runs on port 2356.

Running xfServerPlus on Windows
We recommend that you set up an account with limited privileges specifically for
running xfServerPlus sessions. This account can be a local account on the
xfServerPlus machine or it can be a domain account. The account must have
read/write permissions for any directories containing files that xfServerPlus or your
Synergy methods will create or update, including the xfServerPlus log file.

All clients will assume the persona of this account; consequently, it should not be a
member of the administrators group. However, the user who registers and starts
the xfServerPlus service must be a member of the administrators group.

The account that you create to run xfServerPlus sessions must allow a log-in
on the machine that xfServerPlus is running on. If you cannot log on to the
xfServerPlus machine using the account, verify that the account has the “log
on locally” (or “allow log on locally” on some platforms) user right set. This
is usually set by default for user-level accounts. However, if the xfServerPlus
account is on a domain controller, and xfServerPlus is running on that
domain controller, it is likely that this user right is not set by default.

Configuring and Running xfServerPlus
Running xfServerPlus

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-3

You can register and start xfServerPlus either from the Synergy Configuration
Program (see below) or from the command line (see page 3-6).

Starting xfServerPlus from the Synergy Configuration Program

To register and start xfServerPlus, you must be logged on using an account that is a
member of the administrators group.

1. Start the Synergy Configuration Program (from the Windows Control Panel,
select Synergy Control Panel > Synergy Configuration Program) and go to the
xfServer/xfServerPlus tab.

2. Click the Add xfServerPlus Service button.

3. Complete the fields in the xfServerPlus Information dialog box.

Service name. Enter the service name (registry key) for this service. The default is
“xfspl”. This is the name that displays in the list of services on the
xfServer/xfServerPlus tab.

Port number. Enter the port number for this service. Valid ports are in the range
1024 through 65534. The default is 2356.

Display name. Enter a display name for this service. This is the name that displays
in the Windows Services console. If you leave this field blank, it defaults to
“Synergy/DE xfServerPlus ####”, where #### is the port number.

Description. (optional) Enter a descriptive string that will be added to the end of
the command line when xfServerPlus is started. This string is then displayed at the
end of the command line for the dbs process in the Command Line column of the
Processes tab in Windows Task Manager. (You may need to add the Command
Line column to the Processes display.) If you have several xfServerPlus processes
running at once, this enables you to distinguish among them. If the string contains
%s, it is replaced with the IP address of the xfNetLink client. (Do not use other
%letter variables, and do not include quotation marks within the string.)

Username. Enter the user name for the account that you created to run
xfServerPlus sessions. This account can be either a local account or a domain
account; it cannot be a member of the administrators group. If there is an account
with the same user name on both the local machine and on a Windows domain, or

Do not attempt to issue rsynd commands from the command line while the
Synergy Configuration Program is running.

Configuring and Running xfServerPlus
Running xfServerPlus

3-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

on multiple domains, and you want to use a specific domain account, explicitly
specify the domain in the format user_name@domain_name or
domain_name\user_name.

Password. Enter the password for the account that you created to run xfServerPlus
sessions.

Enable remote debugging. Check this box to enable remote debugging of this
xfServerPlus service via a Telnet client. See “Debugging Your Remote Synergy
Routines” on page 3-45 for details.

Debug port number. Enter the port number that the debug server should listen on
for the Telnet client. This port number must be different than the port that the
xfServerPlus service listens on. Valid ports are in the range 1024 through 65534.

Timeout in seconds. Enter the number of seconds the server should wait for a
connection from the Telnet client after the xfNetLink–xfServerPlus connection
has been made. The default is 100 seconds; this value should be less than the
connect time-out set on the client. (The connect time-out, which defaults to 120
seconds, is ‘B’ in figure 4-2 on page 4-5.) If the Telnet client fails to connect
within the specified time, the application will continue running normally, without
debugging enabled.

Enable encryption. Select this option to enable encryption of data between
xfNetLink and xfServerPlus, and then select the type of encryption desired, Master
or Slave. See “Using Encryption” on page 3-24 for details on this feature.

Certificate file. Specify the certificate file (.pem file) you created using either the
full path or a logical. The default filename is DBLDIR:rsynd.pem, but you may
choose another name and place the file anywhere you like. (Note that the resolved
path displays rather than “DBLDIR”.)

Cipher type. Select the level of encryption desired. These levels map to specific
cipher suites and protocols, which are determined by the version of OpenSSL
being used. If Medium or Low is specified, Security level must be set to “TLS 1.0
+ TLS1.1 + TLS 1.2”.

The encryption settings for the <Default> entry are used by both xfServer
and xfServerPlus. For more information, see “Using the <Default> entry” in
the “Configuring xfServer” chapter of the Installation Configuration Guide.

Configuring and Running xfServerPlus
Running xfServerPlus

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-5

Security level. Displays the currently selected protocols. To change this setting,
click the Change button to display the Security Compliance Level dialog. The
default is “Always use current default”, which means that the available protocols
may change with the version of Synergy. If you don’t want the available protocols to
change when you upgrade xfServerPlus, clear the check box and explicitly select
the set of protocols you’d like to be available. Selecting “Level 2: TLS1.1 + TLS
1.2” requires a cipher type of High. See “Understanding cipher suites and
protocols” in the “Configuring xfServer” chapter of the Installation Configuration
Guide for more information. (Although this section is about xfServer, the
server-level information applies to xfServerPlus as well.)

4. If you want to modify environment variables for this service (or for all services),
click the Environment Setup button. From here, you can set or modify
XFPL_INIPATH and XFPL_SMCPATH, as well as any other environment
variables that you want xfServerPlus to use. For instructions, see “Setting
XFPL_INIPATH on Windows” on page 3-20 or “Setting XFPL_SMCPATH on
Windows” on page 2-45.

5. Click OK in the xfServerPlus Information dialog box. The new service will display
in the list of services.

6. Click Apply to register the service.

7. (optional) Click the Start Service button. See the table in “Starting xfServer” in the
“Configuring xfServer” chapter of the Installation Configuration Guide for error
and status codes that may display when starting or stopping xfServerPlus. If you
don’t want to start the service now, you can start it later from the Synergy
Configuration Program, the Windows Services console, or the command line; see
step 2 on page 3-6.

Environment variables set using the <Default> entry in the list of services
apply to all xfServerPlus (and xfServer) services, but they can be overridden
for individual services if desired. For more information on the <Default>
entry, see “Using the <Default> entry” in the “Configuring xfServer”
chapter of the Installation Configuration Guide.

Configuring and Running xfServerPlus
Running xfServerPlus

3-6  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Starting xfServerPlus from the command line

You must be logged on using an account that is a member of the administrators
group to register and start xfServerPlus. When you start xfServerPlus from the
command line, the following defaults are used:

Port = 2356
Service name = xfspl
Display name = Synergy/DE xfServerPlus

You can override these defaults. See the syntax under “Creating a second session”
on page 3-7 for the options.

1. You must register the xfServerPlus service before starting it. At the command line,
enter

rsynd -w -u xfspAcct/password [-p port] -r

You must supply a user name and password with the -u option when you register
xfServerPlus. The password must be in clear text; it will be encoded in the registry.

If there is an account with the same user name on both the local machine and on a
Windows domain, or on multiple domains, and you want to use a specific domain
account, you must explicitly specify the domain name using the format
user_name@domain_name/password or domain_name \user_name/password.

If xfspAcct is a member of the administrators group, xfServerPlus will return an
error message and will not start.

2. Once xfServerPlus is registered, enter the following at the command line to start it:

net start serviceName

where serviceName is the name of the xfServerPlus service. The default is “xfspl”.
If xfServerPlus starts successfully, you’ll see a message to that effect.

You can also start the service from the Windows Services console (the default
display name is “Synergy/DE xfServerPlus”) or from the Synergy Configuration
Program.

Do not attempt to issue rsynd commands from the command line while the
Synergy Configuration Program is running.

For the complete list of rsynd options, see “The rsynd Program” in the
“Configuring xfServer” chapter of the Installation Configuration Guide.

Configuring and Running xfServerPlus
Running xfServerPlus

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-7

See the table in “Starting xfServer” in the “Configuring xfServer” chapter of the
Installation Configuration Guide for error and status codes that may display when
starting or stopping xfServerPlus.

Creating a second session
You can create more than one instance of xfServerPlus by doing one of the
following:

 From the Synergy Configuration Program, add another xfServerPlus session
by repeating the instructions in “Starting xfServerPlus from the Synergy
Configuration Program” on page 3-3. Each session must have a different
service name, display name, and port number. You can add a description to
help distinguish the sessions.

 From the command line, register another instance of xfServerPlus, specifying a
different service name, display name, and port number. You can use the -text
option to add a description to help distinguish the sessions. For example:
rsynd -w -u xfspAcct/password -p 4567 -r -c xfspl_4567

-d "xfServerPlus_4567" -text "Session two: %s"

Stopping xfServerPlus
To stop xfServerPlus you must be logged on using an account that is a member of
the administrators group. When you stop xfServerPlus, existing connections are
lost.

See the table in “Starting xfServer” in the “Configuring xfServer” chapter of the
Installation Configuration Guide for error and status codes that may display when
starting or stopping xfServerPlus.

 To stop xfServerPlus without unregistering it

Use one of these methods:

 In the Synergy Configuration Program, go to the xfServer/xfServerPlus tab,
select the service, and click the Stop Service button.

 In the Windows Services console, select the service (the default display name is
“Synergy/DE xfServerPlus”) and click the Stop Service button or select
Action > Stop.

For the complete list of rsynd options, see “The rsynd Program” in the
“Configuring xfServer” chapter of the Installation Configuration Guide.

Configuring and Running xfServerPlus
Running xfServerPlus

3-8  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

 At the command line, enter
net stop serviceName

where serviceName is the name of the xfServerPlus service. The default service
name is “xfspl”.

 Use the rsynd -w -q command. This stops the default xfServerPlus, xfspl, on
the default port, 2356. Use the -c option to specify a different service name;
use the -p option to specify a non-default port.

 To stop xfServerPlus and unregister it

Use one of these methods:

 In the Synergy Configuration Program, go to the xfServer/xfServerPlus tab,
select the service from the list, and click the Remove Service button. Click Yes
at the confirmation prompt.

 Use the rsynd -w -x command. This stops and unregisters the default
xfServerPlus, xfspl, on the default port, 2356. If you are running xfServerPlus
with a different service name, use the -c option to specify the service name. If
you are running xfServerPlus on a non-default port, use the -p option to
specify the port number.

Running xfServerPlus on UNIX
We recommend that you set up an account with limited privileges specifically for
running xfServerPlus sessions. Use either a system-level environment variable for
DBLDIR or add a DBLDIR entry to the synrc file in the user directory for the
new account. Clients assume the persona of the user name that is specified or
assumed during start-up; consequently, we recommend that you not give this
account root access. You can start xfServerPlus either with or without a password.

Starting xfServerPlus with a password
This method of starting xfServerPlus requires that you supply the password for the
account you created to run xfServerPlus sessions. The password must be encoded
using the setruser utility; it cannot be entered in clear text. There are a couple of
ways to specify a user password. For example:

rsynd -w -u `setruser`

This command launches the setruser utility, which prompts for a user name and
password. Note that setruser must be enclosed between grave accent characters
(`). After you enter the user name and password, the command starts rsynd with

Configuring and Running xfServerPlus
Running xfServerPlus

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-9

the specified user name and the encoded password on the default port (2356). You
can specify a non-default port with the -p option.

You can also run setruser to generate the encoded password string, and then
include it in the start-up command. For example:

rsynd -w -u "username/\362\224c\261\351\224\374P"

Because this method does not require user input, you can put this command in a
start-up file. Note that the user name/password string must be enclosed in double
quotation marks; failure to include the quotation marks may result in a “wrong
username/password” error. (For more information on setruser, see “The setruser
Utility” in the “Configuring xfServer” chapter of the Installation Configuration
Guide.)

Starting xfServerPlus without a password
This method enables you to start xfServerPlus from an authorized account without
specifying the password for the account you created to run xfServerPlus sessions.
(If the password is passed, it is ignored.) The syntax is

rsynd -w -u xfspAcct

where xfspAcct is the user name of the account you created to run xfServerPlus
sessions. This starts xfServerPlus on the default port (2356). You can specify a
non-default port with the -p option. All clients assume the persona of xfspAcct.

This command can be executed by a user signed on as xfspAcct or by any user with
root privileges (uid=0). However, if the user name itself (i.e., xfspAcct) is root,
xfServerPlus will return an error and will not start. If xfServerPlus starts
successfully, you’ll see the message “All xfServerPlus clients will be run as user
xfspAcct.”

You can also start xfServerPlus without specifying a user name. The user name
defaults to that of the user signed on. (Presumably, this is the account you created
to run xfServerPlus sessions.) The syntax is

rsynd -w

This starts xfServerPlus on the default port (2356). You can specify a non-default
port with the -p option. All clients assume the persona of the user who started
rsynd.

This command can be executed by any user without root authority. If start-up is
successful, you’ll see the message “All xfServerPlus clients will be run as user
userName.” If userName has root authority, xfServerPlus will return an error
message and will not start.

Configuring and Running xfServerPlus
Running xfServerPlus

3-10  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Creating a second session
You can create more than one instance of xfServerPlus by specifying a different
port (the default is 2356) for the additional session in the start-up syntax. You can
use the -text option to add a description to help distinguish the sessions. For
example:

rsynd -w -u xfspAcct -p 3356 -text "Session two: %s"

Stopping xfServerPlus
There are two methods for stopping xfServerPlus (rsynd).

 To stop xfServerPlus without killing the existing connections, use the -q
option:
rsynd -q -w

This stops xfServerPlus on the default port, 2356. If you are using a different
port, omit the -w option and specify the port number with the -p option. For
example:

rsynd -q -p 2445

This is the usual method for stopping xfServerPlus. Existing connections are
allowed to continue, but new connections are blocked. Use this method when
you need to start a new version or configuration of xfServerPlus on that port,
or any time you want to prevent new access to the server without interrupting
existing connections.

 To stop xfServerPlus and kill all existing connections, use the -c option with -q:
rsynd -q -c -w

This stops xfServerPlus on the default port, 2356. If you are using a different
port, omit the -w option and specify the port number with the -p option.

All existing connections are terminated, new connections are blocked, and the
non-interactive runtimes (dbs.exe) started by the server are terminated. Use
this method only when you need exclusive access to the server.

For the complete list of rsynd options, see “The rsynd Program” in the
“Configuring xfServer” chapter of the Installation Configuration Guide.

Configuring and Running xfServerPlus
Running xfServerPlus

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-11

When you stop the server in this manner, the error returned to the client will
depend on which xfNetLink you are using.

 xfNetLink Synergy will return $ERR_XFHALT if there is a call in
progress when the connection goes down. On subsequent attempts to
connect while the connection remains down, xfNetLink Synergy will
return $ERR_XFNOCONN.

 xfNetLink Java will throw java.net.SocketException if there is a call
in progress when the connection goes down. (This could be a read or a
write exception, depending on whether the client was sending or receiving
at the moment of failure.) On subsequent attempts to connect while the
connection remains down, xfNetLink Java will throw
java.net.ConnectException.

 xfNetLink .NET will throw a socket error (if the client is sending) or a
signal trap error (if the client is receiving) if there is a call in progress when
the connection goes down. On subsequent attempts to connect while the
connection remains down xfNetLink .NET will throw a connection
refused error.

Running xfServerPlus on OpenVMS
We recommend that you set up an account with limited privileges specifically for
running xfServerPlus sessions. You must specify this account during installation.
The account used to run xfServerPlus sessions must have the SHARE privilege.

This account cannot have the privileges listed below, unless the
/ALLOW_PRIVILEGED qualifier is specified in the start-up command.
We recommend that you not allow these privileges because they give end users
privileges at the system administrator level.

Note that OpenVMS accounts have sections for “Default Privileges” and
“Authorize Privileges”. The former lists those privileges that are always on,
while the latter lists those that can be turned on but are off by default. The
SHARE privilege must be defined in the “Default Privileges” section.
(Usually, the same privileges are set in both sections.)

ALTPRI DOWNGRADE SYSNAM
BYPASS EXQUOTA SYSPRV
CMEXEC READALL VOLPRO
CMKRNL SECURITY WORLD
DETACH SETPRV

Configuring and Running xfServerPlus
Running xfServerPlus

3-12  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

After you install xfServerPlus, the xfServerPlus entry in the
SYS$MANAGER:SYNERGY_STARTUP.COM file will include the following
settings (you will see other settings in addition to these):

$ SYNERGY_SERVER -
/PORT=2356 -
/XFPL_FREE_POOL=2 -
/XFPL_ENABLE=xfspAcct

where

/PORT is the port that xfServerPlus will run on (default is 2356).

/XFPL_FREE_POOL is the number of remote execution sessions that will be
kept available for user connections (default is 2; minimum is 1). Sessions
remain in the pool until rsynd is shut down.

/XFPL_ENABLE enables xfServerPlus. xfspAcct is the user name of the
account that the remote execution sessions will run under. (This is the account
that was specified during installation.)

For information on the other xfServerPlus settings in the
SYNERGY_STARTUP.COM file, see “The rsynd Program” in the “Configuring
xfServer” chapter of the Installation Configuration Guide.

Once installed, xfServerPlus starts up as part of the machine start-up. If the user
name specified has invalid privileges (see list above), xfServerPlus is not started,
and the following error message is logged in the rsynd log file. By default this file is
named node_rsynd_port.log and located in DBLDIR.

Message from user SYSTEM on MachineName RSDMS$MGR_2356: Security
check: attempt to start xfServerPlus with elevated privilege
failed.

To start xfServerPlus manually, use the command

$ RSYND /XFPL_ENABLE=xfspAcct

where xfspAcct is the user name of the account that xfServerPlus sessions will run
under.

For a complete list of options for rsynd, additional information on starting
rsynd, and details on rsynd logging, see the “Configuring xfServer”
chapter in the Installation Configuration Guide.

Configuring and Running xfServerPlus
Running xfServerPlus

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-13

You can check the status of xfServerPlus with the servstat program. Run option 9,
Display xfServerPlus status. It will tell you the port on which xfServerPlus is
enabled, the number of processes in use, and so on.

Note that servstat does not report specific errors. If option 9 shows that
xfServerPlus is not enabled, refer to the above-mentioned log file for information
about what went wrong. See “The servstat Program” in the “General Utilities”
chapter of Synergy Tools for details.

Creating a second session
You can create more than one instance of xfServerPlus by copying the xfServerPlus
start-up section in the SYNERGY_STARTUP.COM file and adjusting the
parameters as desired. Each instance of xfServerPlus must have a unique port. You
will also probably want to specify a separate log file for each instance with the
/OUTPUT qualifier. (Note that this log file is for the rsynd log, not the
xfServerPlus log. See “Logging” in the OpenVMS section of the “Configuring
xfServer” chapter of the Installation Configuration Guide for more information on
rsynd logging.)

If you want to be able to use separate XFPL.INI files with each instance of
xfServerPlus, you must create a separate account for each instance and specify it
with the /XFPL_ENABLE qualifier. See also “Setting XFPL_INIPATH on
OpenVMS” on page 3-22.

TIP
You can reduce the disk I/O overhead required for reading the SMC by
installing a RAM drive and copying the SMC files and the XFPL.INI file to it.
Then, set the XFPL_INIPATH and XFPL_SMCPATH logicals to point to the
RAM drive. This will also reduce the time it takes to start the remote
execution sessions.

Configuring and Running xfServerPlus
Running xfServerPlus

3-14  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Stopping xfServerPlus
Use one of these methods:

 While logged into the SYSTEM account, execute the command
$ RSYND/SHUTDOWN/PORT=port

where port specifies the port number that xfServerPlus is running on. Existing
connections are not affected by the server system shutdown. New connections
are not accepted after this command has executed.

 Use the servstat program. See “The servstat Program” in the “General
Utilities” chapter of Synergy Tools for instructions.

TIP
If you need to refresh the pool without shutting down xfServerPlus, use
servstat option 10, Purge xfServerPlus free pool. All processes in the
xfServerPlus free pool will be destroyed and the pool will be repopulated
with new processes. This option is especially useful when the XFPL.INI file
has been modified, as it enables you to ensure that all processes in the free
pool get the new settings.

Configuring and Running xfServerPlus
Testing xfServerPlus

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-15

Testing xfServerPlus
The xfspltst program checks that xfServerPlus is running properly. This program
makes calls to a test ELB or shared image named xfpl_tst, which is distributed
with xfServerPlus. There are entries in the SMC for use by the test programs.
(These are the methods in the xfTest interface in the distributed SMC.) These
methods and the ELB must be present to use the test program.

There are also test programs for the xfNetLink clients. If you run one of the
xfNetLink test programs and it fails, running xfspltst can tell you if the problem is
on the xfServerPlus side or the xfNetLink side. Refer to the section for your
xfNetLink client:

 Synergy, see page 4-8
 Java, see page 9-12
 .NET, see page 12-9

 To run the xfspltst program

1. Make sure xfServerPlus has been started.

2. For Windows and UNIX, on the machine running xfServerPlus, enter

dbr DBLDIR:xfspltst hostName hostPort

where hostName is the name or IP address of the xfServerPlus machine and
hostPort is the port that xfServerPlus is running on.

On OpenVMS, you must define xfspltst as a foreign command and then execute
it. On the machine running xfServerPlus, enter

$ XFSPLTST:==$DBLDIR:XFSPLTST
$ XFSPLTST hostName hostPort

As the test runs, information is printed to the screen and written to the xfspltst.log
file, located in the directory from which you ran the test. If any tests were
unsuccessful, check xfspltst.log for more information; the error message should
give you a clue as to what the problem is. If you cannot resolve the problem, call
Synergy/DE Developer Support. Be sure to save the xfspltst.log file; your
Developer Support engineer needs the information in this file to help you.

If the methods in the xfTest interface are not present in your SMC, you can
import them from the defaultsmc.xml file. See “Importing and Exporting
Methods” on page 2-38.

Configuring and Running xfServerPlus
xfServerPlus Status Codes

3-16  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

xfServerPlus Status Codes
These codes are returned to the client by xfServerPlus when it cannot start a
remote execution session. Note that the meaning of the code may vary depending
on the operating system that xfServerPlus is running on.

xfServerPlus Status Codes

Operating
system

Code Description What to do

Windows 1 Invalid user name. Verify the user name and password used to run
xfServerPlus sessions. Try logging on using that
account. See “Running xfServerPlus on
Windows” on page 3-2.

2 Cannot log on as user name.

3 Cannot impersonate as user name.

4 Cannot launch dbs process. Ensure that dbs.exe exists on the xfServerPlus
machine.

5 Insufficient memory on server
during start-up.

Upgrade memory or decrease the number of
running processes.

6 DBLDIR is not set. Use the Synergy Configuration Program to set
DBLDIR on the xfServerPlus machine.

8 xfNetLink client version
incompatible with server version.

Upgrade the client or server to the higher
version. Running a newer client with an older
server is not a supported configuration.

9 No Synergy Runtime license. Install a Runtime license on the xfServerPlus
machine.

10 No Runtime license units. Upgrade the number of users on your Synergy
Runtime license.

38 Rsynd is running but xfServerPlus is
not enabled.

Start rsynd with the -w option. See “Running
xfServerPlus on Windows” on page 3-2.

176 -
200

Rsynd licensing error. Check the Windows application event log on
the xfServerPlus machine for details on the
exact error.

Configuring and Running xfServerPlus
xfServerPlus Status Codes

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-17

UNIX 1 Invalid user name or password. Verify the user name and password used to run
xfServerPlus sessions. See “Running
xfServerPlus on UNIX” on page 3-8.2 Invalid user name.

3 Cannot fork child process. See your system administrator.

4 Cannot launch dbs process. Ensure that dbs.exe exists on the xfServerPlus
machine.

6 DBLDIR is not set. Set DBLDIR on the xfServerPlus machine.

8 xfNetLink client version
incompatible with server version.

Upgrade the client or server to the higher
version. Running a newer client with an older
server is not a supported configuration.

9 No Synergy Runtime license. Install a Runtime license on the xfServerPlus
machine.

10 No Runtime license units. Upgrade the number of users on your Synergy
Runtime license.

38 Rsynd is running but xfServerPlus is
not enabled.

Start rsynd with the -w option. See “Running
xfServerPlus on UNIX” on page 3-8.

176 -
200

Rsynd licensing error. Check syslog on the xfServerPlus machine for
details on the exact error.

xfServerPlus Status Codes

Operating
system

Code Description What to do

Configuring and Running xfServerPlus
xfServerPlus Status Codes

3-18  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

OpenVMS 1 xfServerPlus is not licensed. Purchase a license.

2 xfServerPlus license limit exceeded. Upgrade the number of xfServerPlus licenses.

6 DBLDIR is not set. Set DBLDIR on the xfServerPlus machine.

7 The 14-day demo period or an
extended demo period has expired.

Call your Synergy/DE customer service
representative.

8 xfNetLink client version
incompatible with server version.

Upgrade the client or server to the higher
version. Running a newer client with an older
server is not a supported configuration.

9 No Synergy Runtime license. Install a Runtime license on the xfServerPlus
machine.

10 No Runtime license units. Upgrade the number of users on your Synergy
Runtime license.

38 Rsynd is running but xfServerPlus is
not enabled.

Start rsynd with the /XFPL_ENABLE option.
See “Running xfServerPlus on OpenVMS” on
page 3-11.

xfServerPlus Status Codes

Operating
system

Code Description What to do

Configuring and Running xfServerPlus
Using the xfpl.ini File

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-19

Using the xfpl.ini File
The xfpl.ini file is read by xfpl.dbr each time an xfServerPlus session is started.
This file contains the settings that are used to specify logging options,
compression, the base channel number for opening files, and—on Windows and
UNIX—the logicals that point to your ELBs.

The settings in the xfpl.ini file, together with the settings in the synrc file or
registry entry, create the environment that xfServerPlus runs in.

The default location for xfpl.ini is the DBLDIR directory. If you place the xfpl.ini
file in a different location, set the XFPL_INIPATH environment variable to point
to that location (see page 3-20).

If xfServerPlus encounters errors while reading the xfpl.ini file, they will be logged
and then the connection will be terminated. By default, these errors are logged to
the application event log (Windows), syslog (UNIX), or operator console
(OpenVMS). If xfServerPlus logging is turned on (see page 3-34), errors will also
be recorded in the xfServerPlus log (xfpl.log by default).

Using an Alternate xfpl.ini File
There may be times when it would be convenient to use an alternate xfpl.ini file.
At runtime, each instance of xfServerPlus can reference only a single xfpl.ini file;
however, if you have multiple instances of xfServerPlus running on different ports,
they can each reference a separate xfpl.ini file if desired.

To set up your system to use an alternate xfpl.ini, you need to

 decide on a location and create or copy the xfpl.ini file there.
 set the XFPL_INIPATH environment variable.

See “Appendix A: Configuration Settings” for a complete list of the xfpl.ini
file configuration settings.

Configuring and Running xfServerPlus
Using the xfpl.ini File

3-20  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Setting the XFPL_INIPATH Environment Variable

Setting XFPL_INIPATH on Windows
On Windows, use the Synergy Configuration Program to set environment
variables for xfServerPlus in the registry. You can set XFPL_INIPATH for all
instances of xfServerPlus or for a specific instance of xfServerPlus.

 To set XFPL_INIPATH for all instances of xfServerPlus

This procedure sets XFPL_INIPATH in the Windows registry under
HKEY_LOCAL_MACHINE\SOFTWARE\Synergex\Synergy xfServer\Synrc.

1. Start the Synergy Configuration Program (from the Windows Control Panel,
select Synergy Control Panel > Synergy Configuration Program) and go to the
xfServer/xfServerPlus tab.

2. Select Default from the list of services, click the Modify Service button, and then
click the Environment Settings button.

3. Click the Add button that is grouped with the “Settings for all services” list.

4. Type the variable name (XFPL_INIPATH) and value in the Add Environment
Setting dialog box, and click OK.

5. Click OK in the xfServer Information dialog box, and then click Apply in the
Synergy Configuration Program.

6. You’ll be prompted to stop and restart all services so that the new settings take
effect. Click Yes.

 To set XFPL_INIPATH for a specific instance of xfServerPlus

This procedure sets XFPL_INIPATH in the Windows registry under
HKEY_LOCAL_MACHINE\SOFTWARE\Synergex\Synergy xfServer\
serviceName\Synrc. This setting overrides the “all instances” setting for a specific
instance of xfServerPlus.

1. Start the Synergy Configuration Program (from the Windows Control Panel,
select Synergy Control Panel > Synergy Configuration Program) and go to the
xfServer/xfServerPlus tab.

2. Select the service from the list, click the Modify Service button, and then click the
Environment Settings button.

3. Click the Add button that is grouped with the “Settings for service name” list.

Configuring and Running xfServerPlus
Using the xfpl.ini File

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-21

4. Type the variable name (XFPL_INIPATH) and value in the Add Environment
Setting dialog box, and click OK.

5. Click OK in the xfServerPlus Information dialog box, and then click Apply in the
Synergy Configuration Program. The service will be stopped and restarted.

Setting XFPL_INIPATH on UNIX
On UNIX, the xfServerPlus service reads settings from the environment and from
the synrc file. There are synrc files at the system level (/etc/synrc) and at the user
level (/usr/username/.synrc). At the system level, xfServerPlus supports both a
generic synrc file and a port-specific synrc file. See below for details.

 To specify the xfpl.ini file location for all instances of xfServerPlus, do one of
the following:
 Set XFPL_INIPATH as an environment variable.
 Set XFPL_INIPATH in the generic synrc file (/etc/synrc). This setting

overrides XFPL_INIPATH set in the environment.

 To specify the xfpl.ini file location for a specific instance of xfServerPlus by
port number, create a file named synrc.####, where #### is the port number
that xfServerPlus is running on, and put it in the /etc directory. If you have
multiple instances of xfServerPlus running on multiple ports, you can create a
file for each instance and then set XFPL_INIPATH differently in each file.
This setting overrides XFPL_INIPATH set either in the environment or in the
generic synrc file.

 To specify the xfpl.ini file location for xfServerPlus by user name, set
XFPL_INIPATH in the .synrc file for the user account that xfServerPlus
sessions run under (/usr/username/.synrc). If you create several xfServerPlus
accounts, each one could have a different .synrc file with different settings.
Setting XFPL_INIPATH (or any environment variable) in the user’s .synrc file
overrides XFPL_INIPATH set in the environment, the generic synrc file, and
the port-specific synrc file.

To include comments in the synrc file, precede the comment with a number
sign (#).

Configuring and Running xfServerPlus
Using the xfpl.ini File

3-22  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Setting XFPL_INIPATH on OpenVMS
XFPL_INIPATH should be set in SYNRC.COM. (Note that logicals defined in
SYNRC.COM are case sensitive.)

 To specify the XFPL.INI file location for all instances of xfServerPlus, add this
line to the DBLDIR:SYNRC.COM file:
$ DEFINE XFPL_INIPATH altdir

where altdir is the directory in which the XFPL.INI file is located.

 To specify the XFPL.INI file location for a specific instance of xfServerPlus,
you must create a separate account for each instance, and then edit the
SYNRC.COM file in that account’s directory, using the syntax given above.
This will override the “all instances” setting. See “Creating a second session”
on page 3-13 for more information on running multiple instances of
xfServerPlus on OpenVMS.

Although we recommend elsewhere in this manual that logicals be set in
DBLDIR:SERVER_INIT.COM, you should not set XFPL_INIPATH in this file.
SERVER_INIT.COM is invoked by a command in the
SYNERGY_STARTUP.COM file after rsynd has started. This means that
XFPL_INIPATH will not be executed until after the initial xfServerPlus
sessions are started. In contrast, SYNRC.COM is read and processed each
time an xfServerPlus session is started. Although using SYNRC.COM results
in slower start-up, placing XFPL_INIPATH in SYNRC.COM is the only way to
ensure that all xfServerPlus sessions are using the correct XFPL.INI file. For
additional information on defining rsynd logicals on OpenVMS,
see “Defining logical names for xfServer processes” in the “Configuring
xfServer” chapter of the Installation Configuration Guide.

Configuring and Running xfServerPlus
Configuring Compression

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-23

Configuring Compression
If your distributed application sends or receives data that contains repeated zeros
or spaces, turning on xfServerPlus compression will improve network throughput.
Both sent and received data will be compressed.To use compression, both
xfServerPlus and xfNetLink must be version 8.1.5 or higher.

To turn on compression, set XFPL_COMPRESS in the xfpl.ini file to ON:

XFPL_COMPRESS=ON

You do not need to do anything on the client side to enable compression. If
compression is turned on in the xfpl.ini file and the client does not support
compression, compression will simply not take place (no error will occur).

You can verify that compression is being used by checking the xfServerPlus log. If
XFPL_SESS_INFO is set to ALL (see page 3-36) and packets are being
compressed, you’ll see “Compression = on” in the log. The average percentage of
compression of all packets sent in each session will be logged as well, so that you
may evaluate its benefit. (If you have debug logging turned on, the packets will be
logged in their uncompressed form.)

To turn compression off, set XFPL_COMPRESS to OFF or remove the setting
from the xfpl.ini file.

xfServerPlus compression does not compress the entire packet; it compresses
only repeated zeros and spaces within the packet. (There must be at least
three consecutive zeros or spaces for compression to take place.)
Consequently, if your application passes only small amounts of data or
passes large amounts of data that do not contain repeated zeros or spaces,
compression will be of no benefit and may even degrade performance
because the packets must be scanned. The improvement in network
throughput for any particular application will depend on the average
packet size and the amount of compressible data.

Configuring and Running xfServerPlus
Using Encryption

3-24  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Using Encryption
The xfServerPlus encryption feature enables you to encrypt the transfer of sensitive
data between an xfNetLink client and xfServerPlus. xfServerPlus interfaces with a
third-party library, OpenSSL, to provide SSL support for secure data transport.

For Synergy and .NET clients, both xfServerPlus and xfNetLink must be version
9.3 or higher; for Java, the minimum client version is 9.5.1a. For all clients, to be
able to specify the protocols to use (-scl option), both client and server must be
version 10.3.1b or higher.

You have the option of using master or slave encryption. When master encryption
is enabled, parameter and return value data for all methods is encrypted. When
slave encryption is enabled, parameter and return value data for selected methods is
encrypted. See “Specifying the Data to Encrypt for Slave Encryption” on
page 3-31 for details.

To implement encryption, you must start rsynd with the -encrypt option
(/ENCRYPT on OpenVMS) or by selecting the Enable encryption option in the
Synergy Configuration Program on Windows. You also specify a certificate file, the
cipher level, and the security compliance level (i.e., protocol). The three cipher
levels (high, medium, low) map to specific cipher suites and protocols, which vary
by OpenSSL version. See “Setting up the xfServerPlus Machine for Encryption”

TIP
Using encryption can affect performance because data must be encrypted
and decrypted on both sides of the xfServerPlus—xfNetLink connection. The
cipher negotiation between client and server also takes time. You will get
better performance if your client makes a connection, performs all the
necessary method calls, and then disconnects. If you connect, make a call,
and disconnect, repeating this process for each call, performance may be
degraded because the cipher negotiation has to be performed on each call.

Although master encryption is inherently more secure, slave encryption
affords better performance. As an alternative to slave encryption, you may
want to consider having two xfServerPlus services—one that uses master
encryption for secure communication and a second one for non-secure
communication.

If you are using a Java or .NET client, using pooling can further improve
performance, as the connections (and, consequently, the cipher
negotiations) are made when the pool is first populated, rather than with
each call.

Configuring and Running xfServerPlus
Using Encryption

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-25

on page 3-25 for details. For a general description of cipher suites and protocols,
see “Understanding cipher suites and protocols” in the “Configuring xfServer”
chapter of the Installation Configuration Guide.

When encryption is enabled, you’ll see an entry in the xfServerPlus log. If
XFPL_SESS_INFO is set to ALL (see page 3-36), you’ll see the encryption type
(master or slave), the level of encryption (high, medium, low), and the security
compliance level (0, 1, 2). For slave encryption, if XFPL_FUNC_INFO is set to
ALL, you will see “Encryption enabled” in the log file for methods that are using
encryption. When encryption is enabled, a string of 10 asterisks will display in the
log file in place of the parameter, return value, and packet data for encrypted
methods. Consequently, you may want to enable encryption only after you have
thoroughly tested your application and have no need to examine packet data.
(Note that once you have implemented encryption in your application, you
cannot easily disable it; you would have to alter both the SMC and the client code
in addition to turning off encryption on the server to return your application to an
unencrypted state.)

Setting up the xfServerPlus Machine for Encryption

1. Obtain and install OpenSSL.
For details on which version of OpenSSL is required for your operating system, see
“OpenSSL Requirements” in the “Requirements and Considerations” chapter of
the Installation Configuration Manual. For additional information on OpenSSL see
Synergex KnowledgeBase article 100001979.

 For Windows, go to www.openssl.org/community/binaries.html and follow
the link to download the version for your platform.

 For UNIX, use the OpenSSL libraries preinstalled with your operating system
or download the OpenSSL kit specific to your platform and version from your
operating system vendor.

If you see the error message “Cannot load random state”, it means there is
not enough random data on the system to seed cryptographic algorithms.
To correct this, you must define the SYNSSL_RAND environment variable
on either the server or the client (depending on where the error occurred)
to point to a file that can be used to gather random data. (See
SYNSSL_RAND in the “Environment Variables” chapter of Environment
Variables & System Options for more information.)

https://resourcecenter.synergex.com/devres/kb-details.aspx?id=1782

Configuring and Running xfServerPlus
Using Encryption

3-26  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

 For OpenVMS, use the operating system-supplied libraries, HP SSL, available
from h71000.www7.hp.com/openvms/products/ssl/ssl_download.html.

2. Ensure the OpenSSL shared libraries are in the correct location or have
been added to the correct path.
The library path must be set before registering rsynd on Windows or starting rsynd
on UNIX and OpenVMS.

 On Windows, the OpenSSL libraries must be located on the xfServerPlus
machine in the dbl\bin directory that corresponds to the bitness of your
machine (as explained in KB 100001979). If the libraries cannot be found,
the operating system generates the error “Encryption is required but not
available. A service specific error occurred:14”.

 On UNIX, the OpenSSL libraries are installed in a standard location
determined by the specific operating system. You don’t need to move them or
set a path. If the libraries are not installed, the operating system generates the
error “synssllib.so not available”.

 On OpenVMS, during installation, SYNSSLLIB is set in
SYS$MANAGER:SYNERGY_STARTUP.COM to the full path and
filename of synssllib.exe, the SSL runtime support file. If synssllib.exe cannot
be found, rsynd generates the error “SYNSSLLIB not set”.

3. Create a certificate (.pem) file.
If you name this file rsynd.pem and put it in DBLDIR, it will be used by default
when you start rsynd with encryption enabled. However, you may name the file
anything you like and put it elsewhere if desired, and then specify it with the -cert
option (/CERTIFICATE on OpenVMS) or with the Synergy Configuration
Program on Windows.

On Windows and OpenVMS, the certificate file cannot include a pass phrase. On
UNIX, a pass phrase is permitted.

See “Requesting a certificate” in the “Synergy HTTP Document Transport
API” chapter of the Synergy DBL Language Reference Manual for
instructions on creating a certificate request file and sending it to a public
certificate authority (CA). The CA will then send back a certificate file. For
testing purposes, a local CA with self-signed certificates may suffice. See
“Testing your HTTPS setup locally” in the above-mentioned chapter for
steps on how to create a local file.

https://resourcecenter.synergex.com/devres/kb-details.aspx?id=1782

Configuring and Running xfServerPlus
Using Encryption

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-27

4. Start rsynd with encryption enabled.

Start rsynd with the -encrypt option (/ENCRYPT on OpenVMS) and specify
master encryption if desired. (The default is slave.) Specify the cipher level,
certificate filename, and security compliance level if desired.

Or, on Windows, start rsynd from the Synergy Configuration Program and select
the Enable encryption option, and then specify the cipher level, certificate
filename, and security compliance level. See “The rsynd Program” in the
“Configuring xfServer” chapter of the Installation Configuration Guide for detailed
syntax and examples and “Starting xfServerPlus from the Synergy Configuration
Program” on page 3-3.

Setting up the xfNetLink Synergy Machine for
Encryption
Install and configure OpenSSL on the xfNetLink Synergy machine.

 On Windows machines, install OpenSSL in the dbl\bin directory.
 On UNIX machines, the library path is used to find the OpenSSL libraries.

If you used the setsde script to set up your Synergy environment, the path will
be correctly set. You can run the dltest utility (installed in the
Synergex\SynergyDE\connect directory) to find your shared library path and
determine if Synergy can find the necessary DLLs.

Setting up the xfNetLink Java Machine for
Encryption
Java encryption does not use the .pem file directly. Rather, it requires that the
certificates be placed in a keystore file. A default keystore file, cacerts, is
distributed with the JRE. You can use the genCert utility (see below) to add
additional certificates to this file.

The genCert utility creates a copy of the distributed cacerts file and adds the
certificates from the .pem file on the xfServerPlus machine to it. We recommend
you use this new file and call it something other than “cacerts” because the cacerts
file is replaced whenever Java is upgraded.

TIP
From the xfNetLink Synergy client you can check the encryption setting on
the xfServerPlus machine programmatically. The secure_status argument to
%RX_START_REMOTE and %RX_DEBUG_START returns 0, 1, or 2 to indicate
no encryption, slave encryption, or master encryption, respectively.

Configuring and Running xfServerPlus
Using Encryption

3-28  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Once xfServerPlus has been started with encryption enabled, do the following on
the xfNetLink Java machine:

1. Run the genCert utility to create the certificate file. See below for complete syntax.
For example,

java genCert -h myServer -p 3535

2. Set the xf_SSLCertFile and xf_SSLPassword settings in the xfNetLink Java
properties file to specify the filename and password for the certificate file created in
step 1. Alternatively, you may call the setSSLCertFile() and
setSSLPassword() methods to specify this information at runtime. To override
the default security compliance level, call the setSSLSecCompliance() method.
(There is no properties file setting for security compliance level.) See “Specifying
Encryption Options” on page 8-9 and the method reference on page 8-38.

The genCert Utility
The genCert utility, which is distributed in the xfNLJava directory, assists you in
setting up encryption on your xfNetLink Java machine. xfServerPlus must be
running with encryption enabled before you can run genCert.

Syntax java genCert [-c filename] [-s password] [-n filename] -h host
[-p port] [-?]

Arguments -c filename

(optional) The name and path of the base Java certificate file. The default is
java.home\lib\security\cacerts, where java.home is the JRE installation
directory.

-s password

(optional) The password for the base certificate file. If not passed, the default
is “changeit”. (Note that this is the password for the cacerts file distributed
with the JRE; your system administrator may have changed it.)

-n filename

(optional) The name and path of the new certificate file to put the generated
certificates in. If not passed, the default is newcerts, and the file is placed in
the current working directory.

-h host

The name of the xfServerPlus machine to connect to. xfServerPlus must be
running with encryption enabled.

Configuring and Running xfServerPlus
Using Encryption

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-29

-p port

(optional) The port that xfServerPlus is running on. If not passed, defaults to
2356.

-?

Display usage message.

Usage &
Examples

When you run the genCert utility, you will see output similar to that shown
below. The utility outputs the parameters it is using, followed by the certificates
found in the .pem file on the xfServerPlus machine. Notice that the certificates are
numbered. At the end, you’ll be prompted to enter the number of the certificate
that you want added to the keystore file (the default is 1), and the file will be
created. The new certificate file has the same password as the original file. Type q
at the prompt to quit without creating the new certificate file.

The example below uses the default cacerts file and password, and then specifies a
name for the new certificate file, along with the xfServerPlus machine and port to
connect to.

java genCert -n myCertFile -h myServer -p 3535

Checking for valid certificate in base certificate file.
Base certificate file = c:\java\jdk6_12\jre\lib\security\cacerts
Base certificate password = changeit
New certificate file = myCertFile
xfServerPlus Host = myServer
xfServerPlus Port = 3535

Loading KeyStore c:\java\jdk6_12\jre\lib\security\cacerts...
Server sent 2 certificate(s):

1 Subject EMAILADDRESS= user@synergex.com, CN=myServer, OU=SDE,
O=Synergex, L=Sacramento, ST=California, C=CA
Issuer EMAILADDRESS= user@synergex.com, CN=myServer, OU=SDE,
O=Synergex, L=Sacramento, ST=California, C=US
sha1 c4 a3 f8 63 85 84 b6 cb b1 63 65 9e ca e5 bf 34 8f 5f e8
md5 26 87 6c 34 77 ac 8d e9 39 27 99 f1 0a fc 97 5f

2 Subject EMAILADDRESS= user@synergex.com, CN=myServer, OU=SDE,
O=Synergex, L=Sacramento, ST=California, C=US
Issuer EMAILADDRESS= user@synergex.com, CN=myServer, OU=SDE,
O=Synergex, L=Sacramento, ST=California, C=US
sha1 07 d2 b4 e7 d7 7a 9f 09 44 88 3c 50 1c 20 5f 90 0d cf dd
md5 55 1d f6 13 3b 6c cd e3 7c a6 60 75 93 7f e4 a8

Enter certificate to add to trusted keystore or 'q' to quit: [1]

1

Certificate added

Configuring and Running xfServerPlus
Using Encryption

3-30  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Setting up the xfNetLink .NET Machine for
Encryption
The necessary software is already installed, but you must ensure that SSL is
enabled and that the desired cipher suites have been specified. The dialog for
specifying the SSL cipher suite order is slightly different depending on the version
of Windows.

On Windows 7, 8, and 10
1. Run gpedit.msc from the Run dialog. This launches the Local Group Policy

Editor.

2. In the left panel, navigate to Computer Configuration > Administrative
Templates > Network > SSL Configuration Settings.

3. In the right panel, double-click on SSL Cipher Suite Order to display the SSL
Cipher Suite Order dialog.

4. Select Enabled and click the Apply button.

You will see the enabled suites listed below in the SSL Cipher Suites field in the
Options pane. When you run xfServerPlus with encryption enabled, one of these
suites will be selected based on the specified level of encryption (high, medium,
low). You can see which suite is selected in the xfNetLink .NET log file and the
protocol used; see “Using Client-Side Logging” on page 12-7.

5. When you are done, click OK in the SSL Cipher Suite Order dialog and then close
the Local Group Policy Editor.

On Vista and Server 2008
1. Run gpedit.msc from the Run dialog. This launches the Local Group Policy

Editor.

2. In the left panel, navigate to Computer Configuration > Administrative
Templates > Network > SSL Configuration Settings.

TIP
Although only a few characters display, the field contains a great number of
cipher suites by default. To see them all, copy the field contents and paste
into a text editor. There are instructions in the Help pane on the right (scroll
down to the bottom to see the numbered steps), but we strongly
recommend you read Synergex KnowledgeBase article 100002202 before
attempting to edit this field.

https://resourcecenter.synergex.com/devres/kb-details.aspx?id=2005

Configuring and Running xfServerPlus
Using Encryption

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-31

3. In the right panel, double-click on SSL Cipher Suite Order to display the SSL
Cipher Suite Order Properties dialog.

4. In the properties dialog, select Enabled on the Setting tab, and click the Apply
button. You will see the enabled suites listed in the SSL Cipher Suites field. (The
default is Not Configured, which enables some cipher suites, but does not
necessarily ensure that you have the correct suites enabled.)

5. Go to the Explain tab and follow the instructions to select the desired cipher
suites. (Scroll down to the bottom of the window to see the numbered steps.)
When you run xfServerPlus with encryption enabled, one of these suites will be
selected based on the level of encryption (high, medium, low) you specified. You
can see which suite is selected in the xfNetLink .NET log file; see “Using
Client-Side Logging” on page 12-7.

6. When you are done selecting cipher suites, click OK in the SSL Cipher Suite
Order Properties dialog and then close the Local Group Policy Editor.

Specifying the Data to Encrypt for Slave Encryption

xfNetLink Synergy
There are two ways to mark methods for encryption when you are using
xfNetLink Synergy.

 Use the /encrypt switch only. The /encrypt switch is appended to the end of
the method ID argument in the RXSUBR or RX_SETRMTFNC routine. For
example,
xcall rxsubr(netid, “mymethodid/encrypt”, arg1, arg2)

If you use the /encrypt switch, you do not need to mark the method for
encryption in the SMC, though you may do so if you like (see next bullet).
If you use the /encrypt switch, and encryption is not enabled on the
xfServerPlus machine, the error $ERR_XFSERVNOSEC, “Encryption not
enabled on server”, is returned. See %RXSUBR on page 6-24 and
RX_SETRMTFNC on page 6-17 for more information about using /encrypt.

 Mark the method for encryption in the SMC and also use the /encrypt
switch. Select the “Enable encryption” check box when defining the method
in the MDU (or specify the encrypt=true property in the xfMethod attribute).
If a method is marked for encryption in the SMC, you must also use the
/encrypt switch as described above; else, the data will be sent unencrypted,
and the error $ERR_XFMETHCRYPT, “Method requires encryption”, will

Configuring and Running xfServerPlus
Using Encryption

3-32  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

be returned. Although it is more effort to mark methods for encryption in the
SMC, the advantage is that an error will result if developers forget to include
the /encrypt switch when they are coding.

xfNetLink Java
To indicate which methods should be encrypted when you are using
xfNetLink Java, select the Enable encryption check box when defining the method
in the MDU (or specify the encrypt=true property in the xfMethod attribute), and
then generate classes and build the JAR file.

When you generate classes, a new method, setEncryptedMethod(true), is
added to each method that is marked for encryption in the SMC.

If the client sends clear data when the method is marked for encryption in the
SMC, the error “Method requires encryption” is generated.

xfNetLink .NET
To indicate which methods should be encrypted when you are using
xfNetLink .NET, select the Enable encryption check box when defining the
method in the MDU (or specify the encrypt=true property in the xfMethod
attribute), and then generate classes and build the assembly.

When you generate classes, a new attribute named xfAttr, with the member
encrypt=true, is added to each method that is marked for encryption in the SMC.
You can specify the security compliance level (protocols) to use with the scl
parameter to the connect() method. See “Method Reference” on page 11-38.

If the client sends clear data when the method is marked for encryption in the
SMC, the error “Method requires encryption” is generated.

Configuring and Running xfServerPlus
Using Server-Side Logging

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-33

Using Server-Side Logging
By default, xfServerPlus always logs errors to the application event log (Windows),
syslog (UNIX), or operator console (OpenVMS). On Windows, the dbs.exe)
runtime also logs traceback information from fatal errors to the application event
log on the server machine.

You can log additional information with the xfServerPlus log, which is a record of
remote access requests, data passed and returned, and errors. It can be used for
troubleshooting and as a record of who has logged into your system. The log
resides on the machine that xfServerPlus is running on. By default, xfServerPlus
logging is turned off.

On Windows and UNIX, the default is to create a separate xfServerPlus log file for
each session; you can specify a single log file if desired. We recommend that when
you have error-only logging enabled in a production environment, you use a single
log file. See “Setting Options for the xfServerPlus Log” below for details on this
and other options.

On OpenVMS, the xfServerPlus log produces a single log file for each instance of
xfServerPlus. There is no option for multiple log files. You can use servstat
option 11, Cycle xfServerPlus log file, to close and then open a new version of the
log file. This enables you to examine the log file without shutting down rsynd.
(See “The servstat Program” in the “General Utilities” chapter of Synergy Tools
for details.)

When xfServerPlus logging is turned on, you can use the XFPL_LOG routine to
make application-defined entries in the xfServerPlus log from either the server or
the client application. See XFPL_LOG on page 1-33 for more information.

On UNIX, syslog may not be running by default. See your system
administrator to ensure the daemon is running.

On OpenVMS, set REPLY/ENABLE=NETWORK to send messages to the
operator console.

Configuring and Running xfServerPlus
Using Server-Side Logging

3-34  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Setting Options for the xfServerPlus Log
All logging options are set in the xfpl.ini file (see page 3-19). The logging options
enable you to turn logging on and off, specify a name and location for the log file,
indicate whether you want single or multiple log files, and control what data is
logged.

For best results, we recommend that you put the XFPL_LOG setting first in the
xfpl.ini file, followed by the other logging settings and then by the non-logging
settings, such as XFPL_LOGICAL. This enables xfServerPlus to create the log file
before processing the other settings. Any errors that xfServerPlus encounters while
reading the xfpl.ini file will then be recorded in the xfServerPlus log file. Even after
encountering an error in the xfpl.ini file, xfServerPlus will continue processing the
file so that all errors can be logged before terminating the remote connection.
(These errors will also be output to the application event log on Windows, syslog
on UNIX, or operator console on OpenVMS.)

XFPL_LOG
Turns logging on and off. Additional settings control the type of information that
is logged. If logging is turned on and no level is specified, error-only logging will
take place.

Values: ON, OFF
Default value: OFF
Example: XFPL_LOG=ON

If you are using a single log file and have session or function logging
enabled, the file will become quite large and should be cleared out
periodically. You can either delete the entire file or open the file in a text
editor and selectively delete material that is no longer needed.

If you are using multiple log files (Windows and UNIX only), the files
themselves will not become very large, but large numbers of them will
accumulate on your server and may need periodically to be deleted.

Configuring and Running xfServerPlus
Using Server-Side Logging

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-35

XFPL_LOGFILE
Points to the name and location of the log file. The log must be on the machine
that xfServerPlus is running on. If logging is turned on and you do not specify a
file name and location, the defaults are used. If you are generating multiple log
files (XFPL_SINGLELOGFILE is set to OFF; see below), a date/time stamp will
be appended to the end of the log filename.

Default value: DBLDIR:xfpl.log
Example: XFPL_LOGFILE=c:\TempFiles\my_log.log

XFPL_SINGLELOGFILE
(Windows and UNIX only) Determines whether information is logged to a single
file or multiple files. By default, information from each session is logged to a
separate log file named with the log filename plus a date and time stamp to
differentiate the files. If you would prefer that all sessions write to a single log file,
set XFPL_SINGLELOGFILE to ON. You can identify which log entries are
associated with which session by the session ID.

We recommend that for error-only logging, you use a single log file. For other
logging levels, in which more information is logged, separate log files may be easier
to read.

Multi-file logging may offer improved performance because only one process is
writing to the file, and so it can remain open. With single-file logging, the file
must be opened and closed because different processes are writing to it, which can
slow performance.

Values: ON, OFF
Default value: OFF
Example: XFPL_SINGLELOGFILE=ON

(Windows) If no information is recorded in the log file, or if a log file is not
created at all, verify that the account used to run xfServerPlus sessions has
write permission for the directory in which the log is located. xfServerPlus
installs in c:\Program Files\Synergex\SynergyDE. If the account used to run
xfServerPlus sessions was created with user level privileges, it will not be
able to write to a log file in that location because (by default) accounts in
the user group cannot write to the Program Files directory or its
subdirectories. Rather than change the privileges on the default directory,
we recommend that you move the log file to another location.

Configuring and Running xfServerPlus
Using Server-Side Logging

3-36  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

XFPL_SESS_INFO
Determines the level of session logging. Session logging records information about
the connection, such as when the session was started and stopped and whether
compression was enabled.

Values: NONE, CRITICAL, ALL
Default value: NONE
Example: XFPL_SESS_INFO=CRITICAL

The following table shows the information that is logged when
XFPL_SESS_INFO is set to CRITICAL or ALL.

XFPL_SESS_INFO

Value Information logged Description

CRITICAL or ALL Session ID ID that indicates the transactions
related to the activities of a single end
user from log-on to log-off.

CRITICAL or ALL xfServerPlusRemoteSession
started

Date and time session started (log-on).

CRITICAL or ALL xfNetLink IP address IP address of the xfNetLink machine
that called xfServerPlus.

CRITICAL or ALL Domain Domain name or IP address of the
xfNetLink machine.

CRITICAL or ALL xfServerPlusRemoteSession
connected to

The type of client xfServerPlus is
connected to: Synergy, Java, or .NET.

CRITICAL or ALL Errors Error packet that is sent to xfNetLink
from xfServerPlus if an error is
detected. Also shows the line number
at which the error occurred.

CRITICAL or ALL xfServerPlusRemoteSession
stopped

Date and time session terminated
(log-off).

ALL xfNetLink port Port on which xfNetLink is listening.
Displays only for pre-8.3 client.

ALL Server protocol version Protocol version of xfServerPlus. See
the table on page 3-43 for the
correspondence between the protocol
version and software version.

Configuring and Running xfServerPlus
Using Server-Side Logging

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-37

The example below shows the type of information that is recorded when
XFPL_SESS_INFO is set to CRITICAL. “000007F4” is the session ID.

000007F4: xfServerPlusRemoteSession 10.3.1 started: 13-JUL-2014
16:35:49
000007F4: xfNetLink ip address = 111.22.33.44, 6F16212C
000007F4: Domain: webtest Domain or IP
000007F4: xfServerPlusRemoteSession connected to .Net client
000007F4: ***** Error #2012 at line 652 *****
000007F4: 2012: Routine not found in ELB.
000007F4: 2012: Error occurred during lookup of external
routine.
000007F4: 2012: Routine name: function_fred
000007F4: 2012: ELB name: DBLDIR:xfpl_tst
000007F4: ***** End of Error *****
000007F4: xfServerPlusRemoteSession 10.3.1 stopped: 13-JUL-2014
16:35:53

ALL Compression Indicates whether xfServerPlus
compression is on or off.

ALL Average compression If compression is on, displays the
average percentage of compression for
data sent and received during this
session.

ALL Encryption If encryption is enabled, displays the
type of encryption: master or slave.

ALL Cipher If encryption is enabled, displays the
level of encryption: high, medium, low.

ALL xfServerPlusRemoteSession
session time-out

If SET_XFPL_TIMEOUT is called, this
shows the value that the time-out is set
to. If xfServerPlus times out, that fact
will be recorded in the log.

Because many users may access your application at the same time, if you are
using a single log file, entries regarding a single session will likely be
interspersed with entries from other sessions. The session ID at the
beginning of each line enables you to identify entries by session.

XFPL_SESS_INFO (continued)

Value Information logged Description

Configuring and Running xfServerPlus
Using Server-Side Logging

3-38  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

The example below shows the type of information that is recorded when
XFPL_SESS_INFO is set to ALL.

00000308: xfServerPlusRemoteSession 10.3.1 started: 13-JUL-2014
16:29:56
00000308: xfNetLink ip address = 111.22.33.44, 6F16212C
00000308: Server Protocol Version: 6
00000308: Domain: webtest Domain or IP
00000308: Compression = on
00000308: xfServerPlusRemoteSession connected to .Net client
00000308: xfServerPlusRemoteSession timeout set to 2 minutes and
7 seconds
00000308: Average Compression
00000308: sends : 11.18%
00000308: receives: 0.00%
00000308: xfServerPlusRemoteSession 10.3.1 stopped: 13-JUL-2014
16:29:57

XFPL_FUNC_INFO
Determines the level of function and subroutine logging. Function logging records
information about the Synergy routines that are called from the client.

Values: NONE, CRITICAL, ALL
Default value: NONE
Example: XFPL_FUNC_INFO=ALL

The following table shows the information that is logged when
XFPL_FUNC_INFO is set to CRITICAL or ALL.

XFPL_FUNC_INFO

Value Information logged Description

CRITICAL or ALL Session ID Indicates the transactions related to the
activities of a single end user from log-on to
log-off. See the note on page 3-37.

CRITICAL or ALL Packet received at Date and time that xfServerPlus received the
packet.

CRITICAL or ALL Method ID Method ID that was called.

CRITICAL or ALL Function Name of the Synergy routine that was called.

CRITICAL or ALL ELB ELB or shared image in which the called
routine is located.

Configuring and Running xfServerPlus
Using Server-Side Logging

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-39

CRITICAL or ALL Packet returned at Date and time the packet was returned by
xfServerPlus.

ALL Encryption enabled If slave encryption is enabled, this indicates
that the method is encrypted.

ALL Parameter [n] Data type, parameter size, and actual data
passed for each parameter. [n] is the
parameter sequence number; the data is
enclosed in square brackets. If encryption is
enabled, the log displays a string of 10
asterisks instead of the packet contents.
The following abbreviations are used for data
type:
AL = alpha
AT = autotime
BI = binary (handle)
DEC = decimal
ENUM = enumeration
HA = memory handle
IMPDEC = implied-decimal
INT = integer
SS = System.String
STR = structure

ALL Function called at Date and time the routine was called.

ALL Function return value The value returned by the function. If
encryption is enabled, the log displays a
string of 10 asterisks instead of the packet
contents.

ALL Returning parameter
[n]

Data type, parameter size, and returned data
for parameters flagged as having return data
in the SMC. (These are “out” or “in/out”
parameters). [n] is the parameter sequence
number; the data is enclosed in square
brackets. If encryption is enabled, the log
displays a string of 10 asterisks instead of the
packet contents. See above for data type
abbreviations.

XFPL_FUNC_INFO (continued)

Value Information logged Description

Configuring and Running xfServerPlus
Using Server-Side Logging

3-40  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

The example below shows the type of information that is recorded when
XFPL_FUNC_INFO is set to CRITICAL. The final “packet received” message is
the shutdown message received by xfServerPlus from the client.

00000418: Packet received at 13-JUL-2014 16:25:57
00000418: Method id: xfpl_tst1
00000418: Function: function_one
00000418: ELB: DBLDIR:xfpl_tst
00000418: Packet returned at 13-JUL-2014 16:25:57:990000
00000418: Packet received at 13-JUL-2014 16:25:58:991000

The example below shows the type of information that is recorded when
XFPL_FUNC_INFO is set to ALL.

000003E0: Packet received at 13-JUL-2014 16:16:50:146000
000003E0: Method id: xfpl_tst6
000003E0: Function: function_ten
000003E0: ELB: DBLDIR:xfpl_tst
000003E0: **** Incoming Parameters ****
000003E0: Parameter[1] = Type: (AL), Size: (5)
000003E0: Data [abcde]
000003E0: Parameter[2] = Type: (AL), Size: (5)
000003E0: Data [54321]
000003E0: **** End of Incoming Parameters ****
000003E0: Function called at 13-JUL-2014 16:16:50:167000
000003E0: **** Outgoing Parameters ****
000003E0: Function Return Value: 123456789
000003E0: Returning Parameter[2] = Type: (AL), Size: (5)
000003E0: Data [back]
000003E0: **** End of Outgoing Parameters ****
000003E0: Packet returned at 13-JUL-2014 16:16:50:209000
000003E0: Packet received at 13-JUL-2014 16:16:51:229000

XFPL_DEBUG
Turns debug logging on and off. Debug logging records information that may be
useful in troubleshooting xfServerPlus and xfNetLink errors.

Values: ON, OFF
Default: OFF
Example: XFPL_DEBUG=ON

Configuring and Running xfServerPlus
Using Server-Side Logging

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-41

The following table shows the information that is recorded when XFPL_DEBUG
is set to ON.

XFPL_DEBUG

Information logged Description

Ini Initialization. Shows what XFPL_SMCPATH is set to; if not
set, the default is used (DBLDIR) and this line does not
display.

Information that is recorded
when XFPL_SESS_INFO is set
to ALL

Session information; see page 3-36.

Information that is recorded
when XFPL_FUNC_INFO is set
to ALL

Function information; see page 3-38.

Command line Command line used to start xfServerPlus.

Packet Text of every packet received by xfServerPlus or returned
to xfNetLink. For outgoing packets, the initial character in
the packet indicates the type of xfNetLink client:

D = Synergy client
J = Java client
N = .NET client
Returned packets are indicated by an ‘R’.

If encryption is enabled, the log displays a string of 10
asterisks instead of the packet contents.

Not returning parameter [n] Data type and parameter size of parameters that were
sent but are not being returned. (These are “in”
parameters.) [n] is the parameter sequence number. The
following abbreviations are used for data type:

AL = alpha
AT = autotime
BI = binary (handle)
DEC = decimal
ENUM = enumeration
HA = memory handle
IMPDEC = implied-decimal
INT = integer
SS = System.String
STR = structure
The log also includes parameter and returning parameter
information, recorded as part of the function information.

Configuring and Running xfServerPlus
Using Server-Side Logging

3-42  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

The example below shows the type of information that is recorded when
XFPL_DEBUG is turned on.

00000D00: ini: XFPL_SMCPATH translates to {C:\work}
00000D00: xfServerPlusRemoteSession 10.3.1 started: 13-JUL-2014
12:40:13
00000D00: Command line = {C:\Program Files\Synergex\SynergyDE\
dbl\bin\dbs.exe -r DBLDIR:xfpl 6F16212C 0}
00000D00: xfNetLink ip address = 111.22.33.44, 6F16212C
00000D00: Packet = { }
00000D00: Server Protocol Version: 6
00000D00: Packet = { 13-JUL-2014 12:40:13;00 }
00000D00: Packet = {J0000webtest Domain or IP;Challenge
Response; }
00000D00: Domain: webtest Domain or IP
00000D00: Compression = off
00000D00: xfServerPlusRemoteSession connected to .Net client
00000D00: Packet = {Nxfpl_tst6;2;AL5#abcde;AL5#54321;}
00000D00: Packet received at 13-JUL-2014 12:40:14:411000
00000D00: Method id: xfpl_tst6
00000D00: Function: function_ten
00000D00: ELB: DBLDIR:xfpl_tst
00000D00: **** Incoming Parameters ****
00000D00: Parameter[1] = Type: (AL), Size: (5)
00000D00: Data [abcde]
00000D00: Parameter[2] = Type: (AL), Size: (5)
00000D00: Data [54321]
00000D00: **** End of Incoming Parameters ****
00000D00: Function function_ten called at 13-JUL-2014
12:40:14:502000
00000D00: Function function_ten returned at 13-JUL-2014
12:40:14:531000
00000D00: **** Outgoing Parameters ****
00000D00: Function Return Value: 123456789
00000D00: Not returning Parameter[1] = Type: (AL), Size: (5)
00000D00: Returning Parameter[2] = Type: (AL), Size: (5)
00000D00: Data [back]
00000D00: **** End of Outgoing Parameters ****
00000D00: Packet returned at 13-JUL-2014 12:40:14:573000
00000D00: Packet =
{Rxfpl_tst6;002;000DE9#123456789;002AL4#back;}
00000D00: Packet = {S;0;;}
00000D00: Packet received at 13-JUL-2014 12:40:14:640000
00000D00: xfServerPlusRemoteSession 10.3.1 stopped: 13-JUL-2014
12:40:14

Configuring and Running xfServerPlus
Using Server-Side Logging

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-43

Protocol version
The protocol version for xfServerPlus is recorded in the xfServerPlus log and may
occasionally appear in an error message. The table below shows the
correspondence between protocol version and software version.

Error Messages in the xfServerPlus Log
The table below lists the error numbers and the message text that appear in the
xfServerPlus log. Errors recorded in the event log (Windows), syslog (UNIX), or
operator console (OpenVMS) use these same error numbers, but the message text
may be slightly different.

Errors in the 2000 series are logged and cause routine execution to stop, although
xfServerPlus continues running. Errors in the 3000 series are logged but routine
execution continues. The error message text shown in the table may be
accompanied by additional detail information.

You may also see regular Synergy DBL errors with additional detail information.
See the “Error Messages” chapter in Synergy Tools for assistance with those errors.

Protocol version xfServerPlus version

2 6.3, 7.1

3 7.3

4 7.5

5 8.1, 8.3, 9.1

6 9.3, 9.5, 10.1, 10.3

xfServerPlus Error Messages

Error number Error message

2001 Incorrect message type

2002 Method ID too long

2003 Invalid number of parameters

2004 Parse error

2005 Invalid Synergy Type sent

2006 A required parameter was not passed

Configuring and Running xfServerPlus
Using Server-Side Logging

3-44  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

2007 Invalid data type specified in Method Catalog

2008 Error occurred in mapping array element

2009 Couldn’t open file output channel

2010 Invalid operation type in file_read

2011 Method ID not found

2012 Routine routine_name not found in ELB ELB_name

2013 Unable to open method catalog file

2014 Unable to open method parameter file

2015 ELB not found

2016 Global not found: global_name

2017 File not found: filename

2018 Internal routine not found

2019 Secure communications required

2020 Old ELB file format detected—relink

2021 Bad ELB detected

2022 ELB file built with opposite ‘endian’

2023 ELB file built with opposite bit size

3001 Integer length in Synergy Method Catalog invalid

3002 Incoming data too big for the desired variable

xfServerPlus Error Messages (continued)

Error number Error message

Configuring and Running xfServerPlus
Debugging Your Remote Synergy Routines

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-45

Debugging Your Remote Synergy Routines
During normal operation, xfServerPlus runs as a background process (using the
dbs runtime) without support for console operations such as the Synergy
debugger. This improves efficiency and minimizes memory requirements.
However, you may at times need to debug the Synergy routines in the ELBs that
are called from xfServerPlus. If you are running xfServerPlus on Windows or
UNIX, there are two methods for doing this: running an xfServerPlus session in
debug mode and debugging via Telnet. The latter is the recommended method.
If you are running xfServerPlus on OpenVMS, there is only one debug method
available: running an xfServerPlus session in debug mode.

Running an xfServerPlus session in debug mode
To run an xfServerPlus session in debug mode, you will need to alter your
xfNetLink client code to call a special debug initialization method, start the client
application, and then manually connect an xfServerPlus session to it. (On
OpenVMS, you do not need to alter your client code.)

If your client is xfNetLink Synergy and you want to view packets on the client
side, you must use this method. The Telnet method does not support this feature.
(Note that you can always view packets on the server side in the xfServerPlus log.)

If you have a Java or .NET client that uses pooling, note that the pool will simply
be ignored when you run an xfServerPlus session in debug mode, because your
application will be using the session that you start manually. However, you should
verify that the pool isn’t using all available xfServerPlus licenses before you begin
debugging.

(Windows) When debugging Synergy routines using either of the methods
described below, xfpl.dbr uses the regular runtime (dbr) instead of the
non-interactive runtime (dbs). This means that your environment may
change, because dbr always reads the synergy.ini file, whereas dbs reads
it only when SFWINIPATH is set. We recommend that you use SFWINIPATH to
point to the location of your synergy.ini file and thereby avoid potential
problems. For more information on dbs, see “Non-interactive runtimes” in
the “Building and Running Synergy Applications” chapter of Synergy Tools.

Configuring and Running xfServerPlus
Debugging Your Remote Synergy Routines

3-46  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

The instructions for using this method vary slightly from one client to the next
and are documented with each client. For information on this debugging method,
refer to the “Running an xfServerPlus Session in Debug Mode” section for your
xfNetLink client:

 Synergy, see page 5-4
 Java, see page 9-14
 .NET, see page 12-10

Debugging via Telnet
To debug your remote routines via Telnet, you will first need to start xfServerPlus
with remote debugging enabled. Starting rsynd in this manner causes it to start the
xfpl.dbr session using the dbr -rd command. (See “Debugging remotely” in the
“Debugging Synergy Programs” chapter of Synergy Tools for more information on
running dbr with the -rd option.) Next, you’ll start your xfNetLink client
application. Once the xfNetLink–xfServerPlus connection is made, you’ll access
the server session via a Telnet session.

The machine running the Telnet session may be the xfServerPlus machine, the
xfNetLink client machine, or a separate machine. The primary advantage to this
method is that it does not require you to modify your client code.

If there is a firewall between your Telnet client and xfServerPlus, the firewall must
be configured to allow Telnet access on the debug port number. (Most firewalls are
configured to prohibit Telnet access.) If you do not have authorization to
reconfigure the firewall, you can either run Telnet on a machine within the firewall
or use the other debug method.

See “Debugging Remote Synergy Routines via Telnet” below for instructions on
using the Telnet method.

Configuring and Running xfServerPlus
Debugging Your Remote Synergy Routines

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-47

Debugging Remote Synergy Routines via Telnet
You can debug remote Synergy routines via Telnet when xfServerPlus is on
Windows or UNIX. If you are running xfServerPlus on OpenVMS, see “Running
an xfServerPlus session in debug mode” on page 3-45.

If your Java or .NET client uses pooling, you should set both the minimum and
maximum pool size to 1 before using Telnet debugging.

1. On your xfServerPlus machine, restart your xfServerPlus session with remote
debugging enabled (or, you can start a completely new session on a different port if
desired).

 On Windows, run the Synergy Configuration Program. On the
xfServer/xfServerPlus tab, select the desired xfServerPlus service and click the
Modify Service button. Select “Enable remote debugging”, specify a debug
port number for the server to listen on for the Telnet client, and indicate a
time-out value, if desired. The default is 100 seconds. This time-out
measures how long the server will wait for a Telnet connection after the
xfNetLink–xfServerPlus connection has been established. This time-out
should always be less than the connect time-out set on the client, which
defaults to 120 seconds. When you click the Apply button on the
xfServer/xfServerPlus tab, xfServerPlus will be started with debug enabled.
For details on using the Synergy Configuration Program, see “Starting
xfServerPlus from the Synergy Configuration Program” on page 3-3 or refer to
the Synergy Configuration Program online help.

 On UNIX, stop the current xfServerPlus service, and then restart it with the
-rd option:
rsynd -rd debug_port[:timeout] -w -u xfspAcct

where debug_port is the port number that the xfServerPlus machine should
listen on for the Telnet client, and timeout is the number of seconds that the
server should wait for a Telnet connection after the xfNetLink–xfServerPlus
connection has been made. The default is 100 seconds. This time-out
measures how long the server will wait for a Telnet connection after the
xfNetLink–xfServerPlus connection has been established. This time-out
should always be less than the connect time-out set on the client, which
defaults to 120 seconds. Include the other command line options that you
normally use when starting xfServerPlus.

Configuring and Running xfServerPlus
Debugging Your Remote Synergy Routines

3-48  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

For more information about starting xfServerPlus, see “Running xfServerPlus
on UNIX” on page 3-8. For complete rsynd syntax, see “The rsynd Program”
in the “Configuring xfServer” chapter of the Installation Configuration Guide.

2. Run the xfNetLink client application so that a connection is made to xfServerPlus.

3. Start a Telnet session and connect to the xfServerPlus machine by specifying the
server’s IP address (or “localhost” if you are running the Telnet session on the
xfServerPlus machine) and the debug port that you specified in step 1. You can
run the Telnet session on any machine you like and use whatever Telnet
application you prefer. The xfServerPlus machine becomes the “debug server”, and
the Telnet session becomes the “debug client”. The debug prompt is sent to the
Telnet session window.

Once the Telnet session has connected, the remote debug session works just like
any other Synergy debug session. You will need to use the OPENELB debugger
command to open the ELBs containing your Synergy routines before setting a
breakpoint in one of those routines. Any ELBs linked to the opened ELB will also
be opened.

For general information about the Synergy debugger, see the “Debugging Synergy
Programs” chapter in Synergy Tools. For details on the OPENELB command, see
OPENELB in that same chapter.

4. When your distributed application finishes and the xfServerPlus connection to
xfNetLink is closed, the Telnet session will also close. Optionally, you can use the
QUIT or EXIT commands to close the debugger. Shutting down the Telnet
session while in the midst of debugging will cause the application to continue
running normally, without debugging enabled.

5. When you are through debugging, run the Synergy Configuration Program, or
restart rsynd without the -rd option, to turn off remote debugging. If you leave
remote debugging enabled, the server will always wait for the specified time-out
before continuing with the application.

Because the xfpl.ini file will not have been read at this point, you cannot
use logicals in the file specification used with OPENELB; you must use the
full path instead.

Configuring and Running xfServerPlus
Deploying Your Distributed Application

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-49

Time-outs or other failures are logged to a file named rd.log, which is created in
the DBLDIR directory (or the TEMP directory on Windows) when the first entry
in the file is logged. This file contains the process ID of the instance of the
runtime that logged entries, the date and time entries were logged, and specific
messages. If you are having a problem debugging remotely, check this file first.

Deploying Your Distributed Application
Follow these steps when you are ready to deploy your xfNetLink–xfServerPlus
application at a customer site.

Deploying the Server
1. Install xfServerPlus.

2. Copy your ELBs to the server machine.

3. Configure settings for logging, compression, and base channel number in the
xfpl.ini file. See “Using the xfpl.ini File” on page 3-19.

If you used logicals in the SMC to specify the location of the ELBs, define those
logicals in the xfpl.ini file (SERVER_INIT.COM on OpenVMS). See “Defining
Logicals” on page 1-4.

4. If the xfpl.ini file is not in the default location (DBLDIR), set XFPL_INIPATH.
See “Setting the XFPL_INIPATH Environment Variable” on page 3-20.

5. Copy the SMC files (cdt.is? and cmpdt.is?) or use the import methods option in
the MDU to import the necessary interfaces to the SMC on the customer’s
machine. For information on moving ISAM files between operating systems, see
“Moving Database Files to Other Systems” in the “Synergy DBMS” chapter of
Synergy Tools. For information on importing methods, see “Importing and
Exporting Methods” on page 2-38.

TIP
(Windows) If the TEMP logical is not set in the Synrc node in the Windows
registry, rsynd will put the log file in a system-defined location, most likely
somewhere in the c:\Users path. We recommend that you use the Synergy
Configuration Program to explicitly set TEMP in the registry for remote
debugging. (Remember that rsynd only reads environment variables set in
the registry, not the environment.)

Configuring and Running xfServerPlus
Deploying Your Distributed Application

3-50  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

6. If the SMC files are not in the default location (DBLDIR), set XFPL_SMCPATH.
See “Setting the XFPL_SMCPATH Environment Variable for xfServerPlus” on
page 2-44.

7. Start xfServerPlus. See “Running xfServerPlus” on page 3-2 for instructions on
running xfServerPlus on your operating system.

8. Test your server setup. See “Testing xfServerPlus” on page 3-15.

Deploying the Client
For information on deploying the client portion of your distributed application,
refer to the section for your xfNetLink client:

 Synergy, see step 1 on page 4-2
 Java, see page 8-37
 .NET, see page 11-37

Configuring and Running xfServerPlus
Configuring xfServerPlus for Remote Data Access

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-51

Configuring xfServerPlus for Remote Data Access
You can access data remotely from xfServerPlus using xfServer. For example,
xfServerPlus might be running on one machine, and you want to access data
located on another machine, on which xfServer resides. In this scenario,
xfServerPlus acts as a client to xfServer. The instructions vary depending on the
xfServer security mode and the systems that xfServerPlus and xfServer are running
on. For details on xfServer security modes, refer to the section for your operating
system in the “Configuring xfServer” chapter of the Installation Configuration
Guide.

Remote Data Access When xfServerPlus Is on
Windows
When xfServerPlus is on Windows, you can access data remotely through xfServer
running on Windows, UNIX, or OpenVMS. xfServer may be running in secure,
non-secure, restricted (on Windows), or trusted (on UNIX) mode.

 To connect to an xfServer that’s running in SECURE mode

1. On the xfServer machine, create an account using the xfServerPlus account user
name and password. (Note that while technically this account does not have to be
the same as the xfServerPlus account, we recommend it for the sake of simplicity.)

2. On the xfServerPlus machine, at a command prompt run setruser with the -n
option. When prompted, enter the user name and password you defined on the
xfServer machine in step 1.

If xfServerPlus is on OpenVMS, you cannot connect to a remote xfServer
process for data access because an OpenVMS system cannot be an xfServer
client.

If both xfServerPlus and xfServer are on Windows, and xfServer is running in
secure mode, and RUSER is not set for the xfServerPlus service, Windows
authentication will be attempted. If the xfServerPlus account is a domain
account, authentication should succeed. If the xfServerPlus account is a local
account, you will need to set RUSER as described in the steps below. See
“Understanding xfServer security” in the “Configuring xfServer” chapter of
the Installation Configuration Guide for details on xfServer security modes.

Configuring and Running xfServerPlus
Configuring xfServerPlus for Remote Data Access

3-52  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Setruser -n returns the user name and encoded password to the screen; it does not
update the RUSER setting in the registry. Leave this output displayed on your
screen; you can copy it to create the environment setting. (For more information
about setruser, see “The setruser Utility” in the “Configuring xfServer” chapter of
the Installation Configuration Guide.)

3. Start the Synergy Configuration Program and go to the xfServer/xfServerPlus tab.

4. Select the xfServerPlus service that will be the client to xfServer, click the Modify
Service button, and then click the Environment Settings button.

5. Click the Add button that is grouped with the “Settings for service name” list.

6. Enter RUSER for the variable name, and then for the value copy and paste the
string returned by setruser -n in step 2. Click OK in the Add Environment Setting
dialog box. This sets RUSER in the registry in HKEY_LOCAL_MACHINE\
Software\Synergex\Synergy xfServer \serviceName\Synrc.

7. Click OK in the Environment Settings dialog box and the xfServerPlus
Information dialog box, and then click Apply in the Synergy Configuration
Program. The service will be stopped and restarted.

 To connect to an xfServer that’s running in NON-SECURE mode with a default user
account

When xfServer is running in non-secure mode with a default user account, no
additional setup is required on either the xfServer or the xfServerPlus machine for
remote data access. (You do not need to set RUSER on the xfServerPlus machine;
if RUSER is set, it is ignored.)

 To connect to an xfServer that’s running in NON-SECURE mode

If xfServer is running in non-secure mode without a default user account on
Windows, no additional setup is required on either the xfServer or the
xfServerPlus machine for remote data access. (You do not need to set RUSER on
the xfServerPlus machine; if RUSER is set, it is ignored.)

If xfServer is running in non-secure mode without a default user account on
UNIX or OpenVMS, do the following:

1. On the xfServer machine, create an account using the xfServerPlus account user
name. (Note that while technically this account does not have to be the same as
the xfServerPlus account, we recommend it for the sake of simplicity.)

2. On the xfServerPlus machine, set RUSER to the user name (a password is not
required) that you specified in step 1. Follow steps 3 through 7 on page 3-52. In
step 6, rather than pasting the string, enter the user name for the variable value.

Configuring and Running xfServerPlus
Configuring xfServerPlus for Remote Data Access

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  3-53

 To connect to an xfServer that’s running in RESTRICTED mode

Restricted mode uses Windows authentication to secure the connection between
client and server. Consequently, this configuration is valid only when both
xfServerPlus and xfServer are running on Windows and belong to the same
domain or trusted domain. In addition, the account used to run xfServerPlus
sessions must be a domain account—not a local account. (See the note on
page 3-2 for information on using a domain account as the xfServerPlus account.)
No additional setup is required. (If RUSER is set, it is ignored.)

 To connect to an xfServer that’s running in TRUSTED mode

On the xfServer machine, create an account using the xfServerPlus account user
name. This account must have the same user name as the xfServerPlus account. Do
not set RUSER on the xfServerPlus machine.

Remote Data Access When xfServerPlus Is on UNIX
When xfServerPlus is on UNIX, you can access data remotely through xfServer
running on Windows, UNIX, or OpenVMS. xfServer may be running in secure,
non-secure, or trusted mode (on UNIX). You cannot access data on Windows
when xfServer is running in restricted mode, because restricted mode supports
only Windows clients.

 To connect to an xfServer that’s running in SECURE mode

1. On the xfServer machine, create an account using the xfServerPlus account user
name and password. (Note that while technically this account does not have to be
the same as the xfServerPlus account, we recommend it for the sake of simplicity.)

2. On the xfServerPlus machine, set the RUSER environment variable to the user
name and password you defined on the xfServer machine in step 1.

You should set RUSER in the environment prior to starting xfServerPlus. You can
do this in one step with this command:

RUSER=`setruser` ;export RUSER

This command runs setruser (which prompts you for the user name and
password), assigns the output to RUSER, and exports it. (For more information
about setruser, see “The setruser Utility” in the “Configuring xfServer” chapter of
the Installation Configuration Guide.)

Configuring and Running xfServerPlus
Configuring xfServerPlus for Remote Data Access

3-54  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

 To connect to an xfServer that’s running in NON-SECURE mode with a default user
account

When xfServer is running in non-secure mode with a default user account, no
additional setup is required on either the xfServer or the xfServerPlus machine for
remote data access. (You do not need to set RUSER on the xfServerPlus machine;
if RUSER is set, it is ignored.)

 To connect to an xfServer that’s running in NON-SECURE mode without a default user
account

When xfServer is running in non-secure mode without a default user account on
Windows, no additional setup is required on either the xfServer or the
xfServerPlus machine for remote data access. (You do not need to set RUSER on
the xfServerPlus machine; if RUSER is set, it is ignored.)

When xfServer is running in non-secure mode without a default user account on
UNIX or OpenVMS, do the following:

1. On the xfServer machine, create an account using the xfServerPlus account user
name. (Note that while technically this account does not have to be the same as
the xfServerPlus account, we recommend it for the sake of simplicity.)

2. On the xfServerPlus machine, set RUSER to the user name (a password is not
required) you specified in step 1. You don’t need to run setruser because
non-secure mode does not require a password; just set the RUSER environment
variable to the user name.

 To connect to an xfServer that’s running in TRUSTED mode

On the xfServer machine, create an account using the xfServerPlus account user
name. This account must have the same user name as the xfServerPlus account. Do
not set RUSER on the xfServerPlus machine.

Part II: xfNetLink Synergy Edition

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  4-1

Chapter 4

Configuring & Testing xfNetLink Synergy
xfNetLink Synergy Edition provides distributed access to Synergy logic and
Synergy data (via access to Synergy logic) from within Synergy applications.
xfNetLink Synergy is a set of routines included in the Synergy runtime that can be
used to call routines that are executed on a remote machine running xfServerPlus.

This chapter gives an overview of the tasks you must perform to set up and use
xfNetLink Synergy Edition, and explains how to configure xfNetLink Synergy and
run the xfNetLink Synergy test program.

System Overview
Figure 4-1 shows the primary components of a distributed Synergy application
using xfServerPlus and xfNetLink Synergy. The diagram describes two logical
machines:

 A Synergy client running a Synergy application that includes the
xfNetLink Synergy API and contains the user interface. A single client session
may create multiple sessions on one server machine.

 A Synergy server running xfServerPlus, which handles the remote execution of
Synergy routines. The routines are made available for remote execution by
including them in an ELB or shared image and defining them in the Synergy
Method Catalog (SMC). You can populate the SMC with routine information
by entering it manually through the Method Definition Utility or by
attributing your code, running dbl2xml to create an XML file, and then
loading that file into the SMC. You may use multiple servers; each machine
requires an xfServerPlus license

xfNetLink Synergy enables you to use your existing Synergy code without
rewriting it, provided that the code is already written in the form of an external
subroutine or function. If the routine requires input from or sends messages to the
user, or if it might generate untrapped errors, it must be adjusted to work as
server-level logic.

To access Synergy logic remotely with a Synergy client, you must establish a
connection between the client and the server using %RX_START_REMOTE.
This routine handles the creation of a socket connection between the Synergy

Configuring & Testing xfNetLink Synergy
The Big Picture

4-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

client and a dedicated xfServerPlus session running on the server. The use of a
dedicated session means that context is maintained from one remote routine call
to the next until a shutdown signal is received. Once the connection has been
established, your remote routines are available to the client application.

The Big Picture
To successfully set up and run your xfNetLink Synergy–xfServerPlus system, you
need to do complete the following steps.

1. Install the necessary Synergy software.

 Install xfServerPlus on the Synergy server machine. For detailed steps on
setting up xfServerPlus, see “The Big Picture” on page 3-1.

 Install xfNetLink Synergy on the client machine.

For development purposes, you’ll need to install Professional Series
Development Environment (or Professional Series Workbench). However,
because the xfNetLink Synergy routines are part of the runtime, when it
comes time to deploy your application at a customer site, the client machine
will need only Core Components (Windows) or Synergy DBL (UNIX and
OpenVMS).

2. Modularize your existing Synergy code for the routines that you want to call
remotely. Encapsulate the code in ELBs or shared images (on OpenVMS). See
chapter 1 for more information.

Figure 4-1. xfServerPlus with xfNetLink Synergy.

xfServerPlus

Synergy
Method
Catalog

Synergy
routines in ELBs

Synergy
application

xfNetLink
Synergy

Synergy Client Remote Synergy Server

standard ELB
routine call

routine
information

provided here

request for connection

socket connection for
transmission of function

calls and results

Configuring & Testing xfNetLink Synergy
The Big Picture

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  4-3

3. Create a user account on the xfServerPlus machine to run xfServerPlus sessions.
Give this account privileges that are consistent with your policy for accessing
Synergy routines remotely. See “Running xfServerPlus” on page 3-2.

4. Populate the Synergy Method Catalog (SMC) with information about your
Synergy routines. You can do this by attributing your code or by entering data
with the Method Definition Utility. If you choose to put the SMC somewhere
other than DBLDIR, set the XFPL_SMCPATH environment variable. See
chapter 2 for details.

5. In the xfpl.ini file, set logging options for the xfServerPlus log and set logicals that
point to the ELBs you specified in the SMC. You may also need to set other
options in the xfpl.ini file; see “Appendix A: Configuration Settings” for a
complete list of xfpl.ini configuration settings.

If you choose to put the xfpl.ini file somewhere other than DBLDIR, set the
XFPL_INIPATH environment variable.

See chapter 3 for information on the log and XFPL_INIPATH; see “Defining
Logicals” on page 1-4 for information on setting logicals that point to your ELBs.

6. (optional) Configure xfNetLink Synergy by setting defaults for host name and
port, time-out values, and debug options. On Windows, do this in the synergy.ini
file; on UNIX and OpenVMS, use environment variables. See “Configuring
xfNetLink Synergy” on page 4-4.

7. Create the user interface for your Synergy client. Include code that requests a
remote execution session using the xfNetLink Synergy API. See chapter 5 for
“how-to” information about using the API and chapter 6 for the API routines.

8. Start xfServerPlus (rsynd) with remote execution enabled. See “Running
xfServerPlus” on page 3-2.

9. Run your client program.

Configuring & Testing xfNetLink Synergy
Configuring xfNetLink Synergy

4-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Configuring xfNetLink Synergy
On Windows, xfNetLink Synergy is configured with settings in the synergy.ini
file. On UNIX and OpenVMS, xfNetLink Synergy is configured by setting
environment variables. By configuring xfNetLink Synergy you can

 specify the host name and port number as defaults.
 specify time-out values.
 specify a filename for logging the sent and received packets (for debugging

purposes).

The table below shows the variables that can be set. Each is discussed in more
detail in the following pages.

Specifying the Host Name and Port Number
Specifying the host name and port enables xfNetLink to read the name and port as
defaults. You can also pass this information when you use the
%RX_START_REMOTE or %RX_DEBUG_INIT functions.

 To specify the host name and port as defaults

Specify the host name of the machine on which the xfServerPlus service is running
and the port number on which it is listening. You don’t have to specify both the
host name and port; you can specify only one or the other if desired. The port
number must be an integer. Neither variable can be null.

See “Appendix A: Configuration Settings” for complete listings of all
configuration settings for xfServerPlus and xfNetLink.

Variables for Configuring xfNetLink Synergy

Variable Description

XF_REMOTE_HOST Machine where xfServerPlus is running

XF_REMOTE_PORT Port that xfServerPlus is running on

XF_RMTCONN_TIMOUT Session time-out for running in regular mode

XF_RMT_DBG_TIMOUT Session time-out for running in debug mode

XF_RMT_TIMOUT Call time-out for regular session or debug

XFNLS_LOGFILE Name of file to log packets in

Configuring & Testing xfNetLink Synergy
Configuring xfNetLink Synergy

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  4-5

On Windows, put this information in the synergy.ini file. On UNIX and
OpenVMS, specify the host and port as environment variables. For example:

XF_REMOTE_HOST=elmo
XF_REMOTE_PORT=2440

Specifying Time-out Values
You can specify two types of time-outs for xfNetLink Synergy:

 Connect session for both normal and debug use
 Call (session communication)

You can specify these values in the synergy.ini file on Windows and as
environment variables on UNIX and OpenVMS.

For xfNetLink Synergy, the request for session time-out (‘A’ in figure 4-2) is
set for two minutes and cannot be changed. This time-out measures how
long xfNetLink will wait to receive an acknowledgment from the
connection monitor in xfServerPlus. The connection monitor is responsible
for accepting session requests from xfNetLink and signaling the logic server
to start a session.

Figure 4-2. xfNetLink time-outs.

xfNetLink

xfServerPlus

Connection
monitor

Logic server
session

A

B

C

A Request for session
B Connect session
C Call (session communication)

Configuring & Testing xfNetLink Synergy
Configuring xfNetLink Synergy

4-6  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Connect session time-out
Once the initial socket communication is established (‘A’ in figure 4-2), the
connection monitor signals the logic server to start a session. The connect session
time-out (‘B’ in figure 4-2) measures the time that xfNetLink waits for an
acknowledgment from the session started by the logic server. It is measured from
the time that xfNetLink receives the acknowledgment from the connection
monitor to the time it receives an acknowledgment from the logic server.

This time-out is set separately for normal and debug operation. The default for
normal operation is 2 minutes; for debug it is 10 minutes. You will probably want
to set the debug time-out to a greater value than the normal time-out since you
need to move from one machine to another when starting a debug session (see the
note on page 5-5).

 To specify a connect session time-out

Specify a value in seconds for XF_RMTCONN_TIMOUT and/or
XF_RMT_DBG_TIMOUT. For example, to specify a 3-minute time-out for
normal operation and a 6-minute time-out for debug operation:

XF_RMTCONN_TIMOUT=180
XF_RMT_DBG_TIMOUT=360

These values can also be set with the sess_timeout argument when making a call
with %RX_START_REMOTE or %RX_DEBUG_START. A time-out value
passed in the routine call overrides the time-out value set as an environment
variable or in synergy.ini.

Call time-out
The call time-out (‘C’ in figure 4-2) measures the length of time that the remote
session request should wait for the results of a remote routine call. It is measured
for each send–receive request between xfNetLink and xfServerPlus. The default is
1800 seconds (30 minutes).

 To specify a call time-out

Specify a value in seconds for XF_RMT_TIMOUT. For example, to specify a
15-minute time-out:

XF_RMT_TIMOUT=900

This value can also be set with the call_timeout argument when making a call with
%RX_START_REMOTE or %RX_DEBUG_START. A time-out value passed in
the routine call overrides a time-out set as an environment variable or in

Configuring & Testing xfNetLink Synergy
Configuring xfNetLink Synergy

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  4-7

synergy.ini. The call time-out value can also be overridden at runtime with the
routine %RX_RMT_TIMOUT (see page 6-16); this affects only the current
session.

You can also set a call time-out value for xfServerPlus. See
SET_XFPL_TIMEOUT on page 1-31.

Specifying Debug Options
When you use the %RX_DEBUG_INIT and %RX_DEBUG_START functions
to debug the code in your ELBs, you can specify that the packets be written to a
file instead of displayed on the screen.

To receive debug trace output, you must also set the trace_flag argument in
%RX_DEBUG_START to ‘1’.

 To specify a filename for debug trace information

Specify a filename in the synergy.ini file (on Windows) or as an environment
variable (on UNIX). For example:

XFNLS_LOGFILE=Myfile.txt

Myfile.txt is created if it does not exist; if the file already exists, additional material
is appended to the end. To place the file in a specific location, specify the full path.
If you do not specify a path, the file is created in the current working directory.
You can also pass a filename when making the call.

This feature is not available on OpenVMS. However, OpenVMS users can
view packets on the server side in the xfServerPlus log. See “Using
Server-Side Logging” on page 3-33.

Configuring & Testing xfNetLink Synergy
Testing xfNetLink Synergy

4-8  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Testing xfNetLink Synergy
The xfnlstst.dbr test program (xfnlstst.exe on OpenVMS), distributed with
xfNetLink Synergy, can help you determine if your system is set up and working
properly.

The xfnlstst program runs several tests that send different types of data back and
forth between the client and server and make routine calls. This program makes
calls to a test ELB or shared image named xfpl_tst, which is distributed with
xfServerPlus. There are entries in the SMC for use by the test program. (These are
the methods in the xfTest interface in the distributed SMC.) If the ELB or any of
the methods are missing, the tests will fail.

 To run the xfnlstst program

1. Make sure xfServerPlus has been started on the server machine.

2. On Windows and UNIX, at the command line of the machine on which you
installed xfNetLink Synergy, enter

dbr DBLDIR:xfnlstst xfServerMachineName xfServerPort

where xfServerMachineName is the name or IP address of the xfServerPlus machine
and xfServerPort is the port that xfServerPlus is running on.

On OpenVMS, you must define xfnlstst as a foreign command and then execute
it. On the machine on which you installed xfNetLink Synergy, enter

$ XFNLSTST:==$DBLDIR:XFNLSTST
$ XFNLSTST xfServerMachineName xfServerPort

As the tests run, information is printed to the screen and saved to the xfnlstst.log
file. You will see a line describing each test and a message stating whether it
completed successfully or unsuccessfully. This file is created in the directory from
which you ran the test.

If any tests were unsuccessful, check the xfnlstst.log file for more information. You
may want to also run the xfServerPlus test program, xfspltst. It can help you
determine whether the problem is on the xfNetLink side or the xfServerPlus side.
See “Testing xfServerPlus” on page 3-15 for more information.

If these methods are not present in your SMC, you can import them from
the defaultsmc.xml file. See “Importing and Exporting Methods” on
page 2-38.

Configuring & Testing xfNetLink Synergy
Testing xfNetLink Synergy

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  4-9

If you cannot solve the problem, call Synergy/DE Developer Support. Be sure to
save the xfnlstst.log file; your Developer Support engineer needs the information
in this file to help you.

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  5-1

Chapter 5

Calling Synergy Routines Remotely from
Synergy

The xfNetLink Synergy Edition Application Program Interface (API) enables you
to execute routines remotely. This chapter explains how to use the API routines to
make calls from a Synergy client to a remote Synergy server, and offers suggestions
on handling errors and troubleshooting problems.

Making Remote Calls
The primary method of calling a remote routine is by using %RXSUBR and the
related RX_xxx routines. This approach enables you to make remote routine calls
in a way that is very much like using XSUBR.

You can also make remote calls by directly manipulating a routine call block
(RCB) with the RCB_xxx routines. See “Making Remote Calls Using a Routine
Call Block” on page 5-3.

Making Remote Calls with %RXSUBR
For a complete code sample, see “Appendix C: xfNetLink Synergy Sample Code”.
For details on the RX_xxx routines, see chapter 6.

1. .INCLUDE these two files in your program:

 DBLDIR:rxerr.def

 DBLDIR:rxapi.def

2. Use %RX_START_REMOTE to initiate a request for a remote session. You can
pass the host IP and port in the call, or specify them in the synergy.ini file (or as
environment variables on UNIX and OpenVMS). (See “Configuring
xfNetLink Synergy” on page 4-4.) For example:

status = %rx_start_remote(netid, ip, port)

If the call is successful, the function returns the status code RX_SUCCESS;
otherwise, it returns a status code indicating why the call failed. If the call is
successful, %RX_START_REMOTE also returns a network connection ID

Calling Synergy Routines Remotely from Synergy
Making Remote Calls

5-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

(net ID), which you’ll need to make the remote call. The net ID is a handle to an
internal memory structure that describes the network connection and its current
state.

3. Use %RXSUBR to call the remote routine, which then executes in a specified
remote session. Pass the network connection ID returned by
%RX_START_REMOTE, the method ID of the routine you want to call (as
defined in the SMC), and up to 253 arguments:

xcall rxsubr(netid, "methodid", arg1, arg2)

%RXSUBR supports passing integer, decimal, implied-decimal, and alpha data
types. Packed data is supported on the client side. Arrays of up to nine dimensions
are also supported. %RXSUBR supports the usual Synergy conventions for
returning results from function calls.

If the call is successful, arguments and results will be updated. If the call fails, a
Synergy runtime error will be signaled, and you can retrieve error information.
(See “Handling Errors” on page 5-3.)

4. Close the session with RX_SHUTDOWN_REMOTE:

xcall rx_shutdown_remote(netid)

You cannot pass ^VAL and ^REF arguments to %RXSUBR. If a remote
routine expects to receive a ^VAL or ̂ REF argument, the arguments must be
defined as such in the Synergy Method Catalog. Pass the arguments
normally (i.e., by descriptor) to %RXSUBR; xfServerPlus will convert them to
the correct type based on how they are defined in the SMC.

Failure to close the session with RX_SHUTDOWN_REMOTE wastes system
resources.

Calling Synergy Routines Remotely from Synergy
Handling Errors

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  5-3

Making Remote Calls Using a Routine Call Block
Although %RXSUBR is the primary means of making remote calls, you can also
make remote calls by directly manipulating a routine call block (RCB) with the
RCB_xxx routines. There are several reasons for using the RCB_xxx routines:

 You need to pass a variable-length parameter.
 You need to pass a parameter that exceeds 64K in size. For array parameters,

the total size of the array may exceed 64K as long as each individual array
element is less than 64K. The maximum size for an arrayed field in Synergy
DBL is 256 MB.

 You want to optimize your code. If you’re making a call multiple times and
you wish to avoid the overhead of building the argument block multiple
times, you can optimize your code by using the RCB routines.

For more information, see “Handling Variable-Length and Large Data” on
page 1-13 and “Passing Arrays Larger Than 64K” on page 1-18. For instructions
on using the RCB routines and the RCB routine syntax, see the “Synergy Routine
Call Block API” chapter of the Synergy DBL Language Reference Manual.

Handling Errors
Because applications built using xfNetLink Synergy and xfServerPlus include
multiple programs distributed across multiple machines, error handling design
must take into account the possibility of errors occurring in any one of the
programs.

Error conditions can occur on either the xfNetLink or xfServerPlus side of a
remote execution session. In a distributed environment, error handling requires
multiple layers of processing: the error may occur on a machine that the user does
not have access to.

To help you deal with this situation, errors detected by xfServerPlus are logged to
the application event log (Windows), syslog (UNIX), or operator console
(OpenVMS). Additional information can be logged to the xfServerPlus log. (See
“Using Server-Side Logging” on page 3-33.) This enables system administrators to
track problems that have occurred even when they are not reported by a user. In
addition, information about errors generated by xfServerPlus is stored in memory
on the client for each active network connection ID.

Calling Synergy Routines Remotely from Synergy
Troubleshooting Techniques

5-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

There are two categories of xfServerPlus errors.

 Non-fatal errors that xfServerPlus can trap and for which it can produce a
meaningful diagnostic

 Fatal errors that xfServerPlus cannot trap and which cause abnormal
termination of the remote execution session

In both cases, xfServerPlus sends a message to the client. When this message is
received, relevant information about the error is stored with the associated
network connection ID, and a runtime error is signaled on the client (see the table
on page 6-27).

In the event of a non-fatal error, the xfServerPlus session remains available for
future calls. Detailed error information can be retrieved by calling
RX_GET_ERRINFO (see page 6-8).

In the event of a fatal error, the session is aborted. Traceback information can be
retrieved by calling RX_GET_HALTINFO (see page 6-10).

You may also see xfServerPlus status codes returned to the client. See the
“xfServerPlus Status Codes” table on page 3-16.

Troubleshooting Techniques
Error messages may not always provide enough information to diagnose a
problem. When such is the case, you can take advantage of the additional
debugging options provided with xfNetLink and xfServerPlus. You may also want
to run the test programs; see “Testing xfNetLink Synergy” on page 4-8 and
“Testing xfServerPlus” on page 3-15.

Running an xfServerPlus Session in Debug Mode
During normal operation, xfServerPlus runs as a background process without
support for console operations, complex user interfaces, or debugging. This
improves efficiency and minimizes memory requirements. However, there may be
times when you need to run the debugger on Synergy code in the ELBs that are
being called from xfServerPlus. By manually connecting an xfServerPlus session to
your Synergy client application, you can run your Synergy server routines in debug
mode so that you can uncover problems that are showing up as errors in your
distributed application.

Calling Synergy Routines Remotely from Synergy
Troubleshooting Techniques

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  5-5

When running in debug mode, you have the option of logging the packets sent
from and received by the client. You can display them on screen or write them to a
file. See “Viewing packets on the client side” on page 5-8.

Running in debug mode on Windows and UNIX
Use this procedure if the operating system of your xfServerPlus machine is
Windows or UNIX.

If your SMC files or xfpl.ini file are not in the default location (DBLDIR), you
will need to either move them to DBLDIR or set XFPL_SMCPATH and
XFPL_INIPATH in the environment to point to the location of the files before
starting xfpl.dbr in step 4. (Note: When XFPL_SMCPATH and
XFPL_INIPATH are set in the registry or synrc, they are read by rsynd. Since
rsynd is bypassed when you run in debug mode, the registry/synrc settings do not
get read.)

1. Use the %RX_DEBUG_INIT function to initiate a debug session. This routine
binds a port number and IP address for listening, and then returns the port, IP,
and a network connection ID. You need to include code that displays the IP
address (in hex) and port on the screen. For example:

status = %rx_debug_init(netid, ip, port)
writes(output_chan, "IP address is " + %hex(ip))
writes(output_chan, "Port number is " + %string(port))

2. When the IP and port display on the screen, write them down. You’ll need them in
step 4. For example:

IP address is 6F16212C
Port number is 1082

If you do not need to view packets on the client side and the operating
system of your xfServerPlus is Windows or UNIX, we recommend that you
use the Telnet method for debugging. See “Debugging Remote Synergy
Routines via Telnet” on page 3-47 for instructions.

Once the IP address, etc. displays on the screen, you have a limited amount
of time in which to manually start xfServerPlus in debug mode, specify a
breakpoint, and type “go”. This time is controlled by the variable
XF_RMT_DBG_TIMOUT (see “Connect session time-out” on page 4-6) or by
passing a session time-out value when you make the call. If no time-out is
specified, the default value of 10 minutes applies. If you delay longer than
this, xfNetLink will time out while waiting for a response from xfServerPlus.

Calling Synergy Routines Remotely from Synergy
Troubleshooting Techniques

5-6  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

3. Use %RX_DEBUG_START to complete the connection process. Be sure to pass
the same net ID that was returned by the corresponding %RX_DEBUG_INIT
routine. For example:

status = %rx_debug_start(netid)

At this point, the client application has opened a socket and is waiting for the
server to call it back.

4. Go to the machine running xfServerPlus, start xfpl.dbr, and pass the IP and port
to xfServerPlus. Type the alpha characters in the IP address in uppercase.

dbr -d xfpl hexadecimal_IP port

For example:

dbr -d xfpl 6F16212C 1082

xfServerPlus starts up in the Synergy debugger.

5. Set an initial breakpoint in the xfpl program at the XFPL_DEBUG_BREAK
routine. In the debugger enter

break xfpl_debug_break

and then enter

go

xfServerPlus is now connected to the client on the specified port. The server waits
while the client program resumes and makes its first call. The program will then
break at the XFPL_DEBUG_BREAK routine. This breakpoint occurs just after
xfServerPlus has opened the ELB for the first method called by your application.
(Note that any ELBs linked to this ELB will also be opened.) The ELB must be
opened before you can set breakpoints in the routines within it.

6. If the Synergy routine you need to debug is in one of the opened ELBs, just specify
a breakpoint in that routine. If the routine you want to debug is in a different
(unopened) ELB, use the OPENELB debugger command to open that ELB. (You
can also continue running your client application until the ELB is opened by
xfServerPlus. However, because you set a breakpoint at XFPL_DEBUG_BREAK,
the program will break at each method call, so using the OPENELB command is
more efficient.)

For general information about the Synergy debugger, see the “Debugging
Synergy Programs” chapter in Synergy Tools. For details on the OPENELB
command, see OPENELB in that same chapter.

Calling Synergy Routines Remotely from Synergy
Troubleshooting Techniques

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  5-7

Running in debug mode on OpenVMS
Use this procedure if the operating system of your xfServerPlus machine is
OpenVMS.

1. Make sure xfServerPlus is running on an unused port. If necessary, restart it to
ensure that it’s using a new, unused port.

2. On the machine running xfServerPlus, enter

$ run DBLDIR:xfpld

You’ll see output similar to the following:

*** DEBUG 10.3.1 ***
BREAK AT 152 IN XFPL (LAUNCHER.DBL;6) ON ENTRY
%DBG-E-Could not open source file "LAUNCHER.DBL;1"
DblDbg>

3. Set an initial breakpoint in the xfpl program at the XFPL_DEBUG_BREAK
routine. In the debugger enter

break xfpl_debug_break

and then enter

go

4. When prompted, enter the port number that xfServerPlus is running on (from
step 1).

5. Start your client application in the usual manner (i.e., execute
%RX_START_REMOTE). After it connects, the debug session will break at the
XFPL_DEBUG_BREAK routine.

6. Set a breakpoint for your Synergy shared image and routine:

break image/routine

and then enter

go

TIP
If you have created shared image logicals for the shared images used by
xfServerPlus, you can skip step 3. Instead, set a breakpoint for your shared
image and routine as described in step 6. You’ll then be prompted for the
port number (step 4). Once you start your client program (step 5), the debug
session will break at the breakpoint you set.

Calling Synergy Routines Remotely from Synergy
Troubleshooting Techniques

5-8  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

For details, see BREAK in the “Debugging Synergy Programs” chapter of Synergy
Tools.

Note that if you set a breakpoint at XFPL_DEBUG_BREAK, the debugger will
break at XFPL_DEBUG_BREAK for each method call your client makes.

Viewing Packets
At times, it may be helpful to see the complete packets sent back and forth
between the client application and xfServerPlus. You can view packets on either
the client side or the server side.

Viewing packets on the client side
The debug trace option allows you to view the actual packets that are sent and
received on the client side. This option is available only when running in debug
mode (see “Running an xfServerPlus Session in Debug Mode” on page 5-4).

If encryption is enabled, the log will display a string of 10 asterisks instead of the
actual data for packets that contain encrypted data. In addition, the type of
encryption (master or slave) will be included in the connection information.

Although you do not need to use the OPENELB debugger command before
setting the first breakpoint in your shared image, you may need to use it if
your code does an XSUBR or RCB_SETFNC without specifying a shared
image. For details on the OPENELB command, see OPENELB in the
“Debugging Synergy Programs” chapter in Synergy Tools.

What’s the difference between the packets viewed on the client side and
those viewed on the server side? If everything is working
properly—nothing. The debug trace option (client side) allows you to view
packets as they look when sent from and received by xfNetLink Synergy. The
xfServerPlus log (server side) allows you to view packets as they look when
received by and sent from xfServerPlus. Under normal circumstances they
should be the same. Having these two ways to view the information is
primarily for your convenience in troubleshooting.

You cannot view packets on the client if you have an OpenVMS server.
However, OpenVMS users can view packets on the server side in the
xfServerPlus log. See “Using Server-Side Logging” on page 3-33.

Calling Synergy Routines Remotely from Synergy
Troubleshooting Techniques

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  5-9

To activate the debug trace option, set the trace_flag argument to ‘1’ when you call
the %RX_DEBUG_START routine. By default, the packets are printed to the
screen of the client machine. To write them to a file, pass a filename in the
%RX_DEBUG_START call or specify the XFNLS_LOGFILE variable in the
synergy.ini file (or as an environment variable on UNIX).

As shown in the sample below, the connection information prints once for each
session; sent and received data prints for each call.

--
Local host: tiger
XFPL connection port: 1217
Call timeout = 1800 seconds
Session timeout = 600 seconds

send: size = 166
Dxfpl_tst2;10;ID13#1234567890.12;ID10#12345.6789;ID10#12345.6789
;ID11#12345678.91;DE10#1234567890;ID8#0.123456;ID6#1.2345;DE8#12
345678;ID8#123456.7;DE9#123456789;
recv: size = 107
Rxfpl_tst2;005;001ID14#1234567891.12;002ID7#333.334;006ID9#0.998
8332;008DE9#-88991010;009ID8#654321.0;
send: size = 9
S;0;;

Viewing packets on the server side
The xfServerPlus log shows you the packets that are received by and sent from
xfServerPlus. To record packets in the xfServerPlus log, set the XFPL_DEBUG
option to ON in the xfpl.ini file. See XFPL_DEBUG on page 3-40 for details on
what information is recorded in the log.

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  6-1

Chapter 6

xfNetLink Synergy API
This chapter is a reference guide to the functions and subroutines in the
xfNetLink Synergy Edition API.

%RX_CONTINUE 6-2

%RX_DEBUG_INIT 6-4

%RX_DEBUG_START 6-5

RX_GET_ERRINFO 6-8

RX_GET_HALTINFO 6-10

%RX_RMT_ENDIAN 6-12

%RX_RMT_INTSIZE 6-13

%RX_RMT_OS 6-14

%RX_RMT_SYSINFO 6-15

%RX_RMT_TIMOUT 6-16

RX_SETRMTFNC 6-17

RX_SHUTDOWN_REMOTE 6-18

%RX_START_REMOTE 6-19

%RXSUBR 6-24

xfNetLink Synergy API
%RX_CONTINUE

6-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

%RX_CONTINUE

result = %RX_CONTINUE(netid[, arg_return_flag])

or

xcall RX_CONTINUE(netid[, arg_return_flag])

%RX_CONTINUE allows a remote routine to continue processing after an
%RXSUBR call has timed out.

Return value result

The function call return value. If the remote Synergy routine called by
%RXSUBR is a function that returns a ^VAL value, the value is returned as
the ^VAL result of %RX_CONTINUE. (n)

Arguments netid

Network connection ID corresponding to the value you passed with
%RXSUBR. (n)

arg_return_flag

(optional) Indicates whether you want argument return values from the
%RXSUBR call to be updated. If not passed, return values are updated. (n)

Pass zero (0) if the %RXSUBR call passed arguments that return a value
(arguments defined as “out” or “in/out” in the SMC) and you want them to
be updated when the call completes. This means the call will be completed as
though %RXSUBR had not timed out.

Pass a non-zero value if the %RXSUBR call passed arguments that return a
value and you do not want the return values updated when the call completes.
In addition, error packets will not be returned. This means the call will be
completed, but the results (including errors) will be thrown away.

Discussion An %RXSUBR call will time out if processing does not complete within a
specified length of time. The default call time-out is 30 minutes, but you may set a
different value with the XF_RMT_TIMOUT environment variable or with
%RX_RMT_TIMOUT or when you make the %RX_START_REMOTE call.

When an %RXSUBR call times out, it will signal an $ERR_TIMOUT error. You
can choose either to call RX_SHUTDOWN_REMOTE and end the session or
call %RX_CONTINUE and continue processing. %RX_CONTINUE restarts

WT WN U V

xfNetLink Synergy API
%RX_CONTINUE

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  6-3

the call time-out clock, which enables the remote routine to continue processing
on the server for the length of time defined by the call time-out. When
%RX_CONTINUE times out, it also signals $ERR_TIMOUT. If desired, you
can call %RX_CONTINUE multiple times in succession until the call completes.
Each call to %RX_CONTINUE restarts the call time-out clock.

Use the same form (function or subroutine) for the %RX_CONTINUE call as
you did for the %RXSUBR call that has timed out.

Passing a non-zero value in the arg_return_flag argument enables the return packet
to be received but not processed, so that you can make another %RXSUBR call
and maintain the session context. In other words, the call completes but you throw
away the results.

If you call %RX_CONTINUE when an %RXSUBR call has not timed out,
%RXSUBR will return the error “No current call in progress”
($ERR_XFNOCALL).

When an %RXSUBR call times out, you cannot make a second %RXSUBR call
until a return packet for the first call has been received. At this point you should
call %RX_CONTINUE or shut down the session. If, instead, you attempt to
make a second %RXSUBR call, %RXSUBR will return the error “Remote call
already in progress” ($ERR_XFINCALL).

Examples In the example below, if the RXSUBR call to method123 times out,
RX_CONTINUE is called, resetting the call time-out value and allowing the call
to method123 to continue processing.

onerror ($ERR_TIMOUT) timeout
xcall rxsubr(netid, "method123", arg1, arg2)
.
.
.
timeout,

offerror
xcall rx_continue(netid)

xfNetLink Synergy API
%RX_DEBUG_INIT

6-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

%RX_DEBUG_INIT

status = %RX_DEBUG_INIT(netid, listen_ip, listen_port)

This function starts a connection to xfServerPlus so that you can manually
connect an xfServerPlus session in debug mode. Connecting in debug mode
enables you to debug the code in your ELBs on the server. This function is used
only for Windows and UNIX servers—not for OpenVMS.

Return value status

Indicates whether the connection was successful. (n)

If the connection is made successfully, the status returned is RX_SUCCESS.

If the connection is not made successfully, a Synergy socket error is generated.

Arguments netid

Network connection ID describing the connection to the machine on which
remote routines are executed. This value is set by %RX_DEBUG_INIT. (n)

listen_ip

The IP address of the machine the client is running on. Pass an a16 for an
IPv6 address. For IPv4, pass an a4 or a numeric variable. If the variable type
and size do not correspond to the type of IP address found, you’ll get an
ARGSIZ error. (a or n)

listen_port

The port of the machine the client is running on. (n)

Discussion %RX_DEBUG_INIT binds a port and IP for listening, and then returns the port
number and IP address in the corresponding fields. You have to display those
values on the screen in a way that is appropriate for your operating system. (The IP
address should be displayed in hex.) Use %RX_DEBUG_START to complete the
debug connection process.

See “Running in debug mode on Windows and UNIX” on page 5-5 for more
information.

WT U V

xfNetLink Synergy API
%RX_DEBUG_START

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  6-5

%RX_DEBUG_START

status = %RX_DEBUG_START(netid, [trace_flag], [trace_file],
& [call_timeout], [sess_timeout], [secure_status]
& [, scl]))

This function completes the process of connecting in debug mode that was started
by %RX_DEBUG_INIT. After the listening port and IP have been displayed, use
this function to complete the connection so that you can start a debug session.
This function is used only for Windows and UNIX servers—not for OpenVMS.

Return value status

Indicates whether the request for a remote session was successful. (n)

The status codes returned are the same as for %RX_START_REMOTE.
See the “%RX_START_REMOTE Status Codes” table on page 6-21.

Arguments netid

Network connection ID describing the connection to the machine on which
remote routines are executed. You should pass the net ID returned by the
corresponding %RX_DEBUG_INIT routine. (n)

If you call %RX_DEBUG_START and pass a net ID that was not returned
by %RX_DEBUG_INIT, the runtime error $ERR_XFNOINIT is signaled.

If the net ID is invalid, $ERR_NOTNETHND or $ERR_INVNETHND is
signaled. See the “Synergy Runtime Errors Signaled by %RXSUBR” table on
page 6-27 for explanations of these codes.

trace_flag

(optional) Indicator that client packets should be logged. The default is
false. (n)

trace_file

(optional) The file the packets should be logged in. (a)

If a filename is passed, it is used. Otherwise, synergy.ini (or the corresponding
environment variable on UNIX) is checked for the value XFNLS_LOGFILE.
If no file is found, the packets are displayed on the screen of the client
machine.

WT U V

xfNetLink Synergy API
%RX_DEBUG_START

6-6  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

call_timeout

(optional) The length of time (in seconds) that the remote session request
should wait for the results of a remote routine call. The default is 1800
seconds (30 minutes). (n)

This time-out is measured for each send–receive request between xfNetLink
and xfServerPlus. (This is ‘C’ in figure 4-2 on page 4-5.)

If a call time-out is passed, it is used. Otherwise, synergy.ini (or the
corresponding environment variable on UNIX) is checked for the value
XF_RMT_TIMOUT. If no time-out is specified there or if the value is  0,
the default is used. This value is associated with the network connection ID
and may be changed at runtime with %RX_RMT_TIMOUT (see
page 6-16).

sess_timeout

(optional) The length of time (in seconds) that the remote session request
should wait for a session connection from xfServerPlus. The default is 600
seconds (10 minutes). (n)

This time-out is measured from the time that xfNetLink receives the
connection request acknowledgment from the connection monitor to the time
it receives an acknowledgment from the session started by the logic server.
(This is ‘B’ in figure 4-2 on page 4-5.) Note that the time-out for the request
for session from the connection monitor is 2 minutes (‘A’ in figure 4-2): if no
acknowledgment is received from the connection monitor within 2 minutes, a
time-out will occur no matter how sess_timeout is set.

If a session time-out is passed, it is used. Otherwise, synergy.ini (or the
corresponding environment variable on UNIX) is checked for the value
XF_RMT_DBG_TIMOUT. If no time-out is specified there or if the value is
0, the default time-out is used.

secure_status

(optional) Returns the encryption status of the server machine. (n)

0 = encryption not enabled
1 = slave encryption enabled
2 = master encryption enabled

For more information on setting time-outs for xfNetLink, see
“Specifying Time-out Values” on page 4-5.

xfNetLink Synergy API
%RX_DEBUG_START

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  6-7

scl

(optional) The security compliance level. Indicates the available protocols to
use for encrypted data. (n)

0 = Always use whatever the current Synergy default is
1 = use protocols TLS 1.0, TLS 1.1, TLS 1.2 (default)
2 = use protocols TLS 1.1 and TLS 1.2

Discussion See “Running in debug mode on Windows and UNIX” on page 5-5 for more
information.

xfNetLink Synergy API
RX_GET_ERRINFO

6-8  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

RX_GET_ERRINFO

xcall RX_GET_ERRINFO(netid, remote_err_descriptor)

This subroutine returns information about non-fatal errors generated by
xfServerPlus. You can call this routine to get more information about a non-fatal
runtime error generated during an %RXSUBR call. See the record format below
for the information returned.

Arguments netid

Network connection ID corresponding to the value set by
%RX_START_REMOTE. (n)

remote_err_descriptor

A record containing the fields in the remote execution error packet. The
record format is

group rx_stderror
method_id ,a32
num_of_errors ,i4
error_num ,i4
description ,a128
clarifying_desc ,a256

endgroup

Discussion In the event of a non-fatal error, xfServerPlus sends a message to the client. When
this message is received, information about the error is stored with the associated
network connection ID and a runtime error is signaled on the client. The
xfServerPlus session remains available for future calls.

The record structure shown above is defined in rxerr.def, located in DBLDIR. To
extract error information, you have to .INCLUDE the rxerr.def file.

Examples To .INCLUDE rxerr.def:

.define RX_ERR_DEF
record errinforec
.include "DBLDIR:rxerr.def"
.undefine RX_ERR_DEF

WT WN U V

xfNetLink Synergy API
RX_GET_ERRINFO

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  6-9

Error handling code:

onerror ($ERR_XFREQPARM) handle_parmerr, handle_other
;trap parm err separately, and then trap others
xcall rxsubr(netid, "methodid", arg1, arg2, arg3)

offerror
.
.
.
handle_parmerr,

xcall RX_GET_ERRINFO(netid, errinforec)
xcall handle_parmerr(errinforec)
xreturn

handle_other,
xcall RX_GET_ERRINFO(netid, errinforec)
case %ERROR of

begincase
.
.
.
endcase

else
.
.
.
xreturn

xfNetLink Synergy API
RX_GET_HALTINFO

6-10  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

RX_GET_HALTINFO

xcall RX_GET_HALTINFO(netid, halt_err_descriptor)

This subroutine returns information about fatal errors generated by xfServerPlus.
You can call this routine to get more information about a fatal runtime error
generated during an %RXSUBR call. See the record format below for information
returned.

Arguments netid

Network connection ID corresponding to the value set by
%RX_START_REMOTE. (n)

halt_err_descriptor

A record containing the fields in the remote fatal packet. The record format is

group rx_fatalerror
subroutine_name ,a32
error_line_number ,i4
error_num ,i4
sys_error_number ,i4
prog_name ,a128
error_text ,a128

endgroup

Discussion In the event of a fatal error, xfServerPlus sends a message to the client. When this
message is received, information about the error is stored with the associated
network connection ID, a runtime error is signaled on the client, and the session is
aborted.

The record structure shown above is defined in rxerr.def, located in DBLDIR. To
extract error information, you have to .INCLUDE the rxerr.def file.

Examples To .INCLUDE rxerr.def:

.define RX_FATAL_DEF
record haltinforec
.include "DBLDIR:rxerr.def"
.undefine RX_FATAL_DEF

WT WN U V

xfNetLink Synergy API
RX_GET_HALTINFO

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  6-11

Error handling code:

onerror ($ERR_XFHALT) handle_fatal ;trap fatal errors
xcall rxsubr(netid, "methodid", arg1, arg2, arg3)

offerror
.
.
.
handle_fatal,

xcall RX_GET_HALTINFO(netid, haltinforec)
xcall mylogfunc(haltinforec)
xreturn

xfNetLink Synergy API
%RX_RMT_ENDIAN

6-12  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

%RX_RMT_ENDIAN

status = %RX_RMT_ENDIAN(netid, endian_type)

This function returns the integer endian code for the platform that xfServerPlus is
running on for a particular network connection ID.

Additional operating system information can be obtained with
%RX_RMT_INTSIZE, %RX_RMT_OS, and %RX_RMT_SYSINFO.

Return value status

Indicates whether the query was successful. Status returned is
RX_SUCCESS. (n)

Arguments netid

Network connection ID corresponding to the value set by
%RX_START_REMOTE. (n)

If the net ID is invalid, $ERR_NOTNETHND (581) or
$ERR_INVNETHND (571) is signaled. See the “Synergy Runtime Errors
Signaled by %RXSUBR” table on page 6-27 for explanations of these codes.

endian_type

Integer endian type of the platform xfServerPlus is running on. These are
included in rxapi.def. (n)

0 = RX_ENDIAN_LITTLE
1 = RX_ENDIAN_BIG

WT U V

xfNetLink Synergy API
%RX_RMT_INTSIZE

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  6-13

%RX_RMT_INTSIZE

status = %RX_RMT_INTSIZE(netid, int_size)

This function returns the integer size for the platform that xfServerPlus is running
on for a particular network connection ID.

Additional operating system information can be obtained with
%RX_RMT_ENDIAN, %RX_RMT_OS, and %RX_RMT_SYSINFO.

Return value status

Indicates whether the query was successful. Status returned is
RX_SUCCESS. (n)

Arguments netid

Network connection ID corresponding to the value set by
%RX_START_REMOTE. (n)

If the net ID is invalid, $ERR_NOTNETHND (581) or
$ERR_INVNETHND (571) is signaled. See the “Synergy Runtime Errors
Signaled by %RXSUBR” table on page 6-27 for explanations of these codes.

int_size

The integer size of the platform xfServerPlus is running on. These are
included in rxapi.def. (n)

0 = RX_INTSIZE_32
1 = RX_INTSIZE_64
2 = RX_INTSIZE_128

WT U V

xfNetLink Synergy API
%RX_RMT_OS

6-14  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

%RX_RMT_OS

status = %RX_RMT_OS(netid, os)

This function returns the operating system that xfServerPlus is running on for a
particular network connection ID.

Additional operating system information can be obtained with
%RX_RMT_ENDIAN, %RX_RMT_INTSIZE, and %RX_RMT_SYSINFO.

Return value status

Indicates whether the query was successful. Status returned is
RX_SUCCESS. (n)

Arguments netid

Network connection ID corresponding to the value set by
%RX_START_REMOTE. (n)

If the net ID is invalid, $ERR_NOTNETHND (581) or
$ERR_INVNETHND (571) is signaled. See the “Synergy Runtime Errors
Signaled by %RXSUBR” table on page 6-27 for explanations of these codes.

os

The operating system xfServerPlus is running on. These are included in
rxapi.def. (n)

1 = RX_OS_UNIX
2 = RX_OS_VMS
3 = RX_OS_WIN

WT U V

xfNetLink Synergy API
%RX_RMT_SYSINFO

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  6-15

%RX_RMT_SYSINFO

status = %RX_RMT_SYSINFO(netid, os, endian_type, int_size)

This function returns operating system information (remote xfServerPlus
operating system, endian type, and integer size) associated with a particular net
ID. Individual values can be retrieved with %RX_RMT_OS,
%RX_RMT_ENDIAN, and %RX_RMT_INTSIZE.

Return value status

Indicates whether the query was successful. Status returned is
RX_SUCCESS. (n)

Arguments netid

Network connection ID corresponding to the value set by
%RX_START_REMOTE. (n)

If the net ID is invalid, $ERR_NOTNETHND (581) or
$ERR_INVNETHND (571) is signaled. See the “Synergy Runtime Errors
Signaled by %RXSUBR” table on page 6-27 for explanations of these codes.

os

The operating system xfServerPlus is running on. These are included in
rxapi.def. (n)

1 = RX_OS_UNIX
2 = RX_OS_VMS
3 = RX_OS_WIN

endian_type

Integer endian type for the platform xfServerPlus is running on. These are
included in rxapi.def. (n)

0 = RX_ENDIAN_LITTLE
1 = RX_ENDIAN_BIG

int_size

The integer size for the platform xfServerPlus is running on. These are
included in rxapi.def. (n)

0 = RX_INTSIZE_32
1 = RX_INTSIZE_64
2 = RX_INTSIZE_128

WT WN U V

xfNetLink Synergy API
%RX_RMT_TIMOUT

6-16  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

%RX_RMT_TIMOUT

status = %RX_RMT_TIMOUT(netid, result_timeout)

This function sets the call time-out value for the specified network connection ID.

Return value status

Indicates whether the query was successful. (n)

Status codes returned are RX_SUCCESS and RX_BADTIMSPEC. See the
“%RX_START_REMOTE Status Codes” table on page 6-21 for explanations
of these codes.

Arguments netid

Network connection ID corresponding to the value set by
%RX_START_REMOTE. (n)

If the net ID is invalid, $ERR_NOTNETHND (581) or
$ERR_INVNETHND (571) is signaled. See the “Synergy Runtime Errors
Signaled by %RXSUBR” table on page 6-27 for explanations of these codes.

result_timeout

The time (in seconds) that the Synergy client should wait for the results of a
remote routine call. (n)

Discussion There is a call time-out value associated with each network connection ID. This
value determines how long the Synergy client will wait for the result of a remote
Synergy routine call. It is measured for each send–receive request. (This is ‘C’ in
figure 4-2 on page 4-5.)

The call time-out is set at start-up with %RX_START_REMOTE, but can be
changed at runtime. If it is changed, the new value remains in effect for all
subsequent routine calls until it is changed again. If the time-out value is invalid
(i.e., 0), it is not changed. The call time-out can also be set in the synergy.ini file
or as an environment variable (see “Specifying Time-out Values” on page 4-5).

WT WN U V

xfNetLink Synergy API
RX_SETRMTFNC

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  6-17

RX_SETRMTFNC

xcall RX_SETRMTFNC(rcbid, netid, method_id[/encrypt])

This subroutine enables you to specify the remote routine (by method ID) and the
network connection ID so that when a call is made with %RCB_CALL, the
remote routine is called.

Arguments rcbid

The identifier for the routine call block, returned by %RCB_CREATE. (n)

netid

Network connection ID corresponding to the value returned by
%RX_START_REMOTE. (n)

method_id

The unique identifier (in the Synergy Method Catalog) of the routine being
called. (a)

/encrypt

(optional) Encryption is desired for this method.

Discussion If you created a dynamically-generated routine call block (RCB) and wish to call it
remotely, use this subroutine to set the method ID and network connection ID in
the RCB.

The /encrypt switch is required when slave encryption is enabled on the
xfServerPlus machine and the method is marked for encryption in the SMC. The
/encrypt switch is optional when slave encryption is enabled on the xfServerPlus
machine and the method is not marked for encryption in the SMC. The /encrypt
switch is not required when master encryption is enabled. See “Using Encryption”
on page 3-24 for more information on encryption.

See the “Synergy Routine Call Block API” chapter of the Synergy DBL Language
Reference Manual for the RCB routine syntax and instructions on using the
RCB_xxx routines.

WT U V

xfNetLink Synergy API
RX_SHUTDOWN_REMOTE

6-18  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

RX_SHUTDOWN_REMOTE

xcall RX_SHUTDOWN_REMOTE(netid)

This subroutine sends a request to close the dedicated xfServerPlus session, which
causes the running Synergy process to terminate and releases the memory
associated with the network connection ID.

Arguments netid

Network connection ID for the connection that you want to shut down. (n)

WT WN U V

Failure to close the session with RX_SHUTDOWN_REMOTE wastes system
resources.

xfNetLink Synergy API
%RX_START_REMOTE

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  6-19

%RX_START_REMOTE

status = %RX_START_REMOTE(netid, [ip], [port], [call_timeout],
& [sess_timeout], [secure_status][, scl])

This function initiates a request for an xfServerPlus session. It handles the creation
of a socket connection between the Synergy client and a dedicated xfServerPlus
session running on the server. %RX_START_REMOTE returns a status code that
indicates the success or failure of the call. If the call is successful, a network
connection ID is returned in the netid argument.

Return value status

A status code indicating the result of the request for a remote session. Status
codes are defined in the file DBLDIR:rxapi.def, which you should
.INCLUDE in programs that use xfNetLink Synergy. See the
“%RX_START_REMOTE Status Codes” table on page 6-21 for explanations
of the status codes and what you can do to resolve the problems they
represent. (n)

If %RX_START_REMOTE returns RX_SUCCESS, execution is ready to
proceed.

Arguments netid

Network connection ID. The net ID is a handle to a memory structure
containing information that describes the location and state of the
xfServerPlus session that was created. (n)

This value is set by %RX_START_REMOTE and should be passed to all
subsequent xfNetLink calls directed at the xfServerPlus session that it
represents. If %RX_START_REMOTE does not return RX_SUCCESS,
netid is set to 0.

ip

(optional) Host name or IP address of the machine where xfServerPlus is
running. (a)

If an IP is passed, it is used. Otherwise, synergy.ini (or the corresponding
environment variable on UNIX and OpenVMS) is checked for the value
XF_REMOTE_HOST. If no IP is specified there, the connection errors out.

WT WN U V

xfNetLink Synergy API
%RX_START_REMOTE

6-20  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

port

(optional) The port number xfServerPlus is running on. The default is
2356. (n)

If port is passed, it is used. Otherwise, synergy.ini (or the corresponding
environment variable on UNIX and OpenVMS) is checked for the value
XF_REMOTE_PORT. If no port is specified there, the default is used.

call_timeout

(optional) The length of time (in seconds) that the remote session request
should wait for the results of a remote routine call. The default is 1800
seconds (30 minutes). (n)

This time-out is measured for each send–receive request between xfNetLink
and xfServerPlus. (This is ‘C’ in figure 4-2 on page 4-5.)

If a call time-out is passed, it is used. Otherwise, synergy.ini (or the
corresponding environment variable on UNIX and OpenVMS) is checked for
the value XF_RMT_TIMOUT.

If no time-out is specified there or if the value is  0, the default time-out is
used. This value is associated with the network connection ID and may be
changed at runtime with %RX_RMT_TIMOUT (see page 6-16).

sess_timeout

(optional) The length of time (in seconds) that the remote session request
should wait for a session connection from xfServerPlus. The default is 120
seconds (2 minutes). (n)

This time is measured from the time that xfNetLink receives the connection
request acknowledgment from the connection monitor to the time it receives
an acknowledgment from the session started by the logic server. (This is ‘B’ in
figure 4-2 on page 4-5.) Note that the time-out for the request for session
from the connection monitor is 2 minutes (‘A’ in figure 4-2): if no
acknowledgment is received from the connection monitor within 2 minutes of
making the call, a time-out will occur no matter how sess_timeout is set.

For more information on setting time-outs for xfNetLink, see
“Specifying Time-out Values” on page 4-5.

xfNetLink Synergy API
%RX_START_REMOTE

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  6-21

If a session time-out is passed, it is used. Otherwise, synergy.ini (or the
corresponding environment variable on UNIX and OpenVMS) is checked for
the value XF_RMTCONN_TIMOUT. If no time-out is specified there or if
the value is  0, the default time-out is used.

secure_status

(optional) Returns the encryption status of the server machine. (n)

0 = encryption not enabled
1 = slave encryption enabled
2 = master encryption enabled

scl

(optional) The security compliance level. Indicates the available protocols to
use for encrypted data. (n)

0 = Always use whatever the current Synergy default is
1 = use protocols TLS 1.0, TLS 1.1, TLS 1.2 (default)
2 = use protocols TLS 1.1 and TLS 1.2

Examples See “Appendix C: xfNetLink Synergy Sample Code”.

%RX_START_REMOTE Status Codes

Number Status code Meaning What to do

0 RX_SUCCESS Session started. N/A

12301 RX_INVLOGIN Remote session log-in failed. Make sure the user name and password
you specified when registering the
xfServerPlus service are valid.

12302 RX_NOTLICENSED xfServerPlus not licensed. Call your Synergy/DE customer service
representative to request an XFPL
license.

12303 RX_LICENSELMT Too many consecutive
xfServerPlus sessions running.

Increase your connection licenses or
make sure your application disconnects
in an appropriate fashion when it no
longer needs the remote session.

12304 RX_LICENSEEXP Extended demo period
expired.

Call your Synergy/DE customer service
representative for new licenses.

xfNetLink Synergy API
%RX_START_REMOTE

6-22  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

12305 RX_RSYNDTIMEOUT Client timed out waiting to
start remote session.

Adjust the session time-out argument in
the %RX_START_REMOTE call or change
the value for the session time-out in the
synergy.ini file (or change the
environment variable on UNIX and
OpenVMS). If the problem persists,
check with your system administrator.

12306 RX_NOSTART OS level problem in spawning
or forking the remote session.

Verify that the xfServerPlus account has
read/write permission to the DBLDIR
directory.

Check with your system administrator.

12307 RX_INVRESULT Unexpected error returned by
xfServerPlus.

Call Synergy/DE Developer Support.

12308 RX_NODBLDIR The DBLDIR environment
variable is not set for the
registered service.

See “Setting the XFPL_SMCPATH
Environment Variable for xfServerPlus”
on page 2-44. Follow the instructions for
setting XFPL_SMCPATH for a specific
instance of xfServerPlus, but substitute
DBLDIR for XFPL_SMCPATH.

12309 RX_NOXFSPL xfServerPlus not running on
the port specified.

Verify that xfServerPlus is running on the
port specified with XF_REMOTE_HOST.

12310 RX_XFSPLINCOMPAT xfNetLink client version
incompatible with server
version.

Upgrade either your client or your server
to the higher version. Running a newer
client with an older server is not a
supported configuration.

12311 RX_NOMEM Insufficient memory on server
during start-up.

Upgrade memory or decrease number of
running processes.

12312 RX_OUTRNG Internal “out of range” error
in server start-up.

Call Synergy/DE Developer Support.

12313 RX_INVHDL Internal “invalid memory
handle” on server start-up.

Call Synergy/DE Developer Support.

12314 RX_NOHOSTSPEC No host specified. Add host name or IP address of remote
server to your start-up call or specify it in
synergy.ini (or as an environment
variable on UNIX and OpenVMS).

%RX_START_REMOTE Status Codes (continued)

Number Status code Meaning What to do

xfNetLink Synergy API
%RX_START_REMOTE

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  6-23

12315 RX_BADPORTNO Port number not numeric. Change the port argument or check that
a valid port was specified in synergy.ini
(or as an environment variable on UNIX
and OpenVMS).

12316 RX_BADTIMSPEC Time not numeric. Correct time-out argument(s) to pass
number of seconds.

12317 RX_BADLOCALHOST Cannot get local host name
(machine where
xfNetLink Synergy is running).

Check with your system administrator.

12318 RX_BADHOSTNAME Cannot get host name
(machine where xfServerPlus
is running).

Check with your system administrator.

12319 RX_NOUSRBATPRV No batch privilege for user
name.

(Windows) The user account used to
start xfServerPlus does not have the “log
on as a batch job” user right set. This
error can occur only if you are using
xfServerPlus version 7.1.5 or earlier.
Using a version of the server that
predates your client version is not a
supported configuration. Upgrade
xfServerPlus to the current version.

12320 RX_NORUNLICENSE No Runtime license. Verify that there is a Runtime license on
the server machine.

12322 RX_LICENSEACCESS Cannot access License
Manager (synd).

Check with your system administrator.

12323 RX_SSLCONNECTERR OpenSSL connection failed.
Usually this means the client
and server were unable to
negotiate a protocol.

Verify that the security compliance level
is the same on both client and server.
Check your encryption configuration;
see “Using Encryption” on page 3-24.

12324 RX_BADSCLVALUE Invalid value passed for scl
(security compliance level)
argument.

Correct the scl argument to pass 0, 1,
or 2.

10000
level errors

N/A Socket errors.

%RX_START_REMOTE Status Codes (continued)

Number Status code Meaning What to do

xfNetLink Synergy API
%RXSUBR

6-24  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

%RXSUBR

result = %RXSUBR(netid, method_id[/encrypt][, arg, ...])

or

xcall RXSUBR(netid, method_id[/encrypt], result[, arg, ...])

or

xcall RXSUBR(netid, method_id[/encrypt][, arg, ...])

This routine is the primary means of calling remote Synergy routines, given an
existing connection to an xfServerPlus session created with
%RX_START_REMOTE.

Return value result

A function call return value.

 If the remote Synergy routine is a function that returns a ^VAL value, the
value is returned as the ^VAL result of %RXSUBR. (n)

 If the remote Synergy routine is a function that returns a non-^VAL
value, the value must be passed as an extra argument at the beginning of
the argument list. (a or n)

 If the remote Synergy routine is a subroutine, no value is returned.

Arguments netid

Network connection ID corresponding to the value set by
%RX_START_REMOTE. (n)

method_id

The unique identifier (in the SMC) of the routine being called. (a)

/encrypt

(optional) Encryption is desired for this method.

arg

(optional) The argument list. A routine may be called with no arguments. The
maximum number permitted is 253.

WT WN U V

The method ID is case sensitive.

xfNetLink Synergy API
%RXSUBR

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  6-25

Discussion %RXSUBR supports passing integer, decimal, implied-decimal, and alpha data
types. Packed data is supported on the client side. Arrays of up to nine dimensions
are also supported. %RXSUBR supports the usual Synergy conventions for
returning results from function calls.

 To call an external function that returns a ^VAL, use
result = %RXSUBR(netid, method_id [, args])

 To call an external function that returns a type other than ^VAL, use
xcall RXSUBR(netid, method_id, result [, args])

 To call a subroutine, use
xcall RXSUBR(netid, method_id [, args])

The /encrypt switch is required when slave encryption is enabled on the
xfServerPlus machine and the method is marked for encryption in the SMC. The
/encrypt switch is optional when slave encryption is enabled on the xfServerPlus
machine and the method is not marked for encryption in the SMC. The /encrypt
switch is not required when master encryption is enabled. See “Using Encryption”
on page 3-24 for more information on encryption.

When %RXSUBR is called, the following validations take place:

 The network connection ID must be valid.
 The method ID must be passed.
 The data must be of a supported type.
 The number of arguments cannot exceed 253.
 If the method is marked for encryption in the SMC, the /encrypt switch must

be passed.

If any of these items are not validated, a Synergy runtime error is signaled (see the
table on page 6-27) and processing ceases. If all items are validated, %RXSUBR
calls the specified Synergy routine.

If the call to the routine is successful, %RXSUBR returns any updated arguments
or results as indicated in the Synergy Method Catalog.

You cannot pass ^REF and ^VAL arguments to %RXSUBR. If a routine
expects to receive a ^VAL or ^REF, the arguments must be defined as such in
the SMC (see “Defining Parameters” on page 2-28). Pass the arguments
normally to %RXSUBR; xfServerPlus will convert them to the correct type
based on how they are defined in the SMC.

xfNetLink Synergy API
%RXSUBR

6-26  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

If the call is not successful, a Synergy runtime error is signaled (see the table on
page 6-27). To get more detailed information about a particular error, call
RX_GET_ERRINFO (see page 6-8) or RX_GET_HALTINFO (see page 6-10),
as indicated in the table.

Examples  This example calls a function that returns a ^VAL.
status = %rxsubr(netid, "cust_info", name, SSN)
.
.
.
function cust_info ,^val

a_name ,a
a_ssn ,n

proc
.
.
.
endfunction

 This example calls a function that returns a non-^VAL.
xcall rxsubr(netid, "cust_info", status, name, SSN)
.
.
.
function cust_info

a_name ,a
a_ssn ,n

proc
.
.
.
end

 This example calls a subroutine.
xcall rxsubr(netid, "cust_info", name, SSN)
.
.
.
subroutine cust_info

a_name ,a
a_ssn ,n

proc
.
.
.
end

See “Appendix C: xfNetLink Synergy Sample Code” for additional code samples.

xfNetLink Synergy API
%RXSUBR

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  6-27

Synergy Runtime Errors Signaled by %RXSUBR

Number Runtime error Caused by What to do

111 $ERR_TIMOUT Client timed out after waiting
specified length of time for
call results.

Extend the call time-out (see “Specifying
Time-out Values” on page 4-5) or
optimize the called routine. If the
problem persists, check with your system
administrator.
You can use %RX_CONTINUE (see
page 6-2) to continue processing after a
remote call has timed out.

320 $ERR_NETPROB Tried to make a call on a
disconnected socket or lost
socket connection during call.

Try again.

550 $ERR_XFBADPKTID Error occurred parsing
returned response.

Call Synergy/DE Developer Support. See
RX_GET_ERRINFO for more information.

551 $ERR_XFBADMTHID Method ID is too long. Correct the method ID; the limit is 31
characters. See RX_GET_ERRINFO for
more information.

552 $ERR_XFNUMPARMS Invalid number of arguments
sent.

Check routine call against definition in
the SMC.

553 $ERR_XFBADPKT Error occurred parsing
returned response.

Call Synergy/DE Developer Support. See
RX_GET_ERRINFO for more information.

554 $ERR_XFBADTYPE Argument type didn’t
correspond to the definition
in the SMC.

Check routine call against definition in
the SMC. See RX_GET_ERRINFO for
more information.

555 $ERR_XFREQPARM Required argument not sent. Check routine call against definition in
the SMC.

556 $ERR_XFBADARRAY Error occurred mapping array
element.

Call Synergy/DE Developer Support. See
RX_GET_ERRINFO for more information.

557 $ERR_XFIOERR File I/O error occurred on
server.

See RX_GET_ERRINFO for more
information.

558 $ERR_XFMETHKNF Method ID (key) is not found
in the SMC.

Check routine call against definition in
the SMC. Remember that the method ID
is case sensitive. See RX_GET_ERRINFO
for more information.

xfNetLink Synergy API
%RXSUBR

6-28  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

559 $ERR_XFRTNNF Method not found in
specified ELB or shared
image.

Make sure the correct ELB is specified in
the SMC and that logicals are set
correctly in the xfpl.ini file to point to
the ELB (see “Defining Logicals” on
page 1-4).

560 $ERR_XFNOCONN Connection to host was lost. Restart session. If transaction was
midstream, you may need to restore the
system to a valid state before restarting.

561 $ERR_XFHALT Fatal untrapped error in
Synergy routine.

Check routine for untrapped errors.
Make corrections to your code. Be sure
to check the number and type of
parameters. Restore system as required
and restart session. See
RX_GET_HALTINFO for more
information.

563 $ERR_SRVNOTSUP Feature not supported on
server.

Upgrade xfServerPlus to the current
version.

564 $ERR_XFUNKERR Unknown error reported by
xfServerPlus.

The server returned an error that was
not recognized by the client. Check the
xfpl.log file, which records the error
even though the client is unable to
receive it. This error usually happens
when an older xfNetLink client is
communicating with a newer
xfServerPlus server. To solve this
problem, update your client version. If
your versions already match, call
Synergy/DE Developer Support.

569 $ERR_SYNSOCK Socket error. See RX_GET_ERRINFO for more
information.

571 $ERR_INVNETHND Network connection ID is not
a valid memory handle.

Correct the netid argument.

581 $ERR_NOTNETHND Network connection ID is a
valid memory handle but not
a net ID.

Correct the netid argument.

Synergy Runtime Errors Signaled by %RXSUBR (continued)

Number Runtime error Caused by What to do

xfNetLink Synergy API
%RXSUBR

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  6-29

592 $ERR_XFINCALL Remote call already in
progress

Use %RX_CONTINUE (see page 6-2) to
complete the timed-out %RXSUBR call
before making another remote call. Or,
shut down the session with
RX_SHUTDOWN_REMOTE. See
RX_GET_ERRINFO for more information.

596 $ERR_XFMETHCRYPT Method requires encryption.
The method is marked for
encryption in the SMC, but
the data was sent
unencrypted.

Use the /encrypt switch on the
%RXSUBR call or, if this method does
not really need to be encrypted, clear the
check box in the MDU. See %RXSUBR
on page 6-24 for information on
/encrypt and “Using Encryption” on
page 3-24 for information on encryption
in general.

597 $ERR_XFSERVNOSEC Encryption not enabled on
server. The client has sent
encrypted data, but
encryption is not enabled on
the server.

Start rsynd with the -encrypt option or
change your client code to remove the
/encrypt switch. See %RXSUBR on
page 6-24 for information on /encrypt
and “Using Encryption” on page 3-24
for information on encryption in general.

Synergy Runtime Errors Signaled by %RXSUBR (continued)

Number Runtime error Caused by What to do

Part III: xfNetLink Java Edition

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  7-1

Chapter 7

Creating Java Class Wrappers
This chapter gives an overview of the tasks you must perform to set up and use
xfNetLink Java Edition and explains how to generate Java class wrappers and build
a JAR file for your Synergy methods. The generated class wrappers use the
xfNetLink Java classes internally to connect to xfServerPlus. The JAR file that you
generate can be used in any Java client application to remotely access your Synergy
business logic on the xfServerPlus machine.

System Requirements
To build a distributed computing system with xfNetLink Java and xfServerPlus,
you’ll need the items listed below in addition to xfNetLink and xfServerPlus.

 JDK™ (Java Development Kit) version 1.5 or higher, available free from
www.oracle.com/technetwork/java/index.html. See the release notes
(REL_XFNJ.TXT) for more information.

 (optional) Java development environment, such as Eclipse or NetBeans
 Web server and JSP/Servlet container if you plan to develop a web application

System Overview
Figure 7-1 shows the primary components of a distributed application that
accesses Synergy code from a Java client. This diagram describes two machines:

 A client machine running xfNetLink Java, the Java Runtime Environment
(JRE), and an application that uses the JAR file built from Synergy methods.
If you’re developing a two-tier system with a Java client application, the client
is the end-user’s machine. If you’re developing a three-tier system with a web
client application using JavaServer Pages, the client is the web server machine,
which is the also the location of your HTML and JSP pages and the
JSP/servlet container.

 A Synergy server running xfServerPlus, which handles the remote execution of
Synergy routines. The routines are made available for remote execution by
including them in an ELB or shared image and defining them in the Synergy
Method Catalog (SMC), also located on the server machine. You can populate

Creating Java Class Wrappers
System Overview

7-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

the SMC with routine information by entering it manually through the
Method Definition Utility or by attributing your code, running dbl2xml to
create an XML file, and then loading that file into the SMC. You may use
multiple servers; each machine requires an xfServerPlus license.

xfNetLink Java enables you to use your existing Synergy code without rewriting it,
provided that the code is already written in the form of an external subroutine or
function. If the routine requires input from or sends messages to the user, or if it
might generate untrapped errors, it must be adjusted to work as server-level logic.

Figure 7-1. Accessing Synergy from Java.

xfServerPlus

Synergy
Method
Catalog

Synergy
routines in ELBs

Java or JSP
application

xfNetLink
Java

Java Client Remote Synergy Server

standard ELB
routine call

routine
information

provided here

request for connection

socket connection for
transmission of

function calls and
results

Synergy
JAR file

 JRE

Creating Java Class Wrappers
The Big Picture

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  7-3

The Big Picture
This section lists all the steps that need to be completed to successfully create a
distributed system using xfNetLink Java. Note that these steps may not all be done
by you, the Synergy developer. For example, you may create the Java JAR file and
give it to a Java developer to create a web front-end for your application. The Java
developer may also work with a web-page developer to create the HTML portions
of the user interface. However, this section should give you a feel for everything
that needs to be done, regardless of who does it. See also figure 7-2 on page 7-5.

1. Install JDK version 1.5 or higher.

2. Install the necessary Synergy software. The components you need to install vary
depending on your set-up (e.g., what OS your source files are on, where you
intend to do the development, and so on). Note the following:

 The Java class wrapper generation tools, genxml and genjava, are part of the
xfNetLink Java distribution. After installing, set your classpath. See “Setting
the Classpath” on page 7-6.

 The Professional Series Development Environment (or Workbench)
installation includes dbl2xml, the SMC/ELB comparison utility, the MDU
and SMC files, and genxml. On UNIX and OpenVMS, these utilities are part
of the Synergy DBL installation.

 xfServerPlus must be installed on your Synergy server machine. The
xfServerPlus (xfSeries) installation also includes the MDU, SMC files, and
genxml. For detailed steps on setting up xfServerPlus, see “The Big Picture”
on page 3-1.

3. Modularize your existing Synergy code for the routines that you want to access
remotely and encapsulate them in ELBs or shared images. See chapter 1,
“Preparing Your Synergy Server Code.”

4. Populate the Synergy Method Catalog with information about your Synergy
routines. We recommend that you do this by attributing your code and running
dbl2xml (see “Using Attributes to Define Synergy Methods” on page 2-3).
Alternatively, you may use the Method Definition Utility to enter the data (see
“Using the MDU to Define Synergy Methods” on page 2-22). As you do this,
you’ll group the routines into interfaces.

If you choose to put the SMC somewhere other than DBLDIR, set the
XFPL_SMCPATH environment variable (see “Setting the XFPL_SMCPATH
Environment Variable for xfServerPlus” on page 2-44).

Creating Java Class Wrappers
The Big Picture

7-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

5. In the xfpl.ini file, set logging options for the xfServerPlus log and set logicals that
point to the ELBs you specified in the SMC. You may also need to set other
options in the xfpl.ini file; see “Appendix A: Configuration Settings” for a
complete list of xfpl.ini configuration settings.

If you choose to put the xfpl.ini file somewhere other than DBLDIR, set the
XFPL_INIPATH environment variable.

See chapter 3, “Configuring and Running xfServerPlus,” for information on the
log and XFPL_INIPATH. See “Defining Logicals” on page 1-4 for information on
setting logicals that point to your ELBs.

6. Create a user account on the xfServerPlus machine to run xfServerPlus sessions,
and then start xfServerPlus. See “Running xfServerPlus” on page 3-2.

7. Generate the class wrappers:

 If you’re using Workbench, create a Synergy/DE Java Component project and
specify the component information, such as a name and location for the JAR
file, the Java version you want to target, and the interfaces you want to
include. Then, use the menu option to generate class wrappers. See “Creating
a Synergy/DE Java Component Project” on page 7-7 and “Generating Java
Class Wrappers” on page 7-10.

 If you’re using the command line, run the genxml utility to create an XML
file, and then run genjava to create the Java class wrappers. Using the
command line enables you to create a batch file that calls the necessary
utilities, passing the desired options. See “Creating a Java JAR File from the
Command Line” on page 7-12.

8. (optional) Modify the generated Java source files. See “Editing the Java Source
Files” on page 7-20.

9. Build the JAR file:

 If you’re using Workbench, use the menu option to compile the Java classes
and create a JAR file. See “Building the JAR File” on page 7-11.

 If you’re using the command line, run the batch file that was created by
genjava to compile the files and create the JAR file. See “Building the JAR
File” on page 7-17.

10. Distribute the JAR file and other necessary files to the Java developer, who will
then use the JAR file when writing the client-side code for your distributed
application. See “Setting up Your Environment for Development” on page 8-1 and
“Using Your JAR File” on page 8-10.

Creating Java Class Wrappers
The Big Picture

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  7-5

Figure 7-2. Steps in creating an xfNetLink Java – xfServerPlus application.

Install JDK

Install xfNetLink Java,
PSDE, xfServerPlus

Modularize Synergy
code

Use MDU to enter
method data

Attribute Synergy code

Run dbl2xml

Import XML file into
SMC

Set XFPL_SMCPATH

Configure xfpl.ini and
set XFPL_INIPATH

Create xfServerPlus
user account and start

xfServerPlus

Run genxml and
genjava to generate

class wrappers

Use Workbench to
generate class

wrappers

Run batch file to build
JAR file

Use Workbench to
build JAR file

Use JAR file to create
client application

Set Java classpath

recommended
procedure

Creating Java Class Wrappers
Setting the Classpath

7-6  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Setting the Classpath
The xfNetLink classes are distributed in the file xfnljav.jar. Your classpath must
point to this JAR file so the Java compiler can find the xfNetLink classes. The
classpath also needs to include the xercesImpl.jar and xml-apis.jar files (for the
XML parser required by the genjava utility) and the xfNetLink Java installation
directory. The classpath setting must be a system-wide setting, not just a user login
setting.

For example, on Windows:

classpath=c:\Program Files\Synergex\xfNLJava;c:\Program Files\
Synergex\xfNLJava\xfnljav.jar;c:\Program Files\Synergex\
xfNLJava\xercesImpl.jar;c:\Program Files\Synergex\xfNLJava\
xml-apis.jar;.

Creating a Java JAR File in Workbench
The component generation tools enable you to create a Java JAR file of Synergy
methods. The JAR file can be used in any Java application to make remote calls to
Synergy routines. To create a JAR file, you must

 create a Synergy/DE Java Component Project in Workbench and specify
information about how the JAR file should be constructed.

 generate the Java class wrappers.
 edit the Java code if necessary.
 build the JAR file.

When you deploy your application at a customer site, you do not need to
include xercesImpl.jar or xml-apis.jar in the classpath. They are required
only when you are building the class wrappers and JAR file.

You can generate class wrappers and build the JAR file from the command
line rather than from Workbench. See “Creating a Java JAR File from the
Command Line” on page 7-12.

Creating Java Class Wrappers
Creating a Java JAR File in Workbench

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  7-7

Creating a Synergy/DE Java Component Project
1. In Workbench, select Project > New, and then select Synergy/DE Java Component

from the list of project types. (Expand the Synergy/DE node in the Project type
display to see the Synergy/DE Java Component node.)

2. Give the project a name in the Project name field, and indicate whether you want
to create a new workspace or add the project to an existing workspace. For more
information on using this dialog, as well as information about basic Workbench
features, see the Workbench online help or the “Developing Your Application in
Workbench” chapter of Getting Started with Synergy/DE.

3. Specify the following information in the Component Information dialog box.
(This dialog displays automatically when you create a new Java component
project. If you need to display it later, select Build > Component Information.)

Name. Enter a name for the JAR file. The default is the project name.

Directory. Specify the directory in which to place the JAR file. The default is the
project location. If you enter a logical in this field, it must be followed by a colon
(e.g., MYDIR:). This directory will also hold the intermediate files that are used to
create the Java class wrappers and JAR file: the XML file, the batch file, and the
manifest file. See the explanation for the Package name field below for more
information on the directory structure created when you generate class wrappers.

Figure 7-3. The Component Information dialog box for a Synergy/DE Java
Component project.

Creating Java Class Wrappers
Creating a Java JAR File in Workbench

7-8  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Generate Javadoc. Indicate whether you want to generate Javadoc™ HTML files.
Javadoc is generated from information in the .java files and serves as the API
documentation for the Java classes you are generating. In order to have useful
Javadoc, you must include comments for your methods and parameters. The
Javadoc HTML files are created when you build the JAR file. See “Generating
Javadoc” on page 7-20 for additional information.

Generate classes as version. Indicate the Java compatibility desired for the
generated classes. If you select 1.2, the classes will be generated as they were in
xfNetLink Java version 9.5.1 and earlier, and they will be compatible with JRE 1.2
through 1.4. If you select 1.5, the generated classes will be compatible with JRE
1.5 and higher, and various new xfNetLink Java features (introduced in version
9.5.1a and later) will be available. These include encryption, enumerations, type
coercion, and support for Boolean and binary structure fields. In addition, when
you select 1.5, default type mappings change (see “Appendix B: Data Type
Mapping”) and ArrayLists use generics.

Generate JAR file as version. Indicate the version of the JRE that the JAR file
should be built to target. Select Default to use the version of Java installed on the
machine where the JAR file is built.

Package. Specify a name for the package that will contain the generated classes.
The default is the JAR file name. Use dot notation to indicate multiple directory
levels. The maximum length for package name is 101 characters.

For example, the package name com.CompanyName.ProductName results in the
directory structure com\CompanyName\ProductName, which is created beneath
the directory specified in the Directory field. If you specify a multilevel package
name, the generated class files are placed in the lowest level directory
(ProductName, in our example).

Repository main file. If any of the methods that will be included in this JAR file
pass structures as parameters, specify the location of the repository main file for
those structures. This must match the repository that was used when entering data
in the SMC. If you specify a main file, you must also specify a text file.

The default is the value of the environment variable RPSMFIL. If it is not defined,
the default is RPSDAT:rpsmain.ism. If neither RPSMFIL nor RPSDAT are
defined, the default is rpsmain.ism in the path specified in the Working directory
property of the project. If the Working directory is not defined, the default is
rpsmain.ism in the location where the project is stored.

Creating Java Class Wrappers
Creating a Java JAR File in Workbench

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  7-9

Repository text file. If any of the methods that will be included in this JAR file
pass structures as parameters, specify the location of the repository text file for
those structures. This must match the repository that was used when entering data
in the SMC. If you specify a text file, you must also specify a main file.

The default is the value of the environment variable RPSTFIL. If it is not defined,
the default is RPSDAT:rpstext.ism. If neither RPSTFIL nor RPSDAT are defined,
the default is rpstext.ism in the path specified in the Working directory property
of the project. If the Working directory is not defined, the default is rpstext.ism in
the location where the project is stored.

Use alternate field names. Indicate whether you want to use the value in the
Alternate name field in Repository instead of the value in the Name field as the
property name. If not selected, the field name in the structure becomes the
property name in the Java class. If selected, the value in the Alternate name field is
used if it exists; else, the value in the Name field is used.

Generate read-only properties. Indicate whether you want fields flagged as
read-only in Repository to be generated as read-only properties in the structure
classes. These properties will have a “get” method but no “set” method. If you are
planning to use the classes in your JAR file as JavaBeans, note that JavaBeans
require that properties be accessible with both get and set methods.

SMC directory. This field displays the path for the Synergy Method Catalog that
this JAR file uses. The default is XFPL_SMCPATH; if it is not set, the default is
DBLDIR. To change the SMC directory, click the Change Directory button to
display the Browse for SMC Directory dialog box. Navigate to the directory,
double-click to select it, and click OK. The selected path will display in the SMC
directory field and the list of interfaces will be refreshed, displaying all interfaces in
the selected SMC.

Interfaces. Select the interfaces you want to include in the JAR file by clicking in
the box to the left of the interface name. A Java class, named with the interface
name, will be generated for each selected interface.

Alternate name. You can provide an alternate name for any interface you select. To
specify an alternate name, highlight a selected interface, and then click the
Alternate Interface Name button and enter another name in the dialog that
displays.

You may wish to use an alternate name if the interface name in the SMC is not
what you want users to see as the class name. In addition, if your interface names
differ only in case, or if you have a structure with the same name as an interface,

Creating Java Class Wrappers
Creating a Java JAR File in Workbench

7-10  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

you can use the alternate interface name to avoid having numbers appended to the
class names. See the note on page 2-25 for a full explanation.

To remove an alternate interface name, clear the check box for the interface and
then reselect it.

4. Click OK in the Component Information dialog box.

Generating Java Class Wrappers
1. To generate Java class wrappers, select Build > Generate Class Wrappers. If you

have previously generated class wrappers for this project, you will be prompted to
overwrite them. If you’re regenerating wrappers for the same interfaces, the .java
files will be overwritten and any changes you made to them will be lost.

This command will do the following:

 Run the SMC/ELB Comparison utility (smc_elb.exe; see page 2-53 for more
information).

 Create a Java source file for each interface you selected and for each structure,
group, and enumeration within the selected interfaces.

 Create a manifest file that names the classes in the JAR file and indicates they
can be JavaBeans™.

 Create a batch file to be used later to build the JAR file.
 Create files named filename_srclist.dat and filename_clslist.dat (where

filename is the name of the JAR file), which are used in conjunction with the
batch file to create the JAR file.

 Add the .java files to the project. You can access them from the Projects tab or
the Symbols tab in the project toolbar.

2. Edit the files, if necessary, before building the JAR file. See “Editing the Java
Source Files” on page 7-20.

Creating Java Class Wrappers
Creating a Java JAR File in Workbench

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  7-11

Building the JAR File

1. Verify that the Java component project is the active project.

2. Select Build > Build Jar File. This command will do the following:

 Compile the .java files into .class files.
 Build the JAR file.
 Include the manifest file in the JAR file.
 Produce the Javadoc HTML files if the “Generate Javadoc” option was

selected in the Component Information dialog box when you created the class
wrappers.

If you are using Java 1.7 and targeting an earlier version of Java (1.5 or 1.6),
you must set the XFBOOTCLASSPATH and XFEXTDIRS environment variables
before building the JAR file. If either is missing or not set to a valid location,
the compile will fail.

Set XFBOOTCLASSPATH to the complete path of the rt.jar file, usually
java.home\lib\rt.jar. (For example, c:\Program Files\Java\jdk1.6.0_23\jre\
lib\rt.jar.)

Set XFEXTDIRS to the directory that contains the other classes and jar files
that are required by your application, usually java.home\lib. (For example,
c:\Program Files\Java\jdk1.6.0_23\jre\ lib.)

There are a number of ways to set environment variables so that they may
be used by Workbench. See “Defining the startup environment” in the
“Developing Your Application in Workbench” chapter of Getting Started
with Synergy/DE for details.

Creating Java Class Wrappers
Creating a Java JAR File from the Command Line

7-12  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Creating a Java JAR File from the Command Line
If your Synergy source files are not on Windows, or if you don’t use Workbench,
follow the instructions in this section to create the Java class wrappers, Javadoc,
and JAR file from the command line. To create a Java JAR file from the command
line, you’ll need to do the following:

1. Use the genxml utility to create an XML file. See “The genxml Utility” on
page 7-12.

2. Use the genjava utility to create the Java classes. See “The genjava Utility” on
page 7-15.

3. Edit the Java source files if necessary. See “Editing the Java Source Files” on
page 7-20.

4. Run the batch file to compile the classes, create the JAR file, and (optionally)
create the Javadoc HTML files. See “Building the JAR File” on page 7-17.

The genxml Utility
The genxml utility creates an XML file from SMC method definitions and
repository structure definitions. This is an intermediate step in creating Java class
wrappers.

This utility runs on all supported Synergy/DE platforms. Genxml is installed in
the DBLDIR directory.

The genxml utility checks structure sizes in the SMC against the
corresponding structures in the repository and reports a warning if there
are discrepancies. Although the XML file is generated anyway, you should
use the MDU’s Verify Catalog utility to update the structure sizes in the
SMC. (See “Verifying Repository Structure Sizes and Enumerations” on
page 2-41.) Failure to do so can cause errors at runtime because the
structure information in the component, which was pulled from the
repository, will differ from that in the SMC.

Creating Java Class Wrappers
Creating a Java JAR File from the Command Line

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  7-13

Syntax dbr genxml -f xmlFilename -i intName [-a altIntName]
[-d targetDir] [-s smcDir] [-m rpsMain -t rpsText] [-n]
[-v msgLevel] [-?]

Arguments -f xmlFilename

The name to use for the XML file. This name will also be used for the JAR
file. You can include the complete path if desired. The extension “.xml” will
be appended to this filename if you don’t specify an extension.

-i intName

Name of the interface from the SMC to include in the XML file. You may
pass multiple interface names; each must be preceded with the -i option. A
Java class will be created for each interface specified. Remember, the interface
name is case sensitive.

-a altIntName

(optional) Alternate interface name. Use this name for the interface previously
specified with the -i option. Genxml uses the associated -i interface to pull
methods from the SMC; the alternate name is included in the XML file and is
used as the class name when genjava is run. If you pass multiple interface
names, each may have an alternate name. Each alternate name must be
preceded with the -a option. See the examples on page 7-14.

-d targetDir

(optional) The target directory for the XML file. If not passed, the XML file is
created in the directory specified with the -f option. If no directory is specified
with -f, the file is created in the current directory.

-s smcDir

(optional) Directory where the SMC files (cdt.is? and cmpdt.is?) are located.
If not passed, DBLDIR is used.

-m rpsMain

(optional) Full path to the repository main file that contains the structures
referenced in the SMC. Use with -t. This option is used if you are passing
structures as parameters. If not passed, genxml uses the environment variable

When using alternate names, sequence matters. The -a option must follow
the -i option that it applies to. You may specify multiple interface names,
and each may have an associated alternate name immediately following it.

Creating Java Class Wrappers
Creating a Java JAR File from the Command Line

7-14  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

RPSMFIL to determine the name of the repository main file; if that is not set,
it uses RPSDAT:rpsmain.ism. If RPSDAT isn’t set, genxml looks in the
current directory for rpsmain.ism.

-t rpsText

(optional) Full path to the repository text file that contains the structures
referenced in the SMC. Use with -m. This option is used if you are passing
structures as parameters. If not passed, genxml use the environment variable
RPSTFIL to determine the name of the repository text file; if that is not set, it
uses RPSDAT:rpstext.ism. If RPSDAT isn’t set, genxml looks in the current
directory for rpstext.ism.

-n

(optional) Indicates that you want to use the value in the Repository Alternate
name field instead of the value in the Name field. This option pertains only
when you are passing structures as parameters. If not set, the field name in the
structure becomes the property name in the class. If passed, the value in the
Alternate name field is used if it exists; else, the value in the Name field
is used.

-v msgLevel

(optional) Level of verbosity in messages:

0 = no messages
1 = error messages and warnings
2 = everything included in level 1, plus success messages (default)
3 = everything included in level 2, plus return codes and the location of the
SMC and repository files

-?

(optional) Displays a list of options and the version number for genxml.

Examples This example creates an XML file named ConsultIt.xml, which will also be the
name of the JAR file. The XML file will include information about two interfaces,
AppLogin and Consultant. The target directory for the XML file is c:\work, which
is also where the SMC files are located.

dbr DBLDIR:genxml -f ConsultIt -i AppLogin -i Consultant
-d c:\work -s c:\work

This example uses alternate interface names. Instead of classes named AppLogin
and Consultant, the JAR file will have classes named Login and Consult.

dbr DBLDIR:genxml -f ConsultIt -i AppLogin -a Login
-i Consultant -a Consult -d c:\work -s c:\work

Creating Java Class Wrappers
Creating a Java JAR File from the Command Line

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  7-15

On OpenVMS, you’ll need to define genxml as a foreign command and then
execute it. In the example below, we have quoted the XML filename and the
interface names to preserve the case.

$ GENXML:==$DBLDIR:GENXML
$ GENXML -F "ConsultIt" -I "AppLogin" -I "Consultant" -

-D SYS$WORK: -S SYS$WORK:

The genjava Utility
The genjava utility is a Java program that uses the Synergy XML file created by
genxml and outputs the following:

 Java source files (.java files). There will be one file for each interface you
specified when running genxml, as well as a file for each structure, group, and
enumeration in those interfaces. The source files are created as a Java package,
named with the name you specify with the -p option.

 A manifest file (named with the XML filename), which will be used when
creating the JAR file.

 A batch file (also named with the XML filename), which will be used to
compile the classes, create the JAR file, and generate Javadoc.

 Files named filename_srclist.dat and filename_clslist.dat (where filename is
the name of the XML file), which are used in conjunction with the batch file
to create the JAR file.

The genjava utility is installed in the xfNLJava directory.

Syntax java genjava -f xmlFilename [-p packageName] [-d targetDir] [-j]
[-c version] [-t version] [-ro] [-v msgLevel] [-?]

Arguments -f xmlFilename

The full name and path of the XML file generated with genxml. If you do not
specify the file extension, “.xml” will be appended to the end of the filename.

-p packageName

(optional) The name of the package that the generated classes will belong to.
Use dot notation to indicate multiple levels. The maximum length for package
name is 101 characters.

If passed, a directory structure corresponding to the package name will be
created within targetDir (or the current directory; see below), and the
generated class files will be placed in the lowest level directory in the structure.

Creating Java Class Wrappers
Creating a Java JAR File from the Command Line

7-16  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

For example, the package name com.CompanyName.ProductName would
result in the directory structure com\CompanyName\ProductName, and the
generated classes would be placed in ProductName.

If not passed, the XML filename is used as the package name, and so the
subdirectory for the generated class files is named with the XML filename.

-d targetDir

(optional) Specifies the directory in which the batch file, the manifest file,
and, later, the JAR file will be created. If not passed, the files are created in the
current working directory.

-j

(optional) Indicates that you want to create Javadoc files. This option adds a
command to create Javadoc to the batch file. (See “Generating Javadoc” on
page 7-20.)

-c version

(optional) Indicates the Java compatibility desired for the generated classes.
Valid values for version are 1.2 and 1.5. If you specify 1.2, the classes will be
generated as they were in xfNetLink Java version 9.5.1 and earlier, and they
will be compatible with JRE 1.2 through 1.4. If you specify 1.5, the generated
classes will be compatible with JRE 1.5 and higher, and various new
xfNetLink Java features (introduced in version 9.5.1a and later) will be
available. These include encryption, enumerations, type coercion, and support
for Boolean and binary structure fields. In addition, when you specify 1.5,
default type mappings change (see “Appendix B: Data Type Mapping”) and
ArrayLists use generics. If -c is not specified, the default is 1.5.

-t version

(optional) Indicates the version of the JRE that the JAR file should be built to
target. (This option adds the -target option to the command line in the batch
file.) Valid values for version are 1.5, 1.6, and 1.7. If -t is not specified, the
default is the version of Java installed on the machine where the JAR file is
built.

-ro

(optional) Indicates that you want fields flagged as read-only in Repository to
be generated as read-only properties in the structure classes. These properties
will have a “get” method but no “set” method. If you are planning to use the
classes in your JAR file as JavaBeans, note that JavaBeans require that
properties be accessible with both get and set methods.

Creating Java Class Wrappers
Creating a Java JAR File from the Command Line

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  7-17

-v msgLevel

(optional) Level of verbosity in messages.

0 = no messages
1 = error messages
2 = error messages and informational messages (default)

-?

(optional) Displays a list of options for the utility.

Examples The example below creates .java files from ConsultIt.xml. The .bat (.com on
OpenVMS), .mf, and .dat files will be created in the c:\work directory. The
directory structure com\ABCComputers\ConsultPro will be created within
c:\work, with the generated .java files placed in the ConsultPro directory.

java genjava -f c:\work\ConsultIt.xml
-p com.ABCComputers.ConsultPro -d c:\work -j -c 1.5 -t 1.5

Building the JAR File
If you need to edit the .java source files, do so before building the JAR file See
“Editing the Java Source Files” on page 7-20.

The genjava utility created a batch file (.bat for Windows and UNIX; .com for
OpenVMS) named with the XML filename and placed it in the directory specified
with the -d option. The batch file includes commands to compile the Java classes,
create the JAR file, and—if you included the -j option when running
genjava—generate Javadoc HTML files.

If you are using Java 1.7 and targeting an earlier version of Java (1.5 or 1.6),
you must set the XFBOOTCLASSPATH and XFEXTDIRS environment variables
before running the batch file. If either is missing or not set to a valid
location, the compile will fail.

Set XFBOOTCLASSPATH to the complete path of the rt.jar file, usually
java.home\lib\rt.jar. (For example, c:\Program Files\Java\jdk1.6.0_23\jre\
lib\rt.jar.)

Set XFEXTDIRS to the directory that contains the other classes and jar files
that are required by your application, usually java.home/lib. (For example,
usr/Java/jdk1.6.0_23/jre/lib.)

Creating Java Class Wrappers
Understanding the Generated Classes

7-18  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Run the batch file. For example, to continue with our previous scenario:

c:\work\ConsultIt

The JAR file will be placed in the -d directory. If you created Javadoc, the HTML
files will be placed in the package directory and in a subdirectory within that. See
“Generating Javadoc” on page 7-20 and “Setting up Your Environment for
Development” on page 8-1 for more information about these files.

Understanding the Generated Classes
When you generate Java class wrappers from Workbench or with genjava, a .java
file is created for each selected interface in the SMC as well as for each structure,
group, and enumeration within the selected interfaces. These generated classes use
the xfNetLink Java classes internally to connect with xfServerPlus and pass data.

Procedural Classes
The procedural classes (which are derived from the interfaces in the SMC) contain
your own user-defined methods as well as a number of utility methods. If you
browse a procedural class in Workbench, you’ll see that for each of your methods,
the method signature shows the parameter type as specified in the SMC. More
information about the parameters is available when you generate Javadoc.

The following public utility methods are included in every procedural class:

These methods are used to connect to and disconnect from xfServerPlus and to set
and get properties, such as the host name and port number. There are also
methods for setting a call time-out value, for writing a string to the xfServerPlus
log, and for specifying client-side logging options. See the method reference on
page 8-38 for more information.

connect()
disconnect()
debugInit()
debugStart()
getxfPort()
setxfPort()
getxfHost()
setxfHost()
getxfLogfile()
setxfLogfile()
setxfLogging()
setxfExceptOnly()
getSynergyWebProxy()

getSSLCertFile()
setSSLCertFile()
getSSLPassword()
setSSLPassword()
getSSLSecCompliance()
setSSLSecCompliance()
getUserString()
setUserString()
setxfCallTimeout()
getConnect()
shareConnect()
getPoolName()
usePool()

Creating Java Class Wrappers
Understanding the Generated Classes

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  7-19

Structure Classes
The structure classes are built from your structure definitions in the repository.
Fields in the repository structure become properties in the structure class, named
with the repository field name.

These properties are accessed through “set” and “get” methods. The structure class
will include a set and a get method for each property. For example, if the
repository field is named “cusname”, the property will be “Cusname”, and there
will be two methods to access the value of that property, setCusname() and
getCusname().

If there are groups within your repository structures (or fields declared in the
repository as “struct” data type), a class will be created for each group, and each
field in the group will be a property of that class. There will be a set and get
method for each property.

In addition to the set and get methods, there are several other methods in the
structure classes that are used internally to create a representation of a Synergy
structure within the Java language. You don’t need to use these methods, but they
have to be public so that they can be called from another class.

For more information about the structure and group classes, see “Using
Structures” on page 8-14.

Enumeration Classes
Enumeration classes are built from your enumeration definitions in the repository.
There will be a .java file, named with the enumeration name, for each repository
enumeration that is referenced as a parameter or return value in the SMC, as well
as for those enumerations that are referenced as fields within a structure that is
passed as a parameter. For more information, see “Using Enumerations” on
page 8-16.

By default, the properties are named with the repository field names. See
“Passing Structures as Parameters” on page 1-8 for details on overriding the
default name.

If genjava was run with the -ro option (or the “Generate read-only
properties” option was selected in Workbench), structure fields that are
marked read-only in the repository will be generated with get methods but
no set methods.

Creating Java Class Wrappers
Generating Javadoc

7-20  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Editing the Java Source Files
You may need to edit the generated Java source files to add methods, such as
validation, utility, and initialization methods. We do not recommend editing the
generated methods. If you need to edit Javadoc comments in the generated files,
see “Generating Javadoc” on page 7-20.

Generating Javadoc
Javadoc can be helpful for the Java developer who uses your JAR file. Javadoc is
constructed from comments in the source files. To create Javadoc for your JAR file,
you will need to do the following:

1. Add documentation comments for methods, return values, and parameters.

We include comments for the xfNetLink Java utility methods in every class, but
you must provide a description for each of your user-defined methods if you want
to produce useful documentation.

2. Select the “Generate Javadoc” option in Workbench or use the genjava -j option
when you generate classes.

The generated classes include the Javadoc tags (e.g., @param) regardless of whether
you have specified that you want to produce Javadoc. When you select “Generate
Javadoc” or use the genjava -j option, a command to create Javadoc is added to the
batch file. (The batch file is run either manually or from Workbench to create the
JAR file.)

All changes to these files will be lost if you regenerate Java class wrappers
for the same interfaces.

xfNetLink Java uses the standard Javadoc utility included in the Java
Development Kit to produce basic documentation that includes all the
public methods in the JAR file. Should you wish to produce more elaborate
Javadoc, do not use the “Generate Javadoc” or genjava -j option. Instead,
run the Javadoc utility separately. See the Javadoc section of the Oracle
website for more information: www.oracle.com/technetwork/java/javase/
documentation/index-jsp-135444.html.

Creating Java Class Wrappers
Generating Javadoc

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  7-21

 To add documentation comments to your source files

Do one of the following:

 If you are using the MDU to populate the SMC, include the comment text in
the description fields in the MDU as you define your methods. There are
fields for specifying method description, return value description, and
parameter description. (See “Creating New Methods” on page 2-22 and
“Defining Parameters” on page 2-28 for instructions on entering data in these
fields.)

 If you are attributing your code and using the XML file output by dbl2xml to
populate the SMC, include the comment text for methods, return values, and
parameters in your Synergy source files. See “Documentation Comments” on
page 2-20.

 Edit the generated source files (.java files) to add Javadoc comments or to add
additional formatting tags to create the desired output. This method is not
recommended, because any changes you make to the .java files will be lost if
you regenerate class wrappers. See “To manually add Javadoc comments” on
page 7-22 for instructions.

The descriptions in the SMC are included in the generated files as Javadoc
comments when you generate class wrappers. If a method does not have a
description in the SMC, a “To Do” comment is inserted in the generated file, as
shown in “To manually add Javadoc comments” below. If a return value
description is not provided in the SMC, the return data type is used as the Javadoc
comment. If a parameter description is not provided in the SMC, the parameter
name, Java data type, and direction passed are used as the Javadoc comment.

For structures passed as parameters, the field descriptions in the repository are used
as the Javadoc comments for the set and get property methods in the generated
classes. The description text from the repository is preceded with either “Sets” or
“Gets”. If a field does not have a description in the repository, “Sets the property
value” and “Gets the property value” are used as the Javadoc comments.

Several Javadoc HTML files will be produced when you build the JAR file. In the
package directory, there will be an index file and three other “navigation” files. In a
subdirectory within the package directory, there will be files for each of the classes.
See “Setting up Your Environment for Development” on page 8-1 for information
on making the Javadoc files available to your Java developers.

Creating Java Class Wrappers
Generating Javadoc

7-22  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

 To manually add Javadoc comments

1. Open the .java file(s) and find the “To Do” comments. There is a “To Do”
comment before every user-defined method for which there was no description
text provided in the SMC.

2. Replace the line that reads “***To Do*** Add method description” with a
description of the method. Edit the comments for the @param and @return tags if
desired. In structure classes, edit the descriptions for the set and get methods if
desired.

3. Save the .java file(s).

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-1

Chapter 8

Calling Synergy Routines from Java
This chapter explains how to create a distributed application with Java and
Synergy, configure the xfNetLink Java properties file, and then use the JAR file.
It also includes information on Java connection pooling, a method reference for
the utility methods included in your class wrappers, and a class reference for classes
in the Synergex.util package.

Setting up Your Environment for Development
Before you start creating your Java application, check the list below to ensure your
environment is set up properly. If you are working on the same machine as was
used to create the JAR file, some of these steps are already done. If not, you’ll need
to copy files to your Java development machine.

1. Install JDK 1.5 or higher.

2. Install xfNetLink Java.

3. Set the classpath to point to the xfNLJava directory and to the xfnljav.jar,
xercesImpl.jar, and xml-apis.jar files. See “Setting the Classpath” on page 7-6.

4. Copy your JAR file to the correct location for your application. If you’re creating a
web application, put it in the location required by your web server. This will vary
depending on which web server software and servlet container you are using. For
other Java applications, put it in a location where Java can find it, and set the
classpath if necessary.

5. If you created Javadoc, copy the Javadoc HTML files to the development machine.
The HTML files can go in any convenient location—just be sure to maintain the
directory structure to preserve the links from the index to the individual files. You
will need the index.html file and at least one of the allclasses*.html files, which are
located in the package directory. Then you’ll need the HTML files in the
subdirectory created within that package directory. In this subdirectory, there will
be an HTML file for each class in the JAR file.

Calling Synergy Routines from Java
Configuring the xfNetLink Java Properties File

8-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

6. Configure the xfNetLink Java properties file (if your application will use one). For
a web application, put the properties file in the location required by your web
server. This will vary depending on which web server software and servlet
container you are using. For other Java applications, put it in the same directory as
the Java application. See “Configuring the xfNetLink Java Properties File”, below.

7. If your application will use Java connection pooling, configure the pooling
properties file and then place it in the location required by your application. See
“Setting Up a Pooling Properties File” on page 8-26 for more information.

Configuring the xfNetLink Java Properties File

The xfNetLink Java properties file enables you to specify the host name and port
number as defaults, set logging and encryption options, and specify various
time-out values.

Using a properties file is optional in most cases. If you choose not to use one, you
can use the “set” methods associated with each procedural class in your JAR file to
specify these values. (See “Using a Properties File vs. Using the “set” Methods” on
page 8-4.) The set methods always take precedence over any entries in the
properties file.

The table below shows the settings that can be included in the xfNetLink Java
properties file. Each is discussed in more detail on the following pages. Because
this file is used by Java, these settings are case sensitive.

See “Appendix A: Configuration Settings” for complete listings of all
configuration settings for xfServerPlus and xfNetLink.

If you are using Java connection pooling, the xfNetLink Java properties file
is required. See “Specifying the xfNetLink Java properties file to use” on
page 8-29 for information specific to using the properties file with pooling.

Calling Synergy Routines from Java
Configuring the xfNetLink Java Properties File

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-3

Creating and Naming a Properties File
There is a sample xfNetLink Java properties file named xfNetLnk.ini included in
the Examples directory that is part of the xfNetLink Java distribution. You can edit
and use the sample file or create your own file in a text editor.

If you name your properties file “xfNetLnk.ini” and place it in the directory that
your Java application starts in or in the default location required by your web
server and servlet container, you can use the default constructor when you
instantiate an object.

Settings in the xfNetLink Java Properties File

Setting Description See page

xf_RemoteHostName (required) Machine where xfServerPlus is
running

8-6

xf_RemotePort (required) Port that xfServerPlus is
running on

8-6

xf_DebugOutput Value that enables full or error-only
client-side logging.

8-6

xf_LogFile Filename that logging output will be
written to (rather than stderr)

8-6

xf_SessionRequestTimeout Number of seconds xfNetLink will wait
for acknowledgment from the
connection monitor in xfServerPlus

8-7

xf_SessionConnectTimeout Number of seconds xfNetLink will wait
for acknowledgment from the logic
server in xfServerPlus when running in
normal mode

8-8

xf_DebugSessionConnectTimeout Number of seconds xfNetLink will wait
for acknowledgment from the logic
server in xfServerPlus when running in
debug mode

8-8

xf_SessionLingerTimeout Number of seconds xfNetLink will wait
for a return from a remote call

8-9

xf_SSLCertFile The path and filename of the keystore
file to use for encryption

8-9

xf_SSLPassword Password associated with the keystore
file

8-9

Calling Synergy Routines from Java
Configuring the xfNetLink Java Properties File

8-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

If you name your properties file something other than “xfNetLnk.ini”, you must
use the “ini file” constructor and pass the name of the properties file when you
instantiate an object.

For details on using the default and ini file constructors, see “Instantiate an
instance of a procedural class” on page 8-11.

Using a Properties File vs. Using the “set” Methods
As mentioned above, you can specify properties either in the xfNetLink Java
properties file or by using the set methods. It is also possible to combine the two
methods, specifying some properties in the file and setting others with the set
methods, or setting them in both ways. If both a property and its corresponding
set method are specified, the set method take precedence. Use caution if you
implement this approach; it can result in confusion and be difficult to
troubleshoot.

The table below lists the xfNetLink Java properties file settings and their
corresponding set methods. As you can see, there are three time-out settings
available in the properties file for which there are no corresponding set methods.
If you wish to set these time-outs, you must use a properties file. Conversely, the
setSSLSecCompliance() method has no corresponding properties file setting; to
override the program default, you have to call the set method,

TIP
To include comments in the properties file, precede the comment with a
number sign (#).

Properties File Settings and Corresponding “set” Methods

Properties file setting Set method

xf_RemoteHostName setxfHost()

xf_RemotePort setxfPort()

xf_DebugOutput setxfLogging()
setxfExceptOnly()

xf_LogFile setxfLogfile()

xf_SessionRequestTimeout N/A

xf_SessionConnectTimeout N/A

xf_DebugSessionConnectTimeout N/A

Calling Synergy Routines from Java
Configuring the xfNetLink Java Properties File

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-5

If your client application uses JavaServer Pages, keep in mind that you can have
only one xfNetLink Java properties file. Most servlet containers require that the
properties file be located in the container’s root directory. Because all objects use
the properties file from the root directory, if you wanted, for example, to use
different host and port settings for development vs. production, you would need
to use the set methods.

If your client application is a standard Java application, the properties file must be
located in the directory from which the application is started. This means that you
could have several Java applications located in different directories, each with its
own properties file.

The set methods always override settings in the properties file. When you use the
default constructor, it preloads the following settings from the xfNetLnk.ini file:

xf_RemoteHostName
xf_RemotePort
xf_DebugOutput
xf_LogFile
xf_SSLCertFile
xf_SSLPassword

After an object is instantiated, if any of these items is set with the corresponding
set method, the set method value will override the preloaded value. The preloaded
values will continue to be used if there is not an override set with a set method.
Note that any values set with the set methods stay in effect only for that object.
When you instantiate another object, it may use different values.

xf_SessionLingerTimeout setxfCallTimeout()

xf_SSLCertFile setSSLCertFile()

xf_SSLPassword setSSLPassword()

N/A setSSLSecCompliance()

Properties File Settings and Corresponding “set” Methods

Properties file setting Set method

Calling Synergy Routines from Java
Configuring the xfNetLink Java Properties File

8-6  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Specifying the Host Name and Port Number
Specifying the host name and port in the xfNetLink Java properties file enables the
Java object to read them as defaults. Using the properties file for the host name or
port number is optional; you can also set them as properties of the class.

Setting the host name and port is required. (Note that the default port for
xfServerPlus is 2356. Even if you use this default, you must still specify it on the
client.)

 To specify the host name and port as defaults

In the xfNetLink Java properties file, specify the host name of the machine on
which the xfServerPlus service is running and the port number on which it is
listening. The port number must be an integer. Neither value can be null. I

For example:

xf_RemoteHostName = elmo
xf_RemotePort = 2356

Specifying Logging Options
You can specify full or error-only client-side logging. By default, information is
output to stderr (standard error). Alternatively, it can be written to file using the
xf_LogFile property. If the specified file cannot be opened for writing, an error is
displayed and the information is output to stderr. For details on the information
logged, how log files are named, and a sample log, see “Using Client-Side
Logging” on page 9-7.

During development, full logging can be useful; in a production environment we
do not recommend setting full logging. Rather, for production, we recommend
error-only logging. For either logging level, we recommend that you always write
output to a log file.

TIP
If your client application is not attached to a terminal (e.g., JavaServer
Pages), output to stderr will not be visible; use the xf_LogFile property to
write output to file.

Calling Synergy Routines from Java
Configuring the xfNetLink Java Properties File

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-7

 To specify client-side logging

1. In the xfNetLink Java properties file, set the debug output property to one of these
values:

true = full logging
error = error-only logging
false = no logging (the same as not setting it)

For example,

xf_DebugOutput = true

or

xf_DebugOutput = error

2. To specify that the output be written to file instead of going to stderr, specify a
filename. For example,

xf_LogFile = c:\\work\\Myfile.log

will direct the packet logging (if full logging is specified) and most exceptions to
the file Myfile.log and the method and parameter logging to a file named
MyfileJCW.log. (See page 9-7 for details on these two log files.) These files will be
created if they do not exist; if the files already exist, additional material is
appended to the end. To place the files in a specific location, specify the full path
name, using double slashes as shown in the example above. If you do not specify a
path, the files are created in the current working directory.

Specifying Time-out Values
You can specify three types of time-outs in the xfNetLink Java properties file (see
figure 4-2 on page 4-5).

 Request for session
 Connect session (for normal and debug use)
 Call (session communication)

Request for session time-out
The request for session time-out (‘A’ in figure 4-2) measures the time that
xfNetLink will wait to receive the initial acknowledgment from the connection
monitor within xfServerPlus. The connection monitor is responsible for accepting
session requests from xfNetLink and signaling the logic server to start a session.

Calling Synergy Routines from Java
Configuring the xfNetLink Java Properties File

8-8  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

The request for session time-out is measured from the time xfNetLink sends the
request for a connection to the time xfNetLink receives the acknowledgment back
from xfServerPlus. The default value is 120 seconds.

 To specify a request for session time-out

In the xfNetLink Java properties file, specify a value in seconds for
xf_SessionRequestTimeout. For example, to specify a 5-minute time-out, use

xf_SessionRequestTimeout = 300

If the session request time-out value is invalid (less than zero, blank, or alpha), the
default is used.

Connect session time-out
Once the initial socket communication is established (‘A’ in figure 4-2), the
connection monitor signals the logic server to start a session. The connect session
time-out (‘B’ in figure 4-2) is measured from the time that xfNetLink receives the
acknowledgment from the connection monitor to the time it receives an
acknowledgment from the session started by the logic server in xfServerPlus.

This time-out is set separately for normal operation and debug operation. The
default value for normal operation is 120 seconds; for debug it is 600 seconds. You
will probably want to set the debug time-out to a greater value than the normal
time-out since you need to move from one machine to another when starting a
debug session (see the note on page 9-15).

 To specify a connect session time-out

In the xfNetLink Java properties file, specify a value in seconds for
xf_SessionConnectTimeout and/or xf_DebugSessionConnectTimeout. For
example, to specify a 3-minute time-out for normal operation and a 6-minute
time-out for debug operation, use

xf_SessionConnectTimeout = 180
xf_DebugSessionConnectTimeout = 360

If either of the connect session time-out values is invalid (less than zero, blank, or
alpha), the corresponding default value is used.

The xf_DebugSessionConnectTimeout setting applies only when you use the
debugInit() and debugStart() methods to run an xfServerPlus session
in debug mode.

Calling Synergy Routines from Java
Configuring the xfNetLink Java Properties File

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-9

Call time-out
The call (session communication) time-out (‘C’ in figure 4-2) measures the length
of time that xfNetLink waits for a return from a remote call. This time-out is
measured for each send–receive request between xfNetLink and xfServerPlus. The
default value is 1800 seconds (30 minutes).

To change this value after an object is instantiated, use the setxfCallTimeout()
method. See “Setting a Call Time-Out” on page 8-20. You can also set a call
time-out value for xfServerPlus. See SET_XFPL_TIMEOUT on page 1-31.

 To specify a call time-out

In the xfNetLink Java properties file, specify a value in seconds for
xf_SessionLingerTimeout. For example, to specify a 10-minute time-out, use

xf_SessionLingerTimeout = 600

If the call time-out value is invalid (less than zero, blank, or alpha), the default
value is used.

Specifying Encryption Options
These options are used to specify the certificate file and its password. If these
values are present in the properties file, they are used instead of the defaults. You
can override these values at runtime with the setSSLCertFile(),
setSSLPassword(). The setSSLSecCompliance() method is available to
override the built-in security compliance level. (There is no properties file setting
for it.) See “Method Reference” on page 8-38 for information on the set methods.
See “Using Encryption” on page 3-24 for more information on implementing
encryption.

 To specify a certificate file and password

In the xfNetLink Java properties file, specify the full path and filename of the
certificate file. The default value is the cacerts file located in the
java.home\lib\security directory, where java.home is the JRE installation directory.
(But note that we recommend against using this file, as it will be overwritten any
time Java is updated.) For example,

xf_SSLCertFile = c:\\java\\jre6\\lib\\security\\myCertFile

The default password is “changeit”. Use xf_SSLPassword to specify a different
password. For example,

xf_SSLPassword = myFavPassword

Calling Synergy Routines from Java
Using Your JAR File

8-10  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

 To specify the security compliance level

The security compliance level indicates the protocols to be used for encryption.
You cannot specify this value in the properties file. If you want to override the
system default, you must use the setSSLSecCompliance() method. See “Method
Reference” on page 8-38 for more information on the setSSLSecCompliance()
method.

Using Your JAR File
Once you’ve created and deployed your JAR file, it is ready for use in a JSP or Java
application. This section contains information that the person using your JAR file
for development needs to know.

The machine used by the Java developer must be properly configured. See “Setting
up Your Environment for Development” on page 8-1.

1. Associate the component with your project
Before using the JAR file, you’ll need to associate it with your project in your
development environment. The method for doing this depends on the
environment. If you are using Workbench, first make sure your project is the
active project. Then, select Project > Project Properties. On the Files tab, click the
Add Files button, navigate to the JAR file, and add it.

You can view the methods in the JAR file using the object/class browser supplied
with your development environment. In Workbench, go to the Symbols tab in the
project toolbar and expand the Packages/Namespaces node under the Workspace
node. You’ll see a node for your JAR file. Expand it to see the classes in your JAR
file. Expand the classes to view your own methods, along with the xfNetLink Java
utility methods. The utility methods enable you to establish a connection with
xfServerPlus, disconnect from xfServerPlus, and perform other utility functions,
such as setting properties and running a debug session. See the method reference
on page 8-38 for a complete list of utility methods.

If you are using Java connection pooling, follow the steps in “Using Your
JAR File with Connection Pooling” on page 8-24 instead of the steps in this
section.

Calling Synergy Routines from Java
Using Your JAR File

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-11

2. Import the necessary packages

The import statement enables you to more easily access the classes in the
imported package.

For Java applications, include an import statement for your package so that you
can easily access the classes in your JAR file. You’ll also need to import the
CORBA package so that you can use the “holder” classes (DoubleHolder(),
LongHolder(), etc.). These classes are required to be able to return parameters
from Synergy.

For JSP applications, you do not need to import your package, but you should
import the CORBA package to access the holder classes.

For example, in a Java application:

import com.ABCComputers.ConsultPro.*;
import org.omg.CORBA.*;

In a JSP application:

<%@ page import="org.omg.CORBA.*" %>

3. Instantiate an instance of a procedural class
There are two constructors included in procedural classes: the default constructor
and the “ini file” constructor.

The default constructor takes no parameters. Use it when

 you are using an xfNetLink Java properties file named xfNetLnk.ini that
resides in the directory that your Java application starts in or in the default
location required by your web server and servlet container.

 you are using the “set” methods to specify the host, port number, logging, and
encryption options. If one of these properties is not set with a set method, and
there is a properties file named xfNetLnk.ini present that includes the setting,
the setting in the xfNetLnk.ini file will be used.

For example, to use the default constructor in a Java application:

AppLogin appLog = new AppLogin();

Or, in a JSP page:

<jsp:useBean id="appLog" scope="session"
class="ConsultIt.AppLogin">

Calling Synergy Routines from Java
Using Your JAR File

8-12  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

The “ini file” constructor enables you to pass a Java String naming a specific
properties file. Use it when your properties file is not named xfNetLnk.ini.

For example, to use the ini file constructor:

AppLogin appLog = new AppLogin("myPropFile.ini");

4. Set properties for the client
If you are not using a properties file, use the set methods in the class to set the
properties for xfServerPlus host name and port and logging options. If you are
using a properties file, you can override individual settings in it by using the set
methods. See the method reference on page 8-38 for a complete list of the set
methods.

You must specify the host name and port either with the set methods or in a
properties file. The other properties are optional.

For example:

appLog.setxfHost("elmo");
appLog.setxfPort(2356);
appLog.setxfLogging(true);
appLog.setxfLogfile("c:\\temp\\consult.log");

5. Connect to xfServerPlus
There are several ways to establish the connection with xfServerPlus.

 Use connect(). This is the recommended method. It enables you to make
several calls using the same connection, and then disconnect. There are several
advantages to using connect(): it offers improved performance; you can
maintain state between calls; and you can share this type of connection with
other objects (see next bullet).
When you use connect(), you are instantiating an SWPConnect object,
which then becomes a property of your object. The SWPConnect object is the
actual connection to your xfServerPlus machine.

For example:

appLog.connect();

 Share a connection. Two or more objects can share a connection. This method
improves performance because several objects are sharing the same
xfServerPlus session rather than each object making its own connection. To
share a connection, you must first establish it with connect(), and then use
the getConnect() and shareConnect() methods. These objects then share
a reference to the SWPConnect object.

Calling Synergy Routines from Java
Using Your JAR File

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-13

In the example below, we instantiate two new procedural classes and use the
connect() method to establish a connection for one of them. We then
instantiate the xyz object to hold the connection, and use the getConnect()
method to get it. Finally, we call the shareConnect() method of the
consult object and pass the xyz object. You can pass the same xyz object
multiple times to share the connection among several objects.

AppLogin appLog = new AppLogin();
Consultant consult = new Consultant();
appLog.connect();
java.lang.Object xyz = null;
xyz = appLog.getConnect();
consult.shareConnect(xyz);

 Create the connection automatically. This is referred to as an implied
connection. When you make a call using one of the Synergy methods in your
JAR file, the connection is created automatically and then disconnected when
the call is complete. This is the easiest method to use because it makes access
to xfServerPlus completely transparent. However, this method does not allow
you to maintain state between calls and requires more overhead because a
connection is opened and closed for each call. If you use this method and
experience performance problems, you may want to use an explicit
connect() instead.
In the example below, the consult object is instantiated, and then the
postCharge() method is called, without first calling the connect() method.

Consultant consult = new Consultant();
consult.postCharge(charge, return_msg);

6. Invoke methods in the component
Make calls to your Synergy methods and pass the parameters. If you generated
Javadoc for your JAR file, it will include the information necessary to use the
methods, such as the parameter data types.

For example, to invoke the login() method in the AppLogin class:

String id = new String("MFranklin");
String password = new String("123abc");
appLog.login(id, password);

Parameters that were not flagged as required in the SMC were converted to
required parameters when you generated the Java class wrappers because
you must always pass all parameters in Java.

Calling Synergy Routines from Java
Using Your JAR File

8-14  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

7. Disconnect from xfServerPlus

If you connected to xfServerPlus using the connect() method, you must
disconnect using the disconnect() method. If you have multiple objects sharing
a connection, xfServerPlus will not completely close the connection and release the
license until all objects are disconnected.

For example:

appLog.disconnect();

Using Structures
Repository structures passed as parameters to your Synergy methods are included
in your JAR file as classes. There will be a separate class for each structure and for
each group. The fields in the repository structure will become properties of the
class.

For example, say you have the following repository structure, which is passed to
the login() method.

user
fname ,a25
lname ,a25
maxrate ,d18.2
group address ,a

street ,a20
city ,a20
state ,a2
zip ,d9

endgroup

In your JAR file, you’ll see a class named “User” with the properties Fname,
Lname, and Maxrate; note that the first letter of each field name is capitalized.
There will be a set and get method for each property, named with the property
name (e.g., setFname() and getFname()). Use the set and get methods in the
class to assign values to the properties and retrieve values from them. (If you

See “Appendix D: xfNetLink Java Sample Code” for a complete JSP code
sample.

Calling Synergy Routines from Java
Using Your JAR File

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-15

specified the -ro option when running genjava, fields that are flagged as read-only
in Repository were generated as read-only properties and therefore have a get
method but no set method.)

You’ll also see a class named “Address” in the JAR file.This class represents the
group within User. (Fields defined as struct data type in the repository are treated
the same as group fields.) The group class will also have set and get methods for
accessing its properties (e.g., setStreet() and getStreet()). When you
instantiate a new User object, the User constructor automatically instantiates a
new Address object named Address_str. Consequently, under normal
circumstances, you will not need to access the Address class directly.

If the group is defined as an array in the repository, the Address object instantiated
by the structure class will be named Address_ary. See the example under step 2
on page 8-15.

For additional information about structure classes, see “Understanding the
Generated Classes” on page 7-18. For more information on passing structures as
parameters, and for details on how overlays are handled, see “Passing Structures as
Parameters” on page 1-8.

1. To access the properties, instantiate the structure as a new object. For example:

User user1 = new User();

In our example, this will also instantiate a new object named Address_str, which
represents the address group.

2. If you’re sending data to Synergy, use the class’s set methods to assign values to the
properties. For example:

user1.setFname("Mickey");
user1.setLname("Franklin");
user1.setMaxrate(150.00);

Use the group’s set methods to assign values to the properties of the group class:

user1.Address_str.setStreet("2330 Gold Meadow Way");
user1.Address_str.setCity("Gold River");
user1.Address_str.setState("CA");
user1.Address_str.setZip(956704471)

By default, the properties are named with the repository field names. See
“Passing Structures as Parameters” on page 1-8 for details on overriding the
default name.

Calling Synergy Routines from Java
Using Your JAR File

8-16  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

If the group is an array, use the set methods in the Address_ary object:

user1.Address_ary[0].setStreet("2330 Gold Meadow Way");
user1.Address_ary[1].setStreet("2445 Alpha Lane");

3. Pass the structure object as a parameter when you call the method:

appLog.login(id, password, user1);

4. If data is being returned from Synergy, instantiate new objects to hold the data,
and then use the get methods to obtain the data:

String first = new String();
String last = new String();
double rate = new double();
first = user1.getFname();
last = user1.getLname();
rate = user1.getMaxrate();

The procedure for obtaining data from the properties in the group class is similar.
For example:

String street = new String();
street = user1.Address_str.getStreet();

Using Enumerations
Repository enumerations passed as parameters or return values or referenced as a
field in a structure passed as a parameter are included in your Synergy JAR file as
enum type classes. There will be a separate class, named with the enumeration
name, for each enumeration. Enumerations are supported only when genjava is
run with the -c 1.5 option (or the “Generate classes as version” option is set to 1.5
in Workbench).

The members in the repository enumeration are the values within the enum type.
If you assigned numerical values to the members in repository, they are used for
the integer equivalents assigned to the values in the generated classes. If not, the
integer equivalents are assigned automatically starting with 0 and incrementing by
1. When you create a new instance of an enum type, it has a default value of the
enumerator that has been assigned 0, if you do not explicitly assign a value.
Consequently, when defining your enumeration in the repository, you should
specify as the first member the value you would like to be the default.

Calling Synergy Routines from Java
Using Your JAR File

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-17

Passing “out” and “in/out” parameters
Java doesn’t support a holder class for enumerated types, which means they can’t be
passed as out or in/out parameters. We have included methods in your generated
classes that give you a way to work around this limitation. getIntHolderValue()
gets the integer value of an enumeration member and getEnumeration()
associates that integer value with the enumeration member. See the examples
below.

Examples
The following examples use an enumeration named Color, which has members
Green, Blue, etc. (Note that the first letter of each member name is capitalized.) In
the first example, the enum is passed as an in/out parameter of the EnumTest1()
method, so we use the getIntHolderValue() and getEnumeration() methods.
In the second example, the enum is a field within the AcmeCustomer structure
class.

// Method call with an in/out enum parameter
AcmeCompanyComponent acme = new AcmeCompanyComponent();
acme.Color companyHat = acme.Color.Green;
acme.connect(host, port);
// use IntHolder to get integer value
IntHolder hatColor = companyHat.getIntHolderValue();
//pass IntHolder in method call
acme.EnumTest1(hatColor);
// assign returned value to the companyHat
companyHat = acme.Color.getEnumeration(hatColor);
acme.disconnect();

// Enum field within structure example
AcmeCompanyComponent acme = new AcmeCompanyComponent();
AcmeCustomer customer = new AcmeCustomer(); // structure
Customer.ColorChoice = acme.Color.Blue; // enum field of

acme.Color
acme.connect(host, port);
acme.GetCustomer1(customer);
acme.disconnect();

Calling Synergy Routines from Java
Using Your JAR File

8-18  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Passing Binary Data
You can pass binary data, such as JPEG files, by using an ArrayList.

In the MDU, define the parameter as a “Binary (handle)” data type. (If you
attribute your code, see example G on page 2-19 for instructions on defining a
binary handle.) Your Synergy server routine must declare the argument that
receives the data as a memory handle (i4). xfServerPlus will place the data in a
memory area and pass the memory handle allocated to that area to your Synergy
server routine. After the data has been returned to xfNetLink, xfServerPlus will
free the memory area.

Passing “in” parameters
If the parameter is defined as “in” only in the SMC, in your Java code you will
need to create a byte array and fill it with data, instantiate an ArrayList of byte
arrays, and add the byte array as the first element of the list. Then, you can make
the method call.

For example:

MyJCW JCWinstance = new MyJCW();
JCWinstance.setxfHost("HostMachine");
JCWinstance.setxfPort(2356);
JCWinstance.connect();

 byte[] inba = new byte[67000]; //Create the byte[]
 . //Fill byte[] with data
 .
 .

Binary fields in structures are converted to byte arrays (when genjava is run
with the -c 1.5 option or the “Generate classes as version” option is set to
1.5 in Workbench). However, if you want to pass binary data such as JPEG
files, you should use the procedure described in this section, rather than a
binary field in a structure, because the latter requires that you specify a size.

This example presumes that genjava was run with the -c 1.5 option (or that
“Generate classes as version” was set to 1.5 in Workbench), which generates
generic ArrayLists. Consequently, it shows instantiating an ArrayList of byte
arrays. When classes are generated as version 1.2, the ArrayLists are not
generic, and the client code should instantiate a plain ArrayList.

Calling Synergy Routines from Java
Using Your JAR File

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-19

//Create ArrayList of byte arrays
 ArrayList<byte[]> al = new ArrayList<byte[]>();
 al.add(inba); //Add byte[] as first element of ArrayList
JCWinstance.BinaryArrayMethod(al); //Call XFPL method
JCWinstance.disconnect();

Passing “out” parameters
For “out” only parameters, in your Java code you will need to instantiate an
ArrayList of byte arrays, call the method, and then extract the byte array from the
first element of the ArrayList using the ArrayList.get() method. For example:

MyJCW JCWinstance = new MyJCW();
JCWinstance.setxfHost("HostMachine");
JCWinstance.setxfPort(2356);
JCWinstance.connect();

// Create ArrayList of byte arrays
 ArrayList<byte[]> al = new ArrayList<byte[]>();
 JCWinstance.BinaryArrayMethod(al); //Call XFPL method
 byte[] rtnba = (byte[])al.get(0); //Extract byte[]
 // from first element
JCWinstance.disconnect();

Passing “in/out” parameters
For “in/out” parameters, in your Java code you will need to create a byte array and
fill it with data, instantiate an ArrayList of byte arrays, add the byte array as the
first element of the list, and then call the method. When the data is returned, you
will extract the byte array from the first element of the ArrayList using the
ArrayList.get() method. For example:

MyJCW JCWinstance = new MyJCW();
JCWinstance.setxfHost("HostMachine");
JCWinstance.setxfPort(2356);
JCWinstance.connect();

 byte[] inba = new byte[67000]; //Create the byte[]
 . //Fill byte[] with data
 .
 .

//Create ArrayList of byte arrays
ArrayList<byte[]> al = new ArrayList<byte[]>();

 al.add(inba); //Add byte[] as first element of ArrayList
JCWinstance.BinaryArrayMethod(al); //Call XFPL method
 inba = (byte[])al.get(0); //Extract byte[] from first element
JCWinstance.disconnect();

Calling Synergy Routines from Java
Using Your JAR File

8-20  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Setting a Call Time-Out

Use the setxfCallTimeout() method to set the call time-out value in seconds.
The call time-out measures the length of time that the Java client waits for a return
from a remote call to xfServerPlus. (This is ‘C’ in figure 4-2 on page 4-5.) This
time-out is measured for each send–receive request between the client and
xfServerPlus. The default value is 1800 seconds (30 minutes).

The call time-out can also be set in the xfNetLink Java properties file with
xf_SessionLingerTimeout. Using the setxfCallTimeout() method enables
you to change the properties file setting after the object has been instantiated.
Once the call time-out value has been set with setxfCallTimeout(), it will
continue to be used for all subsequent calls in the current session until it is reset
with another invocation of this method.

If you are using shared connections, you can call this method on any object that is
sharing the connection, and it will affect all objects that share that connection.

For example, to set the call time-out to 10 minutes, use

AppLogin appLog = new AppLogin();
appLog.setxfCallTimeout(600);

For information on specifying a call time-out value in the properties file, see “Call
time-out” on page 8-9. To set a call time-out value for xfServerPlus, see
SET_XFPL_TIMEOUT on page 1-31.

You must explicitly create a connection with the connect() method to use
setxfCallTimeout().

When using pooling, if setxfCallTimeout() is called on an object, when
the object is returned to the pool, the time-out will be reset to the
xf_SessionLingerTimeout value (if specified) or to the default of 1800
seconds.

When you use Java connection pooling, there is a special call time-out that
applies only to the pooling support methods. For information, see
“Specifying pool time-out values” on page 8-31.

Calling Synergy Routines from Java
Using Your JAR File

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-21

Writing to the xfServerPlus Log

Use the setUserString() method to pass a user string that is written in the
xfServerPlus log. This string is stored, and the value set can be retrieved with
getUserString(). You can, for example, use this method to write the current
client in the log.

To use this method, server-side logging must be enabled (see “Using Server-Side
Logging” on page 3-33) and there must be an entry for the XFPL_LOG
subroutine in the SMC. By default, XFPL_LOG is included in the SMC; see
“Using the xfServerPlus Application Program Interface” on page 1-30.

For example, if your login routine stored the user name in a string called
username, you could write it to the log like this:

appLog.setUserString(username);

You can then retrieve the string you set. Note that getUserString() only gets the
string from setUserString(); it does not retrieve it from the xfServerPlus log.
For example:

String abc = new String();
abc = appLog.getUserString();

You must explicitly create a connection with the connect() method to use
setUserString() or getUserString().

Calling Synergy Routines from Java
Understanding Java Pooling

8-22  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Understanding Java Pooling
Java pooling enables you to create a “pool” of connections to xfServerPlus that are
active and ready to use when a client sends a request. You can specify the
minimum and maximum pool size, time-out values, and whether connections in
the pool should be reused.

Depending on the requirements of your application, pooling can significantly
improve performance by reducing the time necessary to establish connections and
perform initialization processing. When connections are pooled, they are ready to
go whenever the application makes a request, improving application
responsiveness, especially on the client side. Pooling is of most benefit in JSP
applications and in other Java applications, such as J2EE™ applications, where a
single Java Virtual Machine instance is used.

How pooling works
When the pool starts up, it reads values from a pooling properties file to determine
the configuration of the pool. The pool is populated with the minimum number
of connections specified in the pooling properties file. (We recommend a
minimum of at least three connections.) If you have written an initialization
method (recommended), it is run when the connections are added to the pool.

When a client requests a connection, the request is satisfied from the connections
available in the pool. Any Java class wrapper object that calls the usePool()
method can use a connection from the pool. If no connection is available, a new
one is created, up to the maximum size of the pool. Once the maximum is
reached, requests can be queued for a specified length of time. The connections in
the pool do not time out.

Reusing or discarding connections
When the client releases a connection, you can specify that it be either returned to
the pool or discarded. By default, all connections are discarded after use; however,
we recommend connections be returned to the pool for reuse if possible because it
will improve performance, especially on the server side of your application.

To specify that connections be returned to the pool for reuse, set the returnPool
option in the pooling properties file. However, if an untrapped exception is
thrown on the connection, it is discarded, regardless of how this option is set.
(Errors that your application traps do not automatically cause the connection to be
discarded; the disposition of the connection depends on how your application
handles it.)

Calling Synergy Routines from Java
Understanding Java Pooling

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-23

In general, stateless connections may be returned to the pool, while connections
with state (that is, those that persist data) should be discarded after use. The
Synergy process that is attached to the connection may have state depending on
whether the object that used the connection has state. Discarding a connection
releases resources and ensures that the next client request receives a “clean”
connection. If you decide to reuse connections, you can perform cleanup
processing with the pooling support methods.

Error logging
Using an option in the pooling properties file, you can specify that any errors that
occur during pooling be written to a log file. You can specify that informational
messages be logged as well. See “Specifying pool logging options” on page 8-30 for
more information.

Calling Synergy Routines from Java
Implementing Pooling

8-24  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Implementing Pooling
This section explains how to use your generated JAR file with connection pooling,
how to set up and use a pooling properties file, and how to use the pooling support
methods.

Using Your JAR File with Connection Pooling
This section contains information that the person using your JAR file for
development needs to know. The machine used by the Java developer must be
properly configured. (See “Setting up Your Environment for Development” on
page 8-1 for details.) The code examples in this section use JSP, since that is the
primary use for Java connection pooling.

1. Associate the component with your project
Before using your JAR file, you’ll need to associate it with your project in your
development environment. The method for doing this depends on the
environment. See step 1 on page 8-10 for details.

2. Import the necessary packages
The import statement enables you to more easily access the classes in the
imported package.

You will need to import the CORBA package so that you can use the “holder”
classes (DoubleHolder(), LongHolder(), etc.). These classes are required to be
able to return parameters from Synergy.

We recommend that you import the Synergex.util package to make it easier to
access methods of the SWPManager() class, which are required for pooling. (The
example code in this section assumes this package is imported.)

For example:

<%@ page import="org.omg.CORBA.*" %>
<%@ page import="Synergex.util.*" %>

3. Create the pool
The SWPManager.getInstance() method is used to instantiate an instance of
the pool at application level. The SWPManager class uses a singleton pattern. This
means that there can be only a single instance of the class and that it is global by
nature. Consequently, the first time your application calls getInstance(), it will
instantiate an instance of the pool. Subsequent calls to getInstance() will get an
instance of the pool for use on a particular JSP page.

Calling Synergy Routines from Java
Implementing Pooling

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-25

The getInstance() method uses the settings in the pooling properties file and
the xfNetLink Java properties file to instantiate the pool(s) of connections. For JSP,
you should put the initial call to getInstance() in your application’s start-up
page because the pool creation process may take a few moments. (The minimum
number of connections must be created, initialization methods run, cleanup
methods registered, etc.)

You can also pass the pooling properties file to use with the getInstance()
method. See SWPManager on page 8-46 for an example.

For example:

SWPManager poolMgr = SWPManager.getInstance();

4. Get an instance of the pool
Once the pool is created, you must get an instance of it in each JSP page that uses
connection pooling. As explained above, after the initial call to getInstance(),
subsequent calls will get an instance of the pool to use in a particular page.

For example:

SWPManager poolMgr = SWPManager.getInstance();

5. Instantiate an instance of a procedural class
Use the default constructor to instantiate a new instance of a procedural class in
your generated JAR file. (Do not use the “ini file” constructor with pooling.)

For example:

<jsp:useBean id="appLog" scope="session"
class="ConsultIt.AppLogin">

6. Indicate that pooling will be used
Call the usePool() method on your object to indicate that this object will use a
connection from the pool. Pass as parameters the ID of the pool that you want to
get a connection from and the instance of the pool manager. The pool ID
(“custPool” in our example) is defined in the pooling properties file. (See “Setting
Up a Pooling Properties File” on page 8-26.) The usePool() method is one of the
public utility methods that is included when you build your JAR file. (See the
method reference on page 8-38.)

For example:

appLog.usePool("custPool", poolMgr);

Calling Synergy Routines from Java
Implementing Pooling

8-26  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

7. Get a connection, invoke methods in the component, disconnect

Call the connect() method to get a connection from the pool. You can then
make calls to your Synergy methods, and call disconnect() when you are done.
This part of your application is coded the same whether you are using pooling or
not. You can also use an implied connection or share connections when you are
using pooling. See step 5 on page 8-12 for more information about the different
ways to connect.

For example:

appLog.connect();
String id = new String("MFranklin");
String password = new String("123abc");
appLog.login(id, password);
.
.
.
appLog.disconnect();

Setting Up a Pooling Properties File
The pooling properties file defines settings, such as the size of the pool, used by
Java connection pooling. This file is required. If the file is named
xfPool.properties and placed in either the Java application directory or in the
directory required by your web server and servlet container, you can use the
getInstance() method that doesn’t take any parameters; it will use this default
file. However, you can choose to name the pooling properties file differently and
place it elsewhere and then use one of the getInstance() methods that passes the
properties file. See SWPManager on page 8-46 for details on these methods.

There is a sample pooling properties file included in the Examples directory that is
part of the xfNetLink Java distribution. You can copy the sample file to the correct
location and modify it, or you can create your own text file with the necessary
settings to use as a properties file.

The pooling properties file supports multiple pools, each of which is identified by
a pool ID. The file must identify at least one, named pool using the syntax

poolID.pool

where poolID is the name of the pool. For example:

orderPool.pool

Calling Synergy Routines from Java
Implementing Pooling

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-27

The pool ID must precede each pool-specific setting in the file. Logging level and
log filename are not pool-specific; all pools use a single log file. See the sample
pooling properties file on page 8-32.

Why use multiple pools?
By using multiple pools, you can specify that different pooling support methods
be called for different objects. You may even have some objects that require no
pooling support methods. For example, you might have a customer object and an
order object, which require different initialization methods. You can create two
pools, custPool and orderPool, and reference the appropriate initialization method
ID for each pool. Then, when calling the usePool() method on the customer
object, pass the custPool ID; and when calling the usePool() method on the
order object, pass the orderPool ID. If you need to retrieve the pool ID, use the
getPoolName() method. (See the method reference on page 8-38.)

Using multiple pools also enables you to have multiple xfNetLink Java properties
files with different settings in each file. This will enable you to, for example, run
xfServerPlus on more than one port or on different machines.

The table below shows the settings that can be included in the pooling properties
file. Each is discussed in more detail in the following pages. With the exception of
the two logging settings, each setting in the pooling properties file must be
preceded by the pool ID. There is a sample properties file on page 8-32.

TIP
To include comments in the pooling properties file, precede the comment
with a number sign (#).

Settings in the Pooling Properties File

Setting Description See page

minPool (required) The minimum number of connections to
be maintained in the pool.

8-29

maxPool (required) The maximum number of connections to
be maintained in the pool.

8-29

propertiesFile (required) The path and filename of the
xfNetLink Java properties file to use.

8-29

poolReturn Boolean value that indicates whether the
connection should be discarded or returned to the
pool for reuse.

8-29

Calling Synergy Routines from Java
Implementing Pooling

8-28  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

poolLogFile Filename that logging information will be
written to.

8-30

poolLogLevel Level of logging desired. Possible values are none,
error, and all. If poolLogFile is specified and
poolLogLevel is not specified, error level logging will
take place.

8-30

connectWaitTimeout Number of seconds that the getConnection()
method will continue checking for a connection
from the pool.

8-31

poolMethodTimeout Number of seconds that xfNetLink will wait for a
return from a remote call to xfServerPlus when any
of the five pooling support methods are called.

8-31

initializationTimeout (Deprecated in 10.1.1c; superseded by
poolMethodTimeout) Number of seconds that
xfNetLink will wait for a return from a remote call
when the pool is being started. This value controls a
special call time-out that applies only to the method
specified with initializationMethodID.

8-31

initializationMethodID Method ID of the Synergy method that will be
called each time a new connection is added to the
pool.

8-32

activationMethodID Method ID of the Synergy method that will be
called each time getConnection() is called.

8-32

deactivationMethodID Method ID of the Synergy method that will be
called each time a connection is freed.

8-32

poolableMethodID Method ID of the Synergy method that will be
called after the method specified by
deactivationMethodID is called.

8-32

cleanupMethodID Method ID of the Synergy method that will be
called each time a connection is discarded (i.e., not
returned to the pool for reuse).

8-32

Settings in the Pooling Properties File (continued)

Setting Description See page

Calling Synergy Routines from Java
Implementing Pooling

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-29

Specifying the pool size
You must specify the minimum and maximum size of each pool defined in the
pooling properties file. The minPool and maxPool settings are required.

Use minPool to indicate the number of connections you want created at pool
start-up. The minimum value for minPool is 1, but we recommend you set it to at
least 3 to improve the responsive of your application.

Use maxPool to indicate the maximum number of connections that you want in
the pool at any one time. When deciding how large to make the pool, keep in
mind how many xfServerPlus licenses you have available and the number of
connections in all the pools. The maximum size of all connection pools should not
exceed the number of available licenses.

Remember to precede minPool and maxPool with the pool ID. For example:

poolID.minPool=5
poolID.maxPool=20

Specifying the xfNetLink Java properties file to use
When using Java connection pooling, you must use an xfNetLink Java properties
file to specify information such as the host name and port. Using the “set”
methods that were included when you built your JAR file will have no effect. Use
the propertiesFile setting in the pooling properties file to specify the filename and
location of the xfNetLink Java properties file you will be using. This setting is
required.

When you are using pooling, you can name the properties file anything you like
and place it anywhere on the xfNetLink Java machine because the setting in the
pooling properties file enables xfNetLink to find it. In addition, you can have
more than one properties file (one per pool, if desired), even for a JSP application.

For example:

poolID.propertiesFile=c:\\tomcat\\conf\\poolxfnj.properties

Specifying whether connections should be returned to
the pool
When a connection is released, it can be either returned to the pool for reuse or
discarded. We recommend returning connections to the pool whenever possible
for improved performance. See “Reusing or discarding connections” on page 8-22
for more information on when connections can be reused. Set poolReturn to true
to indicate that connections should be returned to the pool. Set poolReturn to
false to indicate that they should be discarded.

Calling Synergy Routines from Java
Implementing Pooling

8-30  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

For example:

poolID.poolReturn=true

If poolReturn is not set, connections will be discarded.

You can also control whether connections are returned to the pool at runtime by
writing a “poolable” method and specifying it with the poolableMethodID
property. See “Specifying the pooling support methods to call” on page 8-32 and
“Pooling support methods” on page 8-35.

Specifying pool logging options
You can specify that errors and actions related to the creation and maintenance of
the pool be logged. All pools use a single log file, so you don’t need to specify the
pool ID.

For additional information on pooling logging, including sample log files, see
“Using Pooling Logging” on page 9-10.

 To turn logging on

1. Specify a log filename with the poolLogFile property. For example:

poolLogFile=c:\\work\\Myfile.log

Myfile.log is created if it does not exist; if the file already exists, additional material
is appended to the end. To place the file in a specific location, specify the full path
name, using double slashes as shown in the example above. If you do not specify a
path, the file is created in the current working directory. Note that a filename is
required to turn on pooling logging.

2. Specify a logging level with the poolLogLevel property. The available options are
as follows:

 error. Only errors and exceptions will be logged. This setting is recommended
in production environments.

 all. Informational messages, such as those generated when the pool is started,
will be logged in addition to errors and exceptions. InUse and inPool counts
are also included. This setting is not recommended only during development.

 none. No logging will take place. Use this option to turn logging off without
removing the logging settings from the pooling properties file.

Calling Synergy Routines from Java
Implementing Pooling

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-31

For example:

poolLogLevel=error

If poolLogFile is specified and poolLogLevel is not specified, error level logging
will take place.

Specifying pool time-out values
There are two time-out values that can be specified in the pooling properties file,
connectWaitTimeout and poolMethodTimeout.

 The connectWaitTimeout value determines how long the
SWPManager.getConnection() method will continue to check for a
connection from the pool. If a connection is available, it will return
immediately. If no connection is available, getConnection() will check for a
free connection every one-tenth of a second for the number of seconds that
connectWaitTimeout is set to before returning null. (For example, if
connectWaitTimeout is set to 20, getConnection will check every one-tenth
of a second for up to 20 seconds.) If connectWaitTimeout is not specified,
getConnection() will not wait, and will immediately return null if no
connection is available. We recommend you set connectWaitTimeout as there
is no default value for this time-out.

 The poolMethodTimeout value determines the call time-out for the five
pooling support methods (initialize, activate, deactivate, poolable, cleanup).
The default is 60 seconds. We recommend that the poolMethodTimeout
value be smaller than connectWaitTimeout (if set). If poolMethodTimeout is
larger, the connectWaitTimeout value is used instead.

Note: The poolMethodTimeout setting replaces the deprecated
initializationTimeout as of version 10.1.1c. If initializationTimeout is set and
poolMethodTimeout is not set, initializationTimeout will be used. If both are
set, poolMethodTimeout will be used instead.

 To specify time-out values

Specify a value in seconds for connectWaitTimeout and poolMethodTimeout.

For example:

poolID.connectWaitTimeout=60
poolID.poolMethodTimeout=30

Calling Synergy Routines from Java
Implementing Pooling

8-32  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Specifying the pooling support methods to call
Java connection pooling supports the use of five pooling support methods. These
are Synergy methods that you write, which are then called automatically at certain
points during the lifetime of the connection pool. Using the pooling support
methods is optional. (See “Using the Pooling Support Methods” on page 8-34 for
more information on writing the methods.)

To use the pooling support methods, you must specify them by method ID—not
method name—in the pooling properties file.

For example:

poolID.initializationMethodID=poolInit
poolID.activationMethodID=poolActivate
poolID.deactivationMethodID=poolDeactivate
poolID.cleanupMethodID=poolClean
poolID.poolableMethodID=poolReuse

Sample pooling properties file
The sample pooling properties file below includes logging settings that will be
applied to all pools, along with settings for two pools. For “orderPool”, we
specified all settings. For “custPool”, we specified only the required settings;
default values will be used for all unspecified settings.

Property settings for all pools
poolLogLevel=error
poolLogFile=c:\\tomcat\\logs\\Myfile.log

Property settings for order pool
orderPool.pool
orderPool.minPool=3
orderPool.maxPool=6
orderPool.poolReturn=true
orderPool.connectWaitTimeout=45
orderPool.poolMethodTimeout=30
orderPool.propertiesFile=c:\\tomcat\\conf\\poolxfnj.properties
orderPool.initializationMethodID=poolInit
orderPool.activationMethodID=poolActivate
orderPool.deactivationMethodID=poolDeactivate
orderPool.cleanupMethodID=poolClean
orderPool.poolableMethodID=poolReuse

Property settings for customer pool
custPool.pool
custPool.minPool=5
custPool.maxPool=10
custPool.propertiesFile=c:\\tomcat\\conf\\poolxfnj.properties

Calling Synergy Routines from Java
Implementing Pooling

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-33

Pool Maintenance
The SWPManager class includes several methods that you can use to change the
pool configuration: resetPoolProperties(), returnToMinimum(),
shutdown(), and shutdownInPool(). We recommend that you write a separate
utility method or JSP page that calls these methods and can be accessed by the
system administrator.

Updating the properties files
You may need to change settings in the pooling properties file or the
xfNetLink Java properties file after the application has been started. Once you
have updated the properties file(s), call the resetPoolProperties() method
from your administrative page, passing the ID of the pool to update. This method
closes down all of the free connections in the specified pool and then restarts the
pool with the minimum number of connections. (Connections that are in use will
be discarded when they are released, even if poolReturn is set to true.) The new
settings in the pooling properties file are read when the pool is restarted, as are the
settings in the xfNetLink Java properties file used by that pool. For more
information about resetPoolProperties(), see SWPManager on page 8-46.

Alternatively, you can stop and restart the application to update the properties
files. To do this, you have to shut down your web server or servlet container. The
new pool will be created using the new values.

Returning the pool to the minimum size
You can call the returnToMinimum() method to return a specific pool to the size
specified with minPool, thereby freeing up xfServerPlus licenses so that they can be
used by other pools. For example, when poolReturn is set to true, the pool may
grow to the maximum size and then, because all connections are being returned to
the pool, remain at the maximum. (When poolReturn is set to false, the pool will
always be maintained at the minimum size, so calling returnToMinimum() will
have no effect.) Rather than including returnToMinimum() in a JSP page that can
be accessed by the system administrator, you may want to call it periodically in
your application.

For more information about returnToMinimum(), see SWPManager on
page 8-46.

Calling Synergy Routines from Java
Implementing Pooling

8-34  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Shutting down the pool
There are two methods that shut down the pool, shutdown() and
shutdownInPool(). Call one of these methods when closing down your
application.

When the shutdown() method is called, all connections in all pools, as well as all
in-use connections, are closed and the pools are destroyed. Deactivation and
cleanup methods are called if implemented. You can shut down all pools or you
can choose to shut down a specific pool by passing a pool ID as the parameter. The
next call to getInstance() will restart the pool(s).

When the shutdownInPool() method is called, all connections in all pools are
shut down, but connections that are in use are not terminated until they are
released, at which point they are discarded (even if poolReturn is set to true).
Deactivation and cleanup methods are called if implemented. You can shut down
all pools or you can choose to shut down a specific pool by passing a pool ID as
the parameter. The next call to getInstance() will restart the pool(s).

Using the Pooling Support Methods
Java connection pooling supports five optional user-defined methods that are
called automatically at specified times during the life of the pool. These methods
enable you to specify that certain actions be performed at specified times during
the connection’s creation and use.

 To use the pooling support methods

1. Write Synergy routines that perform the desired tasks. You can have several
routines of the same type, if necessary (e.g., two initialization routines for two
different pools), and the routines can be named anything you like. See “Pooling
support methods” on page 8-35 for the syntax your routine should use, a
description of the purpose of each method, and when each method is called.

2. Add the routines to the SMC, using either the Method Definition Utility or by
attributing the Synergy code, running dbl2xml, and then importing the XML file.
If you use the MDU, you do not need to specify an interface name, as these
routines will not be included in the generated JAR file. (Because you do not call
these methods directly, there is no reason to include them in the JAR file.)
However, dbl2xml requires an interface name; we recommend you use a different
interface name than is used for your procedural methods to avoid including the
pooling support methods when you build the JAR file.

Calling Synergy Routines from Java
Implementing Pooling

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-35

3. Include the Synergy routines when you build your ELB. You can put them in the
same ELB as the other Synergy routines you prepared for remote calling, or you
can put them in a separate ELB.

4. Specify the method ID—not the method name—of each routine in the pooling
properties file, using the property that corresponds to the type of routine. See
“Specifying the pooling support methods to call” on page 8-32.

Pooling support methods
The methods are described below in the order in which they are called during a
connection’s lifetime.

Initialization method

status = initialization_method()
status–a ^VAL value that indicates whether the initialization method was
successful. Returns 0 for success or 1 for failure. If the return value is 1, the
pool will not be created, xfPoolException will be thrown, and an error will
be recorded in the pooling log (assuming logging is turned on).

This method is called each time a new connection is added to the pool. You
can use this method to prepare the environment by opening files, initializing
global data, and so forth. Because the initialization method is called when the
connection is created, it gets called only once per connection, even if the
connection is returned to the pool for reuse. Compare with the activation
method.

Activation method

activation_method()

The activation method is called when the connection is requested by a client.
This method can be used for code that should be executed when the
connection is actually used.

Both the activation and the initialization methods can be used for similar
purposes—preparing the environment before using the connection. The
primary difference between them is that the activation method is called every
time the connection is allocated to a client, whereas the initialization method
is called only once when the connection is added to the pool. Consequently, to
improve performance, it is recommended that you use an initialization
method instead of an activation method where possible.

Calling Synergy Routines from Java
Implementing Pooling

8-36  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Deactivation method

deactivation_method()

The deactivation method is called when a connection is released. It can be
used to reset the environment to a known state before a connection is returned
to the pool. Because connections can be reused, this method may be called
numerous times. Compare with the cleanup method.

Poolable method

status = poolable_method()
status–a ^VAL value that indicates whether the connection should be
discarded or reused. Returns 0 if the connection should be discarded; returns
1 if the connection should be returned to the pool for reuse.

The poolable method is called after the deactivation method and can be used
to determine at runtime if a connection should be returned to the pool or
discarded. For example, if the deactivation method encounters an error, the
poolable method could check how much effort is required to clean up the
connection before returning it to the pool. If the effort is excessive, and it
would be more efficient to discard the connection and create a new one, the
poolable method would return 0. See “Reusing or discarding connections” on
page 8-22 for more information on when connections can be reused.

The poolable method overrides the poolReturn setting in the pooling
properties file.

Cleanup method

cleanup_method()

The cleanup method is called each time a connection is discarded from the
pool. This includes when poolReturn is set to false, when the poolable method
returns 0, or when any of the following methods in the SWPManager class are
called: shutdown(), shutdownInPool(), resetPoolProperties(),
returnToMinimum(). The cleanup method can be used to do final cleanup
on the connection. If the connection is going to be reused, use the
deactivation method instead to perform cleanup-type activities.

The cleanup method is also called when socket communication with the client
is unexpectedly lost. When the pool is created, the cleanup method is
automatically registered with the XFPL_REGCLEANUP routine on the
server. (This routine must be in your SMC; see XFPL_REGCLEANUP on
page 1-34.) Then, if there is a fatal error that causes xfServerPlus to lose socket
communication with the client, xfServerPlus calls the cleanup routine before
shutting down.

Calling Synergy Routines from Java
Deploying Your xfNetLink Java Application

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-37

Deploying Your xfNetLink Java Application
Follow these steps when you are ready to deploy your application at a customer
site. For details on deploying the xfServerPlus side of your application, see
“Deploying the Server” on page 3-49.

1. Install the version of the Java Runtime Environment that is compatible with your
application.

2. Install xfNetLink Java.

3. Set the classpath to point to the xfNLJava directory. See “Setting the Classpath” on
page 7-6.

4. Test your setup. See “Testing xfNetLink Java” on page 9-12. (Requires that
xfServerPlus also be set up.)

5. Copy your JAR file and the other files required for your application to the
customer’s machine.

6. (optional) Configure the xfNetLink Java properties file (or copy your version of
the file to the customer’s machine). If you’re creating a web application, put the
properties file in the location required by your web server. This will vary
depending on which web server software and servlet container you are using. For
other Java applications, put it in the same directory as the Java application.

7. If your application uses Java connection pooling, copy the pooling properties file
to the location required by your application, and then run the client application to
populate the pool. Running the client application ensures that the pool is ready to
use when the first user requests a connection.

If your Java application connects to a server with IPv6 addressing, you may
need to specify the networking properties java.net.preferIPv4Stack and/or
java.net.preferIPv6Addresses. For example, to use IPv6 instead of IPv4, you’d
use the following:

java.net.preferIPv4Stack=false
java.net.preferIPv6Addresses=true

These properties are checked only once, at startup, so they are best set on
the Java command line with the -D option. For details, consult the Oracle
Java documentation

Calling Synergy Routines from Java
Method Reference

8-38  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Method Reference
Listed below are the public utility methods included in the procedural classes in
your Synergy JAR file. All of these methods are available in all procedural classes
with the exception of the four enumeration methods, which are included only
when needed.

connect()

public void connect() throws xfJCWException

Sends a request to xfServerPlus for a dedicated connection and connects on
the host and port defined in the xfNetLink Java properties file or specified
with setxfHost() and setxfPort(). See “Connect to xfServerPlus” on
page 8-12.

debugInit()

public void debugInit(String clientIP, StringBuffer listeningIP,
StringBuffer listeningPort) throws xfJCWException

Initializes a connection to xfServerPlus so you can manually start an
xfServerPlus session in debug mode. See “Running an xfServerPlus Session in
Debug Mode” on page 9-14.

clientIP–the IP or name of the xfNetLink Java client machine

listeningIP–returns the IP address, in hex, where the client is listening

listeningPort–returns the port number where the client is listening

debugStart()

public void debugStart(String clientIP) throws xfJCWException

Completes the process of connecting in debug mode that was started with
debugInit(). See “Running an xfServerPlus Session in Debug Mode” on
page 9-14.

clientIP–the IP or name of the xfNetLink Java client machine

disconnect()

public void disconnect()

Sends a message to xfServerPlus to close the connection. If an exception
occurs, it is written to the log file, if client-side logging is enabled. (This
exception is written to logfilename.log. See also “Disconnect from
xfServerPlus” on page 8-14.)

Calling Synergy Routines from Java
Method Reference

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-39

getConnect()

public Object getConnect() throws xfJCWException

Returns the already-established connection of the specified object. See
“Connect to xfServerPlus” on page 8-12.

getEnumeration()

public static getEnumeration(intHolder enumVal)

Associates an integer value with an enumeration member. This method is used
in conjunction with getIntHolderValue() when you need to pass an
enumeration parameter as in/out or out. See “Using Enumerations” on
page 8-16.

enumVal–the value that was obtained with getIntHolderValue()

getEnumeration()

public static getEnumeration(int enumVal)

Associates an integer value with an enumeration member. This method is
called by the getEnumeration() method above; you do not need to call it
directly.

enumVal–the value that was obtained with getIntValue()

getIntHolderValue()

public intHolder getIntHolderValue()

Returns an intHolder with the value of the enumeration member. This
method is used in conjunction with getEnumeration() when you need to
pass an enumeration parameter as in/out or out. See “Using Enumerations” on
page 8-16.

getIntValue()

public int getIntValue()

This method is called by getIntHolderValue(); you do not need to call it
directly.

The getEnumeration(), getIntHolderValue(), and getIntHolder()
methods are included in a procedural class only when that class includes a
method that has a parameter or return value that is an enumeration, or
when a structure passed as a parameter includes an enumeration field.

Calling Synergy Routines from Java
Method Reference

8-40  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

getPoolName()

public String getPoolName()

Returns the pool ID that was used in the call to the usePool() method by
this object. If there is no pool (i.e., the usePool() method has not been called
on this object), returns a null string.

getSSLCertFile()

public String getSSLCertFile()

Returns the path and filename of the certificate file stored by
setSSLCertFile(). For more information on encryption, see “Using
Encryption” on page 3-24.

getSSLPassword()

public String getSSLPassword()

Returns the certificate file password stored by setSSLPassword(). For more
information on encryption, see “Using Encryption” on page 3-24.

getSSLSecCompliance()

public int getSSLSecCompliance()

Returns the security compliance level (0, 1, or 2) set by
setSSLSecCompliance(). See setSSLSecCompliance() on page 8-41 for
what these values mean. For more information on encryption, see “Using
Encryption” on page 3-24.

getSynergyWebProxy()

public SynergyWebProxy getSynergyWebProxy()

Returns the internal instance of the SynergyWebProxy (i.e., the connection).
If there is no connection, returns null.

getUserString()

public String getUserString()

Returns the string currently stored by setUserString(). See “Writing to the
xfServerPlus Log” on page 8-21.

getxfHost()

public String getxfHost()

Returns the host name that was set with setxfHost().

Calling Synergy Routines from Java
Method Reference

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-41

getxfLogfile()

public String getxfLogfile()

Returns the name of the client-side log file that was set with
setxfLogfile().

getxfPort()

public int getxfPort()

Returns the port number that was set with setxfPort().

setSSLCertFile()

public void setSSLCertFile(String certFileName)

Sets the certificate file to be used for xfNetLink Java network encryption. For
more information on encryption, see “Using Encryption” on page 3-24.

certFileName–the path and filename of the certificate file to use

setSSLPassword()

public void setSSLPassword(String password)

Sets the password associated with the certificate file. For more information on
encryption, see “Using Encryption” on page 3-24.

password–the password associated with the certificate file

setSSLSecCompliance()

public void setSSLSecCompliance(int level)

Sets the security compliance level to indicate which protocols should be used
for encryption. For more information on encryption, see “Using Encryption”
on page 3-24.

level–the security compliance level. One of the following:

0 = always use whatever the current Synergy default is
1 = use protocols TLS 1.0, TLS 1.1, TLS 1.2 (default)
2 = use protocols TLS 1.1 and TLS 1.2

If encryption is enabled and the security compliance level is not specified with
this method, the default is used. The security compliance level should be set to
the same value on the xfNetLink machine as it is on the xfServerPlus machine.

JDK 1.5 and 1.6 support only TLS 1.0. For TLS 1.1 and 1.2 support, you must
use JDK 1.7 or higher.

Calling Synergy Routines from Java
Method Reference

8-42  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

setUserString()

public void setUserString(String userString) throws
xfJCWException

Passes a user string to the xfServerPlus log. See “Writing to the xfServerPlus
Log” on page 8-21.

userString–the text that you want to write to the xfServerPlus log

setxfCallTimeout()

public void setxfCallTimeout(int seconds) throws xfJCWException

Sets the call time-out value, which measures the length of time that the client
waits for a return from a remote call. See “Setting a Call Time-Out” on
page 8-20.

seconds–the number of seconds you want the xfNetLink Java client to wait
for a return from a call to xfServerPlus. The default is 1800 seconds (30
minutes).

setxfExceptOnly()

public int setxfExceptOnly(boolean logging)

Turns on error-only client-side logging when used in conjunction with
setxfLogging(). See “Using Client-Side Logging” on page 9-7 for details
and an example.

logging–When set to true, activates error-only logging.

setxfHost()

public void setxfHost(String hostName)

Specifies the host name of the server machine.

hostName–the IP address or host name of the machine where xfServerPlus is
running

setxfLogfile()

public int setxfLogfile(String logFilename)

Specifies the name of the log file for client-side logging. If not specified, data is
sent to stderr. See “Using Client-Side Logging” on page 9-7 for details and an
example.

logFilename–the filename to which you want logging output written. To
specify an exact location, use a full path with double slashes as separators. If no
path is specified, the file will be placed in the current directory. If the file does
not exist, it is created; if it already exists, additional material is appended to

Calling Synergy Routines from Java
Method Reference

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-43

the end. Some logging output also goes to this filename with JCW appended
to the end (logfilenameJCW.log); see “Using Client-Side Logging” on page 9-7
for details on file naming and what information goes to which file.

setxfLogging()

public int setxfLogging(boolean logging)

Turns on full client-side logging. If used in conjunction with
setxfExceptOnly(), turns on error-only logging. See “Using Client-Side
Logging” on page 9-7 for details and an example.

logging–When set to true, activates full logging (exceptions, packets,
methods and their parameters).

setxfPort()

public void setxfPort(int port)

Sets the port number of the machine on which xfServerPlus is running.

port–the port number that xfServerPlus is listening on for remote session
requests. Must in the range 1024 through 65534. The default is 2356.

shareConnect()

public void shareConnect(Object connection) throws
xfJCWException

Shares the specified connection. See “Connect to xfServerPlus” on page 8-12.

connection–the object that represents the connection

usePool()

public void usePool(String poolID, SWPManager poolManager)

Indicates that the object will be using Java connection pooling.

poolID–the ID of the pool to use

pool–the instance of the pool manager to use. This is instantiated with the
SWPManager.getInstance() method. For more information on
getInstance(), see SWPManager on page 8-46.

Calling Synergy Routines from Java
Class Reference

8-44  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Class Reference

Synergex.util.SWPConnect
java.lang.Object

Synergex.util.SWPConnect

public class SWPConnect extends Object

The SWPConnect class is used by the Java code that is created when you generate
Java class wrappers. This class handles the connection to and disconnection from
xfServerPlus. It instantiates a SynergyWebProxy, which actually makes the
connection to xfServerPlus.

You do not need to call this class directly.

Constructors public SWPConnect(File propFile) throws UnknownHostException,
IOException, xfServerPlusUnavailableException,
SynProxyNetException, xfServerNackException

Connects to the host name on the port defined in the specified xfNetLink Java
properties file.

propFile–the File object that names the file that contains the settings for
xf_RemoteHostName and xf_RemotePort

public SWPConnect(String propFile, String poolID, SWPManager
poolManager) throws UnknownHostException, IOException,
xfServerPlusUnavailableException, SynProxyNetException,
xfServerNackException

Connects to the host name and port specified in the named xfNetLink Java
properties file. This constructor is used when connection pooling is enabled.
It gets a connection from the specified pool.

propFile–a string that contains the full path of the xfNetLink Java properties
file

poolID–the ID of the pool from which to get a connection

poolManager–the instance of the pool manager to use

Methods public int getConnectCount()

Gets the number of connections (SynergyWebProxy objects).

public void incConnectCount()

Increments the connection count.

Calling Synergy Routines from Java
SWPConnect

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-45

public SynergyWebProxy getM_swp()

Gets the SynergyWebProxy. Used when sharing a connection.

public void disconnect() throws Exception

Calls SynergyWebProxy.sendShutdownMessage() to close the connection.

Calling Synergy Routines from Java
SWPManager

8-46  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Synergex.util.SWPManager
java.lang.Object

Synergex.util.SWPManager

public class SWPManager extends Object

The SWPManager class is used to create, shut down, and otherwise manage pools
of connections to xfServerPlus. This class uses a singleton pattern: only one
instance of the class will be created in your application. For details on using Java
connection pooling, see “Understanding Java Pooling” on page 8-22 and
“Implementing Pooling” on page 8-24.

Methods static synchronized public SWPManager getInstance() throws
xfPoolException

Instantiates a pool of connections to xfServerPlus or gets an instance of an
already instantiated pool. The first time this method is called, a connection
pool is created using the settings in the default pooling properties file
(xfPool.properties). If there are multiple pools defined, all are started. Once
the pool has been created, subsequent calls to getInstance() get an instance
of the pool.

static synchronized public SWPManager getInstance(String
propFile) throws xfPoolException

Instantiates a pool of connections to xfServerPlus or gets an instance of an
already instantiated pool. Use this method to specify a non-default pooling
properties file using a path and filename. The first time this method is called,
a connection pool is created using the settings in the pooling properties file
specified with propFile. If there are multiple pools defined, all are started.
Once the pool has been created, subsequent calls to getInstance() get an
instance of the pool.

propFile–the full path and filename of the pooling properties file

static synchronized public SWPManager getInstance(Properties
poolProp) throws xfPoolException

Instantiates a pool of connections to xfServerPlus or gets an instance of an
already instantiated pool. Use this method to specify a non-default pooling
properties file using a Properties object. The first time this method is called,
a connection pool is created using the settings in the pooling properties file

Calling Synergy Routines from Java
SWPManager

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-47

specified with poolProp. (You must first create the Properties object and load
it.) If there are multiple pools defined, all are started. Once the pool has been
created, subsequent calls to getInstance() get an instance of the pool.

poolProp–a java.util.Properties object that represents the pooling
properties file

public void resetPoolProperties(String poolID) throws
xfPoolException

Rereads settings in the pooling properties file that are associated with the
specified pool ID. Settings in the xfNetLink Java properties file used by that
pool will also be reread. Use this method when you need to update the pooling
properties file or the xfNetLink Java properties file and don’t want to
completely shut down and restart the application.

This method closes down all of the free connections in the specified pool, and
then restarts the pool with the minimum number of connections, using the
new settings. Connections that are in use when resetPoolProperties() is
called will be discarded when they are released (even if poolReturn is set to
“true”), so that all connections will use the new settings.

poolID–the ID of the pool for which properties need to be reset

public void returnToMinimum(String poolID)

Returns the size of the pool to the minimum specified in the pooling
properties file by discarding unused connections. Use this method only when
poolReturn is set to “true” in the pooling properties file; it has no effect when
poolReturn is set to “false”.

poolID–the ID of the pool that should be reset to the minimum number of
connections

public synchronized void shutdown()

Closes all free connections and all in-use connections in all pools defined in
the pooling properties file, and then destroys the pools. The next call to
getInstance() will restart the pools.

public synchronized void shutdown(String poolID)

Closes all free connections in the specified pool and all in-use connections in
that pool, and then destroys the pool. The next call to getInstance() will
restart the pool.

poolID–the ID of the pool to be shut down

Calling Synergy Routines from Java
SWPManager

8-48  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

public synchronized void shutdownInPool()

Closes all free connections in all pools defined in the pooling properties file,
and then destroys the pools. Connections that are in use when
shutdownInPool() is called are terminated when they are released. The next
call to getInstance() will restart the pools.

public synchronized void shutdownInPool(String poolID)

Closes all free connections in the specified pool, and then destroys the pool.
Connections that are in use when shutdownInPool() is called are terminated
when they are released. The next call to getInstance() will restart the pool.

poolID–the ID of the pool to be shut down

public SWPConnect getConnection(String poolID)

Returns a connection from the specified pool. If no connections are available
and connectWaitTimeout is not set, a null is returned immediately; else, if no
connections are available and connectWaitTimout is set, null and an exception
are returned. This method is called by the Java code that is generated when
you create Java class wrappers; do not call this method directly. (See
“Specifying Time-out Values” on page 8-7 for details on
connectWaitTimeout.)

poolID–the ID of the pool from which to get a connection

public void freeConnection(String poolID, SWPConnect connection)

Frees the specified connection from the specified pool. This method is called
by the Java code that is generated when you create Java class wrappers; do not
call this method directly.

poolID–the ID of the pool to which the connection belongs

connection–the instance of the connection returned with
getConnection()

public int getPoolCount(String poolID)

Returns the number of free connections in the specified pool.

poolID–the ID of the pool

public int getPoolInUseCount(String poolID)

Returns the number of connections in the specified pool that are currently
in use.

poolID–the ID of the pool

Calling Synergy Routines from Java
SWPManager

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-49

public int getPoolTotalCount(String poolID)

Returns the number of free connections plus the number of connections
currently in use in the specified pool.

poolID–the ID of the pool

Usage The getInstance() method of the SWPManager class instantiates the pool the
first time it is called, then gets an instance of the pool on subsequent calls. If there
are multiple pools defined in the pooling properties file, they are all created on the
first call to getInstance().

To use the default pooling properties file (which is named xfPool.properties and
located either in the Java application directory or in the directory required by your
web server and servlet container) call the getInstance() method that passes no
parameters.

To specify a non-default pooling properties file, use either of the other two
getInstance() methods.

For example, to specify the full path and filename of the pooling properties file as a
String,

SWPManager poolMgr = SWPManager.getInstance("c:\\files\\
myPool.properties");

Or, to use a Properties object to specify the pooling properties file,

Properties poolProps = new Properties();
FileReader fr = new FileReader("c:\\files\\myPool.properties");
poolProps.load(fr);
SWPManager poolMgr = SWPManager.getInstance(poolProps);

See also “Using Your JAR File with Connection Pooling” on page 8-24 for sample
code that uses some of the methods in the SWPManager class.

Calling Synergy Routines from Java
xfJCWException

8-50  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Synergex.util.xfJCWException
java.lang.Exception

Synergex.util.xfJCWException

public class xfJCWException extends java.lang.Exception

Signals that there was an exception at the Java class wrapper level. You should
always catch this exception.

This class catches exceptions that occur within the generated Java class wrapper
and all exceptions that occur within the xfnljav.jar file. It serves as a wrapper for
other xfNetLink Java exceptions (except for xfPoolException).

Read the error message to determine what the specific problem is and refer to the
table on page 9-1.

For more information on errors, see “Handling Errors” on page 9-1.

Calling Synergy Routines from Java
xfPoolException

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  8-51

Synergex.util.xfPoolException
java.lang.Exception

Synergex.util.xfPoolException

public class xfPoolException extends java.lang.Exception

Signals that there was an exception at the Java connection pool level. You should
catch this exception if your code uses Java connection pooling.

This exception can indicate any of the following situations:

 Missing or incorrect data in the pooling properties file or the xfNetLink Java
properties file.

 Problems creating the connections in the pool, including problems with
xfServerPlus licensing.

 Errors that occur when calling the pooling support methods initialize and
activate, including errors within the Synergy method being called. (Note that
exceptions are not thrown for the other three pooling support
methods—deactivate, cleanup, and poolable—but will be written to the log if
pooling logging is enabled.)

Read the error message to determine what the specific problem is.

For more information on pooling, see “Understanding Java Pooling” on page 8-22
and “Implementing Pooling” on page 8-24. For more information on errors, see
“Handling Errors” on page 9-1.

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  9-1

Chapter 9

Error Handling and Troubleshooting in
xfNetLink Java

This chapter includes a table that lists the error that can occur when using
xfNetLink Java Edition and what you can do to resolve them. It also includes
information on troubleshooting, running the xfNetLink Java test program, and
logging. For a full discussion of exception handling in Java, consult your Java
documentation.

Handling Errors
All xfNetLink Java exceptions are thrown as xfJCWException, which your code
should catch. If you are using Java connection pooling, you should also catch
xfPoolException. The error text associated with these exceptions will tell you
what the specific problem is. Check the table below for the likely cause and
possible solutions. Some errors may include additional text that was generated by
the system or xfServerPlus. You may also see xfServerPlus status codes returned to
the client; refer to the table on page 3-16.

xfNetLink Java Errors

Error message Cause What to do

<numParms> is illegal parameter
count. Range is 0 to 253

The method call has more
parameters than permitted.

Correct your client code to pass
fewer parameters.

14-day demo period expired The 14-day evaluation period for
your xfServerPlus license has
expired.

Contact your Synergy/DE customer
service representative to purchase a
license.

Bad array, Index <number> There is a problem with an element
in an array.

The message will include additional
information that can help you
determine the nature of the
problem.

Bad Packet: Type conflict
prevented variable update after
method call

The format of the returned data is
incompatible with that of the sent
data, or the wrong data type was
used in a method call.

Check your client code to ensure
you are using the correct data types.

Error Handling and Troubleshooting in xfNetLink Java
Handling Errors

9-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Bad packet. Improper delimiter
after parameter

The packet is corrupted or badly
formed.

Retry. The problem may be noise on
the line or some other type of
transmission error. If logging is
turned on, you can examine the
packet contents in the log.

Can’t create a new connection There was a problem creating a
connection in the pool.

The information in the message can
help you determine the source of
the problem.

Can’t declare an array with
multiple SynTypes

You attempted to declare an array
that contains more than one data
type.

Correct your client code to use a
single data type in the array.

Can’t use array to store multiple
SynTypes. Array declared as
<declared type>. Element
<name> is of type <deviant
type>.

You attempted to store multiple
data types in an array.

Correct your client code to use a
single data type in the array.

Could not convert <value> to a
SynByteArray. Value must be
byte[]

Conversion to or from a byte array
failed.

This error should not occur when
using Java class wrappers, unless
code in the generated Java classes
has been altered or removed. If you
know what was changed, you can
attempt to correct the code, but the
recommended solution is to
regenerate the classes and rebuild
the JAR file.

Could not convert <value> to a
SynDec. Value must be integer

Conversion to or from a decimal
data type failed.

Could not convert <value> to a
SynEnum. Value must be integer

Conversion to or from an
enumeration failed.

Could not convert <value> to a
SynImpDec. Value must be
integer or real

Conversion to or from an
implied-decimal data type failed.

Could not convert the first
element of the ArrayList to a
byte[]

Conversion to or from an ArrayList
failed.

Error parsing data to structure
format

A structure parameter has an
incorrect type.

Check your client code. If the
repository was updated, you must
also update the SMC, regenerate
classes, and rebuild the JAR file.

Extended demo period expired An extended evaluation period for
your xfServerPlus license has
expired.

Contact your Synergy/DE customer
service representative to purchase a
license.

xfNetLink Java Errors

Error message Cause What to do

Error Handling and Troubleshooting in xfNetLink Java
Handling Errors

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  9-3

Failure occurred within remote
Synergy routine

xfServerPlus cannot translate a
method call into a Synergy routine
call, or xfServerPlus has a problem
(e.g., an error reading the SMC), or
a routine that’s being executed
caused an error.

The information in the error can
help you determine if the problem is
in the Java code, the Synergy code,
the SMC, or was generated by
xfServerPlus.

Invalid connectWaitTimeout
property setting

The connectWaitTimeout setting in
the pooling properties file is invalid.

Correct the pooling properties file.
See page 8-31.

Invalid initializationTimeout
property setting

The initializationTimeout setting in
the pooling properties file is invalid.

This setting was deprecated in
version 10.1.1c; we recommend
you use poolMethodTimeout
instead. See page 8-31.

Invalid poolMethodTimeout
property setting

The poolMethodTimeout setting in
the pooling properties file is invalid.

Correct the pooling properties file.
See page 8-31.

Invalid maxPool property setting The minPool setting in the pooling
properties file is invalid.

Correct the pooling properties file.
See page 8-29.

Invalid Message Type in DTL The packet is corrupted or badly
formed.

Retry. The problem may be noise on
the line or some other type of
transmission error. If logging is
turned on, you can examine the
packet contents in the log.

Invalid minPool property setting The minPool setting in the pooling
properties file is invalid.

Correct the pooling properties file.
See page 8-29.

Invalid poolReturn property
setting

The poolReturn setting in the
pooling properties file is invalid.

Correct the pooling properties file.
See page 8-29.

Invalid security compliance level
level

Invalid value passed to the
setSSLSecCompliance() method.

Correct your code to pass 0, 1, or 2.

Method Id Cannot Be Null The method ID is missing from the
method call.

This error should not occur when
using Java class wrappers, unless
code in the generated Java classes
has been altered or removed. If you
know what was changed, you can
attempt to correct the code, but the
recommended solution is to
regenerate the classes and rebuild
the JAR file.

xfNetLink Java Errors

Error message Cause What to do

Error Handling and Troubleshooting in xfNetLink Java
Handling Errors

9-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Method Id not extracted because
no delimiter found

The packet is corrupted or badly
formed.

Retry. The problem may be noise on
the line or some other type of
transmission error. If logging is
turned on, you can examine the
packet contents in the log.

Method Id not found in return
result stream

The packet is corrupted or badly
formed.

Retry. The problem may be noise on
the line or some other type of
transmission error. If logging is
turned on, you can examine the
packet contents in the log.

Missing required property setting
for the maxPool connections

The maxPool setting is missing from
the pooling properties file.

Add the setting to the pooling
properties file. See page 8-29.

Missing required property setting
for the minPool connections

The minPool setting is missing from
the pooling properties file.

Add the setting to the pooling
properties file. See page 8-29.

Missing required property setting
for the pool ID

The setting that identifies the
named pool is missing from the
pooling property file.

Define the pool ID setting (e.g.,
myPool.pool) in the pooling
properties file. See “Setting Up a
Pooling Properties File” on
page 8-26.

Missing required property setting
for the xfNetLink Java properties
file

The propertiesFile setting, which
specifies the location of the
xfNetLink Java properties file, is
missing from the pooling properties
file.

Add the setting to the pooling
properties file. See page 8-29.

No hostname found in xfNetLink
properties file

The xfServerPlus machine name is
missing from the xfNetLink Java
properties file

Correct the xfNetLink Java
properties file or specify the host
name with setxfHost(). See
“Specifying the Host Name and Port
Number” on page 8-6.

No pool description specified There are one or more settings in
the pooling properties file that are
missing the pool ID.

Correct the pooling properties file.
Each setting must be preceded by
the pool ID (e.g., myPool.maxpool).
See “Setting Up a Pooling
Properties File” on page 8-26.

xfNetLink Java Errors

Error message Cause What to do

Error Handling and Troubleshooting in xfNetLink Java
Handling Errors

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  9-5

No port number found in
xfNetLink properties file

The port number is missing from
the xfNetLink Java properties file.

Correct the xfNetLink Java
properties file or specify the port
number with setxfPort(). See
“Specifying the Host Name and Port
Number” on page 8-6.

Number of licensed concurrent
connections exceeded

xfServerPlus has exceeded the
number of available licenses.

Contact your Synergy/DE customer
service representative to purchase
additional licenses.

Port number in xfNetLink
properties file must be an integer

There is an invalid value for port
number in the xfNetLink Java
properties file.

Correct the xfNetLink Java
properties file. See “Specifying the
Host Name and Port Number” on
page 8-6.

Received bad packet. Length or
num-elements inconsistent with
amount expected

The method call contains more or
fewer parameters than expected, or
the size of a parameter does not
match the expected size.

Check your client code to verify you
are passing the correct parameters
in the call. Also, make sure your
Synergy routines, repository, SMC,
and JAR file are all in sync.

Remote Synergy execution
aborted

There was a fatal, untrappable error
during the execution of a Synergy
routine.

For additional information, check
the xfServerPlus log or the event log
(Windows), syslog (UNIX), or
operator console (OpenVMS).

Server version n is incompatible
with the required version n

The version of xfServerPlus is not
compatible with the version of
xfNetLink for the current operation.

Upgrade xfServerPlus to the current
version. The message includes the
protocol version; see the table on
page 3-43 for how it maps to the
software version.

Severe system error A serious error, such as inadequate
memory, occurred while
xfServerPlus was starting up.

Retry. If the problem persists, save
the error log and contact
Synergy/DE Developer Support.

SSL Protocol error: no valid
protocols

The requested security compliance
level is not supported for the
version of JDK.

Change either the security
compliance level or the JDK version.
JDK 1.5 and 1.6 support only TLS
1.0. For TLS 1.1 and 1.2 support,
you must use JDK 1.7 or higher.

The minPool cannot be less than
one!

The minimum pool size must be at
least one.

Increase the value of the minPool
setting in the pooling properties file.
See page 8-29.

xfNetLink Java Errors

Error message Cause What to do

Error Handling and Troubleshooting in xfNetLink Java
Handling Errors

9-6  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

The minPool is greater than
maxPool setting

The minPool setting cannot be
greater than the maxPool setting.

Adjust the minPool and maxPool
settings in the pooling properties
file. See page 8-29.

xfServer denied access to remote
execution

xfServerPlus cannot start a session
because it is not licensed, or the
number of licenses has been
exceeded, or it cannot access the
license database, or there is some
problem with the account used to
start xfServerPlus, such as invalid
username or password.

Check your xfServerPlus account
setup and licensing.

xfServerPlus not supported by
this xfServer

The version of xfServer that is
running does not support
xfServerPlus.

Upgrade xfServerPlus to the current
version.

xfServerPlus session did not
connect

xfServerPlus was started without
the remote execution option.

Restart rsynd with the -w option.

Zero length packet received,
host terminated connection

Slow startup caused a time out. Retry. See “Connect session
time-out” on page 8-8.

xfNetLink Java Errors

Error message Cause What to do

Error Handling and Troubleshooting in xfNetLink Java
Troubleshooting Techniques

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  9-7

Troubleshooting Techniques
Error messages don’t always provide enough diagnostic information to solve a
problem. In such cases, you can take advantage of the additional debugging
options provided with xfNetLink and xfServerPlus: client-side logging, pooling
logging, the xfNetLink Java test program, and the ability to run an xfServerPlus
session in debug mode.

It may also be helpful to view server-side logs (see “Using Server-Side Logging” on
page 3-33) and run the test program included with xfServerPlus (see “Testing
xfServerPlus” on page 3-15).

Using Client-Side Logging
You can enable client-side logging either by setting values in the xfNetLink Java
properties file (e.g., xfNetLnk.ini) or by calling a method in one of the classes in
your JAR file.

Two levels of client-side logging are available: full and error-only. In a production
environment, we recommend that you enable error-only logging. Full logging can
be useful during development, but we do not recommend it for production.

Client-side logging for xfNetLink Java produces two files, logfilename.log and
logfilenameJCW.log, where logfilename is a name you specify. The file
logfilename.log contains the complete packets sent back and forth between the Java
application and xfServerPlus, while logfilenameJCW.log contains the methods
called and their input and output parameters. Most exceptions are written to
logfilename.log, but some may go to logfilenameJCW.log, depending on where the
exception occurs.

We recommend that you always direct logging output to a file by specifying a log
filename. By default, packet information is output to stderr, but method and
parameter information is not, which means it cannot be seen unless it is written
to file.

Logging specific to pooling is available. See “Using Pooling Logging” on
page 9-10.

If your client application is not attached to a terminal (e.g., JavaServer
Pages), output to stderr will not be visible; you must use the xf_LogFile
property to write it to file.

Error Handling and Troubleshooting in xfNetLink Java
Troubleshooting Techniques

9-8  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

If the log file does not exist, it will be created; if it already exists, additional
information will be appended to the end.

Note that if encryption is enabled, the log displays a string of 10 asterisks instead
of the packet data for encrypted methods.

 To enable logging in the properties file

 To enable full logging, set xf_DebugOutput to “true”.
 To enable error-only logging, set xf_DebugOutput to “error”.
 To write the output to file, specify the filename with the xf_LogFile option.

All processes will write to the same file. See “Specifying Logging Options” on
page 8-6 for more information on using properties file settings.

 To enable logging by calling a method

The log files will contain data only for the class from which they are called.

 To enable full logging, call the setxfLogging() method and pass “true” as
the parameter.

 To enable error-only logging, call the setxfLogging() method and pass
“true” and then also call the setxfExceptOnly() method and pass “true” as
the parameter.

 To write the output to file, call the setxfLogfile() method and pass the
filename.

For example, to enable error-only logging,

xfTest instance = new xfTest();
instance.setxfLogging(true); // turn on logging
instance.setxfExceptOnly(true); // log exceptions only
instance.setxfLogfile("c:\\myDir\\logName.log");

//otherwise output goes to stderr

Sample log files
If full logging is enabled, the packet output (logfilename.log) shows the IP address
that SWPConnect is listening on, the current time-out settings, the packets sent
and received, and any exceptions that occur. If error-only logging is enabled, the
session startup information displays, followed by exceptions.

Error Handling and Troubleshooting in xfNetLink Java
Troubleshooting Techniques

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  9-9

As shown in the sample below, connection information prints once for each
session; sent and received data prints for each call to xfServerPlus.

SynergyWebProxy session beginning: July 13, 2014 10:15:18 AM PST
Local host: tiger/111.22.33.44
Request timeout = 120 seconds
Connect timeout = 600 seconds
Communicate timeout = 1800 seconds

Sending string:
Jcompid0009;2;AL5#abcde;AL5#54321;
Received string:
Rcompid0009;03;00AL9#Return ;01AL5#back1;02AL5#back2;

Sending string:
Jcompid0010;2;AL5#abcde;AL5#54321;
Received string:
Rcompid0010;02;00DE9#123456789;02AL5#back ;

If full logging is enabled, the method and parameter output (logfilenameJCW.log)
shows the IP address, followed by each method called with its input and output
parameters, and may include exceptions as well. If error-only logging is enabled,
the session startup information displays followed by any exceptions. The
parameter information includes the Java data type, parameter name, and the data
in the parameter.

SynergyWebProxy session beginning: July 13, 2014 11:35:02 AM PST
Local host: tiger/111.22.33.44
 ** In method: function_one
 * Input parameters
 String p1 = This is an Alpha field 50 characters

long a test
 long p2 = 12345
 double p3 = 1234567.911
 int p4 = 12345
 * Output parameters
 ** In method: function_two
 * Input parameters
 DoubleHolder p1 = 1.23456789012E9
 DoubleHolder p2 = 12345.6789
 double p3 = 12345.6789
 double p4 = 1.234567891E7
 long p5 = 1234567890

Error Handling and Troubleshooting in xfNetLink Java
Troubleshooting Techniques

9-10  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

 DoubleHolder p6 = 0.123456
 double p7 = 1.2345
 LongHolder p8 = 12345678
 DoubleHolder p9 = 123456.7
 long p10 = 123456789
 * Output parameters
 DoubleHolder p1 = -1.23456789112E9
 DoubleHolder p2 = 333.334
 DoubleHolder p6 = 0.9988332
 LongHolder p8 = -88991010
 DoubleHolder p9 = 654321.0

Using Pooling Logging
Enabling pooling logging in addition to client-side logging can be beneficial for
any application that uses Java connection pooling. Errors specific to the pool, such
as exceptions thrown by the pooling support methods or a time-out while waiting
for a connection, are recorded only in the pooling log file—not in the client-side
log files. Depending on the logging level requested, in addition to errors the
pooling log file may also contain actions relating to the creation and maintenance
of the pool, such as the minpool and maxpool settings, time-out values, registered
pooling support methods, and inPool and inUse counts.

Pooling logging is specified in the pooling properties file with the poolLogFile and
poolLogLevel settings. All pools use a single log file. If the file does not exist, it will
be created; if it already exists, additional material is appended to the end. In
pooling logging, output can be written only to a file, so a log filename is required.

Two levels of pooling logging are available: full and error-only. Full includes
informational messages, such as those generated when the pool is started, in
addition to errors and exceptions. When running an application that uses pooling
in a production environment, we recommend that you enable error-only pooling
logging in conjunction with error-only client-side logging. Full logging may be
useful during development, but we do not recommend it for production. If a
pool log file is specified, but no logging level is specified, error level logging will
take place.

Error Handling and Troubleshooting in xfNetLink Java
Troubleshooting Techniques

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  9-11

 To enable pooling logging

All settings are in the pooling properties file.

 To turn logging on, specify a log filename using the poolLogFile property.
 To enable full logging, set poolLogLevel to “all”.
 To enable error-only logging, set poolLogLevel to “error”.
 To turn logging off without removing the logging settings from the pooling

properties file, set poolLogLevel to “none”.

See “Specifying pool logging options” on page 8-30 for additional information on
setting logging options in the pooling properties file.

Sample log files
This sample shows the pool creation and maintenance information that is logged
when poolLogLevel is set to “all”. If errors occur, they will be logged also.

Mon Nov 18 06:43:19 PST 2013: MyPool: ************************
Mon Nov 18 06:43:19 PST 2013: MyPool: pool=MyPool
Mon Nov 18 06:43:19 PST 2013: MyPool: minPool=3
Mon Nov 18 06:43:19 PST 2013: MyPool: maxPool=6
Mon Nov 18 06:43:19 PST 2013: MyPool: poolReturn=true
Mon Nov 18 06:43:19 PST 2013: MyPool: propertiesFile=c:\wrk\myProps.ini
Mon Nov 18 06:43:19 PST 2013: MyPool: connectWaitTimeout=10
Mon Nov 18 06:43:19 PST 2013: MyPool: poolMethodTimeout=10
Mon Nov 18 06:43:19 PST 2013: MyPool: initializationMethodID=Pool3_Init
Mon Nov 18 06:43:19 PST 2013: MyPool: activationMethodID=Pool3activate
Mon Nov 18 06:43:19 PST 2013: MyPool: deactivationMethodID=
Pool3_deactivate
Mon Nov 18 06:43:19 PST 2013: MyPool: cleanupMethodID=Pool3_cleanup
Mon Nov 18 06:43:19 PST 2013: MyPool: poolableMethodID=null
Mon Nov 18 06:43:19 PST 2013: MyPool: ************************
Mon Nov 18 06:43:19 PST 2013: MyPool: Initialized pool
Mon Nov 18 06:43:19 PST 2013: MyPool: Created a new connection in pool
Mon Nov 18 06:43:19 PST 2013: MyPool: Initialize method=Pool3_Init
Mon Nov 18 06:43:19 PST 2013: MyPool: Register Cleanup method=
Pool3_cleanup
Mon Nov 18 06:43:19 PST 2013: MyPool: Created a new connection in pool
Mon Nov 18 06:43:19 PST 2013: MyPool: Initialize method=Pool3_Init
Mon Nov 18 06:43:19 PST 2013: MyPool: Register Cleanup method=
Pool3_cleanup
Mon Nov 18 06:43:19 PST 2013: MyPool: After Initialized pool
Mon Nov 18 06:43:19 PST 2013: MyPool: activate method=Pool3_activate
Mon Nov 18 06:43:19 PST 2013: MyPool: SWPPool getConnection 1 Total pool
count=2 inPool=1 inUse= 1
Mon Nov 18 06:43:19 PST 2013: MyPool: activate method=Pool3_activate
Mon Nov 18 06:43:20 PST 2013: MyPool: SWPPool getConnection 2 Total pool
count=2 inPool=0 inUse= 2

Error Handling and Troubleshooting in xfNetLink Java
Troubleshooting Techniques

9-12  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

The sample below shows information logged when error-only logging is enabled.
In this case, the pool is at maximum size and in a loop waiting for a free
connection; before one becomes available, a time-out exception occurs because an
initialization method takes too long to return.

Mon Nov 18 07:06:59 PST 2013: MyPool: Attempted to get connection from
pool while at maximum. Total pool count= 6 inPool= 0 inUse =6
Mon Nov 18 07:07:00 PST 2013: MyPool: Attempted to get connection from
pool while at maximum. Total pool count= 6 inPool= 0 inUse =6
.
.
.
Mon Nov 18 07:15:51 PST 2013: MyPool: Initialization method failed
java.io.InterruptedIOException: Timeout waiting for xcall to return -
Read timed out

at Synergex.net.LauncherSession.request(LauncherSession.java:949)
 at Synergex.synProxy.SynergyWebProxy.SendMsgToSynergy
(SynergyWebProxy.java:1217)

at Synergex.synProxy.SynergyWebProxy.makeCall(SynergyWebProxy.
java:1156)

at Synergex.synProxy.SynergyWebProxy.xcall(SynergyWebProxy.java:1520)
at Synergex.util.SWPManager$SWPPool.newConnection(SWPManager.java:1220)

at Synergex.util.SWPManager$SWPPool.FreeConnectionAdd(SWPManager.
java:1298)

at Synergex.util.SWPManager$SWPPool.addToMinimum(SWPManager.java:796)
at Synergex.util.SWPManager$SWPPool.<init>(SWPManager.java:749)
at Synergex.util.SWPManager.createPools(SWPManager.java:548)
at Synergex.util.SWPManager.init(SWPManager.java:629)
at Synergex.util.SWPManager.<init>(SWPManager.java:102)
at Synergex.util.SWPManager.getInstance(SWPManager.java:66)
at poolMsc.runtestTimeoutError(poolMsc.java:1209)
at poolMsc.main(poolMsc.java:48)

Testing xfNetLink Java
The xfNLJTest program, distributed with xfNetLink Java, can help you determine
if your system is set up and working properly.

XfNLJTest runs several tests, which call functions and send different types of data
back and forth between the Java client and the Synergy server. This program
makes calls to a test ELB or shared image named xfpl_tst, which is distributed
with xfServerPlus. There are entries in the SMC for use by the test program.
(These are the methods in the xfTest interface in the distributed SMC.) If the ELB
or any of the methods are missing, the tests will fail.

Error Handling and Troubleshooting in xfNetLink Java
Troubleshooting Techniques

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  9-13

 To run the xfNLJTest program

1. Make sure xfServerPlus has been started on the server machine. (See “Running
xfServerPlus” on page 3-2.)

2. On the client machine, go to the directory in which you installed xfNetLink Java
and type the following at the command line:

java xfNLJTest xfServerMachineName xfServerPort

For example:

java xfNLJTest elmo 2356

As the tests run, information is printed to the screen and saved to the xfNLJtst.txt
file. This file is created in the directory from which you ran the test. You will see a
line describing each test and a message stating whether the test completed
successfully. The output also includes the versions of xfNetLink and xfServerPlus,
which may be helpful in troubleshooting.

You may receive errors in the form of Java exceptions, which are also written to
xfNLJtst.txt. The error message text should help you determine what needs to be
done to correct the problem. Check the “xfNetLink Java Errors” table on page 9-1.
You may want to also run the xfServerPlus test program, xfspltst. It can help you
determine whether the problem is on the xfNetLink side or the xfServerPlus side.
See “Testing xfServerPlus” on page 3-15 for more information.

If you cannot solve the problem, call the Synergy/DE Developer Support
department. Be sure to save the xfNLJtst.txt file; your Developer Support engineer
needs the information in this file to help you.

If the methods in the xfTest interface are not present in your SMC, you can
import them from the defaultsmc.xml file. See “Importing and Exporting
Methods” on page 2-38.

(Windows) If you see the message “xfNLJTest.txt (Access is denied)”, it
means that the user account under which you are logged on does not have
write permission for the \Program Files directory, and so the log file cannot
be written. Just copy the xfNLJTest.class file to a writable location and run
the test from there.

Error Handling and Troubleshooting in xfNetLink Java
Troubleshooting Techniques

9-14  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Running an xfServerPlus Session in Debug Mode
During normal operation, xfServerPlus runs as a background process without
support for console operations, complex user interfaces, or debugging. This
improves efficiency and minimizes memory requirements. However, there may be
times when you need to run the debugger on Synergy code in the ELBs or shared
images that are being called from xfServerPlus. By manually connecting an
xfServerPlus session to your running Java application, you can run your Synergy
routines in debug mode so that you can uncover underlying problems that are
showing up as errors in your distributed application.

Running in debug mode on Windows and UNIX
Use this procedure if the operating system of your xfServerPlus machine is
Windows or UNIX.

If your SMC files or xfpl.ini file are not in the default location (DBLDIR), you
will need to either move them to DBLDIR or set XFPL_SMCPATH and
XFPL_INIPATH in the environment to point to the location of the files before
starting xfpl.dbr (step 4). (When XFPL_SMCPATH and XFPL_INIPATH are set
in the registry or synrc, they are read by rsynd. Since rsynd is bypassed when you
run in debug mode, the registry/synrc settings do not get read.)

We recommend that you use the Telnet method for debugging if the
operating system of your xfServerPlus machine is Windows or UNIX. See
“Debugging Remote Synergy Routines via Telnet” on page 3-47 for
instructions.

If your client application uses JavaServer Pages, you will need to use two JSP
pages to run in debug mode. Use the first page to make the call to
debugInit() and return the HTML that displays the IP and port. Then,
you’ll need a second page with the debugStart() call. After submitting
the second page, the client will go into wait mode while you start
xfServerPlus.

Error Handling and Troubleshooting in xfNetLink Java
Troubleshooting Techniques

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  9-15

1. Use the debugInit() method to initiate a debug session. This method binds an
IP address and port number for listening, and then returns the IP and port. You
need to include code that displays the IP address (in hex) and port on the screen.

For example:

//instantiate objects
AppLogin appLog = new AppLogin();
string clientIP = new String("tiger");
StringBuffer listHost = new StringBuffer("");
StringBuffer listPort = new StringBuffer("");
//make call
appLog.debugInit(clientIP, listHost, listPort);
//display hex IP and port
System.out.println("IP = " + listHost.toString());
System.out.println("Port = " + listPort.toString());

2. When the IP and port display on the screen, write them down. You’ll need them in
step 4. For example:

IP = 6F16212C
Port = 1082

If you are debugging through a firewall, you may need to specify a port
number range, and then open that range of ports on your firewall. To do so,
call the setxfMinport() and setxfMaxport() methods in your client
application prior to calling debugInit(), passing as parameters the port
numbers for the range. Valid values are greater than 1024, with maxport
greater than minport.

These methods are deprecated because they are not used by an ordinary
connection; they are used only when running in debug mode. They are still
included in your JAR file, but no longer documented in this manual.

Once the IP address, etc. displays on the web server screen, you have a
limited amount of time in which to manually start xfServerPlus in debug
mode on the server machine, specify a breakpoint, and type “go”. This time
is controlled by the xf_DebugSessionConnectTimeout setting in the
xfNetLink Java properties file (see “Connect session time-out” on page 8-8).
If no time-out is specified, the default value of 10 minutes applies. If you
delay longer than the time-out value, SWPConnect will time out while
waiting for a response from xfServerPlus.

Error Handling and Troubleshooting in xfNetLink Java
Troubleshooting Techniques

9-16  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

3. Use debugStart() to complete the connection process:

appLog.debugStart(clientIP);

At this point, the client application has opened a socket and is waiting for the
server to call it back.

4. Go to the machine running xfServerPlus, start xfpl.dbr, and pass the hexadecimal
IP address and port to xfServerPlus. Type the alpha characters in the IP address in
uppercase.

dbr -d xfpl hexadecimal_ip listen_port

For example:

dbr -d xfpl 6F16212C 1082

xfServerPlus starts up in the Synergy debugger.

5. Set an initial breakpoint in the xfpl program at the XFPL_DEBUG_BREAK
routine. In the debugger, enter

break xfpl_debug_break

and then enter

go

xfServerPlus is now connected to the client on the specified port. The server waits
while the client program resumes and makes its first call. The program will then
break at the XFPL_DEBUG_BREAK routine. This breakpoint occurs just after
xfServerPlus has opened the ELB for the first method called by your application.
(Note that any ELBs linked to this ELB will also be opened.) The ELB must be
opened before you can set breakpoints in the routines within it.

6. If the Synergy routine you need to debug is in one of the opened ELBs, just specify
a breakpoint in that routine. If the routine you want to debug is in a different
(unopened) ELB, use the OPENELB debugger command to open that ELB. (You
can also continue running your client application until the ELB is opened by
xfServerPlus. However, because you set a breakpoint at XFPL_DEBUG_BREAK,
the program will break at each method call, so using the OPENELB command is
more efficient.)

For general information about the Synergy debugger, see the “Debugging
Synergy Programs” chapter in Synergy Tools. For details on the OPENELB
command, see OPENELB in that same chapter.

Error Handling and Troubleshooting in xfNetLink Java
Troubleshooting Techniques

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  9-17

Running in debug mode on OpenVMS
Use this procedure if the operating system of your xfServerPlus machine is
OpenVMS.

1. Make sure xfServerPlus is running on an unused port. If necessary, restart it to
ensure that it’s using an unused port.

2. On the machine running xfServerPlus, enter

$ run DBLDIR:xfpld

You’ll see output similar to the following:

*** DEBUG 10.3.1 ***
BREAK AT 152 IN XFPL (LAUNCHER.DBL;6) ON ENTRY
%DBG-E-Could not open source file "LAUNCHER.DBL;1"
DblDbg>

3. Set an initial breakpoint in the xfpl program at the XFPL_DEBUG_BREAK
routine. In the debugger, enter

break xfpl_debug_break

and then enter

go

4. When prompted, enter the port number that xfServerPlus is running on (from
step 1).

5. Start your client application in the usual manner. After xfNetLink connects, the
debug session will break at the XFPL_DEBUG_BREAK routine.

6. Set a breakpoint for your Synergy shared image and routine:

break image/routine

and then enter

go

TIP
If you have created shared image logicals for the shared images used by
xfServerPlus, you can skip step 3. Instead, set a breakpoint for your shared
image and routine as described in step 6. You’ll then be prompted for the
port number (step 4). Once you start your client program (step 5), the debug
session will break at the breakpoint you set.

Error Handling and Troubleshooting in xfNetLink Java
Troubleshooting Techniques

9-18  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

For details, see BREAK in the “Debugging Synergy Programs” chapter of Synergy
Tools.

Note that if you set a breakpoint at XFPL_DEBUG_BREAK, the debugger will
break at XFPL_DEBUG_BREAK for each method call your client makes.

Although you do not need to use the OPENELB debugger command before
setting the first breakpoint in your shared image, you may need to use it if
your code does an XSUBR or RCB_SETFNC without specifying a shared
image. For details on the OPENELB command, see OPENELB in the
“Debugging Synergy Programs” chapter of Synergy Tools.

Part IV: xfNetLink .NET Edition

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  10-1

Chapter 10

Creating Synergy .NET Assemblies
This chapter gives an overview of the tasks you must perform to set up and use
xfNetLink .NET Edition. It explains how to generate C# classes from SMC and
repository definitions and build an assembly for your Synergy methods. The
generated C# classes use the xfNetLink .NET classes internally to connect to
xfServerPlus. The assembly that you build can be used in any .NET client
application to remotely access your Synergy business logic on the xfServerPlus
machine.

System Requirements
To build a distributed system with xfNetLink .NET and xfServerPlus, you’ll need
the .NET Framework version 4 or higher. The .NET Framework is installed with
Visual Studio, or you can download it from the Microsoft website. If you do the
latter, be sure to get the full version, which is intended for developers.

We recommend that you also install Microsoft Visual Studio version 2012 or
2013, but Visual Studio is not required to build a Synergy assembly. If you do not
have Visual Studio, you will need to install Visual Studio Express 2012 or 2013,
along with the Windows SDK 7.1. These applications will provide the tools
necessary to build a Synergy assembly. When you build the assembly, use
vsvars32.bat to set up the .NET environment.

You’ll also need to be familiar with some .NET Framework concepts. Here are
some of the topics you may need to research:

 Public vs. private deployment of assemblies
 Versioning
 Signing
 Public and private keys
 Pooling
 The GAC (global assembly cache)

Creating Synergy .NET Assemblies
System Overview

10-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

System Overview
Figure 10-1 shows the primary components of a distributed application that
accesses Synergy code from a .NET client. The diagram describes two machines:

 A client machine running xfNetLink .NET, the .NET Framework, and an
application that uses a Synergy assembly. If you’re developing a two-tier system
with a Windows client application, the client is the end-user’s machine. If
you’re developing a three-tier system with a web client application, the client is
the web server machine.

 A Synergy server running xfServerPlus, which handles the remote execution of
Synergy routines. The routines are made available for remote execution by
including them in an ELB or shared image and defining them in the Synergy
Method Catalog (SMC), also located on the server machine. You can populate
the SMC with routine information by entering it manually through the
Method Definition Utility or by attributing your code, running dbl2xml to
create an XML file, and then loading that file into the SMC. You may use
multiple servers; each machine requires an xfServerPlus license.

xfNetLink .NET enables you to use your existing Synergy code without rewriting
it, provided that the code is already written in the form of an external subroutine
or function. If any of the routines require input from or send messages to the user,
or if they might generate untrapped errors, they must be adjusted to work as
server-level logic.

Figure 10-1. Accessing Synergy from .NET.

xfServerPlus

Synergy
Method
Catalog

Synergy
routines in ELBs

Windows or
web

application

xfNetLink
.NET

.NET Client Remote Synergy Server

standard ELB
routine call

routine
information

provided here

request for connection

socket connection for
transmission of

function calls and
results

Synergy
assembly

.NET
Framework

Creating Synergy .NET Assemblies
The Big Picture

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  10-3

The Big Picture
This section lists all the steps that need to be completed to successfully create a
distributed system using xfNetLink .NET. Note that these steps may not all be
done by you, the Synergy developer. For example, you may create the Synergy
assembly and give it to a .NET developer to create a web front-end for your
application. The .NET developer may also work with a web-page developer to
create the HTML portions of the user interface. However, this section should give
you a feel for everything that needs to be done, regardless of who does it. See also
figure 10-2 on page 10-6.

1. Install Visual Studio and the .NET Framework.

2. Install the necessary Synergy software. The components you need to install vary
depending on your set-up (e.g., what OS your source files are on, where you
intend to do the development, and so on). Note the following:

 The tools required to generate the C# classes from your SMC and repository
definitions are part of xfNetLink .NET and must be installed on a Windows
system.

 The Professional Series Development Environment (or Workbench)
installation includes dbl2xml, the SMC/ELB comparison utility, the MDU
and SMC files, and genxml. On UNIX and OpenVMS, these utilities are part
of the Synergy DBL installation.

 xfServerPlus must be installed on your Synergy server machine. The
xfServerPlus installation also includes the MDU, the SMC files, and genxml.
For detailed steps on setting up xfServerPlus, see “The Big Picture” on
page 3-1.

3. Modularize your existing Synergy code for the routines that you want to access
remotely and encapsulate them in ELBs or shared images. See chapter 1,
“Preparing Your Synergy Server Code.”

4. Populate the Synergy Method Catalog with information about your Synergy
routines. We recommend that you do this by attributing your code and running
dbl2xml (see “Using Attributes to Define Synergy Methods” on page 2-3).
Alternatively, you may use the Method Definition Utility to enter the data (see
“Using the MDU to Define Synergy Methods” on page 2-22). As you do this,
you’ll group the routines into interfaces.

If you choose to put the SMC somewhere other than DBLDIR, set the
XFPL_SMCPATH environment variable. See chapter 2, “Defining Your Synergy
Methods.”

Creating Synergy .NET Assemblies
The Big Picture

10-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

5. In the xfpl.ini file, set logging options for the xfServerPlus log and set logicals that
point to the ELBs you specified in the SMC. You may also need to set other
options in the xfpl.ini file; see “Appendix A: Configuration Settings” for a
complete list of xfpl.ini configuration settings.

If you choose to put the xfpl.ini file somewhere other than DBLDIR, set the
XFPL_INIPATH environment variable.

See chapter 3, “Configuring and Running xfServerPlus,” for information on the
xfServerPlus log and XFPL_INIPATH. See “Defining Logicals” on page 1-4 for
information on setting logicals that point to your ELBs.

6. Create a user account on the xfServerPlus machine to run xfServerPlus sessions
and then start xfServerPlus. See “Running xfServerPlus” on page 3-2.

7. Generate the C# classes:

 If you’re using Workbench, create a Synergy/DE .NET Component project.
Specify the component information: a name and location for the assembly, the
location of the SMC and repository files, the namespace and key file, the
interfaces you want to include, and (if desired) alternate names for those
interfaces. Then use the menu option to generate the C# classes. See “Creating
a Synergy/DE .NET Component Project” on page 10-7 and “Generating C#
Classes” on page 10-12.

 If you’re using the command line, run the genxml.dbr utility to create an
XML file, and then run gencs.exe to generate the C# classes. Using the
command line enables you to create a batch file that calls the necessary
utilities, passing the desired options. See “Creating an Assembly from the
Command Line” on page 10-15.

8. (optional) Modify the generated C# source files and the metadata for the assembly
as necessary. See “Editing the Generated Files” on page 10-28.

9. (optional) Set SYNCSCOPT to include C# compiler options that you want added
to the command line when the assembly is built. See SYNCSCOPT in the
“Environment Variables” chapter of the Environment Variables & System Options
manual.

Creating Synergy .NET Assemblies
The Big Picture

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  10-5

10. Build the assembly:

 If you’re using Workbench, use the menu option to compile the C# classes and
create an assembly. See “Building the Assembly” on page 10-13.

 If you’re using the command line, run the batch file that was created by gencs
to compile the C# files and build the Synergy assembly. See “Building the
Assembly” on page 10-22.

11. (optional) Generate the API documentation for the methods in your assembly
using a third-party utility. See “Generating API Documentation” on page 10-29.

12. Distribute the assembly and other necessary files to the .NET developer, who will
then use the assembly when writing the client-side code for your distributed
application. See “Setting up Your Environment for Development” on page 11-1
and “Using Your Synergy .NET Assembly” on page 11-8.

Creating Synergy .NET Assemblies
The Big Picture

10-6  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Figure 10-2. Steps in creating an xfNetLink .NET – xfServerPlus application.

Install Visual Studio and
.NET Framework

Install xfNetLink .NET,
PSDE, xfServerPlus

Modularize Synergy
code

Use MDU to enter
method data

Attribute Synergy code

Run dbl2xml

Import XML file into
SMC

Set XFPL_SMCPATH

Configure xfpl.ini and
set XFPL_INIPATH

Create xfServerPlus
user account and start

xfServerPlus

Run genxml and gencs
to generate C# classes

Use Workbench to
generate C# classes

Run batch file to build
assembly

Use Workbench to
build assembly

Use assembly to create
client application

recommended
procedure

Creating Synergy .NET Assemblies
Creating an Assembly in Workbench

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  10-7

Creating an Assembly in Workbench
The component generation tools enable you to create a .NET assembly of Synergy
methods. The assembly can be used in any .NET client application to make
remote calls to Synergy routines. To create an assembly, you must do the
following:

 Create a Synergy/DE .NET Component Project in Workbench and specify
information about how the assembly should be constructed.

 Generate the C# classes.
 Edit the C# code, if necessary.
 Build the assembly.

Creating a Synergy/DE .NET Component Project
1. In Workbench, select Project > New, and then select Synergy/DE .NET

Component from the list of project types. (Expand the Synergy/DE node in the
Project type display to select Synergy/DE .NET Component.)

2. Give the project a name in the Project name field, and indicate whether you want
to create a new workspace or add the project to an existing workspace. For more
information on using this dialog, as well as information about basic Workbench
features, see the Workbench online help or the “Developing Your Application in
Workbench” chapter of Getting Started with Synergy/DE.

3. Specify the following information in the Component Information dialog box.
(This dialog displays automatically when you create a new .NET Component
project. If you need to display it later, select Build > Component Information.)

Name. Enter a name for the assembly. The default is the project name.

Directory. Specify the directory in which to create the class files and the assembly.
The default is the project location. If you enter a logical in this field, it must be
followed by a colon (e.g., DBLDIR:). When you generate classes, the utility will

You can generate C# classes and build the assembly from the command line
rather than from Workbench. If your Synergy code is on UNIX or OpenVMS,
you can use the command-line tools to generate the XML file there, and
then move the file to Windows to create the assembly.

If you want to include the Original property or INotifyPropertyChanged
class in structure classes, you must use the command line, as these options
are not available in Workbench.

See “Creating an Assembly from the Command Line” on page 10-15.

Creating Synergy .NET Assemblies
Creating an Assembly in Workbench

10-8  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

create a subdirectory within this directory, named with the assembly name, and
put all the generated files in it.

Generate API doc. Indicate whether you want to create an XML file that can be
used to generate API documentation. In order to have useful documentation, you
must add comments for your methods and parameters. The XML file is created
when you build the assembly. See “Generating API Documentation” on
page 10-29 for more information.

Support pooling. Indicate whether you want to enable the classes in this assembly
to be pooled.

Figure 10-3. The Component Information dialog box for a Synergy/DE .NET
Component project.

Selecting the “Support pooling” option causes the generated procedural
classes to be derived from the ServicedComponent class. It also changes
the status of some methods from public to private or protected, and causes
the getConnect() and shareConnect() methods to be excluded from
the procedural classes. Thus, you should use this option only when you are
certain the object will be pooled. See “Understanding .NET Pooling” on
page 11-24 and “Implementing Pooling” on page 11-26 for more
information on pooling.

Creating Synergy .NET Assemblies
Creating an Assembly in Workbench

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  10-9

Generate WCF contracts. Select this option if you want the assembly to use WCF
contracts, such as for a web service. The generated classes will include code that
makes the assembly hostable. In addition, this option changes the way ArrayList
and structure collection parameters are handled: rather than being generated as
ArrayLists, they are generated as List<T> parameters (where T is the data type of
the elements). Consequently, in your client code, you must use a List<T> class
instead of an ArrayList class for a parameter that is defined as ArrayList or
structure collection in the SMC.

Generate output parameters as. Indicate whether you want “out” parameters (that
is, parameters with a direction of “out” in the SMC) to be generated as “ref ” or
“out” types in the C# classes. Array parameters are always generated as “ref ”,
regardless of how this option is set. (Prior to version 9.5.1, all “out” parameters
were generated as “ref”.)

Namespace. Specify a namespace for the assembly. All classes generated for the
assembly will use this namespace. The namespace is used to ensure that each class
is unique. Microsoft recommends that namespaces use the format
CompanyName.ProductName (e.g., ABCComputers.ConsultPro). The namespace
is appended to the beginning of the class name (e.g.,
ABCComputers.ConsultPro.MyClass). If you do not specify a namespace, the
default namespace assembly_nameNS will be used.

Key file. Specify the full path and filename of the strong name key file that will be
used to strong name the assembly. You must create the file using Microsoft’s sn.exe
utility and place it in the desired location before building the assembly.
xfNetLink .NET will verify that the file exists. See “Using Your Own Key File” on
page 10-27 for more information.

If you do not supply a key file name, xfNetLink .NET will generate public and
private keys in a strong name key file named with the assembly name.

Delay sign assembly. Indicate whether you want to delay sign the assembly. This
option is valid only when you use your own key file. See “Using Your Own Key
File” on page 10-27 for more information.

Repository main file. If any of the methods that will be included in this assembly
pass structures as parameters, specify the location of the repository main file for
those structures. This must match the repository that was used when entering data
in the SMC. If you specify a main file, you must also specify a text file.

Creating Synergy .NET Assemblies
Creating an Assembly in Workbench

10-10  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

The default is the value of the environment variable RPSMFIL. If it is not defined,
the default is RPSDAT:rpsmain.ism. If neither RPSMFIL nor RPSDAT are
defined, the default is rpsmain.ism in the path specified in the Working directory
property of the project. If the Working directory is not defined, the default is
rpsmain.ism in the location where the project is stored.

Repository text file. If any of the methods that will be included in this assembly
pass structures as parameters, specify the location of the repository text file for
those structures. This must match the repository that was used when entering data
in the SMC. If you specify a text file, you must also specify a main file.

The default is the value of the environment variable RPSTFIL. If it is not defined,
the default is RPSDAT:rpstext.ism. If neither RPSTFIL nor RPSDAT are defined,
the default is rpstext.ism in the path specified in the Working directory property
of the project. If the Working directory is not defined, the default is rpstext.ism in
the location where the project is stored.

Use alternate field names. Indicate whether you want to use the value in the
Alternate name field in Repository instead of the value in the Name field as the
property or field name. If not selected, the field name in the structure becomes the
property/field name in the C# class. If selected, the value in the Alternate name
field is used when it exists; else, the value in the Name field is used.

Generate structure members as. Indicate whether you want to generate structure
members as properties with private fields or as public fields. Which you choose
depends on your application. If you are planning to use .NET controls, generate
properties; the properties have “get” and “set” methods, which can be assigned to
.NET controls in Visual Studio. You must also generate properties to take
advantage of Repository’s read-only flag and the class Changed property.

If you are not planning to use .NET controls, and don’t need the read-only flag or
Changed property, you can generate either fields or properties; using fields may
improve performance.

Properties implement INotifyPropertyChanged. Select this option to include the
INotifyPropertyChanged class in generated structure classes. This enables you to
use the PropertyChanged event on structure fields (properties) bound to controls.

SMC directory. This field displays the path for the Synergy Method Catalog that
this assembly uses. The default is XFPL_SMCPATH; if it is not set, the default is
DBLDIR. To change the SMC directory, click the Change Directory button. In
the Browse for SMC Directory dialog box, navigate to the directory that contains

Creating Synergy .NET Assemblies
Creating an Assembly in Workbench

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  10-11

the SMC, double-click to select it, and click OK. The selected path will display in
the SMC directory field and the list of interfaces will be refreshed, displaying all
interfaces in the selected SMC.

Interfaces. Select the interfaces you want to include in the assembly by clicking in
the box to the left of the interface name. A C# class, named with the interface
name, will be generated for each selected interface.

Alternate name. You can provide an alternate name for any interface you select. To
specify an alternate name, highlight a selected interface, and then click the
Options button to display the Interface Options dialog. Enter another name in the
Alternate interface name field and click OK.

You may wish to use an alternate name if the interface name in the SMC is not
what you want users to see as the class name. In addition, if your interface names
differ only in case, or if you have a structure with the same name as an interface,
you can use the alternate interface name to avoid having numbers appended to the
class names. See the note on page 2-25.

To remove an alternate interface name, clear the check box for the interface and
then reselect it. This action will also reset the quantity to 1.

Qty. By default, a single class is generated for each selected interface; however, you
can choose to generate multiple classes for any of the interfaces you select. (See
“Using Multiple Copies of the Same Class” on page 11-11 for why you might
want to do this.) To generate multiple classes, select (and highlight) the interface,
and then click the Options button to display the Interface Options dialog. Specify
the total number of classes you want to generate in the “Total number of classes to
generate for this interface” field and click OK. Valid values are 1 through 999.

The first instance of the class will be named as usual with the interface name
(or alternate name, if specified). Subsequent instances will be named with the
interface name followed by a number, which will increment.

4. Click OK in the Component Information dialog box.

Creating Synergy .NET Assemblies
Creating an Assembly in Workbench

10-12  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Controlling the .NET Environment
By default, Workbench uses the batch file %VSnnCOMNTOOLS%vsvars32.bat
(where nn is the highest version of Visual Studio that is installed on the system) to
set the environment variables used by .NET. You can use a different vsvars32.bat
file, depending on your needs. See “System Requirements” on page 10-1 for details
on the supported versions of the .NET Framework and Visual Studio
requirements.

1. Open the Component Information dialog and click the .NET Environment
button.

2. To specify a different batch file, enter it in the “.NET environment batch file” field
or click the browse button and select it.

3. Click OK.

Generating C# Classes
1. To generate the C# classes, select Build > Generate C# Classes in Workbench. This

command will do the following:

 Run the SMC/ELB Comparison utility (smc_elb.exe; see page 2-53 for more
information).

 Create a C# source file for each interface you selected in the Component
Information dialog box and for each structure, group, and enumeration
within the selected interfaces. There will also be a C# interface file generated
for each selected interface. See “Understanding the Generated Classes” on
page 10-24 for more information on these files.

 Create a batch file to be used later to compile the classes, generate the
assembly, and create the XML file for the API documentation.

 Create a response file named assembly_name.rsp, which is used by the batch
file to compile the classes.

 Create a file named AssemblyInfo.cs, which contains information about the
assembly. You can customize this file; see “Editing Information in
AssemblyInfo.cs” on page 10-28.

 Add the C# source files, the C# interface files, and the AssemblyInfo.cs file to
the project. You can access these files from the Projects tab or the Symbols tab
in the project toolbar. See figure 10-4 on page 10-14.

Creating Synergy .NET Assemblies
Creating an Assembly in Workbench

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  10-13

If you have previously generated classes for this project, you will be prompted to
overwrite them. If you’re regenerating classes for the same interfaces, the .cs files
will be overwritten and any changes you made to them will be lost. Note that the
AssemblyInfo.cs file is not overwritten.

2. Edit the files as necessary before building the assembly. See “Editing the Generated
Files” on page 10-28.

Building the Assembly
After you’ve made any necessary edits to the C# source files and the
AssemblyInfo.cs file, you are ready to build the assembly.

If desired, you can pass C# compiler commands to the command line that
Workbench uses to build the assembly. To do this, set the SYNCSCOPT
environment variable to any valid C# compiler command either from the
Workbench command line or on the Open tab of the Project Properties dialog.
See SYNCSCOPT in the “Environment Variables” chapter of the Environment
Variables & System Options manual for more information.

1. Verify that the .NET Component project is the active project.

2. (optional) Set SYNCSCOPT.

3. Select Build > Build Assembly. This command will do the following:

 Compile the .cs files.
 Build the assembly.
 Generate an XML file named assembly_nameAPI.xml if the “Generate API

doc” flag was set in the Component Information dialog box when you created
the classes. See “Generating API Documentation” on page 10-29 for more
information on what to do with this XML file.

Creating Synergy .NET Assemblies
Creating an Assembly in Workbench

10-14  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Figure 10-4. Viewing the generated C# classes and C# interfaces in Workbench.

The C# interfaces for the
AppLogin and Consultant
classes.

The Consultant class, with
user-defined methods
[checkRecord(),
postCharge(), and
updateProfile()] and the
utility methods.

The method signature
shows the parameter
type and name.

The namespace is
ABCComputers.ConsultPro.

The Profile structure class
and Profile DataTable class,
showing the DataTable
utility methods. ProfileDT is
passed as a parameter to
the updateProfile() method
in the Consultant class.

Creating Synergy .NET Assemblies
Creating an Assembly from the Command Line

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  10-15

Creating an Assembly from the Command Line
Follow the instructions in this section to generate C# classes and build a Synergy
assembly from the command line. You will need to do the following:

1. Use the genxml utility to create an XML file. See “The genxml Utility” below.

2. Use the gencs utility to generate the C# classes from the XML file. See “The gencs
Utility” on page 10-18.

3. (optional) Edit the source files. See “Editing the Generated Files” on page 10-28.

4. Run the batch file to compile the classes, build the assembly, and (optionally)
create the XML file that can be used to generate API documentation. See
“Building the Assembly” on page 10-22.

5. (optional) Complete the API documentation using a third-party utility. See
“Generating API Documentation” on page 10-29.

The genxml Utility
The genxml utility creates an XML file from SMC method definitions and
repository structure definitions. This is an intermediate step in creating the
C# classes.

This utility runs on all supported Synergy/DE platforms. Genxml is installed in
the DBLDIR directory.

The genxml utility checks structure sizes in the SMC against the
corresponding structures in the repository and reports a warning if there
are discrepancies. Although the XML file is generated anyway, you should
use the MDU’s Verify Catalog utility to update the structure sizes in the
SMC. (See “Verifying Repository Structure Sizes and Enumerations” on
page 2-41.) Failure to do so can cause errors at runtime because the
structure information in the component, which was pulled from the
repository, will differ from that in the SMC.

Creating Synergy .NET Assemblies
Creating an Assembly from the Command Line

10-16  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Syntax dbr genxml -f xmlFilename -i intName [-a altIntName]
[-d targetDir] [-s smcDir] [-m rpsMain -t rpsText] [-n]
[-v msgLevel] [-?]

Arguments -f xmlFilename

The name to use for the XML file. This name will also be used for the
assembly. You can include the complete path if desired. If you do not specify
an extension, “.xml” is used.

-i intName

Name of the interface from the SMC to include in the XML file. You may
pass multiple interface names; each must be preceded with the -i option. A C#
class will be created for each interface specified. Remember, the interface name
is case sensitive.

-a altIntName

(optional) Alternate interface name. Use this name for the interface previously
specified with the -i option. Genxml uses the associated -i interface to pull
methods from the SMC; the alternate name is included in the XML file and is
used as the class name when gencs is run. If you pass multiple interface names,
each may have an alternate name. Each alternate name must be preceded with
the -a option. See the examples on page 10-17.

-d targetDir

(optional) The target directory for the XML file. If not passed, the XML file is
created in the directory specified in the -f option. If no directory is specified
with -f, the file is created in the current directory.

-s smcDir

(optional) Directory where the SMC files (cdt.is? and cmpdt.is?) are located.
If not passed, DBLDIR is used.

-m rpsMain

(optional) Full path to the repository main file that contains the structures
referenced in the SMC. Use with -t. This option is used only if you are passing
structures as parameters. If not passed, genxml uses the environment variable

When using alternate names, sequence matters. The -a option must follow
the -i option that it applies to. You may specify multiple interface names,
and each may have an associated alternate name immediately following it.

Creating Synergy .NET Assemblies
Creating an Assembly from the Command Line

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  10-17

RPSMFIL to determine the name of the repository main file; if that is not set,
it uses RPSDAT:rpsmain.ism. If RPSDAT isn’t set, genxml looks in the
current directory for rpsmain.ism.

-t rpsText

(optional) Full path to the repository text file that contains the structures
referenced in the SMC. Use with -m. This option is used only if you are
passing structures as parameters. If not passed, genxml uses the environment
variable RPSTFIL to determine the name of the repository text file; if that is
not set, it uses RPSDAT:rpstext.ism. If RPSDAT isn’t set, genxml looks in the
current directory for rpstext.ism.

-n

(optional) Indicates that you want to use the value in the Repository Alternate
name field instead of the value in the Name field as the property or field
name. This option pertains only if you are passing structures as parameters. If
not passed, the field name in the structure becomes the property/field name in
the C# class. If passed, the value in the Alternate name field is used when it
exists; else, the value in the Name field is used.

-v msgLevel

(optional) Level of verbosity in messages:

0 = no messages
1 = error messages and warnings
2 = everything included in level 1, plus success messages (default)
3 = everything included in level 2, plus return codes and the location of the
SMC and repository files

-?

(optional) Displays a list of options and the version number for genxml.

Examples This example creates an XML file named ConsultIt.xml. This will also be the
name of the assembly. The XML file will include information about two
interfaces, AppLogin and Consultant. The target directory for the XML file is
c:\work, which is also where the SMC files are located.

dbr DBLDIR:genxml -f ConsultIt -i AppLogin -i Consultant
-d c:\work -s c:\work

This example uses alternate interface names. Instead of classes named AppLogin
and Consultant, the assembly will have classes named Login and Consult.

dbr DBLDIR:genxml -f ConsultIt -i AppLogin -a Login
-i Consultant -a Consult -d c:\work -s c:\work

Creating Synergy .NET Assemblies
Creating an Assembly from the Command Line

10-18  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

On OpenVMS, you’ll need to define genxml as a foreign command and then
execute it. In the example below, we quoted the XML filename and the interface
names to preserve the case.

$ GENXML:==$DBLDIR:GENXML
$ GENXML -F "ConsultIt" -I "AppLogin" -I "Consultant" -

-D SYS$WORK: -S SYS$WORK:

The gencs Utility
The gencs utility takes as input the Synergy XML file created by genxml and
outputs the following:

 C# source files. By default, there will be one C# class file for each interface you
specified when running genxml, as well as a C# class file for each structure,
group, and enumeration in the interface. There will also be a C# interface file
generated for each interface you specified when running genxml.

 A batch file named xmlFilename.bat, which is used to compile the classes,
generate the assembly, and create the XML file for the API documentation.

 A response file named xmlFilename.rsp, which is used by the batch file to
compile the classes.

 A file named AssemblyInfo.cs, which contains information about the
assembly. You can customize this file; see “Editing Information in
AssemblyInfo.cs” on page 10-28. Once created, this file will not be
overwritten if you regenerate classes.

The gencs utility is installed in the xfNLNet directory.

The gencs utility must be installed on your local machine. Attempting to
run it on a remote machine using a mapped drive will result in a .NET
security error.

Creating Synergy .NET Assemblies
Creating an Assembly from the Command Line

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  10-19

Syntax gencs -f xmlFilename [-d targetDir] [-n namespace]
[-o outputDir] [-s keyFilename] [-t] [-a] [-g] [-nb] [-r] [-nr]
[-p] [-i interfaceName:count] -w [-v msgLevel] [-?]

Arguments -f xmlFilename

The full path and filename of the XML file generated with genxml. If you do
not specify the file extension, “.xml” is assumed.

-d targetDir

(optional) The directory for the generated files. If not passed, defaults to the
My Documents directory. The gencs utility creates a subdirectory, named with
the XML filename, within targetDir and places all the generated files in it.

-n namespace

(optional) The namespace that the assembly will use. If specified, all classes
generated for the assembly will use this namespace. If not specified, the
namespace will be xmlFilenameNS.

The namespace is used to ensure that each class is unique. Microsoft
recommends that namespaces use the format CompanyName.ProductName
(e.g., ABCComputers.ConsultPro). The namespace is appended to
the beginning of the class name (e.g., ABCComputers.ConsultPro.MyClass).

-o outputDir

(optional) The directory that the assembly will be created in. If not passed,
defaults to the -d directory or, if -d was not passed, to the xmlFilename
subdirectory of the My Documents directory.

-s keyFilename

(optional) Full path and filename of the strong name key file that will be used
to strong name the assembly. You must create the file using Microsoft’s sn.exe
utility and place it in the desired location before running gencs. The gencs
utility will verify that the file exists and then write the path to the batch file.
See “Using Your Own Key File” on page 10-27 for more information.

If not passed, xfNetLink .NET will generate public and private keys in a
strong name key file named with the assembly name.

-t

(optional) Assembly will be delay signed. Use with -s. See “Using Your Own
Key File” on page 10-27 for more information.

Creating Synergy .NET Assemblies
Creating an Assembly from the Command Line

10-20  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

-a

(optional) Generate an XML file that can be used to generate API
documentation. This option adds a command to create the XML file to the
batch file. In order to have useful documentation, you must add comments for
your methods and parameters. See “Generating API Documentation” on
page 10-29 for more information.

-g

(optional) Generate structure members as public fields. If not passed,
structure members are generated as properties with private fields. If you are
planning to use .NET controls, generate properties; the properties have “get”
and “set” methods, which can be assigned to .NET controls in Visual Studio.
You must also generate properties to take advantage of Repository’s read-only
flag and the class Changed property.

If you are not planning to use .NET controls, and don’t need the read-only
flag, Changed property, or the INotifyPropertyChanged event, you can
generate either fields or properties; using fields may improve performance.

-nb

(optional) Convert binary fields in repository structures to strings. By default,
a binary field in a repository structure is converted to a byte array of the size
specified in the Repository field definition. This feature was added in version
9.3, and can be used, for example, to store an RFA that can then be used to
ensure you update the correct record when data is returned to the server. To
retain the pre-9.3 behavior and convert binary fields to strings, use the -nb
option. This option is not available when creating an assembly from
Workbench. See “Appendix B: Data Type Mapping” for more information on
data type conversion. Note that you should use the procedure described in
“Passing Binary Data” on page 11-21, rather than a binary structure field, to
pass most binary data.

-r

(optional) Include the Original property in structure classes. This property is
used to store a copy of a structure within the object. By default it is not
included. This option is not available when creating an assembly from
Workbench. See “Using the Original property” on page 11-15 for details.

Creating Synergy .NET Assemblies
Creating an Assembly from the Command Line

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  10-21

-nr

(optional) Generate output parameters (that is, parameters marked as “out” in
the SMC) as “out” types in the C# code, with the exception of arrays, which
are always generated as “ref”. If not passed, output parameters are generated as
“ref ” types in the C# code. (Prior to version 9.5.1, all “out” parameters were
generated as “ref ” by default.)

-p

(optional) Include the INotifyPropertyChanged class in generated structure
classes. This enables you to use the PropertyChanged event on structure fields
(properties) bound to controls. This option cannot be used with -g; it is valid
only when you generate properties.

-i interfaceName:count

(optional) Generate multiple classes of the specified interface name. Specify
the total number of classes desired with count. The first instance of the class
will be named as usual with the interface name (or alternate name, if
specified). Subsequent instances will be named with the interface name
followed by a number, which will increment. (See the examples on
page 10-22.) You can pass multiple interface names; each must be preceded
with the -i option. If -i is not specified for an interface, a single class will be
generated. (See “Using Multiple Copies of the Same Class” on page 11-11 for
more information on using this feature.)

-w

Generate WCF contracts. Use this option if you want the assembly to use
WCF contracts, such as for a web service. The generated classes will include
code that makes the assembly hostable. In addition, this option changes the
way ArrayList and structure collection parameters are handled: rather than
being generated as ArrayLists, they are generated as List<T> parameters
(where T is the data type of the elements). Consequently, in your client code,
you must use a List<T> class instead of an ArrayList class for a parameter that
is defined as ArrayList or structure collection in the SMC.

-v msgLevel

(optional) Level of verbosity in messages.

0 = no messages
1 = error messages
2 = error messages and success messages (default)

-?

(optional) Displays a list of options for the utility.

Creating Synergy .NET Assemblies
Creating an Assembly from the Command Line

10-22  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Examples This example creates .cs files from ConsultIt.xml, and indicates that you want to
create an XML file for API documentation. The namespace uses the standard
CompanyName.ProductName format (in our example,
ABCComputers.ConsultPro). A subdirectory named ConsultIt will be created
within c:\work, and the .cs, .bat, and other generated files will be placed there.
This example also includes a strong name key file and the -t option to delay sign
the assembly. This is a continuation of the genxml example, so the new files will be
named AppLogin.cs and Consultant.cs.

gencs -f c:\work\ConsultIt.xml -d c:\work -a
-n ABCComputers.ConsultPro -s c:\corp\ABCComputersPublic.snk -t

The XML file ConsultIt.xml contains two interfaces, AppLogin and Consultant.
In the following example we use the -i option to specify that we want to create
multiple classes (three total) from the interface AppLogin. These classes will be
named AppLogin.cs, AppLogin1.cs, and AppLogin2.cs. Because we have not
specified the Consultant interface with the -i option, only one Consultant class
will be generated.

gencs -f c:\work\ConsultIt.xml -d c:\work -a
-n ABCComputers.ConsultPro -s c:\corp\ABCComputersPublic.snk -t
-i AppLogin:3

Building the Assembly
Before building the assembly, you may need to edit the generated C# class files or
the AssemblyInfo.cs file. See “Understanding the Generated Classes” on
page 10-24 and “Editing the Generated Files” on page 10-28.

The gencs utility creates a batch file (xmlFilename.bat) and places it in the
subdirectory created in the directory specified with the gencs -d option. The batch
file includes commands to compile the C# classes, build the assembly, and—if you
included the gencs -a option—generate an XML file that can be used for API
documentation.

Gencs also appends numbers to the ends of interface names when it
encounters names that differ only in case or a structure name that is the
same as an interface name. Consequently, the numbers appended to the
additional class files created with the -i option may not start with 1. See the
note on page 2-25 for more information.

Creating Synergy .NET Assemblies
Creating an Assembly from the Command Line

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  10-23

If desired, you can pass C# compiler commands to gencs by setting the
SYNCSCOPT environment variable to any valid C# compiler command before
running the batch file. See SYNCSCOPT in the “Environment Variables” chapter
of the Environment Variables & System Options manual for more information.

1. Run vsvars32.bat to set the environment variables used by .NET. This batch file is
installed with Visual Studio (or with Windows SDK 7.1) and should be run
whenever you run commands from the command line.

2. (optional) Set SYNCSCOPT.

3. Run the batch file created by gencs. For example, to continue with our previous
scenario:

c:\work\ConsultIt\ConsultIt.bat

To enable the classes in your assembly to be pooled, you must run the batch file
with the -p option. For example:

c:\work\ConsultIt\ConsultIt.bat -p

The assembly (named ConsultIt.dll in our example) will be placed in the directory
specified with the gencs -o option, if specified, or in the same directory as the
generated classes. If you opted to create an XML file to be used for API
documentation, the XML file will be placed in the subdirectory under the
directory specified with the gencs -d option.

To build an assembly on a 64-bit platform (or build on a 32-bit platform to
run on a 64-bit platform), set up the environment by running vcvarsall.bat
with the relevant parameter, such as amd64. If desired, you can always run
vcvarsall.bat instead of vsvars32.bat. (Use the parameter x86 to build on
32-bit.) See your Visual Studio documentation for more information on
these batch files.

Using the -p option causes the generated procedural classes to be derived
from the ServicedComponent class. It also changes the status of some
methods from public to private or protected, and causes the getConnect()
and shareConnect() methods to be excluded from the procedural classes.
Thus, you should use -p only when you are certain the object will be pooled.
See “Understanding .NET Pooling” on page 11-24 and “Implementing
Pooling” on page 11-26 for more information on pooling.

Creating Synergy .NET Assemblies
Understanding the Generated Classes

10-24  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Understanding the Generated Classes
When you generate C# classes, a .cs file is created for each interface selected from
the SMC, as well as for each structure, group, and enumeration within the selected
interfaces. These generated classes use the xfNetLink .NET classes internally to
connect with xfServerPlus and pass data.

Procedural Classes
The procedural classes (which are derived from the interfaces in the SMC) contain
your own user-defined methods as well as a number of utility methods. You can
browse a procedural class using the Object Browser in Visual Studio to see the
method signatures.

The following public utility methods are included in every procedural class:

connect()
disconnect()
getConnect()
shareConnect()
debugInit()
debugStart()
setUserString()
getUserString()
setCallTimeout()

The utility methods enable you to establish a connection with xfServerPlus and
perform other utility functions, such as setting a call time-out value and running a
debug session. See “Using Your Synergy .NET Assembly” on page 11-8 and the
method reference on page 11-38 for more information. Note that although they
are included in the C# classes, getConnect() and shareConnect() are not
included in the assembly when it is built for pooling. This is because these two
methods cannot be used with pooling.

For each procedural class, gencs creates an associated C# interface. The C#
interface is named with the class name, with the letter “I” appended to the
beginning of the filename. For example, if the class is named AppLogin, the
associated C# interface will be named IAppLogin and will be in the file
IAppLogin.cs. See “Using Multiple Copies of the Same Class” on page 11-11 for
information on using the C# interfaces.

See “Appendix B: Data Type Mapping” for details on how data types for
parameters, return values, and structure fields are mapped from Synergy
to .NET.

Creating Synergy .NET Assemblies
Understanding the Generated Classes

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  10-25

Structure Classes
The structure classes are built from your structure definitions in the repository.
Fields in the repository structure become either properties of the structure class or
public fields (if you ran gencs with the -g option or selected “Fields” for “Generate
structure members as” in Workbench). By default, the properties or fields are
named with the repository field name; see “Passing Structures as Parameters” on
page 1-8 for details on overriding the default name.

If there are groups within your repository structures (or fields declared in the
repository as “struct” data type), a class will be generated for each group, and each
field in the group will be a property/field of that class.

The following public utility methods are included in every structure class:

Clone()
Equals()

For more information about the structure and group classes, see “Using
Structures” on page 11-12. For more information about the utility methods, see
the method reference on page 11-38.

DataTable Classes
If you indicated in the SMC that a structure collection or an ArrayList of
structures should be created as a DataTable, in addition to the structure class, your
assembly will include a DataTable class, which is named with the structure name
plus “DT” (e.g., MystructDT).

Each row in the table consists of a structure class, and each column represents a
field, which is usually named with the repository field name. Groups within the
structure are “flattened” and included in the table with their parent structure.

The following public utility methods are included in every DataTable class:

AddRow()
GetRow()
GetRows()

For more information about the DataTable classes, see “Using DataTables” on
page 11-16. For more information about the utility methods, see the method
reference on page 11-38.

Creating Synergy .NET Assemblies
Understanding the Generated Classes

10-26  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Enumerations
Enumeration types are built from your enumeration definitions in the repository.
There will be a .cs file, named with the enumeration name, for each repository
enumeration that is referenced as a parameter or return value in the SMC, as well
as for those enumerations that are referenced as fields within a structure that is
passed as a parameter.

For more information, see “Using Enumerations” on page 11-20.

Custom Attributes
xfNetLink .NET uses a custom attribute class to hold metadata about the Synergy
routines, such as the type and size of parameters for a method call. At runtime,
xfNetLink .NET uses reflection to look at the attributes and get this information.
It is very important that you not edit the custom attributes. Doing so will cause
errors at runtime.

Creating Synergy .NET Assemblies
Using Your Own Key File

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  10-27

Using Your Own Key File
By default, when you build the assembly, xfNetLink .NET generates public and
private keys in a strong name key file (.snk file) named with the assembly name.
These keys are then used to sign the assembly when you build your project in
Visual Studio.

If signing is not a concern for your application, you can simply use the defaults
(i.e., do nothing in this regard). It is likely, however, that your company will want
to develop a policy for signing assemblies. In this case, you will need to create your
own key file and specify it when you create the assembly (see the steps below).

Depending on your workflow, you may want to use delayed signing. Delayed
signing assigns the public key when the assembly is built, but enables you to delay
the assignment of the private key until you are ready to distribute the assembly.
You can use delayed signing for your Synergy assembly only when you use your
own key file.

 To use your own key file

1. Before generating C# classes, create an .snk file using Microsoft’s Strong Name
tool, sn.exe, which is included in the .NET Framework.

2. If you are creating the assembly in Workbench, enter the name of your key file in
the “Key file” field in the Component Information dialog box for your project. If
you want to delay sign the assembly, also check the “Delay sign assembly” option.
See “Creating a Synergy/DE .NET Component Project” on page 10-7 for details.

3. If you are creating the assembly from the command line, when you run gencs,
specify the key file name with the -s option. If you want to delay sign the assembly,
also specify the -t option. See “The gencs Utility” on page 10-18.

A complete discussion of strong naming and delayed signing is beyond the scope
of this manual. For additional information, and for instructions on using sn.exe to
create a key file, see your .NET documentation.

Creating Synergy .NET Assemblies
Editing the Generated Files

10-28  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Editing the Generated Files
You may need to edit the generated C# source files to add methods, such as
validation, utility, and initialization methods. If you edit the files, take care not to
alter the generated code; doing so will cause errors when you try to run your .NET
application. You should place your own methods at the end of the file, after the
generated code.

You may also want to edit the metadata in the AssemblyInfo.cs file (see below) or
add comments to the source files for the API documentation (see “Generating API
Documentation” on page 10-29).

Editing Information in AssemblyInfo.cs
The AssemblyInfo.cs file contains information about the assembly, which you can
customize. This information displays when you view the generated DLL’s
properties (that is, right-click on the DLL in Windows Explorer and select
Properties).

The generated AssemblyInfo.cs file includes default values for some of the
attributes, as shown in the sample below. If desired, you can add values for the
other attributes. For example, you may want to implement a version numbering
system. We do not recommend changing the value for ApplicationActivation.

ApplicationName("ConsultIt")
ApplicationActivation(ActivationOption.Server)
ApplicationAccessControl(false)
AssemblyTitle("")
AssemblyDescription("")
AssemblyConfiguration("")
AssemblyCompany("")
AssemblyProduct("")
AssemblyCopyright("")
AssemblyTrademark("")
AssemblyCulture("")
AssemblyVersion("1.0.0.0")
AssemblyKeyName("")

If you regenerate classes for the same interface, the C# source files will be
overwritten and any modifications will be lost. The AssemblyInfo.cs file is
not overwritten when classes are regenerated.

Creating Synergy .NET Assemblies
Generating API Documentation

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  10-29

Generating API Documentation
You can create API documentation for the developers who use your Synergy
assembly. To do this, you will need to do the following:

1. Add documentation comments for your methods, return values, and parameters.

2. Generate an XML file when you build the assembly.

3. Use a third-party application to create documentation from the XML file.

Adding Documentation Comments
To produce useful documentation, you must provide a description for each of your
user-defined methods. (We include documentation comments for the
xfNetLink .NET utility methods in every class.)

If you are using the MDU to populate the SMC, enter comment text in the
description fields in the MDU as you define methods. The MDU includes fields
for method description, return value description, and parameter description.
See “Creating New Methods” on page 2-22 and “Defining Parameters” on
page 2-28 for instructions on entering data in these fields.

If you are attributing your code and using the XML file output by dbl2xml to
populate the SMC, use the documented syntax to include comment text for
methods, return values, and parameters in the Synergy source file. See
“Documentation Comments” on page 2-20.

When you generate C# classes, the descriptions in the SMC are included in the
generated files as XML documentation comments. If a method does not have a
method description in the SMC, a “To Do” comment is inserted in the generated
file. If a return value description is not provided in the SMC, no text is inserted in
the file for the associated XML tag. If a parameter description is not provided in
the SMC, the parameter name is used as the comment text.

For structures passed as parameters, the field description in the repository is
included as the XML documentation comment for the property (or field) in the
generated class file. If a field does not have a description in the repository, the
comment “***Field To Do***” is inserted in the generated file.

It is also possible to manually edit the C# source files to include documentation
comments or to add additional formatting tags to create the desired output. Keep
in mind, though, that any changes you make to the .cs files will be lost if you
regenerate the C# classes. See “To manually add XML documentation comments”
below for instructions.

Creating Synergy .NET Assemblies
Generating API Documentation

10-30  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

 To manually add XML documentation comments

1. After generating C# classes, open the class file(s) and find the “To Do” comments.
There is a “***To Do*** Add method description” comment before every
user-defined method for which there was no description text found in the SMC.
There is a “***Field To Do***” comment before every property or field in the
structure classes for which there was no description in the repository.

2. Replace the “To Do” lines with descriptions of the methods and fields. Add
comments for the <param> and <returns> tags if desired.

3. Save the file(s).

Generating an XML File
Select the “Generate API doc” option in Workbench or use the gencs -a option on
the command line to indicate that you want to generate an XML file when you
build the assembly.

When you build the assembly, a file named assembly_nameAPI.xml will be
generated and placed in the same directory as the assembly.

Creating the API Documentation
A third-party product, Sandcastle, is required to create the API documentation
using the XML file (assembly_nameAPI.xml) produced when you built your
assembly. Sandcastle can be downloaded from github.com/EWSoftware/SHFB.

When the C# classes are generated, the XML tags necessary to produce
documentation (e.g., <summary>) are included in the source files regardless
of whether you have indicated that you want to generate API
documentation. If you do indicate in Workbench or with the command line
option that you want to generate API documentation, a command to create
the XML file is added to the batch file.

Microsoft originally developed Sandcastle and downloads can still be found
on the Microsoft website, but they are not the most recent. We recommend
you go to theGitHub site instead to get information about the product and
to download the latest version.

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-1

Chapter 11

Calling Synergy Routines from .NET
This chapter explains how to create a distributed application with .NET and
Synergy, how to create an application configuration file, and how to use your
assembly in your client application. It also includes instructions for using .NET
pooling, as well as a method reference for the utility methods included in your C#
classes.

Setting up Your Environment for Development
Before you start creating your .NET application, check the list below to ensure
your environment is set up properly. If you are working on the same machine as
was used to create the assembly, some of these steps are already done. If not, you’ll
need to copy files to your .NET development machine.

1. Install Visual Studio and the .NET Framework.

2. Install xfNetLink .NET. During installation, xfnlnet.dll will be registered in the
GAC (global assembly cache) and installed as a native image.

3. Copy your Synergy .NET assembly to a location where your application can
reference it and, if necessary, register it in the GAC. There are two instances in
which your assembly must be registered in the GAC:

 The assembly will be public.
 Your application will use pooling and pass structures as parameters.

4. (optional) Copy the files for the API documentation to the development machine.
These files can go in any convenient location.

5. Create or edit the configuration file (if your application will use one) using the
xfNetLink .NET Configuration utility. See “Using an Application Configuration
File” on page 11-2 for more information about configuration files and instructions
on using the utility.

6. If your application will use pooling, create, configure, and start the pool. See
“Understanding .NET Pooling” on page 11-24 and “Implementing Pooling” on
page 11-26.

Calling Synergy Routines from .NET
Using an Application Configuration File

11-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Using an Application Configuration File
You have the option of using an application configuration file to specify
configuration information—such as the host name and port, time-out values, and
log file settings—for your .NET client application. Your xfNetLink .NET
distribution includes the xfNetLink .NET Configuration utility, which can be
used to create and edit configuration files.

What is an application configuration file and when should I
use one?
An application configuration file (config file, for short) contains settings that are
used by .NET applications. Default values for the configuration settings used by
xfNetLink .NET are built into the program. These program defaults, shown in the
table below, cannot be changed. If they are suitable for your application, you do
not need to use a config file. If they are not suitable, you can use a config file to
override some or all of the settings.

xfNetLink .NET employs a standard .NET configuration file, which uses XML to
record configuration settings. In general, there is one config file per application.
(This rule does not always strictly apply; see “Naming the configuration file”
below.) Within the config file, you can create default settings that will be used by
all assemblies that use that particular configuration file. These default config file
settings override the program defaults. In addition, you have the option of creating
settings for individual procedural classes within your assemblies. Settings at the
class level override the default settings.

Configuration setting Program default

connect timeout 120 seconds

host localhost

initialize timeout 30 seconds

logfile c:\xfnlnet.log

logging none (i.e., logging is off by default)

pool return false

port 2356

single log file off

Calling Synergy Routines from .NET
Using an Application Configuration File

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-3

Naming the configuration file
xfNetLink .NET uses the standard .NET naming conventions for config files.
Your file must adhere to these conventions in order for xfNetLink .NET to find
and use the file.

 If the application uses pooling, the file must be named dllhost.exe.config and
reside in the %windir%\system32 directory. This means that if you have
multiple applications residing on the same machine, they must all use a single
config file. If those multiple applications require different configuration
settings, you can implement the settings at the class level.

 For a web application that does not use pooling, the file must be named
web.config and reside in the root directory for the web application. If you
have multiple web applications residing on the same machine and want each
one to use a different config file, create a separate directory for each
application.

 For a Windows (i.e., non-web) application that does not use pooling, the file
must be named with the application filename (including extension) plus the
.config extension. It must reside in the same directory as the application. For
example, if your application were named myApp.exe, the file would be named
myApp.exe.config.

If you use an explicit connect() to establish the connection with
xfServerPlus, you can override at runtime the host and port settings
specified in the config file (or the program defaults). See step 4 on
page 11-9 and the method reference on page 11-38 for more information.

When you create a Visual Studio project for a web application, it will
include a config file named web.config. We recommend that you use
this file (assuming your web application does not use pooling). See “To
open an existing config file” below for instructions on adding the
xfNetLink .NET configuration information to the file.

When you create a Visual Studio project for a Windows application, it
will include a config file named App.config. We recommend that you
use this file (assuming your application does not use pooling). When
'you build the project, Visual Studio will copy the file to the bin\release
or bin\debug directory and rename it with the application name. See
“To open an existing config file” below for instructions on adding the
xfNetLink .NET configuration information to the file.

Calling Synergy Routines from .NET
Using an Application Configuration File

11-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Creating and Editing Configuration Files
The xfNetLink .NET Configuration utility (synnetcfg.exe) enables you to create
and edit application configuration files for your xfNetLink .NET applications.
Although you may need to edit the config file to add information required by your
application, we do not recommend manually editing the xfNetLink .NET portions
of the file.

 To start the utility

From the Windows Control Panel, select Synergy Control Panel > xfNetLink
.NET Configuration.

You can also run the utility from the menu option in Workbench. Select
Synergy/DE > Utilities > xfNetLink .NET Configuration.

 To open an existing config file

1. Select File > Open or click the Open config file toolbar button and then navigate
to the location of the file.

2. If the file was created by Visual Studio and this is the first time it’s been opened in
the xfNetLink .NET Configuration utility, you’ll be prompted to add the
xfNetLink .NET configuration information. Click Yes.

3. When you are done editing, select File > Save or click the Save config file toolbar
button.

 To create a new config file

1. Select File > New or click the New config file toolbar button.

2. Configure settings for the default class or add a class and configure settings for it.
See “To add a class to a configuration file” and “To configure settings for a class”
below for instructions.

3. When you are through editing the settings, select File > Save As or click the Save
config file toolbar button. Give the file a valid name. See “Naming the
configuration file” on page 11-3.

 To add a class to a configuration file

1. With a config file open, click the Add Class button.

2. Type the name in the Class name field. The class name is case sensitive. Be careful
to type the name correctly; the xfNetLink .NET Configuration utility does not
validate the name you enter.

3. Click OK. You can now configure settings for the class; see below for instructions.

Calling Synergy Routines from .NET
Using an Application Configuration File

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-5

 To configure settings for a class

1. Select the class from the list of Synergy Classes. Any settings currently defined for
the class will display in the Class Settings list.

2. Click the Add button to display the Add Class Setting dialog box.

3. In the Key field, select the setting you want to add.

4. In the Value field, specify the value for the selected key. Refer to the table on
page 11-5.

5. Click OK. Repeat this procedure for each setting you want to add.

Class Settings

Key Set value to

connect timeout The number of seconds xfNetLink will wait for an acknowledgment
from the session started by the logic server in xfServerPlus. (This is ‘B’
in figure 4-2 on page 4-5.) The default for normal operation is 120
seconds; for debug it is 600 seconds. Both the normal time-out and
the debug time-out will change to the value you specify here. This
value is also used to set the request for session time-out (‘A’ in
figure 4-2 on page 4-5).

host The name or IP address of your xfServerPlus machine.

initialize timeout (pooling only) The number of seconds xfNetLink will wait for a return
from a remote call to xfServerPlus when any of the five pooling
support methods are called. The default is 30 seconds. This value
should be set to less than the connect timeout. If it is not, the connect
timeout is used instead.

logfile The path and filename of the file to use for client-side logging. Do not
use logicals to specify the filename location.

Calling Synergy Routines from .NET
Using an Application Configuration File

11-6  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

logging The type of information to be logged. When you select logging in the
Key field, the Logging Options become available. Check the boxes to
indicate what information you want logged. See “Using Client-Side
Logging” on page 12-7 for more information and a sample log.
 None. Turns logging off for this class. You can also turn off logging

by deleting the logging setting. However, this option enables you to
have logging on by default but off for a specific class.

 All. Includes all types of logging listed below.
 Errors. Logs errors only. Recommended for production

environments.
 User-defined methods. Logs calls to methods in the SMC.

Includes parameters passed in and shows what is in the parameter
after the call.

 Utility methods. Logs calls to the utility methods in the class (e.g.,
connect(), disconnect()). Includes parameters passed in and out.

 Configuration settings. Logs messages regarding configuration
settings.

 Packets. Logs the complete packets that are sent and received on
the client; includes date/time stamp. If encryption is enabled, the
log displays a string of 10 asterisks instead of the packet contents.

pool return (pooling only) When you select pool return in the Key field, the Pool
Options become available. Select the “Return objects to pool” check
box if you want the objects instantiated from this class returned to the
pool after they are used. See “Reusing objects” on page 11-24 for
more information.

port The port that xfServerPlus is listening on.

single log file “On” to use a single log file for all sessions. If not set, or if set to “off”,
a separate log file is used for each class that instantiates a connection
to xfServerPlus, and a date/time stamp is appended to the end of the
log filename (before the file extension) to differentiate the logs. See
“Using Client-Side Logging” on page 12-7 for additional information.

Class Settings (continued)

Key Set value to

Calling Synergy Routines from .NET
Using an Application Configuration File

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-7

 To modify a setting

1. Select the class from the list of Synergy Classes. The current settings for that class
will display in the Class Settings list.

2. In the Class Settings list, select the setting you want to change.

3. Click the Modify button.

4. In the Modify Class Setting dialog box, type or select a new value for the key. See
the table above for details on key values.

5. Click OK.

 To delete a setting

Deleting a setting from a class causes the class to use the default value for that
setting or, if there is no default defined in the config file, to use the program
default.

1. Select the class from the list of Synergy Classes.

2. In the Class Settings list, select the setting you want to delete.

3. Click the Delete button, and then click Yes at the confirmation prompt.

 To delete a class

Deleting a class removes the class and all its settings from the config file. As a
result, this class will use the settings from the default class or, if there is no default
class, it will use the program defaults.

1. Select the class from the list of Synergy Classes.

2. Click the Delete Class button, and then click Yes at the confirmation prompt.

Calling Synergy Routines from .NET
Using Your Synergy .NET Assembly

11-8  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Using Your Synergy .NET Assembly
We have included examples in both C# and—where there is a sufficient difference
in the code—in VB.NET. If you are using pooling, also refer to “Writing Code
That Uses Pooled Objects” on page 11-34.

1. Reference the Synergy assembly in your Visual Studio project

Before using theassembly, you’ll need to add a reference to it in your Visual Studio
project. After you’ve referenced the assembly, you can view its methods using
Visual Studio’s Object Browser. You’ll see your own methods, along with the
xfNetLink .NET utility methods.

If any of your methods pass structures as parameters, you must also add a reference
to xfnlnet.dll in your project.

If you are using pooling, you must also add a reference to
System.EnterpriseServices in your project. The xfNetLink .NET classes use
this namespace.

2. Designate the namespace(s) you are using
In your C# code, include the using keyword, followed by the namespace(s) of
your assemblies, so that you can more easily access the classes in your assembly. For
example:

using ABCComputers.ConsultPro;

If you are using VB.NET, use the Imports keyword to designate the namespace(s)
you will be using. For example:

Imports ABCComputers.ConsultPro

3. Instantiate an instance of the procedural class
Your Synergy .NET classes can be instantiated using the standard mechanism for
the language you are using. The examples below show how to instantiate an
AppLogin() object named “userSess”.

For example, in C#:

AppLogin userSess = new AppLogin();

For example, in VB.NET:

Dim userSess As New AppLogin()

Calling Synergy Routines from .NET
Using Your Synergy .NET Assembly

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-9

4. Connect to xfServerPlus

There are several ways to establish a connection with xfServerPlus.

 Use connect(). This is the recommended method. It enables you to make
several calls using the same connection before disconnecting. The advantages
to using connect() are improved performance; the ability to maintain state
between calls; and the option to share the connection with other objects (see
next bullet). For example, in C#:
userSess.connect();

 Share a connection. Two or more objects can share a connection. This method
improves performance because several objects are sharing the same
xfServerPlus session rather than each object making its own connection. To
share a connection, you must first establish it with connect(), and then use
the getConnect() and shareConnect() methods.
In the examples below, we instantiate two new procedural classes and use the
connect() method to establish a connection for one of them. We then
instantiate the aConnection object to hold the connection and use the
getConnect() method of the userSess object to get it. Finally, we call the
shareConnect() method of the userRoutines object and pass the
aConnection object. You can pass the same aConnection object multiple
times to share the connection among several objects.

In C#:

AppLogin userSess = new AppLogin();
Consultant userRoutines = new Consultant();
userSess.connect();
object aConnection = null;
aConnection = userSess.getConnect();
userRoutines.shareConnect(aConnection);

In VB.NET:

Dim userSess As New AppLogin()
Dim userRoutines As New Consultant()
userSess.connect()
Dim aConnection As Object
aConnection = userSess.getConnect()
userRoutines.shareConnect(aConnection)

See the method reference on page 11-38 for additional connect()
methods that enable you to specify the host, port, and security
compliance level at runtime.

Calling Synergy Routines from .NET
Using Your Synergy .NET Assembly

11-10  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

 Create the connection automatically. When you make a call using one of the
Synergy methods in your assembly, the connection is created automatically
and then disconnected when the call is complete. This is the easiest way to
connect because it makes access to xfServerPlus completely transparent.
However, this method does not allow you to maintain state between calls. In
addition, it requires more overhead because a connection is opened and closed
for each call. If you use this method and experience performance problems,
you may want to use an explicit connect() instead.
In the examples below, the userRoutines object is instantiated, and then the
postCharge() method is called, without first calling the connect() method.

In C#:

Consultant userRoutines = new Consultant();
userRoutines.postCharge(charge, return_msg);

In VB.NET:

Dim userRoutines As New Consultant()
userRoutines.postCharge(charge, return_msg)

5. Invoke methods in the component
Make calls to your Synergy methods and pass the necessary parameters. If you
generated API documentation for your assembly, it will include the information
necessary to use the methods, such as the parameter data types. In addition, Visual
Studio’s IntelliSense® will show you the method signature as you code.

The examples below show how to invoke the login() method in the userSess
object.

In C#:

string userID = "MFranklin";
string password = "abc123";
userSess.login(userID, password);

In VB.NET:

Dim userID As New String("MFranklin")
Dim password As New String("abc123")
userSess.login(userID, password)

Parameters that were not flagged as required in the SMC were converted to
required parameters when you generated the C# classes because you must
always pass all parameters in .NET.

Calling Synergy Routines from .NET
Using Your Synergy .NET Assembly

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-11

6. Disconnect from xfServerPlus

If you connected to xfServerPlus using the connect() method, you must
disconnect using the disconnect() method. If you have multiple objects sharing
a connection, xfServerPlus will not completely close the connection and release the
license until all objects are disconnected. Although an explicit disconnect is not
required when you use an automatic connection, you may want to call
disconnect() before exiting your application to ensure the connection is
correctly disposed of.

For example, in C#:

userSess.disconnect();

Using Multiple Copies of the Same Class
By specifying a quantity in the Component Information dialog in Workbench, or
by using the gencs -i option, you can create multiple copies of a single class from
the method definitions in the SMC. The purpose of this feature is to enable you to
have identical objects that can access different xfServerPlus servers using settings in
an application configuration file. This feature can be used either with or without
pooling, though it is probably most useful when used with pooling.

For example, you might want to use a single website for several customers. Each
customer’s users need to be able to log in on the common webpage, but then access
separate sets of data. If you run xfServerPlus on a separate port for each customer,
you can use duplicate objects to direct users from customer A to port 2356, users
from customer B to port 2357, and so on. Users would be directed to the correct
port at log-in, and your application code would be the same for each customer.

The duplicate classes are named with the interface name (or alternate name, if
specified), with a number appended to the end. For example, if the interface is
named AppLogin, and you specify that you want to create a total of three classes,
they will be named AppLogin, AppLogin1, and AppLogin2. The C# interface
that is generated for each class (and included in the assembly) enables you to easily
access the methods in the duplicated classes.

To create an application that uses multiple copies of the same class, you’ll need to
do the following in addition to the steps you’d normally perform:

 If you use Workbench, specify the total number of classes you want to
generate for each interface in the Component Information dialog. See the
instructions for the Qty field on page 10-11 for details.

Calling Synergy Routines from .NET
Using Your Synergy .NET Assembly

11-12  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

If you create the assembly from the command line, use the gencs -i option to
specify the interfaces for which you want to create multiples classes and the
number of classes to create. See the gencs syntax on page 10-18 and the
examples on page 10-22 for more information.

 Set the host name and port number for each copy of the class using the
xfNetLink .NET Configuration utility. See “Setting options in the config file”
on page 11-27.

 When writing your client code, use the C# interface included in the assembly
to access the methods in the duplicated classes. There is a code sample that
illustrates this in “Writing Code That Uses Pooled Objects” on page 11-34.

 If you are using pooling, when you run regsvcs, all of the classes will be
included as components in the COM+ application that is created. You’ll need
to set the pooling properties (pool size, etc.) for each component. See
“Implementing Pooling” on page 11-26 for more information.

Using Structures
Repository structures passed as parameters to your Synergy methods are included
in your Synergy assembly as classes. There will be a separate class for each
structure, named with the structure name. The fields in the repository structure
will become either properties of the structure class or public fields (if you ran gencs
with the -g option or selected “Fields” for “Generate structure members as” in
Workbench).

When you generate structure members as properties, fields that are flagged as
read-only in Repository will be generated as read-only properties and will therefore
have a “get” method but no “set” method. The read-only flag is not honored when
you generate structure members as public fields.

For example, say you have this repository structure, which is passed as a parameter
to the login() method.

user
fname ,a25
lname ,a25
maxrate ,d18.2
group address ,a

street ,a20

See “Appendix B: Data Type Mapping” for details on how data types for
structure fields are mapped from Synergy to .NET.

Calling Synergy Routines from .NET
Using Your Synergy .NET Assembly

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-13

city ,a20
state ,a2
zip ,d9

endgroup

In your assembly, you’ll see a class named “User” with the properties/fields Fname,
Lname, Maxrate, and Address. You’ll also see a class named “Address” in the
assembly. This class represents the Address group within the User structure. (Fields
defined as struct data type in the repository are treated the same as group fields.)
The Address class has four properties/fields—Street, City, State, and Zip. Under
normal circumstances, you won’t need to access the Address class directly. When
you instantiate a new User object, an Address object is automatically
instantiated.

To access the properties/fields, instantiate an object for the User class and assign
values to the properties/fields as shown in the examples below.

In C#:

User myData = new User();
myData.Fname = "Mickey";
myData.Lname = "Franklin";
myData.Maxrate = 150.00;
myData.Address.Street = "2330 Gold Meadow Way";
myData.Address.City = "Gold River";
myData.Address.State = "CA";
myData.Address.Zip = 956704471;

In VB.NET:

Dim myData As New User()
myData.Fname = "Mickey"
myData.Lname = "Franklin"
myData.Maxrate = 150.00
myData.Address.Street = "2330 Gold Meadow Way"
myData.Address.City = "Gold River"
myData.Address.State = "CA"
myData.Address.Zip = 956704471

By default, the properties/fields are named with the repository field names.
See “Passing Structures as Parameters” on page 1-8 for details on overriding
the default name.

Calling Synergy Routines from .NET
Using Your Synergy .NET Assembly

11-14  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Then, pass the myData object when you call the login() method.

In C#:

int retVal = 0;
retVal = userSess.login(userID, password, myData);

In VB.NET:

Dim retVal As Integer
retVal = userSess.login(userID, password, myData)

For more information on passing structures as parameters, and for details on how
overlays are handled, see “Passing Structures as Parameters” on page 1-8.

Using the Clone() and Equals() methods
Your generated structure class includes the utility methods Clone() and
Equals(). The Clone() method creates an exact duplicate (including data) of the
class on which it is called. The Equals() method tests whether the data in two
structure classes is the same.

In the example below we show how to clone a structure class and then compare it
to the original.

//Instantiate an instance of Mystruct class
Mystruct Client = new Mystruct();

//Fill data fields of the class
Client.Fname = “Fred”;
Client.Lname = “Friendly”;
Client.ID = “FF1234”;

//Call Clone method on Client class to create duplicate.
Mystruct Client2 = Client.Clone();
.
. //Do some processing here
.
//Call Equals method on cloned class, passing the original
// class.
bool isEqual = Client2.Equals(Client);

See also the method reference on page 11-38.

Calling Synergy Routines from .NET
Using Your Synergy .NET Assembly

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-15

Using the Changed property
You can use the Changed property to determine whether data in a structure class
has changed since the structure class was created or was returned to the client from
the server. The Changed property is included in structure classes when structure
members are generated as properties (rather than fields).

The Changed property returns a Boolean value of true if the value of any
property’s data field in the structure class has been changed by calling the set
method. If no values have changed, it returns false. If you need to test whether a
specific field has changed, use either the Clone() and Equals() methods or the
Original property.

For example,

//Instantiate an instance of Mystruct class
Mystruct Client = new Mystruct();

//Check for changes in the structure’s data
bool isChanged = Client.Changed();
if (isChanged);
.
. //Do something here if returns true
.

Using the Original property
You can use the Original property to store a copy of a structure within the object.
The Original property is included in structure classes when you use the gencs -r
option; it is null when created and remains so unless you use it.

The Original property serves a function similar to that of the Clone() method, in
that it enables you to compare a copy of a structure with the original to see which
(if any) fields have changed. (By contrast, the Changed property simply tells you
that something in the structure class has changed.) The difference is that using the
Original property stores the copy within the object, whereas with the Clone()
method, the copy is separate. This means Original is useful if you need to pass the
object to another method while maintaining the copy of the structure. If you
continue to use the object after the original structure has served its purpose, you
may want to set Original back to null to free up memory.

Calling Synergy Routines from .NET
Using Your Synergy .NET Assembly

11-16  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

In the example below, we save a copy of the Client structure class, then check later
to see if a field has changed.

//Instantiate an instance of Mystruct class
Mystruct Client = new Mystruct();

//Fill data fields of the class
Client.Fname = “Fred”;
Client.Lname = “Friendly”;
Client.ID = “FF1234”;

//Use Clone method to populate Original property.
Client.Original = Client.Clone();
.
. //Do some processing here
.
//Get original structure
MyStruct ClientOrig = Client.Original;

//Check to see if ID has changed
If ClientOrig.ID == Client.ID;
.
. //Do something here if changed
.

Using DataTables
If an assembly includes a structure collection or an ArrayList of structures created
as a DataTable, in addition to the structure class, it will have a class named with
the structure name plus “DT”. For example, if the structure is named Struct1, the
assembly will have a structure class named Struct1 and a DataTable class named
Struct1DT. The TableName property of the DataTable class
(DataTable.TableName) uses the structure name.

The generated Synergy DataTable extends the .NET Framework class
System.Data.DataTable; consequently, you can use the methods available in
that class to retrieve and manipulate data in the table. You can also use the utility
methods we supply to manipulate the rows within the DataTable as structure
classes. (See “Methods” on page 11-18 and “Examples” on page 11-19.)

When a DataTable is associated with a structure collection, it must be an “out”
parameter, passing data from Synergy to the client. A DataTable associated with an
ArrayList parameter can be an “in” parameter or an “out” parameter, but not an
“in/out” parameter.

Calling Synergy Routines from .NET
Using Your Synergy .NET Assembly

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-17

Rows and columns
Each row in the DataTable consists of a structure class. Each column in the table is
a field in that structure, and is named with the repository field name or the
alternate field name if “use alternate field names” was selected. (This is the
DataColumn.ColumnName property; you should not change this property.)

Characteristics of the structure fields, such as non-nullable and read-only, are
carried over to the DataTable. For example, for a non-nullable field, the data
column’s AllowDBNull property is set to false, and for a read-only field, the
IsReadOnly property is set to true. The default value for a DataTable column is set
to the default value for the data type of the column. The default applies when no
data is present, such as when a new row is created.

If the repository structure contains a field that is a group or struct data type, it will
be included in the same table as its parent structure. The group name and the field
name (or alternate field name) are combined to make the column name. For
example, if the group field is called Activatedate and has three fields named
Month, Day, and Year, the columns would be named thus:

Activatedatemonth
Activatedateday
Activatedateyear

If a group or struct field contains a subgroup, both the group name and the
subgroup name, along with the field name, are concatenated to form the column
name. For example, if the above Activatedate group were a subgroup of the
Account group, the columns would be named thus:

Accountactivatedatemonth
Accountactivatedateday
Accountactivatedateyear

We do not recommend using DataTables for extremely complex structures
because of the overhead required to flatten out the structure, send it across
the wire, and rebuild it on the other end. An example of an extremely
complex structure would be a large structure that contains multiple groups,
which in turn contain multiple groups, some of which contain arrayed fields.
A large number of duplicate names also contributes to a structure’s
complexity.

Calling Synergy Routines from .NET
Using Your Synergy .NET Assembly

11-18  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

If the structure contains an array field, the columns will be named with the field
name plus an index position. For example, a three-element array named Phone
would result in the following columns:

Phone1
Phone2
Phone3

It is possible that duplicate column names could occur, especially if alternate field
names are used. If this happens, a number is appended to the end of the duplicate
name to make it unique.

Column caption
In addition to a name, each column also has a caption. (This is the
DataColumn.Caption property.) The caption can be used to provide a more
descriptive name for the column. If there is a value in the Report hdg (heading)
field on the Display tab in Repository, it is used for the caption. If there is no
report heading value, the column name is used for the caption. If desired, you can
change the Caption property from within your client application.

Primary key column
The primary key for the table (the DataTable.PrimaryKey property) is set to the
first key in the repository structure that consists of unique data fields. The
PrimaryKey property is an array of DataColumn objects, and may therefore
consist of more than one column. If the structure does not have an eligible key, the
PrimaryKey property is not set. If desired, you can set or change the Primary key
property from within your client application.

Methods
Your DataTable includes several utility methods that can be used to extract and
manipulate rows in the table as structure classes.

 AddRow(), to insert a row at a specific location or add a row to the end of
the table

 GetRow(), to return a single row by position
 GetRows(), to return an ArrayList of all rows

Calling Synergy Routines from .NET
Using Your Synergy .NET Assembly

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-19

See the method reference on page 11-38 for additional information about the
DataTable utility methods. You can also use the methods that are part of the
System.Data.DataTable class; refer to your .NET documentation. Note that if
you cast the Synergy DataTable or assign it to a .NET DataTable, you will lose
access to the utility methods mentioned above.

Examples
//Instantiate an instance of the MyStructure structure. This is
// the structure the DT is associated with.
MyStructure Customer = New MyStructure();

//Instantiate an instance of the MyStructure DataTable.
MyStructureDT CustomerDT = New MyStructureDT();

//Instantiate an instance of component so that we can call its
// methods.
xfTest myComp = New xfTest();

//Call method and pass the DataTable to be filled. myFillMethod
// has one out parameter.
myComp.myFillMethod(ref CustomerDT);

//GetRow example
//Returns row 1 from the CustomerDT DataTable to the Customer
// structure.
CustomerDT.GetRow(ref Customer, 1);

//AddRow example
//Instantiate an instance of the MyStructure structure
MyStructure NewCust = New MyStructure;

//Put data in the structure
NewCust.Fname = “Fred”;
NewCust.Lname = “Friendly”;
NewCust.ID = “FF1234”;

Adding or removing DataTable columns can cause unexpected results if you
then try to treat the rows as structure classes. For example, if you add a
column to the table and then call the GetRow() method, the additional
column will simply be ignored. If you remove a column and then call any of
the utility methods, an error will occur.

Calling Synergy Routines from .NET
Using Your Synergy .NET Assembly

11-20  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

//Call AddRow method, passing the structure and specifying a row
// position for the new row. New structure is added to existing
// Customer DataTable.
CustomerDT.AddRow(NewCust, 8);

//GetRows example
//Create an arraylist
ArrayList myAL = new ArrayList();

//Call GetRows method on the existing Customer DataTable and
// fill the arraylist.
myAL = CustomerDT.GetRows();

Using Enumerations
Repository enumerations passed as parameters or return values or referenced as a
field in a structure passed as a parameter are included in your Synergy assembly as
enumeration types, or enums. There will be a .cs file, named with the enumeration
name, for each enumeration.

The enumerators (elements) are assigned based on the enumeration members you
defined in the repository. The underlying type of each element in the enum is int.

If you assigned numerical values to the members in repository, they are used; else,
values are assigned automatically starting with 0 and incrementing by 1. When
you create a new instance of an enum, it has a default value of the enumerator that
has been assigned 0, if you do not explicitly assign a value. Consequently, when
defining your enumeration in the repository, you should specify as the first
member the value you would like to be the default.

The following examples use an enumeration named Color, which has members
Green, Blue, etc. (Note that the first letter of each member name is capitalized.) In
the first example, the enum is passed as a parameter of the EnumTest1() method.
In the second example, the enum is a field within the AcmeCustomer structure
class.

//Method call example with an enum parameter
AcmeCompanyComponent acme = new AcmeCompanyComponent();
acme.Color companyHat = acme.Color.Green;
acme.connect(host, port);
acme.EnumTest1(ref companyHat);
acme.disconnect();

Calling Synergy Routines from .NET
Using Your Synergy .NET Assembly

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-21

//Enum field within structure example
AcmeCompanyComponent acme = new AcmeCompanyComponent();
AcmeCustomer customer = new AcmeCustomer(); //Structure
Customer.ColorChoice = acme.Color.Blue; //Enum field of

acme.Color
acme.connect(host, port);
acme.GetCustomer1(ref customer);
acme.disconnect();

Passing Binary Data
You can pass binary data, such as JPEG files, by using a byte array.

In the MDU, the parameter must be defined as a “Binary (handle)” data type. (If
you attribute your code, see example G on page 2-19 for instructions on defining a
binary handle.) Your Synergy server routine must declare the argument that
receives the data as a memory handle (i4; do not use int). xfServerPlus will place
the data in a memory area and pass the memory handle allocated to that area to
your Synergy server routine. (You must use the memory handle provided by
xfServerPlus; do not attempt to allocate your own.) After the data has been
returned to xfNetLink, xfServerPlus will free the memory area.

The procedure for passing binary data varies depending on the parameter direction
as defined in the SMC.

For “in” onl parameters, in the client code create a byte array and fill it with data,
and then make the method call. For example, in C#:

SynAssembly MyInstance = new SynAssembly();
MyInstance.connect();

 byte[] baIn = new byte[67000]; //Create the byte[]
 . //Fill the byte[]
 .
 .
 MyInstance.BinaryArrayMethod(baIn);//Make method call

MyInstance.disconnect();

Binary fields in structures are converted to byte arrays by default. However,
if you want to pass binary data such as JPEG files, you should use the
procedure described in this section, rather than a binary field in a structure,
because the latter requires that you specify a size. See also the description
of the gencs -nb option on page 10-20.

Calling Synergy Routines from .NET
Using Your Synergy .NET Assembly

11-22  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

For “out” only parameters, in the client code create an empty byte array, and then
call the method using the ref keyword so that data can be returned.

For example, in C#:

SynAssembly MyInstance = new SynAssembly();
MyInstance.connect();

 byte[] baOut = new byte[0]; //Create empty byte[]
 //Make method call using the ref keyword
 MyInstance.BinaryArrayMethod(ref baOut);

MyInstance.disconnect();

For “in/out” parameters, in the client code create a byte array and fill it with data,
and then call the method using the ref keyword so that data can be returned. For
example, in C#:

SynAssembly MyInstance = new SynAssembly();
MyInstance.connect();

 byte[] baInOut = new byte[67000]; //Create the byte[]
 . //Fill the byte[]
 .
 .
 //Make method call using the ref keyword
 MyInstance.BinaryArrayMethod(ref baInOut);

MyInstance.disconnect();

Setting a Call Time-Out

Use the setCallTimeout() method to set the call time-out value in seconds. The
call time-out measures the length of time that the .NET client waits for a return
from a remote call to xfServerPlus (this is ‘C’ in figure 4-2 on page 4-5). This
time-out is measured for each send–receive request between the client and
xfServerPlus. The default value is 1800 seconds (30 minutes).

Once this value has been set, it will continue to be used for all subsequent calls in
the current session until it is reset with another invocation of this method. For
example, to set the call time-out to 20 minutes use

userSess.setCallTimeout(1200);

You must explicitly create a connection with the connect() method to use
setCallTimeout().

Calling Synergy Routines from .NET
Using Your Synergy .NET Assembly

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-23

A separate call time-out value can be set for xfServerPlus, see
SET_XFPL_TIMEOUT on page 1-31.

Writing to the xfServerPlus Log

Use the setUserString() method to pass a user string that is written in the
xfServerPlus log. This string is stored, and the value set can be retrieved with
getUserString(). You can, for example, use this method to write the current
client to the log.

To use this method, xfServerPlus logging must be turned on (see “Using
Server-Side Logging” on page 3-33) and there must be an entry for the subroutine
XFPL_LOG in the SMC. (By default, XFPL_LOG is included in the SMC; see
page 1-33 for details.)

For example, if your logon routine stored the user name in a string called
“username,” you could set it in the log like this:

userSess.setUserString(username);

You can then retrieve the string you set. Note that getUserString() only gets the
string from setUserString(); it does not retrieve it from the xfServerPlus log.

For example, in C#:

string currUser = "";
currUser = userSess.getUserString();

For example, in VB.NET:

Dim currUser As String
currUser = userSess.getUserString()

You must explicitly create a connection with the connect() method to use
setUserString() or getUserString().

Calling Synergy Routines from .NET
Understanding .NET Pooling

11-24  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Understanding .NET Pooling
.NET pooling enables you to create a “pool” of objects that are active and ready to
use when a client sends a request. You can specify the minimum and maximum
pool size, time-out values, and whether objects in the pool should be reused.

Depending on the requirements of your application, pooling can significantly
improve performance by reducing the time necessary to create objects, establish
connections, and perform initialization processing. Pooling is most beneficial
when objects are used frequently for a short time, and a significant portion of that
time is spent acquiring the connection and performing initialization processing.
However, any time there is initialization code that needs to be run, pooling should
improve the performance of your application.

How pooling works
The type of pooling supported by xfNetLink .NET is referred to as object pooling.
Object pooling creates a pool of Synergy .NET objects. (These are objects
instantiated from the procedural classes in your Synergy assembly; objects
instantiated from structure classes are not pooled.)

When the pool is created, the objects are instantiated and connected to
xfServerPlus. The pool is populated with the minimum number of objects that
you specify when you define the pool. When a client requests an object, the
request is satisfied from the objects available in the pool. If no object is available, a
new one is created, up to the maximum size of the pool. Once the maximum is
reached, requests are queued for a specified length of time. When the client
releases an object, you can specify that it be either returned to the pool or
discarded. (If it is discarded, causing the number of objects in the pool to drop
below the minimum size, a new object will be created.

If desired, you can write an initialization method that will be run automatically
after the connection is established. There are several other methods that can be
used with pooled objects to perform initialization and cleanup tasks. (See “Using
the Pooling Support Methods” on page 11-31.)

Reusing objects
After an object has been used, it can either be returned to the pool for reuse or
discarded. By default, all objects are discarded after use; however, we recommend
returning objects to the pool if possible because it can improve performance.
Discarding an object releases resources and ensures that the next client request
receives a “clean” object. In general, stateless objects may be returned to the pool,

Calling Synergy Routines from .NET
Understanding .NET Pooling

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-25

while objects with state (that is, those that persist data) should be discarded after
use. If you decide to reuse objects, you can perform cleanup processing with the
pooling support methods.

To specify that an object be returned to the pool, in the xfNetLink .NET
Configuration utility, select the pool return key and select the “Return objects to
pool” checkbox (see page 11-6). You can also determine at runtime if an object
should be reused using the CanBePooled() method (see page 11-33).

Creating poolable objects
To enable the classes in an assembly to be pooled, select the “Support pooling”
checkbox in the Component Information dialog box in Workbench. (Or, from the
command line, specify the -p option when you run the batch file to build the
assembly.)

When you build an assembly with pooling enabled, all procedural classes within
the assembly become components in the pool. (Note that if you created multiple
instances of the same class, each instance becomes a component in the pool.)
Depending on your application, you may not want to pool all classes in an
assembly. When deciding how to group interfaces into assemblies, you should take
into account which classes you want pooled.

Each pooled object represents a connection, which means that it requires an
xfServerPlus license. Consequently, when deciding which classes to pool and how
large to make the pool, you should ensure that the maximum number of all pooled
objects does not exceed the available licenses.

To obtain the greatest benefit from pooling, when writing your Synergy routines
you should separate out the initialization and resource acquisition code that is
performed for all clients as a prerequisite to doing the work of the object. This
code can then go in the Initialize() method, to be executed when the object is
created. Or, depending on the needs of your application, this code may go in the
Activate() method to be executed when the object is retrieved from the pool by
a client.

Calling Synergy Routines from .NET
Implementing Pooling

11-26  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Implementing Pooling
This section explains how to create and configure a pool on the client machine and
how to use the pooling support methods.

Implementation Overview
You must create your assembly and develop your application right from the start
with pooling in mind. You’ll need to do the following:

1. (optional, but recommended) Write pooling support methods (activate, initialize,
etc.) and add them to the SMC. See “Using the Pooling Support Methods” on
page 11-31.

2. Create your assembly. If you wrote pooling support methods, include the interface
that contains them in the assembly. Select the “Support pooling” checkbox in the
Component Information dialog box in Workbench. (Or, if you are working from
the command line, specify the -p option when you run the batch file.) See
page 10-13 for building from Workbench or page 10-22 for building from the
command line.

3. Write your client-side code. See “Writing Code That Uses Pooled Objects” on
page 11-34.

4. Run regsvcs.exe to create a pool. See “Creating a Pool” on page 11-27.

5. (optional) Set the desired options in the xfNetLink .NET Configuration utility.
See “Setting options in the config file” on page 11-27.

6. Use the Component Services utility to configure the pool. See “Configuring the
pool in Component Services” on page 11-27.

7. Start the pool, and then run your application. See “Starting the Pool” on
page 11-30.

Calling Synergy Routines from .NET
Implementing Pooling

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-27

Creating a Pool
The pool may be created automatically when you build your project in Visual
Studio. If it is not, run the regsvcs.exe utility from a command prompt to create
the pool. You will also need to use this utility to set up the pool when you deploy
your completed application at a customer site. The regsvcs utility is distributed
with the .NET Framework.

For example:

regsvcs assembly.dll

where assembly is the name of your Synergy assembly. You must run this command
for each Synergy assembly that uses pooling. This command creates a COM+
application (named with the assembly name) and adds the procedural classes in
your assembly to the application.

Configuring the Pool
Once a pool has been created, it can be configured. Most of the configuration is
done in Component Services, but there are two settings in the config file that
affect pooling as well. If you need to change the configuration after the pool is
running, see “Changing the pool configuration” on page 11-30.

Setting options in the config file
There are two settings specific to pooling—initialize time-out and pool
return—that can be set in the application configuration file. You may want to
override the default values for these settings. To do so, run the xfNetLink .NET
Configuration utility and specify the desired settings. You can create settings at the
default class level or for individual classes. See “Creating and Editing
Configuration Files” on page 11-4 for more information about specifying settings.

Configuring the pool in Component Services
1. From Administrative Tools, select Component Services. (On Windows Vista, run

%windir%\system32\comexp.msc.)

2. In the tree in the left pane, expand the Component Services node and its subnodes
until you see the COM+ Applications node. Expand this node and locate the node
named for your Synergy assembly. (See figure 11-1 on page 11-28.)

3. Expand the node for your application, and then expand the Components subnode
to display the individual components. There is a component for every class in the
assembly. If you created multiple copies of the same class (gencs -i option), you
will see a component for each copy of the class.

Calling Synergy Routines from .NET
Implementing Pooling

11-28  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

4. Highlight an individual component node (e.g., ConsultIt.AppLogin.1 in
figure 11-1) and select Action > Properties.

5. In the Properties dialog box go to the Activation tab. (See figure 11-2 on
page 11-29.)

6. Select the “Enable object pooling” checkbox (it may already be selected), and then
enter values for the following:

Minimum pool size. Enter the number of objects you want created at pool start-up.
The pool will never drop below this size.

Maximum pool size. Enter the maximum number of objects that you want in the
pool at any one time. When deciding how large to make the pool, keep in mind
how many xfServerPlus licenses you have available and how many objects you have
pooled. The maximum pool size value for all pooled objects should not exceed the
number of available xfServerPlus licenses.

Creation timeout. Enter the length of time, in milliseconds, that a request should
be queued when all objects in the pool are in use and the pool is at its maximum
size. If the request is not satisfied within the specified time, an error is thrown.

Figure 11-1. The Component Services window, showing a COM+ application with
components.

The “ConsultPro” COM+
application with two
components,
ConsultIt.AppLogin and
ConsultIt.Consultant.

Calling Synergy Routines from .NET
Implementing Pooling

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-29

7. Select the “Component supports events and statistics” checkbox. This option
enables you to view statistics about the pooled object, such as the pool size and the
number of objects in use, in the Component Services window.

8. If the “Enable Just In Time Activation” checkbox is selected, clear it.

9. Click OK in the Properties dialog box. Repeat steps 4 through 9 to configure each
component.

Figure 11-2. Setting properties for a pooled component.

Calling Synergy Routines from .NET
Implementing Pooling

11-30  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Changing the pool configuration
The pool size and creation time-out values are read when the pool is started. If you
change these values in the Component Services utility, you must stop and restart
the pool for the changes to take effect.

The xfNetLink .NET Configuration utility settings (host, port, pool return, etc.)
are read each time a new object is created and added to the pool. You should
restart the pool after changing these settings to ensure that all objects in the pool
are using the new settings.

Because restarting the pool will deactivate any objects currently in use, you may
want to check the pool status before stopping the pool. To check the status, in
Component Services highlight the Components node under your COM+
application node and select View > Status. The number of objects in use displays
in the Activated column.

Starting the Pool
1. Highlight the node for your COM+ application.

2. Select Action > Start.

If you do not start the pool manually, it will be populated (that is, started) the first
time a client requests an object. Note, however, that this means that the first user
will have to wait for the pool to start and the objects to be initialized. Because the
primary goal of pooling is to improve performance at start-up, we recommend
manually starting the pool.

TIP
If you have problems with the pool shutting down unexpectedly, try
selecting the “Leave running when idle” option on the Advanced tab of the
Properties dialog box that is accessed from the COM+ application node
(“ConsultPro” in figure 11-1). Alternatively, you may want to select “Enable
idle shutdown” and increase the value in the minutes field. The pool will
wait indefinitely for the first connection, but once a connection to the pool
has been made, this timer starts counting.

There are numerous other pooling settings that you can configure. The
recommended configuration will depend upon your specific application.
Refer to your COM+ documentation for details on additional settings.

Calling Synergy Routines from .NET
Implementing Pooling

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-31

Using the Pooling Support Methods
xfNetLink .NET enables you to access pooling support methods defined by the
COM+ API. There are five pooling support methods—Initialize, Activate,
Deactivate, CanBePooled, and Cleanup —which are called automatically at
specific times during the lifetime of the pooled object. This enables you to specify
that certain actions be performed at certain times during the object’s creation
and use.

 To use the pooling support methods

1. Write Synergy routines that perform the desired tasks. You can have several
routines of the same type, if necessary (e.g., you might want different initialize
routines for a customer object and an order object). The Synergy routines can be
named anything you like.

2. Add the routines to the SMC by attributing the Synergy code, running dbl2xml,
and then importing the XML file, or by entering data using the MDU. Because
these methods are called automatically, the method name must be one of the
following: Initialize, Activate, Deactivate, CanBePooled, Cleanup.

3. Include the Synergy routines when you build your ELB.

TIP
(Windows Vista) If you get a permissions error when attempting to start the
pool, it may be related to role-based security. To turn off this security check,
right-click on the node for the COM+ application you created and select
Properties. In the Properties dialog box, go to the Security tab and clear the
“Enforce access checks for this application” box. Click OK in the dialog box.

If you are attributing your code, you may need to use the name property of
the xfMethod attribute to specify the correct pooling support method
name; else, the method name will default from the Synergy routine name.

If you have more than one routine of the same type (e.g., two initialize
routines), you will need to use the id property of the xfMethod attribute to
specify a unique method ID (because the method ID defaults from the
method name).

You can find more information about the name and id properties in
“xfMethod Attribute” on page 2-8.

Calling Synergy Routines from .NET
Implementing Pooling

11-32  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

4. Generate classes and build the assembly as you normally would, being sure to
include the interface that contains the pooling support methods. Select the
“Support pooling” checkbox in the Component Information dialog box in
Workbench. (Or, if you are building the assembly from the command line, specify
the -p option when you run the batch file.)

Pooling support methods
The methods are listed below in the order in which they are called during the
object’s lifetime.

Initialize method

status = Initialize()
status–a ^VAL value that indicates whether the initialization was a success.
Returns 0 for success or 1 for failure.

If the return value is 1, the object is destroyed, an error is logged in the
client-side log (if logging is turned on) and the Windows event log, and no
other objects in the pool are created. When this happens, the pool will have
been started, but there will be no objects in it. To recover from this state, you
must stop the pool, fix the problem with the Initialize() method, rebuild
the ELB, and then restart the pool.

Initialize() is called when the object is created. Use this method to
prepare the environment by opening files, initializing global data, and so
forth. Because Initialize() is called when the object is created, this method
gets called only once per object, even if the object is reused. Compare with
Activate().

Activate method

Activate()

Activate() is called when the object is requested by a client. This method
can be used for code that should be executed when the object is actually used.

Both Activate() and Initialize() can be used for similar
purposes—preparing the environment before using the object. The primary
difference between them is that Activate() is called every time the object is
allocated to a client, whereas Initialize() is called only once when the
object is created.

Calling Synergy Routines from .NET
Implementing Pooling

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-33

Deactivate method

Deactivate()

Deactivate() is called when an object is released by the client. It can be used
to reset the environment to a known state before an object is returned to the
pool. Note that because objects can be reused, this method may be called
multiple times. Compare with Cleanup().

CanBePooled method

status = CanBePooled()
status–a ^VAL value that indicates whether the object should be discarded
or reused. Returns 0 if the object should be discarded; returns 1 if the object
should be returned to the pool for reuse.

The CanBePooled() method is called after Deactivate(), and can be used
to determine at runtime if an object can be re-used. For example, if
Deactivate() encountered an error, CanBePooled() could indicate that the
object should be discarded. Or, Deactivate() could be written to check how
much effort is required to clean up an object before returning it to the pool. If
the effort is excessive, and it would be more efficient to discard the object and
create a new one, CanBePooled() would return 0.

CanBePooled() overrides the pool return setting in the application
configuration file (see page 11-6).

Cleanup method

Cleanup()

Cleanup() is called by the object’s disconnect() method. If the object’s
connection is shared, it is called after the final disconnect(). It can be used
to do the final object cleanup, such as closing files. This method is called only
when objects are going to be discarded (i.e., pool return is set to false or
CanBePooled() returns 0). If the object is going to be reused, use the
Deactivate() method to perform cleanup-type activities.

The Cleanup() method is also called when socket communication with the
client is unexpectedly lost. When the pool is created, the Cleanup() method
is automatically registered with the XFPL_REGCLEANUP routine on the
server. (This routine must be in your SMC; see page 1-34 for more
information.) Then, if there is a fatal error that causes xfServerPlus to lose
socket communication with the client, xfServerPlus calls the Cleanup()
routine before shutting down.

Calling Synergy Routines from .NET
Implementing Pooling

11-34  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Although Cleanup() and Deactivate() can be used for similar purposes,
there are two fundamental differences between them:

 Cleanup() is called only for objects that will be discarded, while
Deactivate() is called both for objects that will be discarded and for
those that will be reused.

 Cleanup() is automatically registered so that xfServerPlus can call it
when socket communication is lost.

Writing Code That Uses Pooled Objects
The code that you write when using pooling will look somewhat different than
code for use without pooling, which was described in “Using Your Synergy .NET
Assembly” on page 11-8. Because the pooled objects already have a connection to
xfServerPlus, you do not need to call the connect() method. The disconnection
from xfServerPlus is also handled by the pool, so you do not need to call
disconnect().

You must add a reference in your Visual Studio project to
System.EnterpriseServices. The xfNetLink .NET classes use this namespace.

If your client application is written in C#, when using pooling you should
instantiate the object with a using statement as shown in the example below.
Instantiating the object in this manner means that it exists only within the scope of
the using statement. When the using statement ends, the object is released, and
the Deactivate() and CanBePooled() methods are called. Failure to instantiate
the object with a using statement can result in problems with the object being
properly released and returned to the pool for reuse.

For example:

string userID = "MFranklin";
string password = "abc123";
try
{
 using (AppLogin userSess = new AppLogin())
 {
 userSess.login(userID, password);
 }
}
catch (Exception e)
{
 //Error handling code
}

Calling Synergy Routines from .NET
Implementing Pooling

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-35

The following code shows the same example written in VB.NET.

Dim userID As New String("MFranklin")
Dim password As New String("abc123")
Try
 Using userSess As New AppLogin()
 userSess.login(userID, password)
 Catch Ex As Exception
 ' Error handling code
 End Using
End Try

The following C# example shows how to use multiple copies of the same class in
conjunction with pooling. (See “Using Multiple Copies of the Same Class” on
page 11-11 for more information about this feature.) In this example, our client
application routes the user to a particular xfServerPlus port based upon a customer
ID entered on the logon screen. We generated two instances of the AppLogin class,
AppLogin and AppLogin1. We’ll use the generated C# interface (IAppLogin) to
access methods in these classes so that all users can use the same client application,
even though they are using different servers. As in the example above, we
instantiate the object with the using statement.

//Class fields
private string userID;
private string password;

//Method to set up the classes to create instances at each port
private void Button_Click(object sender,

System.EventArgs e)
{

//Class name consists of "NameSpace.Class,Assembly"
//Create instance for xfSP port 2356
string className = "ABCComputers.AppLogin,ConsultIt";
signOn(className);
.
.
.

If you are using ASP, instantiating the object within a using statement
limits you to using the object on a single ASP page. If your application
requires that the object have session scope (that is, you need to maintain
state across several ASP pages), we do not recommend using pooling, as it is
difficult to ensure that the object will be properly released, returned to the
pool, and reused.

Calling Synergy Routines from .NET
Implementing Pooling

11-36  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

//Create instance for xfSP port 4550
className = "ABCComputers.AppLogin1,ConsultIt";
signOn(className);
.
.
.

}

//Method to create C# interface and use it with pooling
static void signOn(string className)
{

using (IAppLogin userSess = getIAppLogin(className))
{

//Call the Synergy method using the C# interface
userSess.login(userID, password);

}
}

//Method to create an instance of the correct class and cast it
// to the C# interface
static IAppLogin getIAppLogin(string className)
{

//Dynamically create an instance
Type tp = Type.GetType(className);
Object obj = Activator.CreateInstance(tp);
//Assign the object to the C# interface
IAppLogin x = (IAppLogin)obj;
return x;

}

Calling Synergy Routines from .NET
Deploying Your xfNetLink .NET Application

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-37

Deploying Your xfNetLink .NET Application
Follow these steps when you are ready to deploy your application at a customer
site. For details on deploying the xfServerPlus side of your application, see
“Deploying the Server” on page 3-49.

1. Install the .NET Framework runtime, dotnetredist.exe, available from the
Microsoft website.

2. Install xfNetLink .NET. During installation, xfnlnet.dll will be registered in the
GAC and installed as a native image.

3. Test your setup. See “Testing xfNetLink .NET” on page 12-9. (Requires that
xfServerPlus also be set up.)

4. Install your .NET application and all the assemblies it uses. If necessary, register
the assemblies in the GAC. There are two instances in which your assembly must
be registered in the GAC:

 The assembly needs to be public.
 Your application uses pooling and passes structures as parameters.

5. If your application uses an application configuration file, use the xfNetLink .NET
Configuration utility to edit the file. You can create the config file ahead of time,
install it with your application, and then edit it as necessary for each customer site.
See “Creating and Editing Configuration Files” on page 11-4 for instructions.

6. If your application uses pooling, create, configure, and start the pool. See
“Implementing Pooling” on page 11-26.

Calling Synergy Routines from .NET
Method Reference

11-38  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Method Reference

Procedural Methods
These methods are included in the procedural classes in your Synergy assembly.

connect()

public void connect()

Sends a request to xfServerPlus for a dedicated session and connects on the
host and port defined in the application configuration file or, if those values
are not defined in a config file, on the default host and port. See “Connect to
xfServerPlus” on page 11-9.

public void connect(string host, int port)

Sends a request to xfServerPlus for a dedicated session and connects to the
specified host name on the specified port. Use this method to override at
runtime the host and port specified in the configuration file (or the default
host and port).

host–the name or IP address of the xfServerPlus machine

port–the port number that xfServerPlus is listening on.

public void connect(int scl)

Sends a request to xfServerPlus for a dedicated session and connects on the
host and port defined in the application configuration file or, if those values
are not defined in a config file, on the default host and port. Use this method
to override at runtime the default security compliance level (scl).

scl–the security compliance level. One of the following:

0 = always use whatever the current Synergy default is
1 = use protocols TLS 1.0, TLS 1.1, TLS 1.2 (default)
2 = use protocols TLS 1.1 and TLS 1.2

If encryption is enabled and you use a connect() method that does not
specify the security compliance level, the default is used. The security
compliance level should be set to the same value on the xfNetLink machine as
it is on the xfServerPlus machine. For more information about the security
compliance level and encryption in general, see “Using Encryption” on
page 3-24.

Calling Synergy Routines from .NET
Method Reference

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-39

public void connect(string host, int port, int scl)

Sends a request to xfServerPlus for a dedicated session and connects to the
specified host name on the specified port. Use this method to override at
runtime the host and port specified in the configuration file (or the default
host and port setting), as well as the default security compliance level (scl).

host–the name or IP address of the xfServerPlus machine

port–the port number that xfServerPlus is listening on.

scl–the security compliance level. For details, see the description of the scl
parameter in the connect() method above.

debugInit()

public void debugInit(ref string listen_ip, ref int listen_port)

Starts a connection to xfServerPlus so that you can manually connect an
xfServerPlus session in debug mode. See “Running an xfServerPlus Session in
Debug Mode” on page 12-10.

listen_ip–returns the IP address, in hex, where the client is listening

listen_port–returns the port number where the client is listening

debugStart()

public void debugStart()

Completes the process of connecting in debug mode that was started by
debugInit(). See “Running an xfServerPlus Session in Debug Mode” on
page 12-10.

public void debugStart(int scl)

Completes the process of connecting in debug mode that was started by
debugInit() and overrides the default security compliance level (scl).
See “Running an xfServerPlus Session in Debug Mode” on page 12-10.

scl–the security compliance level. One of the following:

0 = always use whatever the current Synergy default is
1 = use protocols TLS 1.0, TLS 1.1, TLS 1.2 (default)
2 = use protocols TLS 1.1 and TLS 1.2

disconnect()

public void disconnect()

Sends a message to close the xfServerPlus connection. See “Disconnect from
xfServerPlus” on page 11-11.

Calling Synergy Routines from .NET
Method Reference

11-40  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

getConnect()

public object getConnect()

Gets the already-established connection of the specified object. See “Connect
to xfServerPlus” on page 11-9. This method is not included in assemblies built
for pooling.

getUserString()

public string getUserString()

Returns the user string currently stored by setUserString(). See “Writing
to the xfServerPlus Log” on page 11-23.

setCallTimeout()

public void setCallTimeout(int seconds)

Sets the call time-out value, which measures the length of time that the client
waits for a return from a remote call. See “Setting a Call Time-Out” on
page 11-22.

seconds–the number of seconds you want the xfNetLink .NET client to wait
for a return from a call to xfServerPlus. The default is 1800 seconds (30
minutes).

setUserString()

public void setUserString(string userString)

Passes a user string to the xfServerPlus log. See “Writing to the xfServerPlus
Log” on page 11-23.

userString–the text that you want to write to the xfServerPlus log

shareConnect()

public void shareConnect(object connection)

Shares the specified connection. See “Connect to xfServerPlus” on page 11-9.
This method is not included in assemblies built for pooling.

connection–the object that represents the connection

Calling Synergy Routines from .NET
Method Reference

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  11-41

Structure Methods
These methods are included in the structure classes in your assembly. See “Using
the Clone() and Equals() methods” on page 11-14 for more information and
examples.

Clone()

public object Clone()

Returns an exact copy (including data) of the structure class on which it is
called.

Equals()

public Boolean Equals(structClass instance)

Tests whether the current structure class (i.e., the one on which the method is
called) and the passed structure class contain the same data. Returns true if
they do and false if they do not.

instance–the instance of the structure class to be compared to the current
class

DataTable Methods
These methods are included in the DataTable classes in your assembly. See “Using
DataTables” on page 11-16 for more information and examples.

AddRow()

public void AddRow(structClass instance)

Adds a new row after the last row in the DataTable.

instance–the instance of the structure class to add

public void AddRow(structClass instance, int rowPos)

Adds a new row at the specified location in the DataTable; the existing rows
shift down one position.

instance–the instance of the structure class to add

rowPos–the position in the DataTable where you want to insert the row

GetRow()

public void GetRow(ref structClass instance, int rowPos)

Returns a row from a DataTable as an instance of a structure class.

instance–returns an instance of the structure class

rowPos–the position in the DataTable of the row to return

Calling Synergy Routines from .NET
Method Reference

11-42  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

GetRows()

public ArrayList GetRows()

Returns all rows in the DataTable as an ArrayList of structures.

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  12-1

Chapter 12

Error Handling and Troubleshooting in
xfNetLink .NET

This chapter includes a table that lists the errors that can occur when using
xfNetLink .NET Edition and what you can do to resolve them. It also includes
information on troubleshooting, including how to turn on logging, run the
xfNetLink .NET test program, and run a debug session.

Handling Errors
All xfNetLink .NET exceptions are thrown as System.Exception. In your code,
you should catch Exception. The error text associated with the exception will tell
you what the specific problem is. Check the table below for the likely cause and
possible solutions for specific errors. Some errors may include additional text that
was generated by the system or xfServerPlus. You may also see xfServerPlus status
codes returned to the client. Refer to the table on page 3-16.

When you get an error, the log file can provide information about what
went wrong. See “Using Client-Side Logging” on page 12-7. All errors are
also written to the Windows application event log, regardless of whether
client-side logging is turned on.

xfNetLink .NET Errors

Error message Cause What to do

Call to SSPI failed, see
inner exception

Client and server were unable to
establish secure communicate
because they do not share a
common algorithm.

Verify that the security compliance level is the
same on both the xfNetLink and xfServerPlus
machine. Check your encryption configuration;
see “Using Encryption” on page 3-24.

Class className does
not have a method
named methodName

The specified method does not
exist in the specified class.

Correct your client code. Consult the API
documentation or the Object Browser in Visual
Studio to determine the valid methods for this
class.

Error Handling and Troubleshooting in xfNetLink .NET
Handling Errors

12-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Connection timed out xfNetLink .NET timed out
because of very slow start up.

Increase the connect time-out value. See
“Creating and Editing Configuration Files” on
page 11-4.

Could not create new
process

(Win, UNIX) Could not launch
dbs process.

Ensure that dbs.exe exists on the xfServerPlus
machine and that DBLDIR is correctly set.

DBLDIR not set The DBLDIR environment
variable is not set on the server.

Set DBLDIR on the xfServerPlus machine.

Delimiter delimiter not
found in packet

The packet is missing a delimiter.
This message indicates a badly
formed packet. The delimiter
may be any of the following:
#();:

Retry. The problem may be noise on the line or
some other type of transmission error.

Expected DateTime
type not found

A date or time data type other
than DateTime was sent.
xfNetLink .NET supports only the
DateTime data type for dates.

Correct your client code to use a DateTime data
type. See “xfNetLink .NET” in “Appendix B:
Data Type Mapping”.

Host or port not
configured properly

The host and/or port setting
have not been set up properly in
the config file.
Or, there is no config file,
causing the program defaults to
be used (localhost and 2356),
and those values are invalid.

If you are using a config file, use the xfNetLink
.NET Configuration utility to verify that the host
and port are set correctly. See “Creating and
Editing Configuration Files” on page 11-4.

If you are not using a config file, verify that
xfServerPlus is running as localhost on port
2356.

Incompatible client
version

The xfNetLink .NET version is
incompatible with the
xfServerPlus version.

Upgrade the client or the server to the higher
version. Running a newer client with an older
server is not a supported configuration.

Initialize method failed (pooling only) The Initialize()
method (defined in the SMC)
failed on the xfServerPlus side.

Consult xfpl.log for details on why the method
failed. It may be the case that the initialize
time-out occurred before the method
completed.

Insufficient memory on
server

(Win) Could not launch dbs
process due to insufficient
memory on the server.

Check the resources on your xfServerPlus
machine.

xfNetLink .NET Errors (continued)

Error message Cause What to do

Error Handling and Troubleshooting in xfNetLink .NET
Handling Errors

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  12-3

Invalid date/time:
passed Format:
expected

Data in a date/time user-defined
field (in a repository structure) is
not in the expected format. The
message will show you what
was passed and the expected
format.

Check the format of the data in your server-side
code.

Invalid parameter
number

The number of parameters
passed to xfServerPlus does not
match the number of
parameters returned.

Check both your client-side and server-side code
to verify that you are passing the correct number
of parameters.

Invalid security
compliance level level

Invalid value passed for the scl
parameter to the connect() or
debugStart() method.

Correct your code to pass 0, 1, or 2.

Invalid synergy type
sent. Structure size
passed and SMC size
declared don’t match.

The size of the parameter in the
call doesn’t match the size in the
SMC. The error message
includes the parameter number.

Check the definition of the method to see what
size the parameter should be. Correct your code
if necessary. If the error is in the SMC, update it
and regenerate the assembly. If the parameter is
a structure, the problem may be that the
repository was updated, but the SMC was not.
See “Verifying Repository Structure Sizes and
Enumerations” on page 2-41.

Launch reply returned
error

An error occurred in the
response from xfServerPlus.

Refer to the error message for additional detail
describing the problem. The message may
include an additional error code returned by
xfServerPlus; if so, see the table on page 3-16.

Logicals are not valid as
logfile locations:
logicalName

In the config file, the log file
setting was declared using a
logical.

Change the value of the log file setting in the
config file to a path and filename. See “Creating
and Editing Configuration Files” on page 11-4.

Login failed (Win, UNIX) Invalid username or
password used to start
xfServerPlus.

Ensure that the username and password are
correct for xfServerPlus. See “Running
xfServerPlus” on page 3-2.

Method information
must be passed to
callMethod

Attributes for the method being
called are not being passed to
xfNetLink. (These attributes
contain information about the
method.)

This error occurs only when attribute
information in the generated C# code has been
altered or removed. If you know what was
changed, you can correct the code. Otherwise,
you must regenerate the classes (run gencs) and
rebuild the assembly.

xfNetLink .NET Errors (continued)

Error message Cause What to do

Error Handling and Troubleshooting in xfNetLink .NET
Handling Errors

12-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Missing class attribute
for className

An attribute for className is
missing. This attribute declares
the length of a structure class.

This error occurs only when attribute
information in the generated C# code has been
altered or removed. If you know what was
changed, you can correct the code. Otherwise,
you must regenerate the classes (run gencs) and
rebuild the assembly.

Missing field attribute
for fieldName

An attribute for fieldName is
missing from a structure class.
This attribute contains the
Synergy data type and length of
the field.

Missing method
attribute for
methodName

An attribute for methodName is
missing. This attribute contains
the name of the method in the
SMC to call.

Missing parameter
attribute for
parameterName

An attribute for parameterName
is missing. This attribute contains
the Synergy data type and
length of the parameter.

No elements in array An array was declared with no
elements and then passed as a
parameter.

Correct your client code to declare the elements
in the array and, if it’s an “in” or “in/out”
parameter, set optional values for each element.

No runtime license There is no Synergy Runtime
license on the xfServerPlus
machine.

Install a Runtime license on the xfServerPlus
machine.

Number of fields does
not match

The number of fields returned by
xfServerPlus does not match the
number of fields in the structure
class.

Check both your client-side and server-side code
to verify that you are passing the correct number
of fields for the structure.

Packet length error The response message from
xfServerPlus has an invalid
packet length. This message
indicates a badly formed packet.

Retry. The problem may be noise on the line or
some other type of transmission error.

Parameter direction
mismatch

The parameter direction (In, Out,
or In/Out) is defined differently in
the SMC than it is in the
assembly.

Ensure that the parameter is defined correctly in
the SMC and then regenerate the classes (run
gencs) and rebuild the assembly.

Parameter number
mismatch

The method call contains more
or fewer parameters than the
method supports.

Check your client code to verify that you are
passing the correct number of parameters in
your call.

xfNetLink .NET Errors (continued)

Error message Cause What to do

Error Handling and Troubleshooting in xfNetLink .NET
Handling Errors

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  12-5

Parameter type
mismatch

The data type of a parameter
sent back from xfServerPlus does
not match the data type on the
client side.

Check both your client-side and server-side code
to determine where the error is.
It may be the case that the server-side code was
changed, but the SMC was not updated. If this
is the case, you will need to update the SMC,
regenerate the classes, and then rebuild the
assembly.

Past end of packet A badly formed packet caused
xfNetLink to try to read more
data than is in the packet.

Retry. The problem may be noise on the line or
some other type of transmission error.

Returned array size
does not match size of
array in parameter

xfServerPlus returned an array
that does not match the size of
the array on the client side.

Check both your client-side and server-side code
to verify that the array size is declared correctly.

Unexpected attribute
type attributeType

The generated code contains an
unsupported attribute type
named attributeType.

This error occurs only when attribute
information in the generated C# code has been
altered or removed. If you know what was
changed, you can correct the code. Otherwise,
you must regenerate the classes (run gencs) and
rebuild the assembly.

Unexpected data type The data in the parameter is not
the correct type (e.g., alpha data
in a decimal parameter).

Correct your client code. See “xfNetLink .NET”
in “Appendix B: Data Type Mapping”.

Or, it may be the case that the parameter data
type was entered incorrectly in the SMC, in
which case you will need to correct the SMC,
regenerate the classes, and rebuild the assembly.

Unexpected error A server-side error occurred. Note the error number; save your error log;
contact Synergy/DE Developer Support.

Unexpected string in
message

An unknown string of data was
found in the packet. This
message indicates a badly
formed packet.

Retry. The problem may be noise on the line or
some other type of transmission error.

Unsupported date/time
format format

A structure in the repository uses
an unsupported date/time
format.

Correct the structure in the repository. Then, you
must update the SMC, regenerate the classes,
and rebuild the assembly. For information on
supported data types, see “xfNetLink .NET” in
“Appendix B: Data Type Mapping”.

xfServerPlus license
count exceeded

xfServerPlus has exceeded the
number of available licenses.

Contact your Synergy/DE customer service
representative to purchase additional licenses.

xfNetLink .NET Errors (continued)

Error message Cause What to do

Error Handling and Troubleshooting in xfNetLink .NET
Handling Errors

12-6  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

xfServerPlus license
expired

The 14-day demo period or an
extended demo period has
expired.

Contact your Synergy/DE customer service
representative to purchase a license.

xfServerPlus not
licensed

There is no license for
xfServerPlus.

Purchase a license.

xfServerPlus not
supported by the
running server

xfServerPlus is not running on
the specified port.

Verify that xfServerPlus is running on the default
port or the port specified in the config file or
passed by the connect() method.

xfServerPlus version not
supported

The version of xfServerPlus is not
compatible with the version of
xfNetLink for the current
operation.

Upgrade xfServerPlus to the most current
version.

xfNetLink .NET Errors (continued)

Error message Cause What to do

Error Handling and Troubleshooting in xfNetLink .NET
Troubleshooting Techniques

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  12-7

Troubleshooting Techniques
Error messages don’t always provide enough diagnostic information to solve a
problem. In such cases, you can take advantage of the additional debugging
options provided with xfNetLink and xfServerPlus: client-side logging, the
xfNetLink .NET test program, and the ability to run an xfServerPlus session in
debug mode.

You may also want to view the server-side logs (see “Using Server-Side Logging”
on page 3-33) and run the test program included with xfServerPlus (see “Testing
xfServerPlus” on page 3-15).

Using Client-Side Logging
You may want to use client-side logging when access to the server is inconvenient,
or when you have used server-side logging and seen differences between what the
client program is passing and what the server log shows is being received. All
xfNetLink .NET client errors are written to the Windows application event log,
regardless of whether logging is turned on. Client-side logging, however, enables
you to log other types of information in addition to errors.

To turn on client-side logging, use the xfNetLink .NET Configuration utility to
set the “logging” and “logfile” values in the application configuration file. By
default, client-side logging produces a separate log file for each class that
instantiates a connection to xfServerPlus. The log files are named with the
specified (or default) log file name, plus a date/time stamp so that you can
differentiate them. If you would prefer that all connections write to a single log
file, use the xfNetLink .NET Configuration utility to turn on the “single log file”
option. (See “Creating and Editing Configuration Files” on page 11-4 for
instructions on setting these values.)

One of the advantages of multi-file logging is improved performance. Because only
one process is writing to the file, it can remain open. With single-file logging, the
file must be opened and closed because different processes are writing to it, and
this slows performance.

The information included in the log depends on the options you select in the
xfNetLink .NET Configuration utility; see the table on page 11-6 for the available
options. For the sample log below, we turned on all logging. “00046X” is the
identifier of the class object writing to this log. Note that if encryption is enabled,
the log displays a string of 10 asterisks instead of the packet data for encrypted
methods.

Error Handling and Troubleshooting in xfNetLink .NET
Troubleshooting Techniques

12-8  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

00046X:created instancec of syntst
00046X:configuration settings
00046X: host = elmo
00046X: port = 2356
00046X: connecttimeout = 120
00046X: initializetimeout = 30
00046X: poolreturn = False
00046X: logging = -1
00046X: logfile = c:\temp\xfnet.log
00046X: pooling = False
00046X: singlelogfile = on
00046X: xfNetLink .NET version = 10.3.1.1

00046X:calling connect
00046X:host=elmo port=2356
00046X:scl=1
00046X:connecting to xfServerPlus on host=elmo port=2356
00046X:sending launch request packet
00046X:packet length=56
00046X:8***&**************Q6**3*************************
00046X:received launch response packet
00046X:packet length=52
00046X:4***&***,********Y*=*****************************
00046X:received acknowledgement packet
00046X:packet length=53
00046X:5***********13-JUL-2014 12:03:32;00
00046X:sending second startup packet
00046X:packet length=43
00046X:+***N000010.1.3.51;0;*************
00046X:calling method function_one
00046X:Parameters:
00046X: p1=This is an alpha string that will likely be truncated
00046X: p2=12345
00046X: p3=9876543
00046X: p4=9876543
00046X:sending method call packet: 13-JUL-2014 12:03:32 PM
00046X:packet length=107
00046X:k***Nxfpl_tst1;4;AL50#This is an alpha string that will
likely be trunca;DE5#12345;ID7#9876543;DE7#9876543;
00046X:received method call reply packet: 13-JUL-2014 12:03:32
PM
00046X:packet length=19
00046X:****Rxfpl_tst1;000;
00046X:done calling method function_one

Error Handling and Troubleshooting in xfNetLink .NET
Troubleshooting Techniques

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  12-9

Testing xfNetLink .NET
The xfTestnet.exe program, distributed with xfNetLink .NET, can help you
determine if your system is set up and working properly. The xfTestnet files are
installed in the xfNLNet\Examples directory. xfTestnet requires that the .NET
Framework and xfNetLink .NET be installed on the machine running the test.

xfTestnet runs several tests, which send different types of data back and forth
between the client and the Synergy server. This program makes calls to a test ELB
or shared image named xfpl_tst, which is distributed with xfServerPlus. There are
entries in the SMC for use by the test program. (These are the methods in the
xfTest interface in the distributed SMC.) If the ELB or any of the methods are
missing, the tests will fail.

There is also a test program for xfServerPlus; see “Testing xfServerPlus” on
page 3-15.

 To run the xfNetLink .NET test program

1. Make sure xfServerPlus has been started on the server machine.

2. Make sure the .NET Framework and xfNetLink .NET have been installed on the
client machine.

3. The default configuration settings (see the table on page 11-2) will be used unless
you edit the application configuration file for the test program. If necessary, start
the xfNetLink .NET Configuration utility and do the following:

 Open the xfTestnet.exe.config file.
 Edit the settings for host and port. If you need help using the xfNetLink .NET

Configuration utility, see “Creating and Editing Configuration Files” on
page 11-4.

 Save the configuration file and close the utility.

If the methods in the xfTest interface are not present in your SMC, you can
import them from the defaultsmc.xml file. See “Importing and Exporting
Methods” on page 2-38.

If you get a permissions error on saving the config file, it means that the
user account under which you are logged on does not have write
permission for the \Program Files directory. Just copy the entire
\Examples directory to a writable location and run the test from there.

Error Handling and Troubleshooting in xfNetLink .NET
Troubleshooting Techniques

12-10  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

4. Run xfTestnet.exe from the xfNLNET\Examples directory.

5. If you don’t want to use a shared connection, clear the check box. A shared
connection will run faster.

6. Click the Run Tests button.

If the tests run successfully, you’ll see a success message. If any tests are
unsuccessful, an error message will display on the screen. The error message text
should help you determine what needs to be done to correct the problem. Refer to
the error message table beginning on page 12-1. If you did not turn on logging,
you may want to do so and run the test again. Then, if you cannot solve the
problem, save the log file and contact Synergy/DE Developer Support.

Running an xfServerPlus Session in Debug Mode
During normal operation, xfServerPlus runs as a background process without
support for console operations, complex user interfaces, or debugging. This
improves efficiency and minimizes memory requirements. However, there may be
times when you need to run the debugger on Synergy code in the ELBs that are
being called from xfServerPlus. By manually connecting an xfServerPlus session to
your .NET client application, you can run your Synergy server routines in debug
mode so that you can uncover problems that are showing up as errors in your
distributed application.

Running in debug mode on Windows and UNIX
Use this procedure if the operating system of your xfServerPlus machine is
Windows or UNIX.

If your SMC files or xfpl.ini file are not in the default location (DBLDIR), you
will need to either move them to DBLDIR or set XFPL_SMCPATH and
XFPL_INIPATH in the environment to point to the location of the files before
starting xfpl.dbr (step 4). (Note: When XFPL_SMCPATH and XFPL_INIPATH
are set in the registry or synrc, they are read by rsynd. Since rsynd is bypassed
when you run in debug mode, the registry/synrc settings do not get read.)

We recommend that you use the Telnet method for debugging if the
operating system of your xfServerPlus machine is Windows or UNIX. See
“Debugging Remote Synergy Routines via Telnet” on page 3-47 for
instructions.

Error Handling and Troubleshooting in xfNetLink .NET
Troubleshooting Techniques

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  12-11

1. Use the debugInit() method to initiate a debug session. This method binds an
IP address and port number for listening, and then returns the IP and port. You
need to include code that displays the IP address (in hex) and port on the screen.

For example, in C#:

// declare variables
string listen_ip = "";
int listen_port = 0;
// instantiate object and make call
AppLogin userSess = new AppLogin();
userSess.debugInit(ref listen_ip, ref listen_port);
// display hex IP and port
Console.WriteLine ("IP = "+ listen_ip +" Port = "+listen_port);

2. When the IP and port display on the screen, write them down. You’ll need them in
step 4. For example:

IP = 6F16212C
Port = 1082

If you are debugging through a firewall, you may need to specify a port
number range, and then open that range of ports on your firewall. To do
this, manually edit the application configuration file to include the
following lines within the <xfnlnet> section of the file:

<add key="minport" value="####" />
<add key="maxport" value="####" />

where #### is a port number greater than 1024, with maxport greater than
minport.

Note that these settings are not used by an ordinary connection; they are
used only when running in debug mode and, consequently, have been
removed from the xfNetLink .NET Configuration utility.

Once the IP address and port display on the screen, you have a limited
amount of time in which to manually start xfServerPlus in debug mode on
the server machine, specify a breakpoint, and type “go”. The default
time-out for debug mode is 10 minutes. You can change this value by
setting the connect time-out value in the xfNetLink .NET Configuration
utility. See “Creating and Editing Configuration Files” on page 11-4.

Error Handling and Troubleshooting in xfNetLink .NET
Troubleshooting Techniques

12-12  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

3. Use debugStart() to complete the connection process:

userSess.debugStart();

At this point, the client application has opened a socket and is waiting for the
server to call it back.

4. Go to the machine running xfServerPlus, start xfpl.dbr, and pass the IP and port
to xfServerPlus. Type the alpha characters in the IP address in uppercase.

dbr -d xfpl hexadecimal_ip listen_port

For example:

dbr -d xfpl 6F16212C 1082

xfServerPlus starts up in the debugger window.

5. Set an initial breakpoint in the xfpl program at the XFPL_DEBUG_BREAK
routine. In the debugger enter

break xfpl_debug_break

and then enter

go

xfServerPlus is now connected to the client on the specified port. The server waits
while the client program resumes and makes its first call. The program will then
break at the XFPL_DEBUG_BREAK routine. This breakpoint occurs just after
xfServerPlus has opened the ELB for the first method called by your application.
(Note that any ELBs linked to this ELB will also be opened.) The ELB must be
opened before you can set breakpoints in the routines within it.

6. If the Synergy routine you need to debug is in one of the opened ELBs, just specify
a breakpoint in that routine. If the routine you want to debug is in a different
(unopened) ELB, use the OPENELB debugger command to open that ELB. (You
can also continue running your client application until the ELB is opened by
xfServerPlus. However, because you set a breakpoint at XFPL_DEBUG_BREAK,
it will break at each method call, so using the OPENELB command is more
efficient.)

For general information about the Synergy debugger, see the “Debugging
Synergy Programs” chapter of Synergy Tools. For details on the OPENELB
command, see OPENELB in that same chapter.

Error Handling and Troubleshooting in xfNetLink .NET
Troubleshooting Techniques

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  12-13

Running in debug mode on OpenVMS
Use this procedure if the operating system of your xfServerPlus machine is
OpenVMS.

1. Make sure xfServerPlus is running on an unused port. If necessary, restart it to
ensure that it’s using an unused port.

2. On the machine running xfServerPlus, enter

$ run DBLDIR:xfpld

You’ll see output similar to the following:

*** DEBUG 10.3.1 ***
BREAK AT 152 IN XFPL (LAUNCHER.DBL;6) ON ENTRY
%DBG-E-Could not open source file "LAUNCHER.DBL;1"
DblDbg>

3. Set an initial breakpoint in the xfpl program at the XFPL_DEBUG_BREAK
routine. In the debugger enter

break xfpl_debug_break

and then enter

go

4. When prompted, enter the port number that xfServerPlus is running on (from
step 1).

5. Start your client application in the usual manner. After xfNetLink connects, the
debug session will break at the XFPL_DEBUG_BREAK routine.

6. Set a breakpoint for your Synergy shared image and routine:

break image/routine

and then enter

go

TIP
If you have created shared image logicals for the shared images used by
xfServerPlus, you can skip step 3. Instead, set a breakpoint for your shared
image and routine as described in step 6. You’ll then be prompted for the
port number (step 4). Once you start your client program (step 5), the debug
session will break at the breakpoint you set.

Error Handling and Troubleshooting in xfNetLink .NET
Troubleshooting Techniques

12-14  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

For details, see BREAK in the “Debugging Synergy Programs” chapter of Synergy
Tools.

Note that if you set a breakpoint at XFPL_DEBUG_BREAK, the debugger will
break at XFPL_DEBUG_BREAK for each method call your client makes.

Although you do not need to use the OPENELB debugger command before
setting the first breakpoint in your shared image, you may need to use it if
your code does an XSUBR or RCB_SETFNC without specifying a shared
image. For details on the OPENELB command, see OPENELB in the
“Debugging Synergy Programs” chapter of Synergy Tools.

Appendices

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  A-1

Appendix A

Configuration Settings
This appendix lists the configuration settings and environment variables that you
can set for xfServerPlus and the xfNetLink clients.

xfServerPlus
When the xfServerPlus service starts, rsynd reads settings in the registry on
Windows—or in the synrc file on UNIX and OpenVMS—and uses them to set
up the environment for xfServerPlus. Each time an xfServerPlus session is started,
xfpl.dbr reads the settings in the xfpl.ini file. Note that if you have set
SFWINIPATH to point to the location of your synergy.ini file, the dbs runtime
will read the synergy.ini file.

For best results, we recommend that you put the XFPL_LOG setting first in your
xfpl.ini file, followed by the other logging settings and then the non-logging
settings. This way, xfServerPlus knows immediately how—or whether—to create
the log and, assuming logging is turned on, can then log any errors it encounters
when reading the remaining settings.

xfpl.ini File Settings

Use this setting To specify this For more information

XFPL_BASECHAN The starting channel number
used by xfServerPlus to open
files.

“Specifying a Base Channel
Number” on page 1-7

XFPL_COMPRESS Repeated zeros and spaces in
data sent to and from xfNetLink
clients should be compressed.

“Configuring Compression”
on page 3-23

XFPL_LOGICALa Directories that ELBs are located
in. If you used logicals in the
Synergy Method Catalog, you
must define them in xfpl.ini.

“Defining Logicals” on
page 1-4

XFPL_LOG Server-side logging is turned on. XFPL_LOG on page 3-34

XFPL_LOGFILE A filename for the log file. XFPL_LOGFILE on page 3-35

Configuration Settings
xfServerPlus

A-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Use the following environment variables to specify the locations of files that
xfServerPlus uses. These environment variables should not be set in the xfpl.ini
file; instead, set them as specified in the sections cited below.

XFPL_SINGLELOGFILE All processes logged in a single
file. The default is to produce a
separate log file for each
process.

XFPL_SINGLELOGFILE on
page 3-35

XFPL_SESS_INFO The level of session logging. XFPL_SESS_INFO on
page 3-36

XFPL_FUNC_INFO The level of function logging. XFPL_FUNC_INFO on
page 3-38

XFPL_DEBUG Debugging information should
be written to the log.

XFPL_DEBUG on page 3-40

a. On OpenVMS, we recommend setting logicals in DBLDIR:SERVER_INIT.COM rather than
xfpl.ini. See “Defining Logicals” on page 1-4.

Environment Variables

Use this environment
variable

To specify this For more information

XFPL_INIPATH Location of the xfpl.ini file.
Required only if the file is not in
DBLDIR.

“Setting the XFPL_INIPATH
Environment Variable” on
page 3-20

XFPL_SMCPATH Location of the SMC files.
Required only if the files are not
in DBLDIR.

“Setting the XFPL_SMCPATH
Environment Variable for
xfServerPlus” on page 2-44

xfpl.ini File Settings (continued)

Use this setting To specify this For more information

Configuration Settings
xfNetLink Synergy

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  A-3

xfNetLink Synergy
xfNetLink Synergy on Windows uses settings in the synergy.ini file. These same
settings are set as environment variables on UNIX and as logicals on OpenVMS.

synergy.ini File Settings

Use this setting To specify this For more information

XF_REMOTE_HOST Machine where xfServerPlus is
running.

“Specifying the Host Name
and Port Number” on
page 4-4

XF_REMOTE_PORT Port that xfServerPlus is
running on.

XF_RMT_TIMOUT Call time-out for regular
session or debug.

“Call time-out” on page 4-6

XF_RMT_DBG_TIMOUT Session time-out for running in
debug mode.

“Connect session time-out”
on page 4-6

XF_RMTCONN_TIMOUT Session time-out for running in
normal mode.

XFNLS_LOGFILE Name of file to log packets in. “Specifying Debug Options”
on page 4-7

Configuration Settings
xfNetLink Java

A-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

xfNetLink Java
xfNetLink Java uses settings in the xfNetLink Java properties file (named
xfNetLnk.ini by default). When you use Java connection pooling, xfNetLink Java
also uses the pooling properties file (xfPool.properties). Because these are Java
properties files, the settings in them are case sensitive. For more information on
these properties files, see “Configuring the xfNetLink Java Properties File” on
page 8-2 and “Setting Up a Pooling Properties File” on page 8-26.

xfNetLink Java Properties File Settings

Use this setting To specify this
For more
information

xf_RemoteHostName Machine where xfServerPlus
is running.

“Specifying the Host
Name and Port
Number” on page 8-6

xf_RemotePort Port that xfServerPlus is
running on.

xf_DebugOutput Enables full or error-only
logging.

“Specifying Logging
Options” on page 8-6

xf_LogFile Name of file to write
output to.

xf_SessionRequestTimeout Number of seconds
xfNetLink will wait for
acknowledgment from the
connection monitor in
xfServerPlus.

“Request for session
time-out” on page 8-7

xf_SessionConnectTimeout Number of seconds
xfNetLink will wait for
acknowledgment from the
logic server in xfServerPlus
when running in normal
mode.

“Connect session
time-out” on page 8-8

xf_DebugSessionConnectTimeout Number of seconds
xfNetLink will wait for
acknowledgment from the
logic server in xfServerPlus
when running in debug
mode.

Configuration Settings
xfNetLink Java

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  A-5

xf_SessionLingerTimeout Number of seconds
xfNetLink will wait for a
return from a remote call.

“Call time-out” on
page 8-9

xf_SSLCertFile The path and filename of
the keystore file to use for
encryption.

“Specifying Encryption
Options” on page 8-9

xf_SSLPassword Password associated with
the keystore file.

xfNetLink Java Properties File Settings (continued)

Use this setting To specify this
For more
information

Configuration Settings
xfNetLink Java

A-6  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Pooling Properties File Settings

Use this setting To specify this For more information

minPool The minimum number of connections
to be maintained in the pool.

“Specifying the pool
size” on page 8-29

maxPool The maximum number of
connections to be maintained in the
pool.

propertiesFile The path and filename of the
xfNetLink Java properties file to use.
Required.

“Specifying the
xfNetLink Java properties
file to use” on page 8-29

poolReturn A Boolean value that indicates
whether the connection should be
returned to the pool for reuse or
discarded.

“Specifying whether
connections should be
returned to the pool” on
page 8-29

poolLogFile The filename that logging
information should be written to.

“Specifying pool logging
options” on page 8-30

poolLogLevel The level of logging desired. Possible
values are none, error, and all. If
poolLogFile is specified and
poolLogLevel is not specified, error
level logging will take place.

connectWaitTimout Number of seconds that the
getConnection() method will
continue checking for a connection
from the pool.

“Specifying pool
time-out values” on
page 8-31

poolMethodTimeout Number of seconds that xfNetLink
will wait for a return from a remote
call to xfServerPlus when any of the
five pooling support methods are
called.

initializationTimeout (Deprecated in 10.1.1c; superseded
by poolMethodTimeout) Number of
seconds xfNetLink will wait for a
return from a remote call to
xfServerPlus when the pool is being
started. This value controls a special
call time-out that applies only to the
method specified with the
initializationMethodID setting.

Configuration Settings
xfNetLink Java

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  A-7

initializationMethodID Method ID of the Synergy method
that will be called each time a new
connection is added to the pool.

“Specifying the pooling
support methods to call”
on page 8-32

activationMethodID Method ID of the Synergy method
that will be called each time
getConnection() is called.

deactivationMethodID Method ID of the Synergy method
that will be called each time a
connection is freed.

poolableMethodID Method ID of the Synergy method
that will be called after the method
specified by deactivationMethodID is
called.

cleanupMethodID Method ID of the Synergy method
that will be called each time a
connection is discarded (i.e., not
returned to the pool for reuse).

Pooling Properties File Settings (continued)

Use this setting To specify this For more information

Configuration Settings
xfNetLink .NET

A-8  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

xfNetLink .NET
xfNetLink .NET uses settings in an application configuration file, which are
entered with the xfNetLink .NET Configuration utility. See “Using an
Application Configuration File” on page 11-2 for general information on
configuration files and whether you need to use one.

Configuration File Settings for xfNetLink .NET

Use this setting To specify this For more information

host Machine where xfServerPlus is running. “Creating and Editing
Configuration Files” on
page 11-4port Port that xfServerPlus is running on.

logging The type of information to be logged. “Creating and Editing
Configuration Files” on
page 11-4

and
“Using Client-Side
Logging” on page 12-7

logfile Name of the file that logging
information should be written to.

single log file All sessions will share a common log
file. (Otherwise, a separate log file will
be used for each class that instantiates
a connection to xfServerPlus.)

connect timeout Amount of time xfNetLink will wait for
an acknowledgment from the session
started by the logic server in
xfServerPlus.

“Creating and Editing
Configuration Files” on
page 11-4

initialize timeout (pooling only) Amount of time
xfNetLink will wait for a return from a
remote call to xfServerPlus when any of
the five pooling support methods are
called.

pool return (pooling only) Objects will be returned
to the pool after they are used.

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  B-1

Appendix B

Data Type Mapping
This appendix includes data type mapping information for xfNetLink Java and
xfNetLink .NET.

xfNetLink Java

Parameter and return value type mapping
The tables in this section list the supported data types and show how parameter
and return value data types are mapped from Synergy to Java when you generate
Java class wrappers.

Note that for primitive Java data types, return values and “in” parameters are
mapped as listed in the tables, but “out” and “in/out” parameters use the
corresponding holder classes. For example, an implied-decimal data type that is an
“in” parameter is mapped to a double, while an implied-decimal data type that is
an “out” parameter is mapped to a DoubleHolder. (See the Java org.omg.CORBA
class for more information on holder classes.)

Mapping when classes are generated for version 1.5 compatibility
For decimal, implied-decimal, and integer data types, you can choose to coerce the
data to a non-default type on the Java side by selecting the desired data type in the
Coerced type field when defining methods in the MDU. (See page 2-27.) If you
are using attributes instead of the MDU, see the description of the cType property
on page 2-11 for instructions on specifying non-default type mapping. Type
coercion is supported only when the “Generate classes as version” option in
Workbench is set to 1.5 (or genjava is run with the -c 1.5 option). When coercing
data to a non-default data type, you should take care to select a type that is suitable
for the size of the data that will be placed in the parameter or return value. The
data type in the “Default Java data type” column will be used when “Default” is
specified for the coerced type in the MDU.

Type mapping varies depending on the version specified with the “Generate
classes as version” option in Workbench (or the genjava -c option). See
“The genjava Utility” on page 7-15 for more information on this option.

Data Type Mapping
xfNetLink Java

B-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

xfNetLink Java Parameter and Return Value Type Mapping (v1.5 Compatibility)

Data type in SMC Size in SMC Default Java data type
Non-default Java
types available

^VALa N/A int N/A

Alpha 65,535 String (“in” parameters and return values)
StringBuffer (“out” and “in/out”
parameters)

N/A

Binary (handle)b N/A generic ArrayList N/A

Decimal (d) 1, 2 byte byte, short, int, long,
Boolean, DateTime
(Calendar), decimal
(BigDecimal)

3, 4 short

5–9 int

10–18 long

19–28 BigDecimal (“in” parameters and return
values)

FixedHolder (“out” and “in/out”
parameters)

Enumeration N/A enum type N/A

Handleb N/A String (“in” parameters and return values)

StringBuffer (“out” and “in/out”
parameters)

N/A

Implied-decimal (d.) 16.* double decimal (BigDecimal),
double, float17.* BigDecimal (“in” parameters and return

values
FixedHolder (“out” and “in/out”
parameters)

Integer 1 byte byte, short, int, long,
Boolean

2 short

4 int

8 long

System.String N/A String (“in” parameters and return values)
StringBuffer (“out” and “in/out”
parameters)

N/A

a. Return value only.
b. Parameter only.

Data Type Mapping
xfNetLink Java

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  B-3

Mapping when classes are generated for version 1.2 compatibility

Field type mapping
The table below shows how data types within repository structures are mapped to
Java when you generate class wrappers. The structure itself becomes a class; this
table shows what the data types for the properties of that class will be.

The first column indicates the value in the Type field of the Field Definition
window in Repository. The second column indicates the value in the Class field
and, where necessary, the value in the User data field in that same window.

Some data types can be coerced to a non-default type in Java when the “Generate
classes as version” option in Workbench is set to 1.5 (or genjava is run with the
-c 1.5 option). To use a non-default type, select the desired data type in the
Coerced type field of the Field Definition window in Repository. When coercing

xfNetLink Java Parameter and Return Value Type Mapping (v1.2 Compatibility)

Data type in SMC Size in SMC Java data type

^VALa

a. Return value only.

N/A int

Alpha 65,535 String (“in” parameters)

StringBuffer (“out” and “in/out” parameters)

Binary (handle)b

b. Parameter only.

N/A ArrayList

Decimal (d) 1 byte

2 short

3 or 4 int

5 long

Handleb N/A String (“in” parameters)
StringBuffer (“out” and “in/out” parameters)

Implied-decimal (d.) Any double

Integer 1 byte

2 short

4 int

8 long

Data Type Mapping
xfNetLink Java

B-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

data, take care to select a non-default type that is suitable for the size of the data
that will be placed in the property. The data type in the “Default Java data type”
column is used when “Default” is specified for the coerced type in Repository.

Some field type mappings vary depending on the version specified with the
“Generate classes as version” option in Workbench (or the genjava -c option).
These variations are noted in the table.

xfNetLink Java Field Type Mapping

Field data type
in Repository

Format Default Java data type
Non-default Java
data types available

Alpha N/A String (“in” parameters)
StringBuffer (“out” and
“in/out” parameters)

N/A

AutoSeq N/A long N/A

AutoTime N/A Calendar (if -c 1.5)
Date (if -c 1.2)

N/A

Binary N/A byte array (if -c 1.5)

String (if -c 1.2)

N/A

Boolean N/A Boolean (if -c 1.5)
byte (if -c 1.2)

N/A

Datea YYMMDD
YYYYMMDD
YYJJJ
YYYYJJJ

Calendar (if -c 1.5)
Date (if -c 1.2)

N/A

YYPP
YYYYPP

String

Decimal
(no precision)

N/A Mapping is the same as for
decimal parameters; see the
table on page B-2 (if -c 1.5) or
page B-3 (if -c 1.2).

byte, short, int, long,
Boolean, decimal
(BigDecimal)

Decimal
(with precision)

N/A Mapping is the same as for
implied-decimal parameters;
see the table on page B-2 (if
-c 1.5) or page B-3 (if -c 1.2).

double, decimal
(BigDecimal)

Enum N/A Enum type for -c 1.5
Not supported for -c 1.2

N/A

Data Type Mapping
xfNetLink Java

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  B-5

Integer N/A Mapping is the same as for
parameters; see the table on
page B-2 (if -c 1.5) or page B-3
(if -c 1.2).

byte, short, int, long,
Boolean

Struct N/A N/A. Becomes a class (treated
the same as a group).

N/A

Time HHMM
HHMMSS

Calendar (if -c 1.5)

Date (if -c 1.2)

N/A

User Date with ^CLASS^=
YYYYMMDDHHMISS or
YYYYMMDDHHMISSUUUUUU
in the User data field

Calendara N/A

Date with any other value in
the User data field

String

Alpha

Binary

Numeric

a. When a Synergy routine sends a zero date to xfNetLink Java, a Date or Calendar object with a default date of
01/01/0001 is created. Your client application needs to test for this date to know that a zero date was sent. When
xfNetLink Java sends a date of 01/01/0001 to a Synergy routine, a zero da0te is created.

xfNetLink Java Field Type Mapping

Field data type
in Repository

Format Default Java data type
Non-default Java
data types available

Data Type Mapping
xfNetLink .NET

B-6  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

xfNetLink .NET

Parameter and return value type mapping
The table below shows how parameter and return value data types are mapped
from Synergy to C# when the classes are generated.

For decimal, implied-decimal, and integer data types, you can choose to coerce the
data to a non-default type on the .NET side by selecting the desired data type in
the Coerced type field when defining methods in the MDU. (See page 2-27.)
When coercing data to a non-default data type, you should take care to select a
type that is suitable for the size of the data that will be placed in the parameter or
return value. The data type in the “Default C# data type” column will be used
when “Default” is specified for the coerced type in the MDU. (If you are using
attributes instead of the MDU, see the description of the cType property on
page 2-11 for instructions on specifying non-default type mapping.)

xfNetLink .NET Parameter and Return Value Type Mapping

Data type in SMC Default C# data type
Non-default C# data types
available

^VALa

a. Return value only.

int N/A

Alpha string with trailing spaces
trimmed

N/A

Binary (handle)b

b. Parameter only.

byte array N/A

Decimal (d) length  9 = int
length  9 = long

byte, short, sbyte, ushort, uint,
ulong, Boolean, DateTime,
nullable DateTime, decimal,
nullable decimal

Enumeration enumeration N/A

Handleb string N/A

Implied-decimal (d.) decimal double, float

Integer length 8 = int
length = 8 = long

byte, short, sbyte, ushort, uint,
ulong, Boolean

System.String string N/A

Data Type Mapping
xfNetLink .NET

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  B-7

Field type mapping
The table below shows how data types within repository structures are mapped to
C# data types when the classes are generated. The structure itself becomes a class;
this table shows what the data types for the properties or fields of that class will be.

The first column indicates the value in the Type field of the Field Definition
window in Repository. The second column indicates the value in the Class field
and, where necessary, the value in the User data field in that same window.

Some data types can be coerced to a non-default type on the .NET side. To use a
non-default type, select the desired data type in the Coerced type field of the Field
Definition window in Repository. When coercing data to a non-default data type,
you should take care to select a type that is suitable for the size of the data that will
be placed in the property or field. The data type in the “Default C# data type”
column will be used when “Default” is specified for the coerced type in the
Repository.

xfNetLink .NET Field Type Mapping

Field data type
in Repository

Format Default C# data type
Non-default C# data types
available

Alpha N/A string with trailing
spaces trimmed

N/A

AutoSeq N/A long N/A

AutoTime N/A DateTime N/A

Binary N/A byte array You can convert binary fields to
strings (which was the pre-9.3
behavior) by using the gencs
-nb option. See page 10-20.

Boolean N/A Boolean N/A

Date YYMMDD
YYYYMMDD
YYJJJ
YYYYJJJ

DateTimea nullable DateTime

YYPP
YYYYPP

string N/A

Decimal
(no precision)

N/A length  9 = int
length  9 = long

byte, short, sbyte, ushort, uint,
ulong, Boolean, decimal,
nullable decimal

Data Type Mapping
xfNetLink .NET

B-8  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Decimal
(with precision)

N/A decimal double, float, nullable decimal

Enum N/A enumeration N/A

Integer N/A length  8 = int

length = 8 = long

byte, short, sbyte, ushort, uint,
ulong, Boolean

Struct N/A N/A. Becomes a class
(treated the same as a
group).

N/A

Time HHMM
HHMMSS

DateTime nullable DateTime

User Date with ^CLASS^=
YYYYMMDDHHMISS or
YYYYMMDDHHMISSUUUUUU
in the User data field

DateTimea nullable DateTime

Date with any other value in
the User data field

string with trailing
spaces trimmed

N/A

Alpha

Binary

Numeric

a. When a Synergy routine sends a zero DateTime to xfNetLink .NET, a .NET default date of 01/01/0001 is created. Your
client application needs to test for this date to know that a zero date was sent. When xfNetLink .NET sends a date of
01/01/0001 to a Synergy routine, a zero date is created.

xfNetLink .NET Field Type Mapping (continued)

Field data type
in Repository

Format Default C# data type
Non-default C# data types
available

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  C-1

Appendix C

xfNetLink Synergy Sample Code

Client Application (synclt.dbl)
This code sample illustrates how to use RXSUBR and the RX_xxx routines in
a Synergy client application. Synclt.dbl calls a subroutine named HELLO on
the server.

The synclt program prompts you for the server name and port number, calls
%RX_START_REMOTE to request a remote execution session, and then calls
%RXSUBR to make the remote call. It calls the subroutine HELLO on the remote
server, which returns the phrase “Hello, <your name>.” Then the program closes
down the session with RX_SHUTDOWN_REMOTE. Synclt also includes error
handling code that illustrates how to use RX_GET_HALTINFO and
RX_GET_ERRINFO.

If you want to try running this program, see the instructions following the code
sample. This code is included in the dbl\examples directory in your Synergy/DE
distribution.

.main synclt

; Synergy client routine

.define CHAN ,1 ; display channel

.define HELLO_MODULE ,"hello_routine" ; Remote procedure name

; Modify the following define statement for your system

.define NAME ,"Mark" ; Name to display

external function
rc_api ,^val

.include "DBLDIR:rxapi.def"

.define RX_ERR_DEF
record errinforec
.include "DBLDIR:rxerr.def"
.undefine RX_ERR_DEF

xfNetLink Synergy Sample Code
Client Application (synclt.dbl)

C-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

.define RX_FATAL_DEF
record haltinforec
.include "DBLDIR:rxerr.def"
.undefine RX_FATAL_DEF

.align
record

netid ,i4 ; network connection ID
status ,i4 ; return status
syserr ,i4 ; returned system error
port ,i4 ; port number

record
aport ,a4
machine ,a80
message ,a30 ; message text

.proc
xcall flags(4020, 1)
open(CHAN, O:C, "TT:")
display(1, "Enter machine: ")
reads(1, machine, done)
display(1, "Enter port number: ")
reads(1, aport, done)
onerror done
port = aport
offerror

status = %RX_START_REMOTE(netid, machine, port) ; Start xfServerPlus
syserr = %syserr
if (status)

begin
writes(1, "Unable to connect to remote session:")
writes(1, " status = " + %string(status))
writes(1, " syserr = " + %string(syserr))
goto done

end

call do_hello ; Call subroutine

done,
if (netid)

xcall RX_SHUTDOWN_REMOTE(netid) ; Stop xfServerPlus
close(CHAN)
stop

do_hello, ; Subroutine to call the remote procedure and handle erors

display(CHAN, $SCR_CLR(SCREEN), $SCR_MOV(2,20))
clear message
onerror ($ERR_XFHALT) handle_fatal, ($ERR_TIMOUT) handle_timeout,

& handle_other ;trap fatal and timeout separately, then trap all others

xfNetLink Synergy Sample Code
Client Application (synclt.dbl)

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  C-3

xcall rxsubr(netid, HELLO_MODULE, NAME, message)
offerror
display(CHAN, "**** " + %atrim(message) + " ****")
return

; Error handling routines

handle_fatal,
offerror

 writes(CHAN, "Fatal error trapped")
 xcall RX_GET_HALTINFO(netid, haltinforec)
 call disp_halt
 goto done

handle_timeout,
 offerror
 writes(CHAN, "Timeout error trapped")
 xcall RX_GET_ERRINFO(netid, errinforec)
 call disp_err
 goto done

handle_other,
 offerror
 writes(CHAN, "Error trapped")
 xcall RX_GET_ERRINFO(netid, errinforec)
 call disp_err
 goto done

disp_halt,
 writes(CHAN, "Subroutine: " +
& %atrim(haltinforec.rx_fatalerror.subroutine_name))
 writes(CHAN, "Error line #: " +
& %string(haltinforec.rx_fatalerror.error_line_number))
 writes(CHAN, "Error #: " + %string(haltinforec.rx_fatalerror.error_num))
 writes(CHAN, "System Error #: " + %string(haltinforec.rx_fatalerror.error_num))
 writes(CHAN, "Program name: " + %atrim(haltinforec.rx_fatalerror.prog_name))
 writes(CHAN, "Error text: " + %atrim(haltinforec.rx_fatalerror.error_text))
 return

disp_err,
 writes(CHAN, "Method ID: " + %atrim(errinforec.rx_stderror.method_id))
 writes(CHAN, "# of errors: " + %string(errinforec.rx_stderror.num_of_errors))
 writes(CHAN, "Error #: " + %string(errinforec.rx_stderror.error_num))
 writes(CHAN, "Description: " + %atrim(errinforec.rx_stderror.description))
 writes(CHAN, "Clarification: " + %atrim(errinforec.rx_stderror.clarifying_desc))
 return
.end

xfNetLink Synergy Sample Code
Server-Side Code (HELLO Subroutine)

C-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Server-Side Code (HELLO Subroutine)
The HELLO subroutine is the remote routine (on the server) called by synclt.
This code is included in the dbl\examples directory in your Synergy/DE
distribution.
.subroutine hello
;Arguments

a_name ,a
a_message ,a

.define HELLO ,"Hello "

.define NONAME ,"No name passed "

.proc
if (^passed(a_name)) then

a_message = %atrim(HELLO + a_name)
else

a_message = NONAME
xreturn

.end

Running the Hello Program
1. Create an ELB or shared image named hello.elb containing the HELLO

subroutine. Put the ELB on your server machine (the machine that xfServerPlus is
running on).

2. Start the Method Definition Utility and create a method in the SMC for the
HELLO subroutine. (See “Using the MDU to Define Synergy Methods” on
page 2-22 for instructions.) Include the following information in your MDU
entry:

Method name = hello_routine
Method ID = hello_routine (this is copied from the method name)
Routine name = hello
ELB/shared image name = DBLDIR:hello (change the logical if necessary)
Return type = No return value

The subroutine has two parameters, name and message. Set them up as follows:

Parameter name = name
Data type = Alpha
Length = 20
Data passed = In
Pass by = Descriptor
Required

xfNetLink Synergy Sample Code
Running the Hello Program

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  C-5

Parameter name = message
Data type = Alpha
Length = 30
Data passed = In/Out
Pass by = Descriptor
Required

3. If xfServerPlus is not already running, start it on the server machine. See “Running
xfServerPlus” on page 3-2 for details.

4. Put synclt.dbl on the client machine and edit the NAME identifier.

5. Compile and link synclt.dbl.

6. Run synclt.dbr. You’ll be prompted to enter the machine name and port where
xfServerPlus is running.

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  D-1

Appendix D

xfNetLink Java Sample Code

Client Application (hello.jsp and hello.java)
The code samples in this appendix illustrate how to create a program using either
JavaServer Pages or Java. Both programs call a subroutine named HELLO on the
server.

The hello.jsp program uses the jsp:useBean action to load a JavaBean created
using the xfNetLink Java component generation tools. It sets the host and port,
calls the connect() method to make a connection to xfServerPlus, and then calls
the hello_routine() method, passing two parameters. The program returns the
results and then calls the disconnect() method to close the connection. The
hello.jsp page is called from the hello.html page, which includes a table that
displays the results to the screen. The code for errorpage.jsp is also included
below: hello.jsp sets errorpage.jsp as the page to go to if it encounters a Java
exception.

The hello.java program creates a new JavaTest object, sets the host and port, and
calls the connect() method to make the connection to xfServerPlus. It then calls
the hello_routine() method, passing two parameters, and displays the returned
results to the screen. The connection is closed by the disconnect() method.

If you want to try running these programs, see the instructions following the code
sample. These sample files are included in the Examples directory in your
xfNetLink Java distribution.

hello.jsp
<%@ page errorPage="errorpage.jsp" %>
<jsp:useBean id="helloexm" scope="session" class="JavaTest.JavaTest" />
<html>
<head>
<title>Hello Example </title>
</head>
<body>
<center>
<%

String name = new String("");
 StringBuffer message = new StringBuffer("");
 int rtnval = 0;

xfNetLink Java Sample Code
Client Application (hello.jsp and hello.java)

D-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

 String errmsg = "";
 name = request.getParameter("UserName");

// Enter xfpl name or IP address and port number
 helloexm.setxfHost("hostIP");
 helloexm.setxfPort(2356);

// Connect to xfServerPlus and call hello method
 helloexm.connect();
 helloexm.hello_routine(name, message);

 out.println("
");
 out.println("The hello example returned message = ");
 out.println(message);
 out.println("
");

// shut down xfpl connection
 helloexm.disconnect();
%>
</body>
</html>

hello.html
<html>
<head> </head>
<body>
<form action=hello.jsp method=post>
<p>
<table align=center bgcolor=#cccccc border=0 cellPadding=1
cellspacing=0 width=75%>
 <tr>
 <td colspan=2>
 <div align=center> <font color=#0000ff face=""

size=5>Hello Example!</div>

 </td>
 </tr>
 <tr>
 <td align=right>name:</td>
 <td><INPUT id=text1 name=UserName MAXLENGTH=10 size=10></td>

 </tr>
 <tr>
 <td align=left> </td>
 <td align=left> </td>

 </tr>
 <tr>
 <td colspan=2>
<hr width=95%></td>
 </tr>
 <tr>
 <td align=left> </td>
 <td align=left>

xfNetLink Java Sample Code
Client Application (hello.jsp and hello.java)

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  D-3

<input type="submit" value=" Login " id=submit1 name=runLogin
align=center style="HEIGHT: 67px; TOP: 55px; WIDTH: 73px">

 </td>
 </tr>
</table></p>
</form>
</body>
</html>

errorpage.jsp
<html>
<body text="red">
<%@ page isErrorPage="true" %>
<!-- Use the implicit exception object, which holds a -->
<!-- reference to the thrown exception. -->
The errorpage - Error: <%= exception.getMessage() %> has been reported.
</body>
</html>

hello.java
import java.io.*;
import JavaTest.*;
import org.omg.CORBA.*;
import Synergex.util.*;

public class hello
{
 static JavaTest tst = new JavaTest();
 public static void main(String argv[])
 {
 try
 {
 hello test = new hello();

 // Open the xfpl connection
 tst.setxfHost("hostIP");
 tst.setxfPort(2356);
 tst.connect();
 String name = new String("World");
 StringBuffer message = new StringBuffer("");

 // Make the call
 tst.hello_routine(name, message);
 System.out.println("message = " + message);
 // Close down the xfpl connection
 tst.disconnect();
 } catch (xfJCWException e) {
 e.printStackTrace(System.err);
 }
 }
}

xfNetLink Java Sample Code
Server-Side Code (HELLO Subroutine)

D-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Server-Side Code (HELLO Subroutine)
The HELLO subroutine is the remote routine (on the server) called by hello.jsp
and hello.java. The hello.dbl file is included in the dbl\examples directory in your
Synergy/DE distribution.
.subroutine hello
;Arguments

a_name ,a
a_message ,a

.define HELLO ,"Hello "

.define NONAME ,"No name passed "

.proc
if (^passed(a_name)) then

a_message = %atrim(HELLO + a_name)
else

a_message = NONAME
xreturn

.end

Running the Hello Program
1. Create an ELB or shared image named hello.elb containing the HELLO

subroutine. The HELLO subroutine is located in the dbl\examples directory. Put
the ELB on your xfServerPlus machine.

2. Use the Method Definition Utility to add the HELLO subroutine to the SMC.
(See “Using the MDU to Define Synergy Methods” on page 2-22 for
instructions.) Include the following information in your MDU entry:

Method name = hello_routine
Interface name = JavaTest
Method ID = hello_routine (this is copied from the method name)
Routine name = hello
ELB/shared image name = DBLDIR:hello (change the logical if necessary)
Return type = No return value

The subroutine has two parameters, name and message. Set them up as follows:

Parameter name = name
Data type = Alpha
Length = 20
Data passed = In
Pass by = Descriptor
Required

xfNetLink Java Sample Code
Running the Hello Program

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  D-5

Parameter name = message
Data type = Alpha
Length = 30
Data passed = In/Out
Pass by = Descriptor
Required

3. Using Workbench or the command line utilities, create a Java JAR file named
JavaTest that includes the JavaTest interface. See “Creating a Java JAR File in
Workbench” on page 7-6 or “Creating a Java JAR File from the Command Line”
on page 7-12 for instructions.

4. If xfServerPlus is not already running, start it on the server machine. See “Running
xfServerPlus” on page 3-2 for details.

5. Deploy and run the client program.

 If you’re running the JSP application, do the following:
 Put the JAR file, JSP files, and HTML file in the location required by

your servlet container.
 Verify that your web server and servlet container are running.
 Start the web browser on the client machine and load the hello.html page.

 If you’re running the Java application, do the following:

 Compile the hello.java file, and then put it and the JAR file in a location
where Java can find them.

 Set your classpath.
 Run the program.

See “Setting up Your Environment for Development” on page 8-1 if you need help
with deployment.

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  G-1

Glossary

API. Application program interface.

assembly. A collection of files, which is the primary unit of deployment with the
.NET Framework. An assembly is self-describing. It is used to build applications
(but is not an application itself).

attributes. A feature of Synergy DBL that enables you to automate the population
and maintenance of the Synergy Method Catalog. There are two attributes,
xfMethod and xfParameter, each of which has a number of properties, which are
used to specify metadata about your Synergy routines.

class. A prototype for an object. A class defines the variables and methods
common to all objects in that class.

classpath. An ordered list of directories and JAR files that specifies the location of
class files used by Java applications.

coerced type. A non-default data type that the Synergy data type is converted to
on the client side.

COM+. An enhanced version of Microsoft’s Component Object Model (an
interoperability standard that allows component objects developed in different
languages to call one another). Among other improvements, COM+ handles many
resource management tasks that developers previously had to program. COM+
enables you to implement pooling for xfNetLink .NET.

COM+ application. Not an application in the traditional sense, but rather a set of
administrative data that contains information about a collection of components.
To implement pooling for xfNetLink .NET, you must create a COM+ application
and then add components to it.

component. See Synergy component.

dbl2xml. The utility used to parse the attribute information in Synergy code and
output an XML file that can be imported into the SMC.

exception. In Java or .NET, an error.

GAC. Global assembly cache. A directory structure in which a .NET application
will look for assemblies. Assemblies placed in the GAC are considered “public”,
enabling a single copy of the assembly to be used by multiple applications.

genxml. A utility that generates an XML file from method definitions in the SMC
and structure definitions in the repository.

Glossary

G-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

host. Refers to the machine on which xfServerPlus is running.

HTTP. Hypertext Transfer Protocol. The client/server TCP/IP protocol used on the
World Wide Web for transferring HTML documents.

instantiate. The process used to create an instance of a class (i.e., an object). A class
is a prototype; when you instantiate a class, you create an object with the attributes
of that class.

interface. Methods are grouped into interfaces for inclusion in a Synergy
component. The interface name becomes the class name in the generated
component.

JAR file. A Java archive file. A JAR file is a collection of compressed Java class files,
similar to a ZIP file. JAR files provide a way to distribute numerous class files
together. The classes in a JAR file can be used by a JSP or Java application without
unpacking the archive.

Java. An interpreted language used to write applications, applets, and JavaServer
Pages.

Java application. A stand-alone program written in Java that can run outside a
browser.

JavaServer Pages (JSP). A webpage that combines HTML and code written in
Java. When a browser requests a JavaServer Page, the web server executes the
embedded code, allowing the webpage to interact with databases and other
programs. For more information about JSP, see www.oracle.com/technetwork/
java/javaee/jsp/index.html in the Java section of the Oracle website.

Java Runtime Environment (JRE). The runtime for Java applications. The JRE
includes the JVM, the Java core classes, and supporting files.

Java Virtual Machine (JVM). The Java interpreter. A web browser must contain the
JVM (i.e., must be Java-enabled or Java-compliant) to run applets or JavaServer
Pages.

MDU. Method Definition Utility. The application used to add, modify, and delete
information in the Synergy Method Catalog. The MDU also has facilities for
importing and exporting methods from the SMC.

method ID. A unique, 31-character value in the Synergy Method Catalog.
xfServerPlus uses this value to look up the routine to call. On xfNetLink Synergy,
this value is also used in the client code to reference the Synergy routine.

method name. A 50-character value that you create to reference the Synergy
routine. On xfNetLink Java and xfNetLink .NET, this value is used in the client
code to invoke the Synergy routine.

Glossary

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  G-3

modularization. A programming technique that requires code to be an isolated
functional unit with a well-defined, published interface (i.e., an argument list).

native image. An assembly that has been pre-compiled for the particular platform
it is running on. An assembly installed as a native image is installed in the GAC
with the ngen.exe utility.

net ID. Network connection ID. See below.

network connection ID. The ID returned by %RX_START_REMOTE. The
network connection ID is a handle to a memory structure containing information
that describes the location and state of the xfServerPlus session that was created.
Used by xfNetLink Synergy.

procedural class. A class that has methods. Procedural classes are created from the
interfaces in the SMC. Compare with structure class.

proxy. A server that substitutes for another server. It intercepts messages and routes
them where they need to go. Proxies are usually used for security reasons. For
example, in xfNetLink Java, the SynergyWebProxy receives requests from Java
and negotiates with xfServerPlus.

RCB. Routine call block. See below.

routine call block. A block of memory that contains the information
necessary—routine name, ELB, and arguments—to make a routine call. You can
use a routine call block to make remote calls with xfNetLink Synergy.

“set” methods. Methods included in the generated JAR file, which can be used to
set properties used by xfNetLink Java, such as the host name and port, log
filename, and time-out values.

SMC. Synergy Method Catalog. Identifies the Synergy routines that you have
prepared for remote calling. The SMC includes information such as the function
or subroutine name, the ELB or shared image it is stored in, and the type and
length of its parameters.

strong name key file. A file used to sign a .NET assembly, which usually includes a
public and a private key that are subsequently embedded into the assembly.

structure class. A class that has only properties, which represent fields in a
structure. Structure classes are built from structures in the repository, which are
referenced in the SMC. Compare with procedural class.

structure collection. An array of structures with a variable number of elements.

Synergy assembly. Refers to a .NET assembly that references Synergy methods.

Glossary

G-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Synergy component. A general term that can refer to a Synergy JAR file or
assembly.

Synergy method. A Synergy function or subroutine that has been made available
for use with xfNetLink. Synergy methods must be contained in an ELB or shared
image and must be defined in the Synergy Method Catalog. Not to be confused
with Synergy object-oriented methods.

SynergyWebProxy. An xfNetLink Java class that is instantiated in order to
establish a connection between xfNetLink and xfServerPlus and to make calls to
Synergy routines via xfServerPlus.

type coercion. See coerced type.

utility methods. Refers to the standard methods that are included in every Synergy
JAR file and assembly. These methods enable you to perform utility functions such
as connecting, setting a time-out value, and running a debug session.

XML. Extensible Markup Language. XML is a syntax, developed by the World
Wide Web Consortium, for creating your own markup language. It is a simple text
stream that contains text and markup codes (tags).

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  I-1

Index

A
Activate() method (.NET) 11-32
activation method (Java) 8-35
AddRow() method (.NET) 11-41
alternate interface names 1-8

xfNetLink Java 7-9, 7-13
xfNetLink .NET 10-11, 10-16

API
documentation, creating for client. See documentation,

creating
xfNetLink Synergy 6-1 to 6-29
xfServerPlus 1-30 to 1-36

App.config file 11-3
application configuration file 11-2 to 11-7

creating 11-4 to 11-7
general information 11-2 to 11-3
naming 11-3
overriding settings at runtime 11-3
program defaults 11-2
using with Visual Studio project 11-3

application, deploying. See client application, deploying;
server application, deploying

arguments. See data; parameters
ArrayList

passing with xfNetLink Java 1-16
passing with xfNetLink .NET 1-16
System.Collections.ArrayList class 1-16
using to pass binary data (Java) 8-18 to 8-19
using to return structure collection

parameter 1-15 to 1-16
arrays

defining in SMC 2-33
larger than 64K 1-18, 5-3
multi-dimensional 2-33
pseudo 2-33
real 2-33
support for in structures passed as parameters 1-8
support for in xfNetLink 2-33
within repository structures (Java) 8-15
See also ArrayList; parameters

assemblies
configuration file 11-2 to 11-7
creating from command line 10-15 to 10-23
creating in Workbench 10-7 to 10-13
deploying on client 11-37
excluding structure fields from 1-10
signing 10-9, 10-19, 10-27
using in an application 11-8 to 11-23
See also C# classes; xfNetLink .NET

AssemblyInfo.cs file
creation of 10-12, 10-18
editing 10-28

attributes 2-3 to 2-19
advantages of 2-4
dbl2xml utility 2-3, 2-5
examples 2-16
summary table 2-6
xfMethod 2-8 to 2-13
xfParameter 2-13 to 2-16

B
base channel number 1-7
batch file

xfNetLink Java 7-17
xfNetLink .NET 10-22

BigDecimal (Java) 2-27, 2-32
See also data type mapping

binary data, passing
general information 1-18 to 1-19
structure fields (.NET) 10-20
xfNetLink Java 8-18 to 8-19
xfNetLink .NET 11-21 to 11-22

byte array, passing
xfNetLink Java 8-18 to 8-19
xfNetLink .NET 11-21 to 11-22

C
C# classes 10-7 to 10-26

alternate names for 10-11, 10-16
API documentation for 10-8, 10-20, 10-29 to 10-30
binary fields, converting 10-20
creating project for in Workbench 10-7 to 10-11
editing 10-28

Index
D

I-2  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

generating from command line 10-15 to 10-22
generating from Workbench 10-12 to 10-13
generating properties vs. fields 10-10, 10-20
multiple copies of 11-11 to 11-12
namespace, specifying 10-9, 10-19
overview of generated classes 10-24 to 10-26
See also assemblies; xfNetLink .NET

C# interfaces 10-24, 11-11, 11-35
cacerts file 3-27
Calendar class (Java) 2-27, 2-32

See also data type mapping
call time-out

xfNetLink Java 8-9, 8-20
xfNetLink .NET 11-5, 11-22
xfNetLink Synergy 6-16
xfServerPlus 1-31

calling Synergy routines
from Java client 8-10 to 8-14
from .NET client 11-8 to 11-23
from Synergy client 5-1 to 5-3

CanBePooled() method (.NET) 11-33
“Cannot load random state” error 3-25
catalog. See Synergy Method Catalog
certificate file for encryption 3-26
chaining 1-3
Changed property (.NET) 11-15
“Channel is in use” error 1-7, 1-33
channels

specifying for SMC files 1-7
when using U_START routine 1-6
when using XFPL_LOG routine 1-33

classes. See C# classes; Java class wrappers
classpath, setting 7-6
cleanup method

Java pooling 8-36
registering with xfServerPlus 1-34 to 1-36

Cleanup() method
registering with xfServerPlus 1-34 to 1-36
xfNetLink .NET 11-33

client application, deploying
xfNetLink 11-37
xfNetLink Java 8-37
xfNetLink Synergy 4-2

client-side logging. See logging
Clone() method (.NET) 11-14, 11-41

closing connection to xfServerPlus
xfNetLink Java 8-14
xfNetLink .NET 11-11
xfNetLink Synergy 6-18

coercing data types. See type coercion
collection. See structure collection parameter
collectionType property 2-15
comments

documentation 2-20
in C# source files. See C# classes: API documentation

for
in Java source files. See Javadoc
in pooling properties file 8-27
in Synergy source files 2-20
in synrc file 2-46, 3-21
in xfNetLink properties file 8-4

comparing structure data (.NET) 11-14 to 11-16
Component Information dialog box (Workbench)

Java project 7-7 to 7-10
.NET project 10-7 to 10-11

components. See assemblies; JAR files
compression of data 3-23
configuration file. See application configuration file
connect time-out

xfNetLink Java 8-8
xfNetLink .NET 11-5
xfNetLink Synergy 4-6, 6-20

connect() method
xfNetLink Java 8-12, 8-38
xfNetLink .NET 11-9, 11-38

connection pooling. SeeJava pooling
connection to xfServerPlus, closing

xfNetLink Java 8-14
xfNetLink .NET 11-11
xfNetLink Synergy 6-18

converting data. See data type mapping
cType property

method 2-11
parameter 2-15

D
D_NO_GLOBAL_DATA 1-5
data

accessing remotely from xfServerPlus 3-51 to 3-54
global 1-3, 1-5
larger than 64K 1-13 to 1-15
packed 6-25

Index
E

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  I-3

supported types 2-32
variable length 1-13 to 1-17, 5-3
See also data type mapping; parameters

data compression 3-23
data type conversion. See data type mapping
data type mapping

xfNetLink Java B-1 to B-5
xfNetLink .NET B-6 to B-8
See also type coercion

dataTable property 2-16
DataTables (.NET) 10-25, 11-16 to 11-20

column caption 11-18
column names 11-17
defining in MDU 2-33
defining with attribute 2-16
examples 11-19
methods 11-18, 11-41
non-nullable fields in 11-17
overview 10-25
primary key 11-18
read-only fields in 11-17

DateTime 2-27, 2-32
xfNetLink .NET B-7, B-8
See also Calendar class (Java)

dbl2xml utility 2-3, 2-5
See also Synergy Tools

dbs runtime 1-5, 3-33, 3-45
See also Synergy Tools

Deactivate() method (.NET) 11-33
deactivation method (Java) 8-36
debug mode, running xfServerPlus in 3-45

from Java client 9-14 to 9-18
from .NET client 12-10 to 12-14
from Synergy client 5-4 to 5-8

debugging 3-45 to 3-49
debugInit() method

xfNetLink Java 8-38, 9-15
xfNetLink .NET 11-39, 12-11

debugStart() method
xfNetLink Java 8-38, 9-16
xfNetLink NET 11-39, 12-12

overview 3-45
%RX_DEBUG_INIT function 6-4
%RX_DEBUG_START function 6-5 to 6-7
setting XFPL_DEBUG 3-40 to 3-42
test skeletons, generating 1-21 to 1-29
with Telnet 3-46 to 3-49

xfNetLink Java 9-7 to 9-18
xfNetLink .NET 12-7 to 12-14
xfNetLink Synergy 5-4 to 5-9
See also errors; logging; testing; xfServerPlus log

debugInit() method
xfNetLink Java 8-38, 9-15
xfNetLink .NET 11-39, 12-11

debugStart() method
xfNetLink Java 8-38, 9-16
xfNetLink NET 11-39, 12-12

default port, xfServerPlus 3-2
defaultsmc.xml file 2-38
delayed signing of assemblies 10-9, 10-19, 10-27
deploying applications. See client application, deploying;

server application, deploying
disconnect() method

xfNetLink Java 8-14, 8-38
xfNetLink .NET 11-11, 11-39

disconnecting from xfServerPlus
xfNetLink Java 8-14
xfNetLink .NET 11-11
xfNetLink Synergy 6-18

dllhost.exe.config file 11-3
dltest 3-27
documentation comments 2-20
documentation, creating

adding comments to Synergy source files 2-20
for .NET assemblies 10-8, 10-20, 10-29 to 10-30
Javadoc 7-8, 7-16, 7-20 to 7-22

E
elb property 2-9
ELBs 1-3 to 1-5

calling other ELBs 1-3
closing 1-31
defining in MDU 2-25
defining logicals for 1-4, 2-53
defining with attribute 2-9
linked 1-3
restrictions regarding 1-3
searching for in MDU 2-37
xfServerPlus time-out and 1-31

encrypt property 2-13
encryption 3-24 to 3-32

and xfNetLink Java logging 9-8
and xfNetLink .NET logging 12-7
and xfNetLink Synergy logging 5-8

Index
F

I-4  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

and xfServerPlus logging 3-25
certificate file 3-26
disabling 3-25
genCert utility 3-28
Java client set-up 3-27 to 3-29
master vs. slave 3-24
.NET client set-up 3-30
OpenSSL installation 3-25
performance issues 3-24
specifying data for slave encryption 3-31
Synergy client set-up 3-27
xfNetLink Java properties file settings 8-9
xfServerPlus machine set-up 3-25

enumerations
defining in MDU 2-26, 2-30
passing as parameters and return values 1-12
xfNetLink Java 8-16
xfNetLink .NET 11-20

environment variables
RPSDAT. See repository files, specifying location
RPSMFIL. See repository files, specifying location
RPSTFIL. See repository files, specifying location
SYNCSCOPT 10-13, 10-23
SYNSSL_RAND 3-25
SYNSSLLIB 3-26
XF_REMOTE_HOST 4-4
XF_REMOTE_PORT 4-4
XF_RMT_DBG_TIMOUT 4-6
XF_RMT_TIMOUT 4-6
XF_RMTCONN_TIMOUT 4-6
XFBOOTCLASSPATH 7-11, 7-17
XFEXTDIRS 7-11, 7-17
XFNLS_LOGFILE 4-7
XFPL_DBR. See Environment Variables & System

Options
XFPL_INIPATH 3-20 to 3-22
XFPL_SMCPATH 2-44 to 2-47

Equals() method (.NET) 11-14, 11-41
$ERR_CHNUSE error 1-7
$ERR_FILOPT error 1-6
$ERR_XFNOCALL error 6-3
$ERR_XFNOINIT error 6-5
error handling. See errors
error log. See logging; xfServerPlus log
errors

“Channel is in use” 1-7, 1-33
$ERR_CHNUSE 1-7

$ERR_FILOPT 1-6
$ERR_XFNOCALL 6-3
$ERR_XFNOINIT 6-5
handling (general information) 1-19
“Invalid operation for file type” 1-6
service specific error 14 3-26
signaled by %RX_START_REMOTE 6-21 to 6-23
signaled by %RXSUBR 6-27 to 6-28
xfNetLink Java 9-1 to 9-6
xfNetLink .NET 12-1 to 12-6
xfNetLink Synergy 5-3 to 5-4, 6-21 to 6-23,

6-27 to 6-28
xfServerPlus 3-16, 3-43 to 3-44
See also debugging; exceptions

exceptions
handling for xfNetLink Java 9-1 to 9-6
handling for xfNetLink .NET 12-1 to 12-6
xfJCWException 8-50
xfPoolException 8-51
See also errors

“Excluded by web” flag 1-10
exporting methods from SMC 2-38 to 2-40

F
fatal errors. See errors; exceptions
fields vs. properties, generating for .NET structure

members 10-10, 10-20
firewall, when debugging via Telnet 3-46
format property

method 2-12
parameter 2-15

functions. See Synergy routines

G
GAC 11-1, 11-37
genCert utility 3-28
gencs utility 10-18 to 10-22
genjava utility 7-15 to 7-17
gensyn utility 1-25 to 1-26
genxml utility

test skeletons 1-24
xfNetLink Java 7-12 to 7-15
xfNetLink .NET 10-15 to 10-18

getConnect() method
xfNetLink Java 8-12, 8-39
xfNetLink .NET 11-9, 11-40

getEnumeration() method (Java) 8-39
getInstance() method (Java) 8-46

Index
H

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  I-5

getIntHolderValue() method (Java) 8-39
getIntValue() method (Java) 8-39
getPoolName() method (Java) 8-40
GetRow() method (.NET) 11-41
GetRows() method (.NET) 11-42
getSSLCertFile() method (Java) 8-40
getSSLPassword() method (Java) 8-40
getSSLSecCompliance() method (Java) 8-40
getSynergyWebProxy() method (Java) 8-40
getUserString() method

xfNetLink Java 8-21, 8-40
xfNetLink .NET 11-23, 11-40

getxfHost() method (Java) 8-40
getxfLogfile() method (Java) 8-41
getxfPort() method (Java) 8-41
global data 1-3

excluding from tools.def file 1-5
group arguments 2-7, 2-17

H
handle. See memory handle
help, obtaining xii
host name, defining on client

xfNetLink Java 8-6, 8-12, 8-40
xfNetLink .NET 11-5
xfNetLink Synergy 4-4, 6-19

host port number, defining on client
xfNetLink Java 8-6, 8-12, 8-41
xfNetLink .NET 11-6
xfNetLink Synergy 4-4, 6-20

I
id property 2-10
importing methods to SMC 2-38 to 2-40
.INCLUDE directive 2-16, 2-17
initialization method (Java) 8-35
initializationTimeout 8-31
initialize time-out

xfNetLink .NET 11-5
Initialize() method (.NET) 11-32
INotifyPropertyChanged class 10-10, 10-21
interface property 2-8
interfaces, naming 2-24

See also alternate interface names
“Invalid operation for file type error” 1-6
IP address. See host name, defining on client

J
JAR files

creating from command line 7-12 to 7-18
creating in Workbench 7-6 to 7-11
deploying on client 8-1, 8-37
excluding structure fields from 1-10
using classes in 8-10 to 8-14
version compatibility 7-8, 7-16
xfnljav.jar 7-6
See also Java class wrappers

Java class wrappers 7-6 to 7-20
alternate names for 7-9, 7-13
creating documentation for 7-8, 7-16, 7-20 to 7-22
creating project for in Workbench 7-7 to 7-10
editing the generated files 7-20
generating from command line 7-12 to 7-17
generating from Workbench 7-10
package name, specifying 7-8, 7-15
understanding the generated files 7-18 to 7-20
version compatibility 7-8, 7-16
See also JAR files; xfNetLink Java

Java classes 8-44 to 8-51
See also specific Java classes

Java component project, creating 7-7 to 7-10
Java JAR file. See JAR files
Java pooling 8-22 to 8-36

debugging remote routines and 3-45, 3-47
error logging 8-23, 8-30
overview 8-22 to 8-23
pool ID 8-26
pool maintenance 8-33 to 8-34
pool size 8-29
properties file 8-26 to 8-32
returning pool to minimum size 8-33
reusing connections 8-22, 8-29, 8-36
shutting down the pool 8-34, 8-47, 8-48
support methods 8-32, 8-34 to 8-36
SWPManager class 8-46
time-outs 8-31
updating properties files 8-33
usePool() method 8-25, 8-43
using multiple pools 8-26, 8-27
writing code that uses pooled

connections 8-24 to 8-26
xfPoolException class 8-51
See also pooling properties file

Index
K

I-6  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Javadoc
deploying 8-1
generating 7-8, 7-16, 7-20 to 7-22

JavaServer Pages 7-1
code sample D-1 to D-5

JDK, supported versions 7-1

K
keepalive timer value 1-31
key file. See strong name key file

L
length property

method 2-10
parameter 2-14

license requirements for xfServerPlus xii
“log on as a batch job” user right, error if not set 6-23
“log on locally” user right 3-2
logging

xfNetLink Java 8-6 to 8-7, 9-7 to 9-10
pooling 8-30, 9-10 to 9-12

xfNetLink .NET 11-6, 12-7
xfNetLink Synergy 4-7, 5-8 to 5-9
xfServerPlus 3-33

See also xfServerPlus log
logicals, defining for ELBs 1-4, 2-53

See also environment variables

M
master encryption 3-24
MDU. See Method Definition Utility
mdu.dbr 2-48 to 2-52

See also Method Definition Utility
memory handle

using to pass binary data
general information 1-18 to 1-19
xfNetLink Java 8-18 to 8-19
xfNetLink .NET 11-21 to 11-22

using to pass large parameters 1-13 to 1-14
using to pass variable-length parameters 1-13 to 1-14
using to return structure collection 1-15 to 1-16

Method Definition Utility 2-22 to 2-37
changing method ID 2-28
command line syntax 2-48 to 2-52
creating new methods 2-22 to 2-34
date last updated field 2-35
defining enumeration parameters 2-30
defining parameters 2-28 to 2-34

defining structure parameters 2-30
deleting data 2-36
exporting methods 2-38 to 2-40, 2-49
importing methods 2-38 to 2-40, 2-49, 2-50
modifying entries 2-35
remote SMC, using with 2-45, 2-48
resequencing parameters 2-34
searching for data in 2-37
specifying alternate location for SMC files 2-44
specifying method ID 2-28
verifying structure sizes 2-41
See also Synergy Method Catalog

method IDs
defining in MDU 2-28
defining with attribute 2-10
passing to %RXSUBR 6-24
vs. method name when making remote calls 2-2
See also Method Definition Utility

methods
included in Java JAR file 8-38 to 8-43
included in .NET assembly 11-38 to 11-42
pooling support

xfNetLink Java 8-34 to 8-36
xfNetLink .NET 11-31 to 11-34

Synergy. See Method Definition Utility; Synergy
Method Catalog

modular code 1-1
multiple copies of C# classes 11-11 to 11-12
multiple SMCs 2-42 to 2-47
multiple xfpl.ini files 3-19

N
name property

method 2-9
parameter 2-13

namespace, specifying 10-9, 10-19
.NET component project, creating 10-7 to 10-11
.NET Framework

installing redistributable 11-37
regsvcs utility 11-27
sdkvars.bat file 10-12
setting up environment 10-12, 10-23
sn.exe 10-27
supported version 10-1
System.Data.DataTable class 11-16
vcvarsall.bat file 10-23
vsvars32.bat file 10-23

Index
O

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  I-7

.NET pooling 11-24 to 11-36
ASP and 11-35
building assembly for pooling 10-23
changing pool configuration 11-30
checking the pool status 11-30
creating poolable objects 11-25
debugging remote routines and 3-45, 3-47
initialize time-out setting 11-5
overview 11-24 to 11-25
pool return setting 11-6
pool size 11-28
reusing objects 11-24
setting up 11-27 to 11-31
starting the pool 11-30
support methods 11-31 to 11-34
writing code that uses pooled objects 11-34

network connection ID 5-2, 6-19
invalid 6-28

non-interactive runtime. See dbs runtime
nullable DateTime (.NET) B-7

defining in MDU 2-27, 2-32
defining with attribute 2-12, 2-15

nullable property
method 2-12
parameter 2-15

O
object pooling. See .NET pooling
OpenSSL. See encryption
OpenVMS

servstat program 3-13, 3-14
unsupported routines 1-4

Original property (.NET) 11-15
overlays in repository structures 1-9 to 1-10

P
package name, specifying 7-8, 7-15
packed data 6-25
packets, viewing

on client side. See logging
on server side. See xfServerPlus log

parameters
ArrayList class 1-16, 2-33
arrays 2-33
arrays larger than 64K 1-18
binary 1-18 to 1-19
coercing data type 2-32, B-6 to B-8
DataTable 10-25, 11-16 to 11-20

defining in MDU 2-28 to 2-34
generating out vs. ref in C# code 10-9, 10-21
group 2-7, 2-17
larger than 64K 1-13 to 1-15, 1-18

xfNetLink Synergy 5-3
mapping of data types B-1 to B-8
maximum number allowed 2-28
optional 2-34, 8-13, 11-10
packed 6-25
passing enumerations as 1-12
passing structures as 1-8 to 1-11
^REF 2-34, 6-25
required 2-34, 8-13, 11-10
sequence of 2-34
String class 1-14
structure collection 1-15 to 1-16, 2-33
supported by %RXSUBR 6-25
supported data types 2-32
System.Collections.ArrayList class 1-16, 2-33
System.String class 1-14
type mapping B-1 to B-8
^VAL 2-34, 6-25
variable length 1-13 to 1-17, 5-3

.pem file 3-4, 3-26
poolable method (Java) 8-36
pooling properties file 8-26 to 8-32

comments in 8-27
multiple pools 8-26, 8-27
naming 8-26
placement of 8-26
pool ID 8-26
rereading while pool is active 8-33
sample 8-32
settings 8-27 to 8-32

activationMethodID 8-32
cleanupMethodID 8-32
connectWaitTimeout 8-31
deactivationMethodID 8-32
initializationMethodID 8-32
maxPool 8-29
minPool 8-29
poolableMethodID 8-32
poolLogFile 8-30
poolLogLevel 8-30
poolMethodTimeout 8-31
poolReturn 8-29
propertiesFile 8-29

Index
R

I-8  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

pooling. See Java pooling; .NET pooling
port number range

xfNetLink Java 9-15
xfNetLink .NET 12-11

port number, xfServerPlus
default 3-2
setting

OpenVMS 3-12, 3-13
UNIX 3-10
Windows 3-3, 3-6

See also host port number, defining on client
precision property

method 2-10
parameter 2-14

Professional Series Workbench. See Workbench
properties file. See pooling properties file; xfNetLink Java

properties file
properties vs. fields, generating for .NET structure

members 10-10, 10-20
PropertyChanged event 10-10, 10-21
protocol version 3-43
pseudo arrays 2-33

R
RCB. See routine call block
rcbid 6-17
rd.log file 3-49
read-only properties

xfNetLink Java 7-9, 7-16, 8-15
xfNetLink .NET 10-10, 10-20, 11-12

real arrays 2-33
^REF parameters

defining in MDU 2-34
passing to %RXSUBR 6-25

registering
assembly in GAC 11-1, 11-37
cleanup method with

XFPL_REGCLEANUP 1-34 to 1-36
xfServerPlus on Windows 3-6

regsvcs utility 11-27
remote data access from xfServerPlus 3-51 to 3-54
repository enumerations. See enumerations
repository fields. See structures
repository files, specifying location

assembly 10-9, 10-16
JAR file 7-8, 7-13
test skeletons 1-23

repository structures. See structures
request for session time-out

xfNetLink Java 8-7
xfNetLink .NET 11-5
xfNetLink Synergy 4-5

required parameters for Java and .NET 2-7, 2-34
resetPoolProperties() method (Java) 8-33, 8-47
returnToMinimum() method (Java) 8-33, 8-47
routine call block 5-3, 6-17
routines. See Synergy routines
RPSDAT. See repository files, specifying location
rpsmain.ism. See repository files, specifying location
RPSMFIL. See repository files, specifying location
rpstext.ism. See repository files, specifying location
RPSTFIL. See repository files, specifying location
rsynd program

starting. See starting xfServerPlus
stopping. See stopping xfServerPlus
syntax. See Installation Configuration Guide

rsynd.pem file 3-26
running xfServerPlus 3-2 to 3-14

OpenVMS 3-11 to 3-14
UNIX 3-8 to 3-10
Windows 3-2 to 3-7

%RX_CONTINUE function 6-2
%RX_DEBUG_INIT function 5-5, 6-4
%RX_DEBUG_START function 5-6, 6-5 to 6-7
RX_GET_ERRINFO subroutine 6-8 to 6-9
RX_GET_HALTINFO subroutine 6-10 to 6-11
%RX_RMT_ENDIAN function 6-12
%RX_RMT_INTSIZE function 6-13
%RX_RMT_OS function 6-14
%RX_RMT_SYSINFO function 6-15
%RX_RMT_TIMOUT function 6-16
RX_SETRMTFNC subroutine 6-17
RX_SHUTDOWN_REMOTE subroutine 6-18
%RX_START_REMOTE function 6-19 to 6-23

status codes 6-21 to 6-23
rxapi.def file 5-1, 6-19
rxerr.def file 5-1, 6-8
%RXSUBR routine 6-24 to 6-28

runtime errors signaled by 6-27 to 6-28
using to make remote call 5-1 to 5-2

Index
S

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  I-9

S
Sandcastle application 10-30
sdkvars.bat file 10-12
security compliance level

xfNetLink Java 8-40, 8-41
xfNetLink .NET 11-38, 11-39
xfNetLink Synergy 6-7, 6-21
xfServerPlus 3-5, 3-24

server application, deploying 3-49
service runtime. See dbs runtime
servstat program 3-14

displaying xfServerPlus status 3-13
purging free pool 3-14

“set” methods (Java)
compared with properties file 8-4 to 8-5
using 8-12
See also individual methods

SET_XFPL_TIMEOUT subroutine 1-31
setCallTimeout() method (.NET) 11-40
setruser 3-8, 3-51, 3-53
setsde 3-27
setSSLCertFile() method (Java) 8-41
setSSLPassword() method (Java) 8-41
setSSLSecCompliance() method (Java) 8-41
setUserString() method

xfNetLink Java 8-21, 8-42
xfNetLink .NET 11-23, 11-40

setxfCallTimeout() method (Java) 8-20, 8-42
setxfExceptOnly() method (Java) 8-42
setxfHost() method (Java) 8-42
setxfLogfile() method (Java) 8-42
setxfLogging() method (Java) 8-43
setxfPort() method (Java) 8-43
SFWINIPATH environment variable 3-45
shareConnect() method

xfNetLink Java 8-12, 8-43
xfNetLink .NET 11-9, 11-40

shared images. See ELBs
SHELL routine 1-4
shutdown() method (Java) 8-34, 8-47
shutdownInPool() method (Java) 8-34, 8-48
slave encryption 3-24
SMC. See Synergy Method Catalog
smc_elb.exe 2-53 to 2-56
SMC/ELB Comparison utility 2-53 to 2-56
sn.exe 10-27
SPAWN routine 1-4

starting xfServerPlus
OpenVMS 3-11 to 3-13
UNIX 3-8 to 3-10
Windows 3-2 to 3-7

status codes
%RX_START_REMOTE 6-21 to 6-23
xfServerPlus 3-16

stopping xfServerPlus
OpenVMS 3-14
UNIX 3-10
Windows 3-7 to 3-8

strong name key file 10-9, 10-19, 10-27
struct data type field in repository 1-8
structfields 2-7

examples 2-17, 2-19
structure classes, using

xfNetLink Java 8-14 to 8-16
xfNetLink .NET 11-12 to 11-16

structure collection parameter 1-15 to 1-16
defining in MDU 2-33
defining with attribute 2-15

structure property 2-16
structures

attributing 1-8, 2-7
binary fields (.NET) 10-20
comparing data in (.NET) 11-14 to 11-16
defining in MDU 2-30
excluding fields from 1-10
field type mapping

xfNetLink Java B-3
xfNetLink .NET B-7

overlays, handling 1-9 to 1-10
passing as parameters 1-8 to 1-11
properties vs. fields for .NET 10-10, 10-20
read-only fields

xfNetLink Java 8-15
xfNetLink .NET 11-12

returning collection of 1-15 to 1-16
supported types 1-8
verifying sizes in SMC 2-41
See also structfields

support, obtaining technical xii
SWPConnect class (Java) 8-44
SWPManager class (Java) 8-46

using methods in 8-24, 8-33 to 8-34
SYNCSCOPT environment variable 10-13, 10-23
Synergy code. See Synergy routines; Synergy server code

Index
T

I-10  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

Synergy components. See assemblies; JAR files
Synergy Configuration Program

setting XFPL_INIPATH 3-20 to 3-21
setting XFPL_SMCPATH 2-45 to 2-46
starting xfServerPlus 3-3 to 3-5
stopping xfServerPlus 3-7 to 3-8

Synergy DBL data types
defining in MDU 2-26, 2-31
mapping to C# types B-6 to B-8
mapping to Java types B-1 to B-5
supported 2-32

Synergy Method Catalog 2-1 to 2-56
accessing files on remote machine 2-45, 2-48
creating new files 2-42 to 2-43
default location 2-42
exporting methods 2-38 to 2-40
importing methods 2-38 to 2-40
overview 2-1
populating. See attributes; Method Definition Utility
specifying when creating components

assembly 10-10, 10-16
JAR file 7-9, 7-13

specifying when creating test skeletons 1-23
updating 2-38 to 2-40
using logicals in 1-4, 2-53
using multiple 2-42 to 2-47
verifying entries against ELB 2-53 to 2-56
verifying structure sizes 2-41
See also attributes; Method Definition Utility

Synergy .NET Configuration utility. See xfNetLink .NET
Configuration utility

Synergy routines
calling from client

xfNetLink Java 8-10 to 8-14
xfNetLink .NET 11-8 to 11-23
xfNetLink Synergy 5-1 to 5-3

debugging 3-45 to 3-49
defining for use with xfNetLink 2-1 to 2-36
searching for in MDU 2-37
UI Toolkit routines 1-5 to 1-6
unsupported 1-3, 1-4
See also Synergy server code

Synergy server code
debugging 3-45 to 3-49
defining routines for use with xfNetLink 2-1 to 2-36
ELB restrictions 1-3
enclosing in ELBs 1-3

modularizing 1-1
preparing for remote access 1-1 to 1-29
testing 1-21 to 1-29
UI Toolkit routines and 1-5 to 1-6
user interface elements in 1-5

Synergy/DE routines. See Synergy routines
synergy.ini file

configuring for xfNetLink Synergy 4-4 to 4-7
read by dbs 3-45

synnetcfg.exe 11-4
synrc file

comments in 2-46
setting XFPL_INIPATH in 3-21
setting XFPL_SMCPATH in 2-46

synrc.com, setting XFPL_INIPATH in 3-22
SYNSSL_RAND environment variable 3-25
SYNSSLLIB environment variable 3-26
System.Collections.ArrayList class 1-16
System.Data.DataTable class 11-16
System.String class 1-14

T
technical support, obtaining xii
Telnet, using to debug remotely 3-46 to 3-49
test skeletons, generating 1-21 to 1-29
testing

Synergy server code 1-21 to 1-29
xfNetLink Java 9-12 to 9-13
xfNetLink .NET 12-9 to 12-10
xfNetLink Synergy 4-8 to 4-9
xfServerPlus 3-15

time-outs
in debug mode 5-5, 9-15, 12-11
keepalive 1-31
recorded in xfServerPlus log 3-37
using %RX_CONTINUE function 6-2
xfNetLink Java 8-7 to 8-9, 8-20, 8-31
xfNetLink .NET 11-5, 11-22, 11-28
xfNetLink Synergy 4-5 to 4-7, 6-16
xfServerPlus 1-31

Toolkit routines. See UI Toolkit routines
tools.def file 1-5
translating data. See data type mapping
troubleshooting. See debugging; errors; testing
type coercion

defining in MDU 2-27, 2-32
defining with attribute 2-11, 2-15

Index
U

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  I-11

xfNetLink Java B-1 to B-5
xfNetLink .NET B-6 to B-8
See also data type mapping

type mapping. See data type mapping; type coercion
type property 2-13

U
U_START subroutine 1-5
UI Toolkit routines 1-5 to 1-6
usePool() method (Java) 8-43
user interface elements in Synergy server code 1-5
utility methods

xfNetLink Java 8-38 to 8-43
xfNetLink .NET 11-38 to 11-42

V
^VAL parameters

defining in MDU 2-34
passing to %RXSUBR 6-25

vcvarsall.bat file 10-23
verifying repository structure sizes in SMC 2-41
Visual Studio

referencing Synergy assembly in project 11-8
referencing xfnlnet.dll 11-8
supported versions 10-1
using application configuration file 11-3
vcvarsall.bat file 10-23
vsvars32.bat file 10-12, 10-23

VMS. See OpenVMS
vsvars32.bat file 10-12, 10-23

W
web.config file 11-3
Windows application event log

server-side logging 3-19, 3-33, 3-34, 5-3
xfNetlink .NET logging 12-7

Workbench
Java component project 7-7 to 7-11
.NET component project 10-7 to 10-13
setting up the .NET environment 10-12
SMC/ELB comparison, running 2-56
test skeletons, generating 1-22 to 1-24

X
xercesImpl.jar file 7-6
xf_DebugOutput setting 8-7, 9-8
xf_DebugSessionConnectTimeout setting 8-8
xf_LogFile setting 8-7, 9-8

XF_REMOTE_HOST environment variable 4-5
XF_REMOTE_PORT environment variable 4-5
xf_RemoteHostName setting 8-6
xf_RemotePort setting 8-6
XF_RMT_DBG_TIMOUT environment variable 4-6
XF_RMT_TIMOUT environment variable 4-6
XF_RMTCONN_TIMOUT environment variable 4-6
xf_SessionConnectTimeout setting 8-8
xf_SessionLingerTimeout setting 8-9
xf_SessionRequestTimeout setting 8-7
xf_SSLCertFile setting 8-9
xf_SSLPassword setting 8-9
XFBOOTCLASSPATH environment variable 7-11,

7-17
XFEXTDIRS environment variable 7-11, 7-17
xfJCWException class 8-50
xfMethod attribute 2-8 to 2-13
xfNetLink Java

ArrayList
using to pass binary data 8-18 to 8-19
using to return structure collection 1-15 to 1-16

classes 8-44 to 8-51
classpath, setting 7-6
code sample D-1 to D-5
data type mapping B-1 to B-5
deploying application 8-37
encryption set-up 3-27 to 3-29
errors 9-1 to 9-6
exception handling 9-1 to 9-6
genCert utility 3-28
host name, specifying 8-6, 8-12
host port, specifying 8-6, 8-12
importing required packages 8-11, 8-24
logging 9-7 to 9-12
making remote calls 8-10 to 8-14
method reference 8-38 to 8-43
minimum version requirements 7-1
overview of tasks 7-3 to 7-4
pooling 8-22 to 8-36
properties file. See pooling properties file; xfNetLink

Java properties file
running xfServerPlus session in debug

mode 9-14 to 9-18
setting classpath 7-6
system requirements 7-1
System.Collections.ArrayList, passing 1-16
System.String, passing 1-14

Index
X

I-12  xfNetLink & xfServerPlus User’s Guide 10.3.3 05/16

technical overview 7-1
testing 9-12 to 9-13
time-outs 8-7 to 8-9, 8-20, 8-31
type coercion B-1 to B-5
See also JAR files; Java class wrappers; Java pooling

xfNetLink Java properties file 8-2 to 8-10
comments in 8-4
compared with “set” methods 8-4 to 8-5
connection pooling and 8-29
naming 8-3, 8-29
placement of 8-3
settings

xf_DebugOutput 8-6 to 8-7
xf_DebugSessionConnectTimeout 8-8
xf_LogFile 8-6 to 8-7
xf_RemoteHostName 8-6
xf_RemotePort 8-6
xf_SessionConnectTimeout 8-8
xf_SessionLingerTimeout 8-9
xf_SessionRequestTimeout 8-7
xf_SSLCertFile 8-9
xf_SSLPassword 8-9
xf_SSLSecCompliance 8-10

specifying for pooling 8-29
xfNetLink .NET

ArrayList, using to return structure
collection 1-15 to 1-16

configuration file 11-2 to 11-7
configuration utility 11-4 to 11-7, 11-27
data type mapping B-6 to B-8
deploying application 11-37
encryption set-up 3-30
error handling 12-1 to 12-6
Framework version in Workbench 10-12
host name, specifying 11-5
host port, specifying 11-6
logging 12-7
making remote calls 11-8 to 11-23
method reference 11-38 to 11-42
minimum version requirements 10-1
overview of tasks 10-3 to 10-5
pooling 11-24 to 11-36
running xfServerPlus session in debug

mode 12-10 to 12-14
system requirements 10-1
System.Collections.ArrayList, passing 1-16
System.String, passing 1-14

technical overview 10-2
testing 12-9 to 12-10
time-outs 11-5, 11-22, 11-28
type coercion B-6 to B-8
See also assemblies; C# classes; .NET pooling

xfNetLink .NET Configuration utility 11-4 to 11-7,
11-27

xfNetLink Synergy
API 6-1 to 6-29
code sample C-1 to C-5
configuring 4-4 to 4-7
encryption set-up 3-27
error handling 5-3 to 5-4
logging 5-8 to 5-9
making remote calls 5-1 to 5-3
overview of tasks 4-2 to 4-3
running xfServerPlus session in debug

mode 5-4 to 5-8
technical overview 4-1 to 4-2
testing 4-8 to 4-9
time-outs 4-5 to 4-7, 6-16

xfNetLnk.ini file. See xfNetLink Java properties file
xfnljav.jar file 7-6
xfNLJTest.class 9-12
xfnlnet.dll 11-1, 11-37

referencing in Visual Studio project 11-8
XFNLS_LOGFILE environment variable 4-7
xfnlstst program 4-8
xfParameter attribute 2-13 to 2-16
xfpl_api library 1-30
XFPL_BASECHAN setting 1-7
XFPL_COMPRESS setting 3-23
XFPL_DBR environment variable. See Environment

Variables & System Options
XFPL_DEBUG setting 3-40 to 3-42
XFPL_FUNC_INFO setting 3-38 to 3-40
XFPL_INIPATH environment variable 3-20 to 3-22
XFPL_LOG setting 3-34
XFPL_LOG subroutine 1-33
XFPL_LOGFILE setting 3-35
XFPL_LOGICAL setting 1-4
XFPL_REGCLEANUP subroutine 1-34 to 1-36
XFPL_SESS_INFO setting 3-36 to 3-38
XFPL_SINGLELOGFILE setting 3-35
XFPL_SMCPATH environment variable

setting for MDU 2-44
setting for xfServerPlus 2-44 to 2-47

Index
X

05/16 xfNetLink & xfServerPlus User’s Guide 10.3.3  I-13

xfpl_tst.elb library 3-15, 4-8, 9-12
xfpl.dbr 5-6, 9-16, 12-12
xfpl.ini file 3-19 to 3-22

default location 3-19
defining logicals in 1-4
errors in 3-19
settings

XFPL_BASECHAN 1-7
XFPL_COMPRESS 3-23
XFPL_DEBUG 3-40 to 3-42
XFPL_FUNC_INFO 3-38 to 3-40
XFPL_LOG 3-34
XFPL_LOGFILE 3-35
XFPL_LOGICAL 1-4
XFPL_SESS_INFO 3-36 to 3-38
XFPL_SINGLELOGFILE 3-35

specifying location with
XFPL_INIPATH 3-20 to 3-22

updating free pool after modifying (OpenVMS) 3-14
using multiple 3-19

xfPoolException class 8-51
xfPool.properties file. See pooling properties file
xfServer

using to access data remotely from
xfServerPlus 3-51 to 3-54

using to access remote SMC files 2-45, 2-48
xfServerPlus

acting as client to xfServer 3-51 to 3-54
API 1-30 to 1-36
cleanup method 1-34 to 1-36
creating multiple sessions 3-7, 3-10, 3-13
data compression 3-23
debugging. See debug mode, running xfServerPlus in
default port 3-2
deploying application 3-49
ELB restrictions 1-3
encryption 3-24 to 3-32
error messages 3-16, 3-43 to 3-44
host name. See host name, defining on client
license requirements xii
logging. See xfServerPlus log
overview of tasks 3-1 to 3-2
port. See host port number, defining on client; port

number, xfServerPlus
protocol version 3-43
remote data access 3-51 to 3-54
running 3-2 to 3-14

running in debug mode. See debug mode, running
xfServerPlus in

SET_XFPL_TIMEOUT subroutine 1-31
shutting down unexpectedly 1-34 to 1-36
starting

OpenVMS 3-11 to 3-13
UNIX 3-8 to 3-10
Windows 3-2 to 3-7

status 3-13, 3-16
stopping

OpenVMS 3-14
UNIX 3-10
Windows 3-7 to 3-8

testing 3-15
time-out, setting 1-31
XFPL_LOG subroutine 1-33
XFPL_REGCLEANUP subroutine 1-34 to 1-36

xfServerPlus log 3-33 to 3-42
default name and location 3-35
deleting data from 3-34
error messages in 3-43 to 3-44
log file not created 3-35
making application-defined entries in 1-33
naming 3-35
setting options for 3-34 to 3-42
single vs. multiple files 3-35
specifying location for 3-35
turning on and off 3-34
writing to from Java client 8-21
writing to from .NET client 11-23
XFPL_DEBUG 3-40 to 3-42
XFPL_FUNC_INFO 3-38 to 3-40
XFPL_LOG 3-34
XFPL_LOGFILE 3-35
XFPL_SESS_INFO 3-36 to 3-38
XFPL_SINGLELOGFILE 3-35

xfspl 3-6, 3-8
xfspltst program 3-15
xfTestnet program 12-9 to 12-10
XML file

for .NET API documentation 10-29 to 10-30
using to import/export SMC methods 2-38 to 2-40
See also dbl2xml utility; genxml utility

xml-apis.jar 7-6

	xfNetLink & xfServerPlus User’s Guide
	Contents
	Introduction
	Part I: xfServerPlus
	1 Preparing Your Synergy Server Code
	Modularizing Your Code
	Attributing Your Code
	Using ELBs and Shared Images
	Defining Logicals

	Removing User Interface Elements
	UI Toolkit Routines

	Specifying a Base Channel Number
	Passing Structures as Parameters
	How Overlays Are Handled

	Passing Enumerations
	Handling Variable-Length and Large Data
	Passing a Single Parameter as a Memory Handle
	Passing a System.String Parameter
	Returning a Collection of Structures
	Passing a System.Collections.ArrayList Parameter
	Passing Arrays Larger Than 64K

	Passing Binary Data
	Handling Errors
	Testing Your Synergy Code
	Generating Test Skeletons with Workbench
	Generating Test Skeletons from the Command Line
	The gensyn Utility
	Using the Test Skeletons

	Using the xfServerPlus Application Program Interface
	SET_XFPL_TIMEOUT
	XFPL_LOG
	XFPL_REGCLEANUP

	2 Defining Your Synergy Methods
	Understanding Routine Name, Method Name, and Method ID
	Using Attributes to Define Synergy Methods
	General Procedure
	xfMethod Attribute
	xfParameter Attribute
	Attribute Examples
	Documentation Comments

	Using the MDU to Define Synergy Methods
	Creating New Methods
	Specifying a Method ID
	Defining Parameters
	Modifying Methods and Parameters
	Deleting Data from the SMC
	Searching for Methods and Parameters
	Setting the Catalog Location

	Importing and Exporting Methods
	Verifying Repository Structure Sizes and Enumerations
	Defining Multiple Synergy Method Catalogs
	Creating New SMC Files
	Specifying Which SMC to Update
	Setting the XFPL_SMCPATH Environment Variable for xfServerPlus

	The Method Definition Utility
	The SMC/ELB Comparison Utility
	Windows and UNIX
	OpenVMS
	Running an SMC/ELB Comparison from Workbench

	3 Configuring and Running xfServerPlus
	The Big Picture
	Running xfServerPlus
	Running xfServerPlus on Windows
	Running xfServerPlus on UNIX
	Running xfServerPlus on OpenVMS

	Testing xfServerPlus
	xfServerPlus Status Codes
	Using the xfpl.ini File
	Using an Alternate xfpl.ini File
	Setting the XFPL_INIPATH Environment Variable

	Configuring Compression
	Using Encryption
	Setting up the xfServerPlus Machine for Encryption
	Setting up the xfNetLink Synergy Machine for Encryption
	Setting up the xfNetLink Java Machine for Encryption
	Setting up the xfNetLink .NET Machine for Encryption
	Specifying the Data to Encrypt for Slave Encryption

	Using Server-Side Logging
	Setting Options for the xfServerPlus Log
	Error Messages in the xfServerPlus Log

	Debugging Your Remote Synergy Routines
	Debugging Remote Synergy Routines via Telnet

	Deploying Your Distributed Application
	Deploying the Server
	Deploying the Client

	Configuring xfServerPlus for Remote Data Access
	Remote Data Access When xfServerPlus Is on Windows
	Remote Data Access When xfServerPlus Is on UNIX

	Part II: xfNetLink Synergy Edition
	4 Configuring & Testing xfNetLink Synergy
	System Overview
	The Big Picture
	Configuring xfNetLink Synergy
	Specifying the Host Name and Port Number
	Specifying Time-out Values
	Specifying Debug Options

	Testing xfNetLink Synergy

	5 Calling Synergy Routines Remotely from Synergy
	Making Remote Calls
	Making Remote Calls with %RXSUBR
	Making Remote Calls Using a Routine Call Block

	Handling Errors
	Troubleshooting Techniques
	Running an xfServerPlus Session in Debug Mode
	Viewing Packets

	6 xfNetLink Synergy API
	%RX_CONTINUE
	%RX_DEBUG_INIT
	%RX_DEBUG_START
	RX_GET_ERRINFO
	RX_GET_HALTINFO
	%RX_RMT_ENDIAN
	%RX_RMT_INTSIZE
	%RX_RMT_OS
	%RX_RMT_SYSINFO
	%RX_RMT_TIMOUT
	RX_SETRMTFNC
	RX_SHUTDOWN_REMOTE
	%RX_START_REMOTE
	%RXSUBR

	Part III: xfNetLink Java Edition
	7 Creating Java Class Wrappers
	System Requirements
	System Overview
	The Big Picture
	Setting the Classpath
	Creating a Java JAR File in Workbench
	Creating a Synergy/DE Java Component Project
	Generating Java Class Wrappers
	Building the JAR File

	Creating a Java JAR File from the Command Line
	The genxml Utility
	The genjava Utility
	Building the JAR File

	Understanding the Generated Classes
	Procedural Classes
	Structure Classes
	Enumeration Classes
	Editing the Java Source Files

	Generating Javadoc

	8 Calling Synergy Routines from Java
	Setting up Your Environment for Development
	Configuring the xfNetLink Java Properties File
	Creating and Naming a Properties File
	Using a Properties File vs. Using the “set” Methods
	Specifying the Host Name and Port Number
	Specifying Logging Options
	Specifying Time-out Values
	Specifying Encryption Options

	Using Your JAR File
	Using Structures
	Using Enumerations
	Passing Binary Data
	Setting a Call Time-Out
	Writing to the xfServerPlus Log

	Understanding Java Pooling
	Implementing Pooling
	Using Your JAR File with Connection Pooling
	Setting Up a Pooling Properties File
	Pool Maintenance
	Using the Pooling Support Methods

	Deploying Your xfNetLink Java Application
	Method Reference
	Class Reference
	Synergex.util.SWPConnect
	Synergex.util.SWPManager
	Synergex.util.xfJCWException
	Synergex.util.xfPoolException

	9 Error Handling and Troubleshooting in xfNetLink Java
	Handling Errors
	Troubleshooting Techniques
	Using Client-Side Logging
	Using Pooling Logging
	Testing xfNetLink Java
	Running an xfServerPlus Session in Debug Mode

	Part IV: xfNetLink .NET Edition
	10 Creating Synergy .NET Assemblies
	System Requirements
	System Overview
	The Big Picture
	Creating an Assembly in Workbench
	Creating a Synergy/DE .NET Component Project
	Controlling the .NET Environment
	Generating C# Classes
	Building the Assembly

	Creating an Assembly from the Command Line
	The genxml Utility
	The gencs Utility
	Building the Assembly

	Understanding the Generated Classes
	Procedural Classes
	Structure Classes
	DataTable Classes
	Enumerations
	Custom Attributes

	Using Your Own Key File
	Editing the Generated Files
	Editing Information in AssemblyInfo.cs

	Generating API Documentation
	Adding Documentation Comments
	Generating an XML File
	Creating the API Documentation

	11 Calling Synergy Routines from .NET
	Setting up Your Environment for Development
	Using an Application Configuration File
	Creating and Editing Configuration Files

	Using Your Synergy .NET Assembly
	Using Multiple Copies of the Same Class
	Using Structures
	Using DataTables
	Using Enumerations
	Passing Binary Data
	Setting a Call Time-Out
	Writing to the xfServerPlus Log

	Understanding .NET Pooling
	Implementing Pooling
	Implementation Overview
	Creating a Pool
	Configuring the Pool
	Starting the Pool
	Using the Pooling Support Methods
	Writing Code That Uses Pooled Objects

	Deploying Your xfNetLink .NET Application
	Method Reference
	Procedural Methods
	Structure Methods
	DataTable Methods

	12 Error Handling and Troubleshooting in xfNetLink .NET
	Handling Errors
	Troubleshooting Techniques
	Using Client-Side Logging
	Testing xfNetLink .NET
	Running an xfServerPlus Session in Debug Mode

	Appendices
	A: Configuration Settings
	xfServerPlus
	xfNetLink Synergy
	xfNetLink Java
	xfNetLink .NET

	B: Data Type Mapping
	xfNetLink Java
	xfNetLink .NET

	C: xfNetLink Synergy Sample Code
	Client Application (synclt.dbl)
	Server-Side Code (HELLO Subroutine)
	Running the Hello Program

	D: xfNetLink Java Sample Code
	Client Application (hello.jsp and hello.java)
	Server-Side Code (HELLO Subroutine)
	Running the Hello Program

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Send us your comments

	OSWT:
	OSWN:
	OSU:
	OSV:

