
Repository User’s Guide

Version 10.3.3

Printed: May 2016

The information contained in this document is subject to change without notice and should not be construed
as a commitment by Synergex. Synergex assumes no responsibility for any errors that may appear in this
document.

The software described in this document is the proprietary property of Synergex and is protected by
copyright and trade secret. It is furnished only under license. This manual and the described software may be
used only in accordance with the terms and conditions of said license. Use of the described software without
proper licensing is illegal and subject to prosecution.

 Copyright 1997–1999, 2001–2016 by Synergex

Synergex, Synergy, Synergy/DE, and all Synergy/DE product names are trademarks or registered trademarks
of Synergex.

Windows is a registered trademark of Microsoft Corporation. All other product and company names
mentioned in this document are trademarks of their respective holders.

DCN RE-01-10.3_04

Synergex
2330 Gold Meadow Way
Gold River, CA 95670 USA

http://www.synergex.com
phone 916.635.7300
fax 916.635.6549

Repository User’s Guide 10.3.3 (5/16) iii

Contents

Preface

About this manual ix
Manual conventions ix
Other resources x
Product support information x
Synergex Professional Services Group x
Comments and suggestions xi

1 Welcome to Repository

What Is Repository? 1-2

Using Repository with other Synergy/DE components 1-2

Getting Started 1-5

Starting Repository 1-5
Setting up your repository 1-5

Using the Repository Interface 1-9

Making a menu selection (UNIX and OpenVMS) 1-10
Entering data 1-10
Using lists 1-14
Using selection windows 1-16
Exiting the current function 1-16
Viewing Repository definitions 1-16
Customizing the display 1-17
Exiting Repository 1-17

Understanding Repository Files 1-18

Determining the repository files used 1-18
Temporary work files 1-19
Record locking 1-19
Moving Repository files 1-20

Converting Repositories to Another Language 1-21

Contents

iv Repository User’s Guide 10.3.3 (5/16)

2 Working with Structures

Structures Overview 2-2

Defining a New Structure 2-3

Assigning a long description to a structure 2-4
Assigning a user-defined text string to a structure 2-5

Defining Tags 2-6

Creating a record size tag 2-6
Creating a field type tag 2-6
Modifying a tag 2-8
Reordering tags in the Tag Definitions list 2-8
Deleting a tag 2-8

Defining Aliases 2-9

Defining an alias 2-9
Deleting an alias 2-9

Modifying a Structure 2-10

Deleting a Structure 2-11

3 Working with Fields

Fields Overview 3-2

The Field Definitions list 3-2
Reordering fields in the Field Definitions list 3-3

Defining a New Field 3-4

Basic field information 3-4
Display information 3-12
Input information 3-18
Validation information 3-22
Method information 3-26
Assigning a long description to a field 3-29

Loading Fields from a Definition File 3-30

Defining Field Formats 3-32

The Format Definitions list 3-32
Defining a new format 3-33
Reordering structure-specific formats 3-34
Modifying a format 3-34
Deleting a format 3-35

Contents

Repository User’s Guide 10.3.3 (5/16) v

Defining Field Templates 3-36

Defining a new template 3-36
Modifying a template 3-42
Deleting a template 3-43

Defining Enumerations 3-44

Defining a new enumeration and its members 3-44
Modifying an enumeration and its members 3-46
Deleting an enumeration 3-46

Modifying a Field 3-47

Modifying group members 3-48

Deleting a Field 3-50

4 Working with Files

Files Overview 4-2

The File Definitions list 4-2

Defining Files 4-3

Assigning a long description to a file definition 4-7
Assigning a user text string to a file definition 4-7
Modifying a file definition 4-7
Deleting a file definition 4-7

Assigning Structures to Files 4-8

Assigning a structure to a file 4-8
Modifying an assigned structure 4-9
Disassociating a structure from a file 4-9

Defining Keys 4-10

The Key Definition list 4-10
Reordering keys in the Key Definitions list 4-11
Defining a new key 4-11
Using literal key segments 4-15
Using external key segments 4-16
Modifying a key 4-17
Deleting a key 4-17

Defining Relations between Structures 4-18

The Relation Definitions list 4-18
Reordering relations in the Relation Definitions list 4-19
Defining a new relation 4-19
Examining a relation in detail 4-21

Contents

vi Repository User’s Guide 10.3.3 (5/16)

Modifying a relation 4-22
Deleting a relation 4-22

5 Utility Functions

Generating a Definition File 5-2

Printing Repository Definitions 5-5

Verifying Your Repository 5-10

Validating Your Repository 5-12

Generating a Repository Schema 5-13

Loading a Repository Schema 5-19

Creating a New Repository 5-22

Setting the Current Repository 5-23

Generating a Cross-Reference File 5-24

Rpsxref command line syntax 5-26

Comparing a Repository to ISAM Files 5-27

Generating and Loading Schema from the Command Line 5-28

Exporting Synergy Data Language files 5-28
Importing Synergy Data Language files 5-30

6 Synergy Data Language

Introduction to the Synergy Data Language 6-2

Using Synergy Data Language Statements 6-3

General usage rules 6-3
Recommended statement order 6-4
General processing rules 6-5
ALIAS – Describe an alias for a structure or field 6-9
ENDGROUP – End a group definition 6-11
ENUMERATION – Describe an enumeration definition 6-12
FIELD – Describe a field definition 6-14
FILE – Describe a file definition 6-40
FORMAT – Describe a global or structure-specific format 6-47
GROUP – Begin a group definition 6-49
KEY – Describe a key definition 6-52
RELATION – Describe a relation definition 6-58
STRUCTURE – Describe a structure definition 6-60
TAG – Describe a structure tag definition 6-62
TEMPLATE – Describe a template definition 6-64

Contents

Repository User’s Guide 10.3.3 (5/16) vii

7 Subroutine Library

Using the Repository Subroutine Library 7-2

The ddinfo.def file 7-2
DD_ALIAS – Retrieve alias information 7-4
DD_CONTROL – Retrieve control record information 7-6
DD_ENUM – Retrieve enumeration information 7-7
DD_EXIT – Terminate an information session 7-9
DD_FIELD – Retrieve field information 7-10
DD_FILE – Retrieve file information 7-14
DD_FILESPEC – Retrieve file specifications 7-17
DD_FORMAT – Retrieve format information 7-19
DD_INIT – Initialize an information session 7-21
DD_KEY – Retrieve key information 7-22
DD_NAME – Retrieve a list of definition names 7-25
DD_RELATION – Retrieve relation information 7-27
DD_STRUCT – Retrieve structure information 7-29
DD_TAG – Retrieve tag information 7-32
DD_TEMPLATE – Retrieve template information 7-34

Sample programs 7-36

Definition file 7-45

Appendix A: Maximums

Appendix B: Date and Time Formats

Date Formats B-2

Time Formats B-4

Appendix C: Error Messages

Appendix D: Data Formats

Appendix E: Distributed Shortcuts

Glossary

Index

Repository User’s Guide 10.3.3 (5/16) ix

Preface

About this manual
This guide describes the general philosophy, concepts, and usage of Synergy/DE® Repository. It
includes information on setting up and maintaining your repository, as well as details on Repository
utilities, Synergy Data Language, and the Repository subroutine library.

Manual conventions
Throughout this manual, we use the following conventions:

 In code syntax, text that you type is in Courier typeface. Variables that either represent or
should be replaced with specific data are in italic type.

 Optional arguments are enclosed in [italic square brackets]. If an argument is omitted and the
comma is outside the brackets, a comma must be used as a placeholder, unless the omitted
argument is the last argument in a subroutine. If an argument is omitted and the comma is
inside the brackets, the comma may also be omitted.

 Arguments that can be repeated one or more times are followed by an ellipsis…

 A vertical bar (|) in syntax means to choose between the arguments on either side of the bar.

 Data types are boldface. The data type in parentheses at the end of an argument description
(for example, (n)) documents how the argument will be treated within the routine. An a
represents alpha, a d represents decimal or implied-decimal, an i represents integer, and an n
represents numeric (which means the type can be d or i).

 Scenarios are in italic type.

 To “enter” data means to type it (or highlight it, in the case of a selection window entry) and
then press ENTER. (“ENTER” refers to either the ENTER key or the RETURN key, depending on
your keyboard.)

 This grid indicates on which platforms and in which environments a routine, statement, etc., is
supported: in traditional Synergy on Windows (WT), in Synergy .NET on Windows (WN), on
UNIX (U), or on OpenVMS (V). By “supported” we mean that the item performs a useful
function on that platform or environment. For example, an unsupported routine may cause a
compiler error or it may just not do anything.

WT WN U V

Preface

x Repository User’s Guide 10.3.3 (5/16)

Other resources
 The Repository release notes, REL_RPS.TXT

 Getting Started with Synergy/DE

 UI Toolkit Reference Manual

 Synergy DBL Language Reference Manual

 xfODBC User’s Guide

Product support information
If you cannot find the information you need in this manual or in the resources listed above, you can
reach the Synergy/DE Developer Support department at the following numbers:

800.366.3472 (in the U.S. and Canada)
916.635.7300 (in all other locations)

To learn about your Developer Support options, contact your Synergy/DE account manager at one
of the above numbers.

Before you contact us, make sure you have the following information:

 The version of the Synergy/DE product(s) you are running

 The name and version of the operating system you are running

 The hardware platform you are using

 The error mnemonic and any associated error text (if you need help with a Synergy/DE error)

 The statement at which the error occurred

 The exact steps that preceded the problem

 What changed (for example, code, data, hardware) before this problem occurred

 Whether the problem happens every time and whether it is reproducible in a small test program

 Whether your program terminates with a traceback, or whether you are trapping and
interpreting the error

Synergex Professional Services Group
If you would like assistance implementing new technology or would like to bring in additional
experienced resources to complete a project or customize a solution, Synergex® Professional
Services Group (PSG) can help. PSG provides comprehensive technical training and consulting
services to help you take advantage of Synergex’s current and emerging technologies. For
information and pricing, contact your Synergy/DE account manager at 800.366.3472 (in the U.S.
and Canada) or 916.635.7300.

Preface

Repository User’s Guide 10.3.3 (5/16) xi

Comments and suggestions
We welcome your comments and suggestions for improving this manual. Send your comments,
suggestions, and queries, as well as any errors or omissions you’ve discovered, to
doc@synergex.com.

mailto:doc@synergex.com

1-1

1
Welcome to Repository

What Is Repository? 1-2

The theory behind Repository, its place as an integral part of Synergy/DE, and the components of
Repository.

Getting Started 1-5

The steps you need to follow to set up your repository.

Using the Repository Interface 1-9

How to access menus, select entries, enter data in fields, navigate through lists, and exit.

Understanding Repository Files 1-18

How Repository determines which files to use, how record locking works, and how to move
repository files.

Converting Repositories to Another Language 1-21

How to unload text from a repository so that it may be translated to another language.

Welcome to Repository
What Is Repository?

1-2 Repository User’s Guide 10.3.3 (5/16)

What Is Repository?
The Repository application provides a centralized location for your data definitions. It orders and
defines your data structures, files, and attributes. Repository can supply this information to UI
Toolkit for processing script files and building input windows at runtime, to the Synergy™
compiler for compiling source code files, to Workbench for generating context-sensitive field lists,
and to ReportWriter for creating reports. Repository data definitions are also used by xfODBC to
create system catalogs and by xfServerPlus–xfNetLink applications.

Using Repository as the center of your software development environment has the following
benefits:

 Increased productivity. Developers know where to find the data definitions, which can be
accessed from your Synergy DBL source code.

 No duplication of information. Data is defined only once, and can be shared by all
components of your application. Your data is easier to maintain without potential loss of
integrity.

 Easy maintenance. Modifications to one definition can update all the elements of your
application executable.

Repository consists of four main components:

 The Repository user interface, where you define your data fields, their attributes, and their
organization in your database.

 The utilities, which enable you to generate record definition files from your repository
structures, verify your repository or print it to a file, create new repositories, set the current
repository, and generate and load repository definitions using Synergy Data Language.

 Synergy Data Language, which is a set of statements that describes the contents of a
repository. You can use it to make mass modifications to your repository, convert
non-Synergy/DE repositories to Synergy/DE format, and examine your repository.

 The subroutine library, which contains routines that enable your Synergy applications to
access Repository information about structures, files, templates, fields, keys, and so forth.

Using Repository with other Synergy/DE components

Synergy DBL
You can use the REPOSITORY qualifier with the .INCLUDE compiler directive to instruct the
compiler to include structures from your repository. You can either generate a definition file that
contains structure definitions and .INCLUDE that file, or you can include directly from the
repository, in which case the Synergy compiler creates structures that contain elements from the
repository and includes them in your program. See .INCLUDE in the “Preprocessor and Compiler
Directives” chapter of the Synergy DBL Language Reference Manual for more information about
including from a repository.

Welcome to Repository
What Is Repository?

Repository User’s Guide 10.3.3 (5/16) 1-3

And when you are working in Professional Series Workbench, the language-sensitive visual editor
enables you to select fields from repository structures that have been .INCLUDEd in your routine.

UI Toolkit
Repository is fully integrated with UI Toolkit, enabling you to define all input field qualifiers in
your repository. As a result, not only are data definitions consistent from one application to another,
but the user interface is consistent as well. In addition, you don’t need to duplicate information
from your repository in a Toolkit window script.

The fields you define in Repository can also be read into Composer as predefined input fields. See
“Defining User Interface Characteristics” in the “Setting Up Your Repository” chapter of Getting
Started with Synergy/DE.

Figure 1-1. Repository provides a centralized location for data definitions.

Workbench

Your Application

xfNetLink and
xfServerPlus

Repository

UI Toolkit

ReportWriter

xfODBC

Synergy
Compiler

Welcome to Repository
What Is Repository?

1-4 Repository User’s Guide 10.3.3 (5/16)

ReportWriter
Repository supplies information to ReportWriter for creating reports. When defining fields for use
with ReportWriter, you can also define the way the field will be used and displayed in a report, the
keys that determine the relationships between files, how those keys will be linked with keys from
other structures, and which files use which structures. See “Defining Files for ReportWriter” in the
“Setting Up Your Repository” chapter of Getting Started with Synergy/DE.

xfODBC
xfODBC uses repository definitions to generate system catalogs, which provide the information
needed by the xfODBC driver to provide third-party ODBC access to Synergy data files.
Repository includes a number of xfODBC-specific settings that enable you to control what is stored
to the system catalog. For example, you can exclude or provide an alternate name for a field. See
“Setting Up a Repository” in the “Preliminary Steps” chapter of the xfODBC User’s Guide for
more information.

xfNetLink and xfServerPlus
xfNetLink Java and xfNetLink .NET clients can pass repository structures defined as parameters,
including structures with embedded structures (that is, groups or struct data types) or embedded
arrays, as well as arrays of structures. In addition, you can pass enumerations defined in the
repository as parameters or return values, as well as include them as fields in structures passed as
parameters. See the xfNetLink Java Edition and the xfNetLink .NET Edition sections of the
xfNetLink & xfServerPlus User’s Guide for more information.

Your application
Any information stored in Repository can be used by your application and accessed through the
Repository subroutine library. (See chapter 7, “Subroutine Library.”)

Welcome to Repository
Getting Started

Repository User’s Guide 10.3.3 (5/16) 1-5

Getting Started
Before you can use Repository, you must install Synergy/DE Professional Series, including
Repository, on your system.

If you’re a current ICS version 3 user or Repository version 6 user, you’ll probably want to continue
using your existing data definitions. See the release notes file REL_RPS.TXT for instructions on
converting version 3 dictionaries or version 6 repositories to the current version. For information on
new features and changes by version, see the “Repository” chapter of the Updating Synergy/DE
manual.

Starting Repository

Setting up your repository
In Repository, you create structure definitions and then, within those structures, you define fields
and their attributes, such as field names, sizes, headings, formats, and so forth. Then you can create
file definitions and assign structures to them. You can define segmented keys for a file and indicate
how your data is ordered, and then link the keys for one file with the keys of another to easily
access additional related information.

To maintain consistency throughout your structures, you can create template definitions that define
basic field characteristics. A template can be assigned to one or more fields or to another template.
For use with UI Toolkit or ReportWriter, you can create display formats for specific fields, such as
phone numbers.

Figure 1-2 illustrates the steps you might follow to populate your repository. We recommend the
order shown here, although you have some latitude of course. For example, as you are defining
fields, you may realize a template for a particular type of field would be a useful or you might want
to define aliases for structures as you go along.

On… Do this…

Windows From within Workbench, select the Repository toolbar button
or
Open a Command Prompt window and enter dbr RPS:rps

UNIX At the command prompt enter dbr RPS:rps

OpenVMS At the command prompt enter run RPS:rps

Welcome to Repository
Getting Started

1-6 Repository User’s Guide 10.3.3 (5/16)

Figure 1-2. Creating your repository.

= optional

Define templates

Define enumerations

Define formats

Define a structure

Define a tag

Define aliases

Define relations
between structures

Specify which files
contain your data and

assign structures to files

Define fields by loading
from definition file or by

creating new fields

Define keys

Welcome to Repository
Getting Started

Repository User’s Guide 10.3.3 (5/16) 1-7

 Define display formats for fields

If you know what display formats you’re going to want for frequently used field types, go
ahead and define them first. Displays formats are most commonly used with Toolkit and
ReportWriter. You can define global formats or formats specific to a particular structure, and
then select these formats when defining display information. Follow the instructions in

“Defining Field Formats” on page 3-32
“Display information” on page 3-12

 Define enumerations

If you want to reference enumerations from fields, you must define them before defining fields.
Follow the instructions in

“Defining Enumerations” on page 3-44

 Define templates

If you’re going to define fields from scratch, you may want to define template fields for
commonly used field types. Follow the instructions in

“Defining Field Templates” on page 3-36

 Define structures

Structures are a combination of field and key definitions, so you’ll need to define structures
before defining fields. Follow the instructions in

“Defining a New Structure” on page 2-3

 Define fields

If you’re working from existing record definition files, you’ll want to load your fields into
Repository and then make sure all of your fields are defined as you’d like them to be. Follow
the instructions in

“Loading Fields from a Definition File” on page 3-30

If you’re defining fields from scratch, follow the instructions in

“Defining a New Field” on page 3-4

 Define tags to associate with structures

If you will assign multiple structures to a file, you’ll need to define tags to associate with your
structures so that they can be distinguished one from the other. Follow the instructions in

“Defining Tags” on page 2-6

 Define keys

Your next step is to define the keys to your data. Follow the instructions in

“Defining Keys” on page 4-10

Welcome to Repository
Getting Started

1-8 Repository User’s Guide 10.3.3 (5/16)

 Define aliases

Aliases are alternate names for structures, which can be useful when including a structure in a
source file. Follow the instructions in

“Defining Aliases” on page 2-9

 Define relations between structures

Once you’ve defined more than one structure, you can define relations between structures so
that xfODBC and ReportWriter will be able to access additional information from other related
files. Follow the instructions in

“Defining Relations between Structures” on page 4-18

 Define files and assign structures to them

To use xfODBC or ReportWriter, you’ll also need to specify which files contain your data and
assign the structures you’ve defined to those files. Follow the instructions in

“Defining Files” on page 4-3
“Assigning Structures to Files” on page 4-8

Welcome to Repository
Using the Repository Interface

Repository User’s Guide 10.3.3 (5/16) 1-9

Using the Repository Interface
When you first start Repository, the Modify menu is pulled down. (See figure 1-3.) Once you select
the area you want to work in (structures, files, etc.), additional menus will display.

At the very bottom of the screen is the footer. It contains the name of the current menu or function
(on the left), processing messages (in the center), and the name of any structure, template, or other
element that is currently selected (on the right).

Just above the footer is the information line. It contains information such as whether the “Find
Entry” function is operating in forward or reverse mode and also displays a brief field-level help
message when you are in an input window.

Getting information about the Repository version
To display information about your version of Repository, select General > About. The current
Repository version number is displayed, along with the compile date and the versions of Synergy
DBL and UI Toolkit under which Repository is running. To exit the About Repository window,
press ENTER.

Figure 1-3. The Repository main menu.

Welcome to Repository
Using the Repository Interface

1-10 Repository User’s Guide 10.3.3 (5/16)

Making a menu selection (UNIX and OpenVMS)
You can select a menu entry using the arrow keys, quick-select characters, or shortcuts. To use the
arrow keys or quick-select characters, you must first activate the menu bar by pressing the
process-menu key, CTRL+P. The menu bar is deactivated after you select a menu entry. You can also
deactivate it by pressing the process-menu key again.

 Arrow keys: Use the LEFT and RIGHT ARROW keys to move across the activated menu bar to
select a menu. When you move to a menu, it drops down, displaying the entries. Use the UP and
DOWN ARROW keys to move among the menu entries. Press ENTER to select a highlighted entry.

 Quick-select characters: A quick-select character is a single character that accesses a menu
entry. When a menu is dropped down, type the quick-select character to highlight the menu
entry and select it. If the quick-select character is not unique in the menu, it simply highlights
the entry, and you will need to press ENTER to select the highlighted entry.

 Shortcut keys: A shortcut is a key or key sequence that is associated with a menu entry, and
which enables you to execute a function directly without selecting it from a menu. (The
exception to this rule is arrow keys: arrow keys can be used as shortcuts only when the menu is
not enabled.) The shortcut keys are listed to the right of the menu entry and vary depending on
the type of terminal. Not all menu entries have shortcuts. See “Appendix E: Distributed
Shortcuts” for a list of the most common shortcuts as they are provided with your original
Repository distribution. (Note that shortcuts can be reassigned by your system administrator.)

Entering data
In this manual, we refer to both the ENTER and RETURN key as ENTER. After you have finished
typing data for a particular field, pressing ENTER causes the information to be accepted.

Repository converts most of the data you enter into uppercase letters. Descriptions or headings can
be entered in either uppercase or lowercase.

Getting field-level help
For each input field, the information line displays a brief help message telling you what data to
enter. For more detailed information, select General > Help to display a help window for the field.
To close the help window, press ENTER.

Accepting or overriding default values
In some Repository fields, the program enters a default value for you. You can override the default
by typing your own data, or you can accept the default by pressing ENTER. For optional fields, you
can override the default and leave the field blank by pressing the spacebar or the BACKSPACE key
and then pressing ENTER.

Welcome to Repository
Using the Repository Interface

Repository User’s Guide 10.3.3 (5/16) 1-11

Moving between fields
On Windows, press the TAB and SHIFT+TAB keys to move between fields in a window. You can also
use the mouse to move directly to a specific field.

On UNIX and OpenVMS, you can use the Previous Field and Next Field entries on the Input menu
to move between fields.

Skipping a field
To skip optional fields, simply press ENTER. To remove a value from an optional field and leave it
blank, press the spacebar or the BACKSPACE key and then press ENTER.

Editing a field (UNIX and OpenVMS)

Changing the cursor direction

When you begin entering text in a field, the cursor direction is set to forward. To toggle between
moving forward and backward, use the Direction option (on the Edit menu). This setting does not
actually change the direction in which the cursor moves as you type; rather, it is honored by some
of the options on the Edit menu. (Refer to the tables on the next page for details on which options
honor cursor direction.) The current direction is displayed on the right side of the information line.

Switching between insert and overstrike modes

When you begin entering text in a field, the editor is in insert mode. Any data you enter is placed at
the current cursor position, and the existing data is moved to the right as you type. To change to
overstrike mode, so that the data at the cursor is replaced with the data you type, use the
Insert/Overstrike option (on the Edit menu). The current mode is displayed on the right side of the
information line.

Editing a multi-line text field

When you start to type in a multi-line text field, the Edit menu appears on the menu bar. See the
table below for an explanation of the available options on this menu.

To edit existing text in a multi-line field, use the right arrow key to move the cursor before you
begin typing; the Edit menu will display on the menu bar, and then you can use the up and down
arrow keys to move to the line you need to edit. (When you first access a multi-line text field that
already has text in it, the entire field is selected. If you simply start typing, all existing text will be
deleted. If this happens, you can abandon changes to recover the text.)

To… From the Edit menu, select…

Move up one line Up One Line. The cursor stays in the same column position.

Move down one line Down One Line. The cursor stays in the same column position.

Move left one character Left One Character.

Welcome to Repository
Using the Repository Interface

1-12 Repository User’s Guide 10.3.3 (5/16)

Deleting the data in a field

You can erase the contents of the current field by selecting Input > Clear Field.

Move right one character Right One Character.

Move to the next word Move One Word. Cursor direction must be set to Forward.

Move to first character of
the current word

Move One Word. Cursor direction must be set to Reverse. If the
cursor is already on the first character of the word, it will move to
the first character of the previous word.

Move to the beginning of
the line

Beginning of Line. If the cursor is already positioned at the
beginning of a line, it will move to the beginning of the previous
line.

Move to the end of the line End of Line. This moves the cursor past the last character in the
current line. If the cursor is already positioned after the last
character on the line, movement depends on the cursor direction
setting.
 Forward: the cursor moves to the end of the next line.
 Reverse: the cursor moves to the end of the previous line of text.

Re-wrap text (join lines) Join Lines. This function rewraps the text from the cursor location
to the end of the paragraph.

To delete… From the Edit menu select…

The current character Delete Character.

From the cursor to the
beginning of the next word

Delete Word. Cursor direction must be set to Forward. Note that
this deletes all characters up to the beginning of the next word,
including the current character and the space before the next word.

From the cursor to the
beginning of the current
word

Delete Word. Cursor direction must be set to Reverse. All
characters to the left of the cursor in the current word are deleted.

From the cursor to the end
of the line

Delete to End of Line. The end-of-line character is not deleted.

To… From the Edit menu, select…

Welcome to Repository
Using the Repository Interface

Repository User’s Guide 10.3.3 (5/16) 1-13

Moving between tabs in a tabbed dialog
Figure 1-4 is an example of a tabbed dialog.

 On Windows, click the tab you want to display or press CTRL+TAB to cycle through the tabs.
To move back to the previous tab, press CTRL+SHIFT+TAB.

 On UNIX and OpenVMS, press TAB until the desired tab is displayed. To move back to the
previous tab, press F8.

If you haven’t completed the required fields on the primary tab in a tabbed dialog, you may not be
able to move to the other tabs.

From the cursor to the end
of the line (including the
end-of-line character)

Delete Line. Cursor direction must be set to Forward. If the next
line contains text, that text moves up to the current line.

From the cursor to the
beginning of the line

Delete Line. Cursor direction must be set to Reverse. Note that if
the cursor is positioned on the first character of a line, this deletes
the previous line of text, including the end-of-line character, and the
remaining text moves up one line.

To delete… From the Edit menu select…

Figure 1-4. Tabbed dialog in Repository.

Welcome to Repository
Using the Repository Interface

1-14 Repository User’s Guide 10.3.3 (5/16)

Abandoning changes
To reset a field to its original value, select Input > Reset Field (UNIX and OpenVMS).

To abandon changes to all fields in a window, select General > Abandon. In a tabbed dialog, this
abandons all changes to all tabs. On Windows, you can also click the Cancel button to abandon
changes for the current window or for all tabs in a tabbed dialog.

Using lists
Repository uses two types of lists: modifiable and non-modifiable.

Modifiable lists
Modifiable lists contain entries, such as fields or structures, that you can select and edit. You can
also add, delete, and sometimes move entries in the list. The Relation Definitions list in figure 1-5
is a modifiable list.

To edit an entry in a modifiable list, highlight the entry and press ENTER. On Windows, you can also
double-click an entry to edit it.

To exit a modifiable list, press the Exit shortcut or (on Windows) click the Close button.

Because Repository supports multi-user access, a list that you are viewing may change when
another users adds or deletes definitions. You can refresh the definition lists for structures, files,
templates, formats, and enumerations by pressing F5.

Figure 1-5. Modifiable list in Repository.

Welcome to Repository
Using the Repository Interface

Repository User’s Guide 10.3.3 (5/16) 1-15

Non-modifiable lists
Non-modifiable lists contain entries that you can select, but cannot change, add, or delete, such as
the Available Structures list in figure 1-6. By default, non-modifiable lists display entry names. To
display entry descriptions instead, select List > Toggle View. If you toggle the view for a format
name, the format string is displayed. Since aliases do not have descriptions, if you toggle the view
on a structure list that contains aliases, you will no longer see the aliases.

To select an entry in a non-modifiable list, highlight it and press ENTER. On Windows, you can also
double-click.

To exit a non-modifiable list without making a selection, press the Exit shortcut or (on Windows)
click the Close button.

Searching for a list entry
In both modifiable and non-modifiable lists, select Find > Find Entry to search for a list entry.
At the prompt, enter the name or partial name of the entry you wish to find, and select whether you
want to find items that start with the search text or contain the search text. (The “contains” option
will also find entries that start with the search text.) Indicate if you want to search forward (down
the list) or in reverse (up the list) and click OK to search.

If Repository finds a match, it highlights the first matching entry in the list. Select Find > Find Next
to continue the search. The search will wrap when it gets to the end of the list.

Figure 1-6. Non-modifiable list in Repository.

Welcome to Repository
Using the Repository Interface

1-16 Repository User’s Guide 10.3.3 (5/16)

Using selection windows
Like a non-modifiable list, a selection window (often referred to as a drop-down list) contains a list
of items from which you can choose.

To select an item on UNIX and OpenVMS, press any key to display the list, use the arrow keys to
highlight an item, and then press ENTER. On all systems, you can type the first letter of the item to
highlight it, and then press ENTER. On Windows, you can also select an item with the mouse.

To redisplay a selection window on UNIX and OpenVMS once you’ve made a selection, press any
non-shortcut key at the prompt. If the key you press is the first letter of one of the selection window
entries, that entry is highlighted when the selection window is displayed.

Exiting the current function
To save your changes and exit the current input window or list, select General > Exit. You are
returned to the previous window or menu. In a tabbed dialog, you can exit the window from any tab.
The next time you return to that dialog, that tab will be displayed.

On Windows, you can click the OK button to save your changes and exit the current input window.

Viewing Repository definitions
The options on the View menu enable you to view Repository definitions without modifying any
data. Although this mode is referred to as “view mode”, you can enter new data, but all changes are
ignored when you exit the window.

You can view the following definitions in view mode: structures, files, templates, formats,
enumerations, fields, keys, relations, tags. You can also view long descriptions, assigned structures,
and so forth. When you’re in view mode, the footer displays “View…” rather than “Modify…”.

1. In the View menu, select the type of definition you want to view. You’ll see a reminder that you are
in view mode and that changes will not be saved. Select OK.

2. In the Definitions list, highlight the definition you want to view and press ENTER. The definition is
displayed for viewing.

To quit viewing the definition and return to the current Definitions list, press the Exit shortcut.

Welcome to Repository
Using the Repository Interface

Repository User’s Guide 10.3.3 (5/16) 1-17

Customizing the display
Prompts, help messages, shortcuts, menu column headings, and menu entry text reside in the
window library file rpsctl.ism. You can modify the contents of this file to change shortcuts or
translate prompts and help messages to another language.

Do not modify the following items:

 .INPUT, .WINDOW, and .SELECT commands

 Entry names in .ENTRY and .ITEM commands

 Field names or the select qualifier entry list in .FIELD commands

We also recommend that you not modify TAB and arrow key shortcuts, as these keys are explicitly
referenced throughout the Repository documentation.

The window library file is located in the directory pointed to by the RPS environment variable
(i.e., the main Repository directory). If RPS is not defined, Repository attempts to open the file in
the current directory.

To modify the Repository window library file,

1. Make a backup copy of rpsctl.wsc and rpsctl.ism (and rpsctl.is1 on Windows and UNIX) before
you make any changes.

2. Move to the RPS directory and open the window script file rpsctl.wsc. (The window library file is
created from this script file.)

3. Modify the rpsctl.wsc file as desired.

4. Run the Toolkit script compiler (Script) to create the window library file, rpsctl.ism. See
“Compiling Scripts” in the “Script” chapter of the UI Toolkit Reference Manual for a more
information.

Exiting Repository
There are a couple of ways to exit Repository:

 Press the Exit shortcut to back out of each function until you get to the Repository main menu.
Then, press the Exit shortcut again or select General > Quit.

 Select General > Quit to exit Repository immediately—regardless of what function you’re
currently in.

Welcome to Repository
Understanding Repository Files

1-18 Repository User’s Guide 10.3.3 (5/16)

Understanding Repository Files
A repository consists of two ISAM files: a repository main file and a repository text file. The
standard names for these files are rpsmain.ism and rpstext.ism. You can name them anything you
like, but see the tip below. An empty repository (using the standard filenames) is included in your
distribution. You can create additional repositories using the Create New Repository utility. (See
“Creating a New Repository” on page 5-22.)

Determining the repository files used
You can specify the location of your repository files using the RPSMFIL and RPSTFIL
environment variables or, if you are using the standard filenames (rpsmain.ism and rpstext.ism),
you can specify the directory in which the files are located with RPSDAT. By default, RPSDAT is
set to point to the rps\rpsdat directory below the Synergy/DE installation directory.

Repository searches for the repository files to use as follows:

 If the RPSMFIL environment variable is defined, the main repository filename is the value of
RPSMFIL. Likewise, if the RPSTFIL environment variable is defined, the text repository
filename is the value of RPSTFIL.

 If RPSMFIL or RPSTFIL is not defined, Repository attempts to open the files as
RPSDAT:rpsmain.ism or RPSDAT:rpstext.ism, respectively.

 If Repository can’t open RPSDAT:rpsmain.ism or RPSDAT:rpstext.ism, it attempts to open
rpsmain.ism or rpstext.ism in the current directory.

You can temporarily change the repository files being used while Repository is running. This does
not reset RPSMFIL or RPSTFIL; the files defined by those environment variables will be used the
next time you start Repository. See “Setting the Current Repository” on page 5-23.

For more information, see the environment variables RPSMFIL, RPSTFIL, and RPSDAT in the
“Environment Variables” chapter of Environment Variables & System Options.

TIP
Although you can name the repository main and text files anything you like, we recommend
that you include “main” and “text” in the filenames. Not only does this help to identify the
files as repository files, it also enables you to take advantage of the filename defaulting that
occurs in all main and text file fields in Repository dialogs: After you enter or select the
name of a repository main file and exit the field, Repository enters a default repository text
filename by copying the main filename and changing the last occurrence of the characters
“main” to “text”.

Welcome to Repository
Understanding Repository Files

Repository User’s Guide 10.3.3 (5/16) 1-19

Temporary work files
When repository files are opened, various temporary work files (named RPS_SEQ*) are created.
By default, they are created in the current directory on OpenVMS and in the location specified by
the TEMP environment variable on Windows and UNIX. If TEMP is not set, the default directory is
the current directory. You can specify a location for these files with the RPSTMP environment
variable. See RPSTMP in the “Environment Variables” chapter of Environment Variables & System
Options.

Record locking
Repository supports multi-user access, with locking occurring at the record level. When one user
begins modifying a record, no other user can write to it. This could affect a definition, such as a
structure or template, or an internal reference record that maintains information about relationships
between definitions. The lock is removed as soon as the user that has the record locked saves or
abandons changes.

In most cases, it will be clear why you are getting a “record locked” error, such as when you try to
delete a definition that is in use by another user. If you attempt to modify a structure, file, template,
format, or enumeration that is in use, you’ll see a “record locked” message and be given the option
to view the definition instead.

But there may be cases where it is not so clear why a record is locked. Following are a couple of
examples of these less obvious locking situations:

 If you are editing a template definition, and another user is editing a structure that includes a
field that references that template, a “record locked” message will display when you attempt to
save your template changes.

 If you are editing a file definition, and a structure assigned to that definition is locked by
another user, a “record locked” message will display when you attempt to save your file
changes.

Any time you encounter a “record locked” message, you’ll have to wait until the other user is done
before you can complete your task. If you are attempting to save changes, and you don’t want to
wait, you have the option of canceling the operation by selecting the Cancel button after exiting the
“record locked” message dialog.

Because other users may be adding or deleting records while you are working in the repository,
definition lists could change. You can refresh the definition lists for structures, files, templates,
formats, and enumerations by pressing F5 or selecting List > Refresh.

Welcome to Repository
Understanding Repository Files

1-20 Repository User’s Guide 10.3.3 (5/16)

Moving Repository files
Once you set up all of your repository definitions, you can copy the repository files to other
systems. This enables you to do all of your development on one system and then move your
repository to other systems as necessary.

To move your repository files to another system, do either of the following:

 Copy the repository main and text files following the general guidelines for moving data files
between operating systems in “Moving Database Files to Other Systems” in the “Synergy
DBMS” chapter of Synergy Tools.

 Use the Generate Repository Schema utility and the Load Repository Schema utility. First, use
the Generate Repository Schema utility to generate a Synergy Data Language description
(schema) of your repository to a file. Then, copy this file to another system and run the Load
Repository Schema utility to convert the contents of the Synergy Data Language file into a new
repository. This method works between any two systems, regardless of operating system,
because the file generated by the Generate Repository Schema utility is a text file. See
“Generating a Repository Schema” on page 5-13 and “Loading a Repository Schema” on
page 5-19.

Moving repository cross-reference files
If you are using a cross-reference file (see “Generating a Cross-Reference File” on page 5-24),
when you move the repository you must also move the cross-reference file. To move this file,
follow the general guidelines for moving data files between operating systems in “Moving
Database Files to Other Systems” in the “Synergy DBMS” chapter of Synergy Tools.

Welcome to Repository
Converting Repositories to Another Language

Repository User’s Guide 10.3.3 (5/16) 1-21

Converting Repositories to Another Language
You can unload text from your repository so that it can be translated to another language. The
manner in which the repository is divided into two files (main and text) simplifies customization for
other languages: while the repository main file contains all non-textual information, the repository
text file contains all text strings.

1. Once your repository is complete, copy the repository main and text files to another directory and
then move to that directory.

2. Use the UNLOAD option in the isload utility to unload all text strings from the repository text file
into a sequential file. For instructions on using this utility, see isload in the “Synergy DBMS”
chapter of Synergy Tools.

3. Modify the text strings as desired.

4. Use the CLEAR option in isload to clear the repository text file.

5. Use the LOAD option in isload to reload the repository text file from your modified sequential file.

6. If you are using the standard filenames (rpsmain.ism and rpstext.ism), set RPSDAT to the current
directory. Otherwise, set the RPSMFIL environment variable to the name of the repository main
file, and set RPSTFIL to the name of the repository text file.

7. Run Repository and check all text entries (definition descriptions, user text strings, field headings,
and script-related text strings).

Each record must remain 511 characters long, and you should never modify information in
the first 41 bytes of the record.

Do not try to use a repository main file with more than one repository text file.

2-1

2
2 Working with Structures

Structures Overview 2-2

What a structure is, how to display the Structure Definitions list, and how to assign a long
description or a user-defined text string to a structure.

Defining a New Structure 2-3

How to define a new structure.

Defining Tags 2-6

How to define, modify, move, and delete tags.

Defining Aliases 2-9

How to define and delete aliases for a structure.

Modifying a Structure 2-10

How to make changes to a structure.

Deleting a Structure 2-11

How to delete a structure.

Working with Structures
Structures Overview

2-2 Repository User’s Guide 10.3.3 (5/16)

Structures Overview
A structure is a record definition or compilation of field and key characteristics for a particular file
or files. Each structure must have a unique name. The maximum number of structures that can be
defined in a repository is 9,999.

To display the Structure Definitions list, which lists the structures currently defined in your
repository, select Modify > Structures. For each structure, the following information is displayed:

STRUCTURE. The unique structure name.

DESCRIPTION. A descriptive identifier for the structure.

TYPE. The file type:

DBL DBL ISAM

ASC ASCII

REL relative

USE user defined

The total number of structures in your repository is displayed at the bottom of the list. (See
figure 2-1.)

Figure 2-1. The Structure Definitions list.

Working with Structures
Defining a New Structure

Repository User’s Guide 10.3.3 (5/16) 2-3

Defining a New Structure
You can define a new structure from scratch or by copying and modifying an existing structure.

1. From the Structure Definitions list,

 To define a structure from scratch, select Structure Functions > Add Structure.

 To define a structure by copying, highlight the structure you want to copy, and then select
Structure Functions > Copy Structure.

The Structure Definition input window is displayed. (See figure 2-2.)

2. Enter or modify data in each field as instructed below.

Structure name. Enter a unique structure name. The structure name can have a maximum of 30
characters and must begin with a letter. The remaining characters can be letters, digits, underscores
(_), or dollar signs ($).

File type. Select the file type to which you want to be able to assign this structure. The structure
can be assigned only to files of this type. The available types are

ASCII
DBL ISAM
RELATIVE
USER DEFINED

Description. Enter a description for the structure, with a maximum of 40 characters. This
description is available when Repository displays a list of structures. If you are using ReportWriter,
enter a unique description, so that ReportWriter can use it, along with the file description, to
identify your files.

Tag type. Tags are associated with structures and used when multiple structures are assigned to one
file. The tag uniquely identifies one structure (or record type) from another. Tags are also used by
xfODBC and ReportWriter to filter records. Select the tag type:

None The structure is not tagged. (default)

Field The structure is to be identified by specific field comparison criteria. These criteria
are defined when you define the structure’s attributes.

Figure 2-2. Defining a structure.

Working with Structures
Defining a New Structure

2-4 Repository User’s Guide 10.3.3 (5/16)

Size The structure is to be identified by its record size. (This is useful only for
variable-length record files.)

See “Defining Tags” on page 2-6 for information on defining Field type tags.

3. You’ll probably want to define the attributes for your new structure before you exit the Add
Structure function. You can define fields, keys, relationships between structures, redisplay formats
used by the fields in the current structure, tags, and aliases. Refer to these sections for more
information:

“Working with Fields” on page 3-1
“Defining Keys” on page 4-10
“Defining Relations between Structures” on page 4-18
“Defining Field Formats” on page 3-32
“Defining Tags” on page 2-6
“Defining Aliases” on page 2-9

If your structure has a file type of relative, Repository has already created one key for you. This key
defines the relative record number as the access method. See “Defining Keys” on page 4-10 for
more information about relative file keys.

4. Exit the window to save the new structure.

If you’ve selected any of the attribute functions from the menu, you are prompted

Structure has been modified. Do you want to save changes?

Select Yes to save your new structure definition and all its attributes in the repository. If you select
No, the new structure is not saved.

Assigning a long description to a structure
You can assign an 1,800-character description to a structure. This enables you to store more
detailed information about the structure and its use.

1. In the Structure Definitions list, highlight the structure to which you want to assign a long
description.

2. Select Structure Functions > Edit Long Description.

3. Enter a long description.

4. Exit the window to save your changes.

Working with Structures
Defining a New Structure

Repository User’s Guide 10.3.3 (5/16) 2-5

Assigning a user-defined text string to a structure
You can associate a 60-character user-defined text string with a structure to store additional
information you want to access at run time with the Repository subroutine library.

1. In the Structure Definitions list, highlight the structure to which you want to assign a user-defined
text string.

2. Select Structure Functions > Edit User Text.

3. Enter a user text string.

4. Exit the window to save your changes.

Working with Structures
Defining Tags

2-6 Repository User’s Guide 10.3.3 (5/16)

Defining Tags
A tag is associated with a structure and uniquely distinguishes one structure (or record type) in a
file from another. You will want to use structure tags when you’ve assigned multiple structures to
one file or when multiple record types are stored in one file. (For information on assigning a
structure to a file see “Assigning Structures to Files” on page 4-8.) A structure tag can be either the
record size or a particular field in the structure and its associated comparison values.

xfODBC and ReportWriter use structure tag information to filter records when I/O is performed to
a file. When processing a structure that contains tag information, xfODBC and ReportWriter test
each record in the file against the tag criteria as it is read.

Creating a record size tag
You can use record size tags when the records in your file are different sizes (i.e., they can be
distinguished one from the other based solely on size).

1. From the Structure Definitions list, highlight the structure for which you want to create a tag and
press ENTER. The structure’s definition is displayed.

2. In the Structure Definition dialog, select Size in the Tag type field.

3. Exit the window to save your changes.

Creating a field type tag
Field type tags enable you to use a field to distinguish records.

1. In the Structure Definitions list, highlight the structure for which you want to create a tag.

2. Select Structure Functions > Edit Attributes.

3. Select Attributes > Tags. The Tag Definitions list (see figure 2-3) displays the following
information for each tag criterion:

NAME. The unique tag name.

FIELD. The name of the field used in the comparison criterion, optionally preceded by a connector
to the previous criterion.

VALUE. The comparison operator and value used in the comparison criterion.

The total number of tag definitions (comparison criteria) for this structure is displayed at the
bottom of the list.

Working with Structures
Defining Tags

Repository User’s Guide 10.3.3 (5/16) 2-7

4. Define a new tag from scratch or by copying and modifying an existing one. If tag definitions
already exist, new tags are inserted below the highlighted entry.

 To define a tag from scratch, select Tag Functions > Add Tag.

 To define a tag by copying, highlight the tag you want to copy and select Tag Functions >
Copy Tag.

The Tag Definition input window is displayed. (See figure 2-4.)

5. Enter data in each field as instructed below.

Tag name. The tag name is the way the tag is identified. A tag must have a unique, numeric name
within the current structure. A default tag name is displayed; you can change it if desired.

Connect. If this is not the first tag criterion and you want this structure tag to be a range of values
(for example, > = 10 and < = 15), select AND or OR to join two comparison values.

Field name. Enter a field name from the current structure. To display a list of available field names,
select Edit Tag Functions > List Selections.

Figure 2-3. The Tag Definitions list.

Figure 2-4. Defining a structure tag.

Working with Structures
Defining Tags

2-8 Repository User’s Guide 10.3.3 (5/16)

Compare. Select one of the comparison operators from the displayed list:

EQ Equal to

NE Not equal to

LE Less than or equal to

LT Less than

GE Greater than or equal to

GT Greater than

Value. Enter a specific value with which to compare the contents of the field.

6. Exit the window to save your new tag definition. The tag type of the structure is set to Field when
you save your changes.

Modifying a tag
1. From the Tag Definitions list, highlight the tag you want to modify and press ENTER. The Tag

Definition input window displays the selected tag definition.

2. Modify data as necessary. You can modify all fields except Tag name. If you need assistance with
particular fields, see step 5 on page 2-7.

3. Exit the window to save your changes.

Reordering tags in the Tag Definitions list
1. Highlight the tag you want to move.

2. Select Tag Functions > Reorder Tags. The highlighted tag is enclosed in square brackets ([]).

3. Use the UP and DOWN ARROW keys to move the bracketed tag to another location in the list.

4. Select Reorder Tags again to exit move mode. The tag is inserted at the new location.

Deleting a tag
1. Highlight the tag in the Tag Definitions list.

2. Select Tag Functions > Delete Tag.

3. At the prompt, select Yes to delete the tag or No to cancel the deletion. The structure tag type will
be set to None when you save your changes.

Although you can define up to 10 tag criteria, ReportWriter supports only 2 criteria that test
the same field.

Working with Structures
Defining Aliases

Repository User’s Guide 10.3.3 (5/16) 2-9

Defining Aliases
An alias is simply an alternate name for a structure. A single structure can have more than one alias.
The alias can be used instead of the structure name when including a structure in a source file or
when referencing a structure for a field that is a struct data type. All structure names, whether real
or alias, must be unique. (Consequently, when you copy a structure, its aliases are not copied.)

For example, aliases are useful when you are converting an application that uses short, cryptic
identifier names to use the Repository. To use longer, more meaningful names in the repository, you
can create aliases to simplify updating your Synergy code. Aliases can also be useful when you
want to define structfields, but still need that repository structure to be included as a record in your
Synergy code. You can create an alias and reference that in your structfield definition.

When you include a structure from the repository in your Synergy code, the compiler first searches
for a structure that has the name specified in the .INCLUDE statement. If it can’t find one, it
searches for an alias with the same name.

To display the Alias Definitions list:

1. Highlight the structure in the Structure Definitions list.

2. Select Structure Functions > Edit Attributes.

3. Select Attributes > Aliases to display the Alias Definitions list.

Defining an alias
1. From the Alias Definitions list, select Alias Functions > Add Alias.

2. Enter a name for the alias. The name must be unique among all structure and alias names in the
repository. The alias name can have a maximum of 30 characters and must begin with a letter. The
remaining characters can be letters, digits, underscores (_), or dollar signs ($).

3. Exit the Alias Definition window to save the alias and return to the Alias Definitions list. Aliases
are added alphabetically to the list.

Deleting an alias
You cannot delete an alias if it is referenced by a structfield.

1. Highlight the alias in the Alias Definitions list.

2. Select Alias Functions > Delete Alias.

3. At the prompt, select Yes to delete the alias or No to cancel the deletion.

You can also define an alias for a field, but you must use Synergy Data Language to do so.
See “ALIAS” on page 6-9.

Working with Structures
Modifying a Structure

2-10 Repository User’s Guide 10.3.3 (5/16)

Modifying a Structure
Generally speaking you can modify all fields for a structure except the structure name. See below
for other restrictions that may apply depending on how the structure relates to other components in
your repository, such as files and keys.

1. Highlight the structure in the Structure Definitions list and press ENTER.

2. Modify data in the fields as necessary. See step 2 on page 2-3 for detailed information on the fields.

If the structure has already been assigned to a file, you can’t modify the file type because a
structure’s file type must always match the file type of all files to which it is assigned. If you
attempt to modify the file type, an error message is displayed when you attempt to exit the window.
You must disassociate the structure from all files before you can modify the file type. (See
“Disassociating a structure from a file” on page 4-9.)

Even if the structure is not assigned to a file, other restrictions may apply. You cannot change a file
type to RELATIVE if access keys already exist for the structure, because relative structures can
have only one access key (the record number). If the original file type is relative and the record
number key has not been deleted, the only file type to which you can change is USER DEFINED.
The reverse situation is also true: if the user-defined file type was originally relative and you
haven’t deleted the record number key, the only file type to which you can change is RELATIVE.

3. If you want to modify the attributes for the current structure, select Structure Functions > Edit
Attributes. You can also edit a structure’s attributes from the Structure Definitions list by
highlighting that structure and pressing the “Edit Attributes” shortcut.

4. Exit the window to save your changes and return to the Structure Definitions list.

Working with Structures
Deleting a Structure

Repository User’s Guide 10.3.3 (5/16) 2-11

Deleting a Structure
A structure can be deleted only when all of the following conditions are true:

 The structure is not assigned to a file.

 The structure is not referenced within an implicit group definition or as a structfield.

 The structure is not referenced by its alias as a structfield

 None of the structure’s keys are being used in a relation defined by another structure.

 None of the structure’s fields are being used in a key defined by another structure.

When you delete a structure, the structure and all of its field, key, relation, format, alias, and tag
definitions are deleted.

1. Highlight the structure in the Structure Definitions list.

2. Select Structure Functions > Delete Structure.

3. At the prompt, select Yes to delete the structure or No to cancel the deletion.

3-1

3
3 Working with Fields

Fields Overview 3-2

Describes what a field is and how to display the Field Definitions list and reorder fields on it.

Defining a New Field 3-4

How to define a all information for a new field: basic, display, input, validation, and method. Also
describes how to assign a long description to a field.

Loading Fields from a Definition File 3-30

How to load field definitions from an existing definition file into an empty structure.

Defining Field Formats 3-32

How to define, modify, and delete a format for a field.

Defining Field Templates 3-36

How to define, modify, and delete a template for a field.

Defining Enumerations 3-44

How to define an enumeration and its members, and to modify and delete an enumeration.

Modifying a Field 3-47

How to make changes to fields and group members.

Deleting a Field 3-50

How to delete a field.

Working with Fields
Fields Overview

3-2 Repository User’s Guide 10.3.3 (5/16)

Fields Overview
Field definitions are associated with each structure. The order in which you specify the fields
determines the order in which they will exist within the structure. (You can reorder fields if
necessary; see “Reordering fields in the Field Definitions list” on page 3-3.) The maximum number
of fields that can be defined in one structure is 999.

Before defining a field, you may want to first define field templates and formats. A template is a set
of field characteristics that can be assigned to one or more field definitions; it can also be assigned
to other template definitions. A field format defines the way the field displays when used in UI
Toolkit and ReportWriter.

To define an enumerated field, first create the enumeration definition (see “Defining Enumerations”
on page 3-44), and then, select Enum as the field type and select the enumeration by name when
you define the field.

The Field Definitions list
To display the Field Definitions list,

1. Highlight the structure in the Structure Definitions list. (You can also define fields while you’re
defining a new structure by select the Attributes button in the Structure Definition dialog.)

2. Select Structure Functions > Edit Attributes.

3. Select Attributes > Fields to display the Field Definitions list. (See figure 3-1.)

The following information is listed for each field:

FIELD NAME. The unique field name.

TYPE. The data type: A (alpha), AS (autoseq), AT (autotime), BL (Boolean), BN (binary),
D (decimal), DT (date), E (enumeration), I (integer), S (structure), TM (time), U (user).

SIZE. The data size.

PREC. The precision value. (The number of characters to the right of the decimal point in an
implied-decimal field.) This column does not contain a value if the number of characters is zero.

DIMENSION. The number of dimensions in the array, if the field is an array. Arrays can have up to
four dimensions. Entries in this column are displayed in the form [n,n,n,n] where n represents the
number of elements for that dimension.

OVERLAY. Displays “Y” if the field defines an overlay.

GROUP. Displays “Y” if the field defines a group.

You can also load fields from a definition file into an empty structure. Once loaded, you can
make changes to the fields or add fields manually. See “Loading Fields from a Definition
File” on page 3-30 for more information.

Working with Fields
Fields Overview

Repository User’s Guide 10.3.3 (5/16) 3-3

The total number of fields in the structure and the structure (record) size are displayed at the bottom
of the list. (Arrays and overlay field definitions each count as one field.) If the structure contains
any group fields, both the number of fields at the structure level and the total number of fields in the
structure are displayed.

Reordering fields in the Field Definitions list
1. Highlight the field you want to move in the Field Definitions list.

2. Select Field Functions > Reorder Fields.

The highlighted field is now enclosed in square brackets ([]).

3. Use the UP and DOWN ARROW keys to move the bracketed field to another location in the list. (You
are not allowed to reorder the fields in a way that makes an overlay specification become invalid.)

4. Select Reorder Fields again to exit move mode. The field is inserted at the new location.

Figure 3-1. The Field Definitions list.

Working with Fields
Defining a New Field

3-4 Repository User’s Guide 10.3.3 (5/16)

Defining a New Field
You can define a new field from scratch or by copying and modifying an existing field. If field
definitions already exist, new definitions are inserted below the highlighted entry.

This is a different place

From the Field Definitions list,

 To define a field from scratch, select Field Functions > Add Field or Add Group (if you want to
add a group field).

 To define a field by copying, highlight the field you want to copy, and then select Field
Functions > Copy Field.

The Field Definition window displays with tabs on which you can define field information.

 Field Definition tab, for defining basic field information; see “Basic field information” on
page 3-4.

 Display tab, for defining how you want the field to display in a Toolkit input window or
ReportWriter report; see “Display information” on page 3-12.

 Input tab, for defining how field input is handled in a Toolkit input window; see “Input
information” on page 3-18.

 Validation tab, for defining how field input is validated in a Toolkit input window; see
“Validation information” on page 3-22.

 Method tab, for associating methods (that are called by Toolkit) with fields; see “Method
information” on page 3-26.

 Long Desc tab, for assigning a long description to a field; see “Assigning a long description to
a field” on page 3-29.

Basic field information
1. Enter or modify data in each field as instructed below.

Field name. Enter a field name. The field name is used to identity the field in your definition file
and program, and it is one of the ways the field is identified in ReportWriter. The field name must
be unique within the current structure or group. (See Group on page 3-9 for more information.) The
field name can have a maximum of 30 characters and must begin with a letter. The remaining
characters can be letters, digits, underscores (_), or dollar signs ($). See also Alt name on
page 3-15.

Template name. If desired, enter the name of a template to use to create the specified field. Up to
6,000 fields can use the same template. To display a list of available templates, select Edit Field
Functions > List Selections.

Working with Fields
Defining a New Field

Repository User’s Guide 10.3.3 (5/16) 3-5

All attributes of the template are copied to the current field, including display, input, validation, and
method information. You can override any of the template attributes simply by specifying new
values. If the template is later modified, only the attributes that have not been overridden are copied
to the field. The check boxes at the bottom of the window indicate the template attributes that have
been overridden. If an attribute is checked, the value for that attribute has overridden the value that
came from the template.

Repository sets the template override flags when you leave the Field Definition tab, but you can
also set them manually. You might want to do this when an attribute matches the template and you
don’t want it to be changed later if the template changes. By default, these fields are read-only. To
modify them, select Edit Field Functions > Access Template Overrides. This menu entry is a
toggle: select it a second time and the override fields revert to read-only. The Access Template
Overrides setting remains in effect for all field and template definitions until you change it.

Description. Enter a description for the field, which a maximum of 40 characters. We recommend
that you make the description unique because it can be used to identify fields in ReportWriter and
Repository. The description also appears as the comment for the field when a definition file is
generated by the Generate Definition File utility. In addition, if the structure that this field belongs
to is included in an xfNetLink Java JAR file or xfNetLink .NET assembly, this description is
included in the generated source code as a comment for the property or field.

Figure 3-2. Defining basic field information.

Working with Fields
Defining a New Field

3-6 Repository User’s Guide 10.3.3 (5/16)

Type. Select the type of data the field will contain:

Alpha
Decimal
Integer
Date
Time
User
Binary
Boolean
Enum
Struct
AutoSeq
AutoTime

If you select Date, Time, or User, the cursor moves to the Class field. If you select Enum, the
cursor moves to the Enumeration field (see Enumeration on page 3-7). If you select Struct, the
cursor moves to the Structure field (see Structure on page 3-7).

Class. If you selected Date or Time in the Type field, specify the storage format in the Class field:

 Date fields

YYMMDD two-digit year, month, day

YYYYMMDD four-digit year, month, day

YYJJJ two-digit year, Julian day

YYYYJJJ four-digit year, Julian day

YYPP two-digit year, period

YYYYPP four-digit year, period

 Time fields

HHMM hour, minute

HHMMSS hour, minute, second

In Synergy DBL, the Binary data type is treated as an alpha.

In xfNetLink Java (when genjava is run with the -c 1.5 option) and xfNetLink .NET. a Binary
data type field in a structure is converted to a byte array on the client, and can be used, for
example, to store an RFA. For xfNetLink Synergy clients, a Binary data type field is
converted to a string.

In xfODBC, a Binary data type field is described as a binary field (SQL_BINARY). This is
also true of a User type field with a class of binary (see Class below), but in this case you
can use the routines for user-defined data types in xfODBC to manipulate the data read
from the ISAM file and return it as a binary field to the ODBC-enabled application.

Working with Fields
Defining a New Field

Repository User’s Guide 10.3.3 (5/16) 3-7

If you selected User in the Type field, specify the user subtype in the Class field. User subtypes are
used by the xfODBC user-defined processing routines and are available in the gs_inpfld structure
within UI Toolkit’s user-defined processing routines. Subtypes also affect data type mapping for
xfNetLink Java and xfNetLink .NET; see “Appendix B: Data Type Mapping” in the xfNetLink &
xfServerPlus User’s Guide for details. The available subtypes are

Alpha
Numeric
Date
Binary

Additional date storage formats are supported by xfODBC. See “Appendix B: Date and Time
Formats” in this manual for more information. See the note above for information on the binary
subtype.

User data. If you selected User in the Type field, specify a string of up to 30 characters to identify
your user-defined data type.

In a UI Toolkit input window, a user type field flags the runtime input processor to call the
ECHKFLD_METHOD, EDSPFLD_METHOD, and EEDTDSP_METHOD subroutines for
additional processing. The user data string is passed to these subroutines to be used as a control
code. The user subtype (class) is available in the gs_inpfld structure.

User type fields also flag ReportWriter to call a user-overloadable subroutine (for example,
RPS_DATA_METHOD, which formats the data for display). See the “Customizing ReportWriter
Routines” chapter of the ReportWriter User’s Guide for more information about the
user-overloadable subroutines called by ReportWriter.

User type fields also flag xfODBC to call user-overloadable subroutines to process the data for
those fields. The user data string is passed to these routines. See the “Creating Routines for
User-Defined Data Types” chapter of the xfODBC User’s Guide for more information.

To save your user data string, press ENTER.

Enumeration. If you selected Enum in the Type field, enter the enumeration name or select Edit
Field Functions > List Selections and choose it from the list.

Structure. If you selected Struct in the Type field, enter the structure (or alias) name or select Edit
Field Functions > List Selections and choose it from the list. If you use the list, note that aliases are
listed at the bottom, after the real structure names. See the note under Group on page 3-9 for an
explanation of the difference between referencing a structure as a Struct data type vs. as an implicit
group.

The Enum data type is not supported by UI Toolkit. To use an enumerated data field with an
allow list or selection list or window, use the Enumerated field as described in Enumerated
on page 3-25.

Working with Fields
Defining a New Field

3-8 Repository User’s Guide 10.3.3 (5/16)

Coerced type. If the structure that this field belongs to is included in anxfNetLink Java JAR file or
an xfNetLink .NET assembly, you can optionally specify a non-default data type for the field to be
coerced to on the client side. Type coercion is available when Type is one of the following:
Decimal, Integer, Date, Time, User. Note the following:

 For Decimal (with or without precision) and Integer types, select Default to use the default
xfNetLink type mapping.

 Date types can be coerced when the format is one of the following: YYMMDD,
YYYYMMDD, YYJJJ, YYYYJJJ.

 User types can be coerced only when the user subtype (i.e., the Class field) is Date and the
User data field contains ^CLASS^=YYYYMMDDHHMISS or
^CLASS^=YYYYMMDDHHMISSUUUUUU (case sensitive).

 For Date, Time, and User types, the default coerced type is DateTime.

See “Appendix B: Data Type Mapping” in the xfNetLink & xfServerPlus User’s Guide for more
information on data type mapping and coercion in xfNetLink.

Size. Enter the maximum number of characters the field can contain. Note the following:

 The maximum size of an alpha, binary, or user field is 99,999.

 The maximum size of an implied-decimal field is 28.

 Valid sizes for integer fields are 1, 2, 4, and 8.

 If the data type is date or time, the size is automatically set when you select a storage format
and cannot be modified.

 If the data type is Boolean or Enum, the size is automatically set to 4 and cannot be modified.

 If the data type is Struct, the size is automatically set when you select the structure name.

 If the data type is AutoSeq or AutoTime, the size is automatically set to 8 and cannot be
modified.

 The size of a group field is optional.

Precision. If the field is implied-decimal, enter the number of characters to the right of the decimal
point. This value must be between 1 and 28, inclusive, and must be less than or equal to the size of
the field.

Dim1–4. If the field is an array, enter the number of elements in each dimension. The maximum
number of dimensions is 4. The maximum number of elements per dimension is 999.

Overlay field. If the field is an overlay to another field or fields, enter the name of the overlaid
field at which the overlay begins or select Edit Field Functions > List Selections and choose it from
the list. The overlaid field must be a field that precedes the current field. For example, the year,
month, and day might be overlays for a date field.

Offset. If you want the overlay to begin at an offset position, enter the number that should be added
to the starting position of the field being overlaid (as specified by Overlay field above). The default
offset is 0.

Working with Fields
Defining a New Field

Repository User’s Guide 10.3.3 (5/16) 3-9

For example, if you wanted to overlay the DATE field, you would enter “DATE” in the Overlay
field, and your overlay offset might be 0 for the year, 4 for the month, and 6 for the day. This would
make the year start at position 1 (0 added to a starting position of 1 equals 1), the month start at
position 5, and the day start at position 7.

Group. Select this field to indicate the field is a group. Group is set by default if you selected Add
Group when on the Field Definitions list.

There are two types of groups: explicit and implicit. An explicit group is one whose members are
defined explicitly within the Field Definitions list. An implicit group is one whose members are
defined implicitly by referencing another structure. The members of that structure define the
members of the group. To define an implicit group, see the Structure name field below.

After setting the Group field, select Edit Field Functions > Edit Group Members to define explicit
group members. (On Windows, you can also click the drilldown button.) This displays another
Field Definitions list in which you can define the group members. See “Modifying group members”
on page 3-48 for more information about defining and modifying groups and for the rules regarding
groups.

If Size is not specified for a group field, its size is determined by the size of its members.

Overlay. If the field is a Group, select this field if you want the group to overlay the last non-overlay
field or group.

You can reference a structure as a field either as an implicit group or as a Struct data type.
In both cases, you are required to enter the structure name and the field is maintained as a
reference to that structure. Any modifications made to a referenced structure affect all fields
that reference it.

The difference between the two is that a structure referenced as an implicit group is
represented as a group in your Synergy code and in definition files; it uses the group
keyword and you will see the group members (fields) listed. In contrast, a structure
referenced as a Struct data type is represented as a structfield in code and definition files.
That is, the data type of the field is the name of the referenced structure and you do not see
the members listed. (See “Structure” in the “Defining Data” chapter of the Synergy DBL
Language Reference Manual for more information on structfields.)

You can specify a structure by its alias when referencing a structure as a structfield, but not
when referencing it as an implicit group.

In Toolkit, xfODBC, and xfNetLink, a Struct data type is treated the same as an implicit
group.

Working with Fields
Defining a New Field

3-10 Repository User’s Guide 10.3.3 (5/16)

Structure name. To specify an implicit group (see the Group field above), enter the structure name
in this field or select Edit Field Functions > List Selections and choose it from the list.

Once you have entered a structure name in this field, you can select Edit Field Functions > Edit
Group Members to view the members of the group. (On Windows, you can also click on the
drilldown button to the left of the Structure name field.) Implicit groups are maintained as a
reference to a structure; therefore, the list of members is read-only. The members are not copied
into the group definition. See also the note above.

If explicit group members exist, the Structure name field is disabled. To change a group from
explicit to implicit, you must first delete all explicit group members.

Member prefix. If Group is set, you can specify an optional prefix to be added to group member
names when they are accessed by Toolkit and xfODBC. The member prefix name must begin with
a letter. The remaining characters can be letters, digits, underscores (_), or dollar signs ($).

In Repository and Synergy DBL, field (and group) names have to be unique only within their
parent. In DBL, path specifications can be used to uniquely reference group members. UI Toolkit
and xfODBC, however, do not have a way to uniquely identify group members. The Member prefix
field enables you to construct unique field names for Toolkit and xfODBC access. (Repository does
no validation to ensure that the specified prefix is sufficient for unique field access.)

Use by compiler. Set this option to indicate that the Member prefix specified will be added to all
group member fields when referenced by the Synergy compiler. This optional behavior enables you
to use consistent names throughout your Synergy and UI Toolkit programs.

Excluded by Language. This value determines whether a field is available to the Synergy
compiler. Select this option if you do not want the field to be available to the compiler. Excluded by
Language is cleared by default, which means the field will be included when using the .INCLUDE
compiler directive to reference the structure to which this field belongs, and will be included in any
definition files generated by the Generate Definition File utility. This feature is useful when your
repository contains overlay fields defined solely for the purpose of referencing group elements
from within ReportWriter.

Excluded by Toolkit. This value determines whether a field is available to UI Toolkit. Select this
option if you do not want to be able to reference the field from Toolkit. Excluded by Toolkit is
cleared by default, which means the field can be referenced by the Script compiler, Composer, and
the IB_FIELD subroutine.

Excluded by ReportWriter. This value determines whether a field is available in ReportWriter as a
selectable field. Select this option if you do not want this field to be selectable in ReportWriter.
Excluded by ReportWriter is cleared by default, which means the field can be selected for inclusion
in a report. This flag can also be honored when generating a system catalog in xfODBC; see
“Setting catalog generation options” in the “Preliminary Steps” chapter of the xfODBC User’s
Guide for details on including and omitting fields.

Excluded by Web. This value determines how the field is treated by xfNetLink. The Excluded by
Web flag should be used only to control how fields in an overlay are handled. If this field is not part
of a structure that contains overlays, do not select this option. Select Excluded by Web if you do not

Working with Fields
Defining a New Field

Repository User’s Guide 10.3.3 (5/16) 3-11

want this template field to be included in a Synergy JAR file or assembly. Excluded by Web is
cleared by default, which means that all fields are included in the Synergy component. For details
on using this flag to control how overlays are handled, see “Passing Structures as Parameters” in the
“Preparing Your Synergy Server Code” chapter of the xfNetLink & xfServerPlus User’s Guide.

Do not name link. ReportWriter can use name links you establish in Repository to access related
files. The value in this field determines whether the field is name linked to its template (if one
exists). By default, Repository will use the name of the template to generate name links. Select this
field is you want Repository to use the field’s name when generating name links. (See also
“Generating a Cross-Reference File” on page 5-24.)

Template overrides. If the current field references a template, the Template overrides section
indicates the template attributes that are overridden. If these fields are read-only, select Edit Field
Functions > Access Template Overrides to make them active. (See the description of Parent
template on page 3-38 for more information about template override flags.)

2. To define display, input, validation, or method information, or to assign a long description to the
field, go to the desired tab or select the entry from the Field Functions menu. Refer to the following
sections for instructions:

“Display information” on page 3-12
“Input information” on page 3-18
“Validation information” on page 3-22
“Method information” on page 3-26
“Assigning a long description to a field” on page 3-29 (Long Desc tab)

3. When you have finished defining the field, exit the window to save the new field definition and
return to the Field Definitions list.

When you exit, Repository validates the display, input, validation, and method information. If an
error exists, correct it and then exit the window again.

The new field definition is highlighted in the field list, and the number of fields displayed at the
bottom of the list is updated. The SIZE field at the bottom of the window is updated to reflect the
new size of the structure.

If the field being modified has group members, but the Group field is not set, before returning to the
Field Definitions list, you are prompted

Field “NAME” is a group. Clearing the “Group” field will delete all group members. Do
you want to continue?

If you select Yes, the group members are not saved with the field definition. If you select No, you
are returned to the Field Definition tab.

Working with Fields
Defining a New Field

3-12 Repository User’s Guide 10.3.3 (5/16)

Display information
The Display tab enables you to define how you want the field to display in a Toolkit input window
or ReportWriter report.

When the Toolkit script compiler accesses a field in the repository, the default is to use all display
information stored with that field. However, you can still use .FIELD qualifiers in your script file to
override one or more of the repository attributes. (A field’s type, size, precision, and dimensional
data cannot be overridden.) For more information on the use of these script qualifiers, see .FIELD
in the “Script” chapter of the UI Toolkit Reference Manual.

1. From the input window where you’re defining the new field or template, go to the Display tab or
select Edit Field Functions > Edit Display Information or Edit Template Functions > Edit Display
Information. (If you’re in the Field Definitions or Template Definitions list instead of an input
window, select Field Functions > Edit Display Information or Template Functions > Edit Display
Information.) (See figure 3-3.)

2. Enter or modify data as instructed below. The name of the field or template cannot be modified.

We’ve modified display information for the PHONE field as an example. (See figure 3-3.) Let’s
assume that we want the data in the PHONE field to have the field header “Telephone number,”
have the display format (@@@)@@@-@@@@, and be left-justified in a report. We highlighted
PHONE in the Field Definitions list and pressed the “Edit Display Information” shortcut.

Position. This value specifies whether a position is associated with this input window field and, if
so, whether the position is absolute or relative. Select the position:

None No position is associated with the field. (default)

Absolute Designates a specific position.

Relative Specifies the number of rows and columns that the current position will change.

If you select None, the Row and Col fields are cleared, and the cursor moves to the Field pos field.

If a prompt is defined for this field, the prompt begins at the specified position. If no prompt is
defined, the input field itself begins at the specified position. If no position is specified, the position
of the prompt defaults to one column past the last position used in the window.

If the current field or template uses a global format that no longer exists, a warning
message is displayed. You must select another format, or no format, at the Format name
prompt before your modifications can be validated.

If you are defining display information for a template, any references to “fields” in the
remainder of this section refer to fields that use the current template.

Working with Fields
Defining a New Field

Repository User’s Guide 10.3.3 (5/16) 3-13

Row. If you selected a position of Absolute, specify the row position. If you selected a position of
Relative, specify the number of rows that the current position will move. This relative movement
value can be positive or negative.

Col. If you selected a position of Absolute, specify the column position. If you selected a position
of Relative, specify the number of columns that the current position will move. This relative
movement value can be positive or negative.

Field pos. The field position specifies the position of a field independent of its prompt. If no field
position is specified, the position of the field defaults to the position of any prompt, with the length
of the prompt added to the column position. Select a field position:

None No position is associated with the field. (default)

Absolute The row and column values are the absolute coordinates for the field relative to
the input window.

Relative The row and column values specify a change from the last position occupied. If
you’ve specified a prompt, the change is relative to the prompt position.

If you select None, the following Row and Col fields are cleared and the cursor moves to the
Prompt field.

Figure 3-3. Defining display information.

Working with Fields
Defining a New Field

3-14 Repository User’s Guide 10.3.3 (5/16)

Row. If you selected a position of Absolute, specify the row position. If you selected a position of
Relative, specify the number of rows that the current position will move. This relative movement
value can be positive or negative.

Col. If you selected a position of Absolute, specify the column position. If you selected a position
of Relative, specify the number of columns that the current position will move. This relative
movement value can be positive or negative.

Prompt. Specify a fixed or variable prompt. A fixed prompt is a string that is displayed in the input
window to prompt the user for input. The prompt string must include any spacing that you want
between the prompt and the input. If the prompt string contains trailing spaces, or if you want to use
only digits in the prompt string, enclose the string in quotation marks.

To specify a variable prompt enter a numeric value without quotation marks. This value is used
by the Toolkit I_PROMPT subroutine as the length of the variable prompt supplied to it. See
I_PROMPT in the “Input Routines” chapter of the UI Toolkit Reference Manual for more
information.

Help. Specify a help identifier. The help identifier is passed as an argument to the Toolkit
EHELP_METHOD subroutine. See EHELP_METHOD in the “Environment Routines” chapter of
the UI Toolkit Reference Manual for more information.

Info line. Specify a text string that will display on the information line when input is being
processed for this field. Information line strings that contain trailing spaces must be enclosed in
quotation marks. When processing an input window, if you don’t specify an information line string,
the previous information line remains in effect. If new information line text is displayed, the
information line reverts to the text it contained previously once field input occurs.

User text. Specify a user-defined text string associated with this input field, if desired. The size of
the user field data is fixed by the size of the string used during the input window’s compilation;
writing data out to the string won’t change the size of the string. You can access this string at
runtime with the Toolkit I_USER subroutine. User text strings that contain trailing spaces must be
enclosed in quotation marks.

In the next four fields (Prompt, Help, Info line, and User text), you can enter only a
60-character text string, although the maximum string length is 80 characters. To enter a
longer string, select Edit Field Functions > Edit Entire Text. If you later need to edit a string
that exceeds 60 characters, you must do it using the Edit Entire Text function. (If you edit it
in the field, the portion that is not displayed will be lost. Similarly, deleting the 60 characters
that are displayed in the field will delete the entire string.)

Working with Fields
Defining a New Field

Repository User’s Guide 10.3.3 (5/16) 3-15

Report hdg. Modify the column heading text if desired, and press ENTER. Maximum size is 40
characters.

This field is used as the column heading by ReportWriter. If no heading exists, ReportWriter uses
the field description as a column heading. If no description exists, ReportWriter uses the field
name. Note the following:

 Modifying a heading does not affect a field that has already been selected for printing in
existing ReportWriter reports. However, it does affect any new selections of that field for
inclusion in a report.

 If you want the heading to be split into multiple lines when it is printed, insert a caret character
(^) into the heading string to designate a line break. You can include up to two carets, for a total
of three heading lines. If you want the heading to contain an actual caret character, precede the
caret with a backslash (\). Two backslashes in a row cause a backslash character to be printed
in the heading.

The Report hdg field is also used by xfNetLink .NET when this structure is included as a DataTable
class in a Synergy assembly. The value in this field is used for the column caption in the DataTable.
If no heading exists, the field name is used as the column caption. For more information, see
“Using DataTables” in the “Calling Synergy Routines from .NET” chapter of the xfNetLink &
xfServerPlus User’s Guide.

Display len. Enter the maximum number of characters that you want to be displayed in the field.
This value overrides the default display length computed by UI Toolkit. Valid values are 0 through
65,535.

Display length cannot be specified if the “View as” field is set to Radio buttons or Check box, or the
Selections field (on the Validation tab) is set to Window or List, or if the field is a text field (a
multi-dimensional alpha field).

Alt name. Enter an alternate name to be used instead of the field name. The alternate name can
have a maximum of 30 characters and must begin with a letter. The remaining characters can be
letters, digits, underscores (_), or dollar signs ($).

In xfODBC, the value in this field can be used for the column name for the field in the ODBC
system catalog; if no alternate name is specified, the field name is used as the ODBC column name.
See “Renaming columns for clarity” in the “Preliminary Steps” chapter of the xfODBC User’s
Guide for more information.

In xfNetLink Java and xfNetLink .NET, this value can be used for the property name in the Java
class or C# class; if no alternate name is specified, the field name is used as the property name. See
“Passing Structures as Parameters” in the “Preparing Your Synergy Server Code” chapter of the
xfNetLink & xfServerPlus User’s Guide.

View len. Enter the number of characters that you want to use to determine the width of the field on
the screen (i.e., the width of the area on the screen that will display data for the field). This value
overrides the default width as determined by Toolkit. Valid values are 0 through 9,999. View length
cannot be specified if the “View as” field is set to Radio buttons or Check box.

Working with Fields
Defining a New Field

3-16 Repository User’s Guide 10.3.3 (5/16)

On Windows, this value is multiplied by the width of the sizing character for the current font to
determine the field width. If view length is less than display length, the field will be scrollable up to
the display length. On UNIX and OpenVMS, the width of the field is set to the number of
characters specified. If view length is less than display length, the field will be truncated to fit in the
view length.

Format name. If you want this field to be associated with a format, enter the name of an existing
format. If a format was previously assigned to this field or template, its name is displayed, with the
actual format displayed next to it. To display a list of available formats, select Edit Field Functions
> List Selections or Edit Template Functions > List Selections. See “Defining Field Formats” on
page 3-32 for details on the format feature.

Input just. Select the justification for the text in the field when this field is used in a Toolkit input
window:

Left Left-justification; the default for alpha, date, time, and user type fields.

Right Right-justification; the default for decimal, implied-decimal, and integer fields.
Not valid for text fields (multi-dimensional alpha fields).

Center Center-justification. Not valid for numeric or text fields (multi-dimensional alpha
fields).

Report just. Select the justification for the data within the column when this field is used in a
ReportWriter report. The default is left-justified for alpha, user, date, and time fields and
right-justified for decimal, implied-decimal, and integer fields. Center-justification is allowed only
for alpha and user fields.

The width of the column in which the data will be justified is determined by either the column
heading or the field length, depending on which is longer. (The field length is either the length of
the format, if one exists, or the length of the field.)

Paint field. Set this field to indicate that the specified paint character (or blanks) are used to “paint”
the empty field where the user has typed input. If Paint field is not set, any paint character specified
for the input window will be used.

Paint char. If you set the Paint field, you can optionally specify a display character to “paint” the
empty field to indicate where the user types input. Repository does not have a default paint
character.

Blank if zero. If Set this field to indicate that a decimal, implied-decimal, or integer field should
remain blank when the user enters a value of 0.

Read-only. Set this field to indicate that the field is read-only. Unlike a disabled field, a read-only
field can receive focus. Read-only can be set only when View as is set to Field (see below). If the
data type is AutoSeq or AutoTime, the Read-only flag is set automatically, as these data types are
always read-only.

Working with Fields
Defining a New Field

Repository User’s Guide 10.3.3 (5/16) 3-17

The Read-only field is honored by xfNetLink Java and xfNetLink .NET when the structure is
included in a JAR file or assembly. For xfNetLink Java, you must use the genjava -ro option to
indicate that you want the read-only flag honored. For xfNetLink .NET, you must choose to
generate structure members as properties rather than fields for the read-only flag to take effect.
Properties that are flagged as read-only will have a “get” method, but no “set” method.

Disabled. Set this field to indicate that the field is disabled and cannot receive focus.

View as. Select how you want the field displayed in the input window:

Field Display as a standard input field. (default) To display the field as a
selection list field, define an associated selection list or window.

Radio buttons Display as a set of radio buttons on Windows. On UNIX and OpenVMS,
display as a selection list field. This option is allowed only if the field
has an associated selection list or window.

Check box Display as a check box on Windows. On UNIX and OpenVMS, display
as a one-character field (“X” if non-zero, or space if zero).

This option is allowed only when the field’s data type is decimal,
implied-decimal, or integer. Since a check box is implicitly an
enumerated field, you cannot select Check box when the Enumerated
value is Yes.

See “Validation information” on page 3-22 for more information on defining selection lists and
windows.

Renditions. Set this option to define a color palette number and one or more attributes for the field.
By default, an input field inherits its renditions from the input window to which it belongs. To
override the window’s color or attributes, click on Renditions or press the spacebar. When you
select this field, a pop-up window displays the following fields:

Color Enter a color palette number between 1 and 16 (inclusive) to associate with the
field. This overrides any color specified for the input window.

Attributes Select this option to override the input window’s attributes for the field. All four
attributes will override the corresponding input window attributes. When
Attributes is set, the other four check boxes are enabled.

Highlight If set, the input field will be highlighted.

Reverse If set, the input field will be in reverse video.

Blink If set, the input field will blink (on Windows, it displays in italic typeface).

Underline If set, the input field will be underlined.

Exit the window to save the rendition modifications and return to the Display tab.

Working with Fields
Defining a New Field

3-18 Repository User’s Guide 10.3.3 (5/16)

Font. Enter the name of the font to use for displaying the contents of the input field on Windows.
This name must be defined in the font palette (specified in the [FONTS] section of the synergy.ini
or synuser.ini file).

Prompt font. Enter the name of the font to use for displaying the input field prompt on Windows.
This name must be defined in the font palette (specified in the [FONTS] section of the synergy.ini
or synuser.ini file).

The font names in the Font and Prompt font fields can each have a maximum of 60 characters and
must begin with a letter. The remaining characters can be letters, digits, underscores (_), or dollar
signs ($).

Template overrides. If the current field references a template, this section indicates the template
attributes that are overridden. If these fields are read-only, select Edit Field Functions > Access
Template Overrides to make them active. (See the description of Parent template on page 3-38 for
more information about template override flags.)

3. Continue to define field information on the other tabs or, if you are finished defining the field, exit
the window to save the field definition and return to the Field Definitions list.

Input information
The Input tab enables you to define how you want field input to be handled when the field is used in
Toolkit input windows.

When the Toolkit script compiler accesses a field in the repository, the default is to use all input
information stored with that field. However, you can still use .FIELD qualifiers in your script file to
override one or more of the repository attributes. (A field’s type, size, precision, and dimensional
data cannot be overridden.) For more information on the use of these script qualifiers, see .FIELD
in the “Script” chapter of the UI Toolkit Reference Manual.

1. From the input window where you’re defining the new field or template, go to the Input tab or
select Edit Field Functions > Edit Input Information or Edit Template Functions > Edit Input
Information. (If you’re in the Field Definitions or Template Definitions list instead of an input
window, select Field Functions > Edit Input Information or Template Functions > Edit Input
Information.) (See figure 3-4.)

2. Enter or modify data as instructed below. The name of the field or template cannot be modified.

Uppercase. If Uppercase is set, lowercase input characters are converted to uppercase on alpha and
user type fields. All input is displayed in uppercase. Uppercase can be set only when the field’s data
type is alpha or user. Note that only input is uppercased; if your program loads data directly into
this field, you must uppercase that data manually.

If you are defining input information for a template, any references to “fields” in the
remainder of this section refer to fields that use the current template.

Working with Fields
Defining a New Field

Repository User’s Guide 10.3.3 (5/16) 3-19

Nodecimal. If Nodecimal is set, the user does not need to type a decimal point when placing input
in a numeric field. The input is stored right-justified, with the number of decimal places inferred
from the storage format. An explicit decimal point overrides the Nodecimal value. For example,
an entry of 12.34 always yields a result of 12.34, regardless of whether Nodecimal is set.
Nodecimal can be set only when the field’s data type is decimal, implied-decimal, or integer.

Noterm. If Noterm is set, the field is automatically terminated when filled. Field input is normally
terminated only when you press ENTER; if a field is filled and the user tries to enter more characters,
the terminal bell rings for each extra character typed. However, when you set Noterm, the field is
automatically terminated when the field is filled. (In other words, the user doesn’t have to press
ENTER.)

Retain position. If Retain position is set, the position within the text field is to be retained on
subsequent re-entry to the field, until the field is reinitialized or redisplayed. This field is valid only
for text fields (multi-dimensional alpha fields).

Figure 3-4. Defining input information.

Working with Fields
Defining a New Field

3-20 Repository User’s Guide 10.3.3 (5/16)

Action. The Action value determines whether a default value should be displayed in the field or
whether a default action should occur. Select an option:

None No default action occurs. (default) The Automatic field (see below) is set to No
and the cursor moves to the Date (today) field.

Default The specified default value is displayed in the input field. A second window in
which you can enter a default value for the input window field is displayed. (See
the description of the Default value field below.)

Copy Copies the value from the data area that corresponds to this field (as defined by
the structure) if the field is empty.

Increment If the user does not enter a value the first time a decimal, implied-decimal, or
integer field is processed, the last value in the field plus one is used.

Decrement If the user does not enter a value the first time a decimal, implied-decimal, or
integer field is processed, the last value in the field minus one is used.

Default value. If you selected Default in the Action field, an input window is displayed so you can
enter a default value for the field. Enter a default value that will be automatically displayed in the
field and press the ENTER key. The user can accept the default by pressing ENTER, edit the default, or
type a new value. For date and time fields, the default value must be specified in storage form
(Class), rather than input or display form. For example, to specify “January 31, 1999” as the default
value for a date stored in YYYYMMDD form, you would specify “19990131”.

Automatic. If set, the default action specified in the Action field—Default, Copy, Increment, or
Decrement—occurs automatically when an empty field is processed. Automatic can be set only
when you’ve specified a default action.

Date (today). If set, Date (today) defaults the date to today’s date if the user presses ENTER without
entering anything in a blank date field.

Date (short). If set, Date (short) displays a date type field in fewer than the normal 11 characters. A
short period date (a date type field with a storage format of YYPP or YYYYPP) has a display length
of five characters. All other short dates have a display length of eight characters.

Time (now). If set, Time (now) causes the time to default to the current system time if the user
presses ENTER without entering anything in a blank time field.

Time (ampm). If set, Time (ampm) specifies that the display format of a time field is 12-hour time,
followed by an AM or PM indicator.

Noecho. Set Noecho to prevent the text that the user types from being displayed in the field. If you
want, you can specify a character to be displayed for each typed character. (See the Noecho
character field, below.) Noecho can be set only if the field’s data type is alpha or user.

Noecho character. If you set Noecho and the field’s data type is alpha or user, you can optionally
specify a display character to be displayed for every character of input the user types. The display
character also fills any remaining spaces at the end of the input after the user presses ENTER, so
other users can’t see how many characters were entered.

Working with Fields
Defining a New Field

Repository User’s Guide 10.3.3 (5/16) 3-21

Wait. The Wait value specifies whether a time-out will occur if the user doesn’t complete input in
an allotted amount of time. Any Wait value overrides the value in the Toolkit g_wait_time field.
Select a Wait option:

None No wait specified. The Toolkit g_wait_time field defines the global wait time.
(default)

Wait time Toolkit should wait the specified number of seconds for input processing to
complete.

Immediate Immediate user response is required; do not wait.

Global The global wait time (defined by the Toolkit g_wait_time field) should be used.

Forever Designates that Toolkit should wait until input processing is complete.

Wait time. If you selected Wait time in the Wait field, enter the number of seconds to wait for input
processing to be complete.

Input len. Enter the maximum number of characters you want the user to be able to enter in the
field. This value overrides the default input length computed by Toolkit. Valid values are 0 through
65,535.

Input length cannot be specified if the “View as” field (on the Display tab) is set to Radio buttons or
Check box, or the Selections field (on the Validation tab) is set to Window or List, or if the field is a
text field (a multi-dimensional alpha field).

Template overrides. If the current field references a template, the Template overrides section
indicates the template attributes that are overridden. If these fields are read-only, select Edit Field
Functions > Access Template Overrides to make them active. (See the description of Parent
template on page 3-38 for more information about template override flags.)

3. Continue to define field information on the other tabs or, if you are finished defining the field, exit
the window to save the field definition and return to the Field Definitions list.

Working with Fields
Defining a New Field

3-22 Repository User’s Guide 10.3.3 (5/16)

Validation information
Validation information is the data associated with a field or template that affects how field input is
validated when the field is used in Toolkit input windows.

When the Toolkit script compiler accesses a field in the repository, the default is to use all
validation information stored with that field. However, you can still use .FIELD qualifiers in your
script file to override one or more of the repository attributes. (A field’s type, size, precision, and
dimensional data cannot be overridden.) For more information on the use of these script qualifiers,
see .FIELD in the “Script” chapter of the UI Toolkit Reference Manual.

1. From the input window where you’re defining the new field or template, go to the Validation tab or
select Edit Field Functions > Edit Validation Information or Edit Template Functions > Edit
Validation Information. (If you’re in the Field Definitions or Template Definitions list instead of an
input window, select Field Functions > Edit Validation Information or Template Functions > Edit
Validation Information.)

2. Enter or modify data as instructed below. The name of the field or template cannot be modified.

If you are defining validation information for a template, any references to “fields” in the
remainder of this section refer to fields that use the current template.

Figure 3-5. Defining validation information.

Working with Fields
Defining a New Field

Repository User’s Guide 10.3.3 (5/16) 3-23

Break. Break triggers a break in input set processing on a field. Sometimes you’ll want to interrupt
input set processing on a field, perform external operations, and then continue with the input set.
Select a break option:

No No break occurs. (default)

Yes A break occurs after input to this field has been processed (that is, whenever the
field’s data changes).

Always A break always occurs, regardless of whether input has been processed (for
example, even if the field is accessed via the I_NEXT/I_PREV menu entries).

Return A break occurs when you press ENTER, but not when the field is accessed via the
I_NEXT/I_PREV menu entries.

Required. Set this option to indicate that a non-blank alpha or non-zero numeric entry is required in
the field.

Negative allowed. The value in this field determines whether negative values are allowed on
decimal and implied-decimal fields. Select an option:

No Negative numbers are not allowed as input. (default)

Yes Negative numbers are allowed as input. The user can place a negative or minus
sign (–) either before or after a number. The size of the input field is one
character larger than the size of the data field.

Only Only negative numbers are allowed as input.

OrZero Only negative numbers or 0 are allowed as input.

Range minimum. You can specify a range of values for decimal, implied-decimal, integer, date,
and time fields. Enter the minimum value for the range in this field. The range minimum must be
less than or equal to the range maximum. You cannot specify a range value in conjunction with an
allow list or a selection list or window. For date and time fields, Range minimum and Range
maximum must be specified in storage form (Class), rather than input or display form. For
example, to specify “June 1, 1900” as the range minimum for a date stored in YYYYMMDD form,
you would specify “19000601”.

Range maximum. If you are specifying a range of values for the field, enter the maximum value
for the range in this field. The range maximum must be greater than or equal to the range minimum.
See the Range minimum field above for more information.

Null allowed. This field indicates whether a field can be null. It is used by xfODBC to determine
the null property for the column in the system catalog. If the data type is AutoSeq or AutoTime, this
field is set to No. For details see “Preventing null updates and interpreting spaces, zeros, and null
values” in the “Preliminary Steps” chapter of the xfODBC User’s Guide.

Allow list. An allow list specifies the valid entries for the field. Set this value to Yes if the field has
a list of valid entries associated with it; the default is No. If you select Yes, you may also want to
select Match case and/or Match exact; see below for details.

Working with Fields
Defining a New Field

3-24 Repository User’s Guide 10.3.3 (5/16)

If you select Yes for Allow list, a window will display in which you can enter the list entries. See
Allow List/Selection List Entry below for instructions. If you select No, the cursor moves to the
Selections field. You cannot specify an allow list in conjunction with selection lists or with the
Noecho attribute.

Allow List/Selection List Entry. If you selected Yes in the Allow list field, specify the entries that
you want to appear in the Allow List/Selection List Entry window. You can enter a maximum of 99,
each with a maximum length of 80 characters. The entry input window displays the entry number to
the left of the data entry field. Type the entry text in the field, then select Edit Field Functions > Edit
Next Entry or Edit Template Functions > Edit Next Entry (or press CTRL+L for either fields or
templates) to enter another entry. To edit the previous entry, select Edit Previous Entry. To define
blanks as an allowable entry, you must enclose them in quotation marks (for example, “ ”).

If your entry in the Allow List/Selection List Entry window is longer than 40 characters, it will
wrap. When a word wraps to the second line, it may leave several spaces at the end of the first line.
These spaces will become part of the allow list entry. To avoid these unwanted spaces in the entry,
when you reach the end of the first line, type a space, and then continue typing the word on the
second line. (The space you type at the end of the line only serves to break the word in the Allow
List/Selection List Entry window; it will not become part of the allow list entry.)

When you have finished specifying allowable entries, press the Exit shortcut. If this is an alpha or
user field, the cursor moves to the Match case field. If this is not an alpha or user field, the cursor
moves to the Selections field.

Match case. If you selected Yes in the Allow list field, select Match case to specify that the value
in an alpha or user field must match the case of a specified allowable entry. For example, the entry
“no” matches with “no,” but it does not match with “NO” or “No.” If Uppercase is set (on the Input
tab), Match case is ignored. Match case can be set only when the field’s data type is alpha or user.

Match exact. If you selected Yes in the Allow list field and the field’s data type is alpha or user,
select Match exact to specify that the alpha or user field input must match all characters in the
specified allowable entry. If Match exact is not set, Toolkit utilities look for a match based on the
shortest string. For example, if you are looking for a match with “Ann,” the utilities will find a
match with “Ann,” “Anne,” and “Annette.” If Match exact is set, the input must match the allowed
qualifier exactly for the full length of the input. For example, “Ann” will match only with “Ann.”

Selections. Select how you want selection windows placed on the screen:

None No selection windows are placed on the screen. (default) If you select None, the
Row, Col, Ht, and Name fields are cleared, and the cursor moves to the
Enumerated field.

Window When this input field is processed, a selection window is placed on the screen.
You must also specify the position for the window with the Row and Col fields
and the name of the window in the Name field (see below). Window is similar to
List, except that the selection window already exists.

Working with Fields
Defining a New Field

Repository User’s Guide 10.3.3 (5/16) 3-25

List When this input field is processed, a selection window is placed on the screen.
You must specify the position for the placement of the window, along with one or
more text entries that should appear in the window. A second input window, in
which you can enter a selection window entry for this field, is displayed.

Allow List/Selection List Entry. If you selected List in the Selections field, specify the list entries
that you want to appear in the window. You can enter a maximum of 99, each with a maximum
length of 80 characters. The entry input window displays an entry number to the left of the data
entry field. Type the entry text in the field, then select Edit Field Functions > Edit Next Entry or
Edit Template Functions > Edit Next Entry to enter another entry. To edit the previous entry, select
Edit Previous Entry. Entries may include leading blanks, but to define a completely blank entry,
enclose the blanks in quotation marks (for example, “ ”). When you have finished specifying
entries, press the Exit shortcut.

If your entry in the Allow List/Selection List Entry window is longer than 40 characters, it will
wrap. When a word wraps to the second line, it may leave several spaces at the end of the first line.
These spaces will become part of the allow list entry. To avoid these unwanted spaces in the entry,
when you reach the end of the first line, type a space, and then continue typing the word on the
second line. (The space you type at the end of the line only serves to break the word in the Allow
List/Selection List Entry window; it will not become part of the allow list entry.)

Row. If you selected List or Window in the Selections field, enter the screen row, relative to the
beginning of the data field, at which the upper-left corner of the selection window should be placed.

Col. If you selected List or Window in the Selections field, enter the screen column, relative to the
beginning of the data field, at which the upper-left corner of the selection window should be placed.

Ht. If you selected List in the Selections field, you can optionally enter the maximum number of
rows in the selection window. Data is organized by column, top to bottom and then left to right. For
example, if the height is 3 and there are eight entries, the window will contain three columns (with
three entries, three entries, and two entries). If you don’t specify a value in the Ht field, the height
of the window is the total number of entries.

Name. If you selected Window in the Selections field, enter the name of an existing selection
window.

Enumerated. Select Yes to specify an enumerated data field type. An enumerated data field returns
a decimal value for a displayed text entry. This field is valid only when used in conjunction with a
Toolkit allow list, selection list, or selection window (including both existing windows and
windows built on-the-fly with the Toolkit S_SELBLD subroutine). An enumerated field must be a
numeric data type, and it must be large enough to handle the largest number that might be returned.

The default Enumerated value is No. If you select Yes, the cursor moves to the Length field. You
must specify the Length, Base, and Step values.

Length. If you selected Yes in the Enumerated field, enter the length of the displayed field. (Note
that the length of the displayed field and the length of the actual input field are not necessarily
the same.)

Working with Fields
Defining a New Field

3-26 Repository User’s Guide 10.3.3 (5/16)

Base. If you selected Yes in the Enumerated field, enter the return value assigned to the first item in
the allow or selection list.

Step. If you selected Yes in the Enumerated field, enter the value added to each successive item in
the allow or selection list.

Template overrides. If the current field references a template, the Template overrides section
indicates the template attributes that are overridden. If these fields are read-only, select Edit Field
Functions > Access Template Overrides to make them active. (See the description of Parent
template on page 3-38 for more information about template override flags.)

3. Continue to define field information on the other tabs or, if you are finished defining the field, exit
the window to save the field definition and return to the Field Definitions list.

Method information
The Method tab enables you to associate method names with a field or template. These methods are
called by Toolkit at the appropriate time.

When the Toolkit script compiler accesses a field in the repository, the default is to use all method
information stored with that field. However, you can still use .FIELD qualifiers in your script file to
override one or more of the repository attributes. (A field’s type, size, precision, and dimensional
data cannot be overridden.) For more information on the use of these script qualifiers, see .FIELD
in the “Script” chapter of the UI Toolkit Reference Manual.

On Windows, you can launch Workbench from this tab to define methods for field or template
definitions. See “Launching Workbench from the Method tab” on page 3-28.

1. From the input window where you’re defining the new field or template, go to the Method tab or
select Edit Field Functions > Edit Method Information or Edit Template Functions > Edit Method
Information. (If you’re in the Field Definitions or Template Definitions list instead of an input
window, select Field Functions > Edit Method Information or Template Functions > Edit Method
Information.) (See figure 3-6.)

2. Enter the method name in the appropriate field, as described below.

On Windows, you can click the drilldown button to enter the default method name. (The default
name is Fieldname_Methodname, e.g., PHONE_ARRIVE.) If you have Workbench installed, see
“Launching Workbench from the Method tab” on page 3-28.

Arrive method. Specify the name of the subroutine (method) to be called before the field is
processed by the Toolkit I_INPUT subroutine.

Leave method. Specify the name of the subroutine (method) to be called after the field is
processed by the Toolkit I_INPUT subroutine.

If you are specifying methods for a template, any references to “fields” in this section refer to
fields that use the current template.

Working with Fields
Defining a New Field

Repository User’s Guide 10.3.3 (5/16) 3-27

Drill method. Specify the name of the subroutine (method) to be called when either a drilldown
button is clicked or the I_DRILL menu entry is selected. On Windows, if a drill method is
specified, a drilldown button is placed to the right of the input field. When the user clicks the
button, the drill method is invoked.

Hyperlink method. Specify the name of the subroutine (method) to be called when either the
prompt text is clicked or the I_HYPER menu entry is selected. On Windows, if a hyperlink method
is specified and the field is a member of an input set being processed by the Toolkit I_INPUT
subroutine, any prompt text associated with the field will be highlighted. When the user clicks on
the highlighted text, the hyperlink method is invoked.

Change method. Specify the name of the subroutine (method) to be called after this field is
validated by the Toolkit I_INPUT subroutine.

Display method. Specify the name of the subroutine (method) to be called whenever the field is
about to be displayed by Toolkit. This method is called after Toolkit has formatted the display
according to its own rules. Display method cannot be specified when the View as value is Radio
buttons or Check box, or when a selection list or window has been specified.

Figure 3-6. Defining method information.

Working with Fields
Defining a New Field

3-28 Repository User’s Guide 10.3.3 (5/16)

Edit format method. Specify the name of the subroutine (method) to be called by Toolkit whenever
text in the field is being formatted for editing purposes. This method is called after Toolkit has
formatted the display according to its own rules. Edit format method cannot be specified when the
View as value is Radio buttons or Check box, or when a selection list or window has been
specified.

3. If the current field references a template, update template overrides if necessary. The Template
overrides section of the Method tab indicates the template attributes that are overridden. If these
fields are disabled, select Edit Field Functions > Access Template Overrides to enable them. (See
the description of Parent template on page 3-38 for more information about template override
flags.)

4. Continue to define field information on the other tabs or, if you are finished defining the field, exit
the window to save the field definition and return to the Field Definitions list.

Launching Workbench from the Method tab
On Windows, you can use the drilldown buttons to launch Workbench, where you can write or edit
methods.

If the method is not yet written,

1. Launch Workbench and display the Choose Method File dialog by doing one of the following:

 Type a name for the method in the appropriate method field and click the drilldown button.

 Click the drilldown button to enter the default name, which is Fieldname_Methodname, e.g.,
PHONE_ARRIVE.)

2. To add the method to an existing file, select the desired file from the list of available files.
If necessary, click the Browse button to find the file.

3. To create a new file, type the filename in the field at the top of the dialog and click OK.

4. Workbench opens (or creates) the file and generates template code for the method type, placing it at
the end of the file.

5. Write the method, save the file in Workbench, and return to Repository.

If the method is already written,

1. Enter the method name in the appropriate method field.

2. If you need to edit the method, click the drilldown button. Workbench will launch, open the correct
file (or display the Choose Method File dialog if the file is not in the source files for the current
project), and place the cursor at the method. Edit it and save the file before returning to Repository.

Working with Fields
Defining a New Field

Repository User’s Guide 10.3.3 (5/16) 3-29

Assigning a long description to a field
On the Long Desc tab, you can assign an 1,800-character description to the field. This enables you
to store more detailed information about your field and its use.

1. From the input window where you’re defining the new field or template, go to the Long Desc tab or
select Edit Field Functions > Edit Long Description or Edit Template Functions > Edit Long
Description.

(If you’re in the Field Definitions or Template Definitions list instead of an input window, select
Field Functions > Edit Long Description or Template Functions > Edit Long Description.)

2. Enter your long description.

3. Continue to define field information on the other tabs or, if you are finished defining the field, exit
the window to save the field definition and return to the Field Definitions list.

Working with Fields
Loading Fields from a Definition File

3-30 Repository User’s Guide 10.3.3 (5/16)

Loading Fields from a Definition File
When a structure contains no field definitions, you can load definitions from an existing definition
file (also referred to as an include file). An include file contains field definitions, optionally
preceded by the RECORD, STRUCTURE, or COMMON statement. A single file can contain
multiple record definitions.

When an include file is processed, information is loaded into the field definitions in the following
manner:

 The field name is set to the field identifier. For unnamed fields, the field name is set to
NONAME_nnn, where nnn is a number starting with 001 and incrementing.

 The field’s short description is set to the comment on the field definition line. If there is no
comment on that line, it is set to the field name.

 The field’s long description is set to all contiguous comment lines following the field
definition, including the comment on the field definition line, if any.

 The data type is set to the data type. The Load Fields function does not support data types
Enum and Struct. (Because the data type of Enum and Struct fields is the enumeration or
structure name, Load Fields cannot tell them apart.) Fields of these types will generate an error.

 The data size is set to the length of the field.

 The precision information is set if the field type is implied-decimal.

 The dimension is set if the field is arrayed.

 The group flag is set if the field defines a group.

 Overlay information is set if the field is an overlay.

 The exclusion flags for Language, Toolkit, and ReportWriter are not set for named fields, but
are set for unnamed fields.

 The exclusion flag for Web is not set for either named or unnamed fields.

 Justification is set to left for alpha (a) fields and right for numeric (d or i) fields.

1. On the Structure Definitions list, highlight the structure that you are going to load the fields into.

2. Select Structure Functions > Edit Attributes.

3. Select Attributes > Fields.

4. From the Field Definitions list, select Field Functions > Load Fields.

If your include file uses .DEFINEs within field definitions, for example,

custnm ,a NAMELEN

you must substitute those definitions with the actual values.

Working with Fields
Loading Fields from a Definition File

Repository User’s Guide 10.3.3 (5/16) 3-31

5. Enter data in each field as instructed below.

INCLUDE file. Enter the name of the include file from which to load the fields. You can include a
full path or logical name. On Windows, you can click the drilldown button to browse for a file to
select. If you don’t specify an extension, it defaults to .def.

Record number. If the .INCLUDE file contains more than one record, specify which record to use.
For example, if your .INCLUDE file contains three records and you want to use the second one,
enter 2. The default record number is 1.

Strip text between. Comments in the .INCLUDE file are loaded into the field’s short and long
description fields as described above. You can strip irrelevant data, such as record offsets, by
specifying the two characters between which all text should be stripped. The specified characters
are stripped as well. Both characters must be non-blank.

For example, a line in your .INCLUDE file might look like this:

csname ,a30 ;[10,40]Customer name

To strip the information in brackets, enter “[” and “]” in the Strip text between fields, then the short
description stored for the field will be “Customer name.”

6. Exit the window to load the fields.

If an error occurs while fields are being loaded, you’ll get an error message indicating which field
caused the error. No additional fields are loaded. You must delete all fields that were successfully
loaded before attempting to load from the .INCLUDE file again.

Figure 3-7. Loading fields from an .INCLUDE file.

Working with Fields
Defining Field Formats

3-32 Repository User’s Guide 10.3.3 (5/16)

Defining Field Formats
You can define field formats and then select them in the Format name field on the Display tab when
defining a field or template. (The information on this tab defines how you want the field to display
in Toolkit or ReportWriter; see “Display information” on page 3-12.) For example, you might want
to define a format for a date or customer ID.

Repository has two types of field formats: global and structure-specific (or local).

 Global formats can be used by field definitions in any structure and by templates. You can
define a maximum of 9,999 global field formats.

 Structure-specific formats are defined for a particular structure, and only the fields in that
structure can use them. You can define a maximum of 250 structure-specific field formats in
each structure.

The Format Definitions list
To display the Format Definitions list for global formats, select Modify > Formats from the main
Repository window.

To display the Format Definitions list for a structure-specific format, do the following:

1. Highlight the structure in the Structure Definitions list.

2. Select Structure Functions > Edit Attributes.

3. Select Attributes > Formats.

The Format Definitions list displays the format name, type (A for alpha; N for numeric), and the
actual format string. The total number of global formats or structure-specific formats is displayed at
the bottom of the list. (See figure 3-8.)

Figure 3-8. The Format Definitions list.

Working with Fields
Defining Field Formats

Repository User’s Guide 10.3.3 (5/16) 3-33

Defining a new format
You can define a new format from scratch or by copying and modifying an existing one. The
process is the same whether you are creating a global format or a structure-specific format.

1. From the Format Definitions list,

 To define a format from scratch, select Format Functions > Add Format.

 To define a format by copying, highlight the format you want to copy, and then select Format
Functions > Copy Format.

The Format Definition input window is displayed. The example in figure 3-9 shows a display
format for telephone numbers, with the area code enclosed in parentheses and the prefix separated
from the last four digits by a hyphen.

2. Enter or modify data in each field as instructed below.

Format name. Enter a format name. This name identifies the format when it’s assigned to a field or
template. For a global format, the name must be unique among all formats, while for a a
structure-specific format, the name must be unique within the structure. The format name can have
a maximum of 30 characters and must begin with a letter. The remaining characters can be letters,
digits, underscores (_), or dollar signs ($).

Format type. Select the format type: Alpha or Numeric.

Format string. Enter a format string with a maximum of 30 characters. For an alpha format, enter
“at” signs (@). Each @ stands for an alphanumeric character. For a numeric format, enter the
correct Synergy DBL data formatting character as shown in “Appendix D: Data Formats”. For both
alpha and numeric formats, you can also enter formatting characters (such as dashes, backslashes,
and so forth) wherever you want them.

Figure 3-9. Defining a format.

Working with Fields
Defining Field Formats

3-34 Repository User’s Guide 10.3.3 (5/16)

Justification. Select how you want the format justified. The default justification is None. The
format justification defines how a format is truncated before being applied to a field in
ReportWriter.

For example, if the numeric format is

$$$,$$$,$$$.XX-

and you want to use that format with a d10.2, a d8.2, and d2.2 field, a right-justified format for the
d8.2 field would look like this:

$,$$$,$$$.XX-

and a right-justified format for the d2.2 field would look like this:

$$$.XX-

3. Exit the window to save your changes.

Reordering structure-specific formats
1. Highlight the structure-specific format you want to move.

2. Select Format Functions > Reorder Formats. The highlighted format is enclosed in square
brackets ([]).

3. Use the UP and DOWN ARROW keys to move the bracketed format to another location in the list.

4. Select Reorder Formats again to exit move mode. The format is inserted at the new location.

Modifying a format
1. In the Format Definitions list, highlight the format you want to modify and press ENTER.

2. In the Format Definition window, modify data as necessary. See step 2 on page 3-33 for detailed
information on the fields. The format name cannot be modified.

3. Exit the window to save your changes.

Modifying a format affects any fields selected for printing in existing ReportWriter reports,
provided you have not overridden the format in ReportWriter.

Working with Fields
Defining Field Formats

Repository User’s Guide 10.3.3 (5/16) 3-35

Deleting a format
You cannot delete a structure-specific format that is used by a field in the current structure.

Repository does not maintain a list of the fields and templates that use a global format, so it is
possible to delete one that is in use, but we do not recommend this. If ReportWriter tries to display
a field whose format no longer exists, that field is displayed unformatted.

1. In the Format Definitions list, highlight the format you want to delete.

2. Select Format Functions > Delete Format.

3. At the prompt, select Yes to delete the format or No to cancel the deletion.

Working with Fields
Defining Field Templates

3-36 Repository User’s Guide 10.3.3 (5/16)

Defining Field Templates
A template is a set of field characteristics that can be assigned to one or more field definitions (up to
6,000) and one or more template definitions (up to 3,000). Templates provide consistency for your
fields throughout all structures in your repository. They also provide an easy way to modify a
common field type (for example, changing all date fields from d6 to d8). You can assign a template
when you define or modify a field or template. You can define a maximum of 9,999 templates.

To display the Template Definitions list, select Modify > Templates. For each template, the
template name and description are displayed. The total number of templates in your repository is
displayed at the bottom of the window. (See figure 3-10.)

Defining a new template
You can define a new template from scratch or by copying and modifying an existing template.

1. From the Template Definitions list,

 To define a template from scratch, select Template Functions > Add Template.

 To define a template by copying, highlight the template you want to copy, and then select
Template Functions > Copy Template.

Figure 3-10. The Template Definitions list.

Working with Fields
Defining Field Templates

Repository User’s Guide 10.3.3 (5/16) 3-37

The Template Definition window displays with tabs on which you can define template information.
Instructions are given in this section for the Template Definition tab, but not for the other tabs, as
they are the same as the tabs for fields.

 Template Definition tab, for defining basic template information; see below.

 Display tab, for defining how you want the field to display in a Toolkit input window or
ReportWriter report; see “Display information” on page 3-12.

 Input tab, for defining how field input is handled in a Toolkit input window; see “Input
information” on page 3-18.

 Validation tab, for defining how field input is validated in a Toolkit input window; see
“Validation information” on page 3-22.

 Method tab, for associating methods (that are called by Toolkit) with fields; see “Method
information” on page 3-26.

 Long Desc tab, for assigning a long description; see “Assigning a long description to a field”
on page 3-29.

Defining basic template information

Figure 3-11. Defining basic template information.

Working with Fields
Defining Field Templates

3-38 Repository User’s Guide 10.3.3 (5/16)

1. Enter or modify data as instructed below.

The example shows a date template with the format YYYYMMDD. We can assign this template to all
date fields so they’ll be consistent and we won’t have to enter the type, size, precision, and
dimensional data more than once. (See figure 3-11.)

Template name. Enter a unique template name. The template name can have a maximum of 30
characters and must begin with a letter. The remaining characters can be letters, digits, underscores
(_), or dollar signs ($).

Parent template. If desired, enter the name of a parent template to use to create the current
template. (A parent template is a template for a template.) Up to 3,000 templates can use the same
parent template. To display a list of available templates, select Edit Template Functions > List
Selections.

All attributes of the parent template are copied to the current template, including display, input,
validation, and method information. You can override any of the parent template attributes simply
by specifying new values. If the parent template is later modified, only the attributes that have not
been overridden are copied to the child template. The check boxes at the bottom of the window
indicate the attributes of the parent template that have been overridden in the current template.

Repository sets these flags when you exit the window, but you can also set them manually. You
might want to do this when an attribute matches the parent and you don’t want it to be changed later
if the parent changes. By default, these fields are read-only. To modify them, select Edit Template
Functions > Access Template Overrides. This menu entry is a toggle: select it a second time and the
override fields revert to read-only. The Access Template Overrides setting remains in effect for all
field and template definitions until you change it.

Description. Enter a description for the template, with a maximum of 40 characters. The
description displays on the Template Definitions list.

Type. Select the type of data the field will contain:

Alpha
Decimal
Integer
Date
Time
User
Binary
Boolean
Enum
AutoSeq
AutoTime

If you select Date, Time, or User, the cursor moves to the Class field. If you select Enum, the
cursor moves to the Enumeration field (see Enumeration below).

Working with Fields
Defining Field Templates

Repository User’s Guide 10.3.3 (5/16) 3-39

Class. If you selected Date or Time in the Type field, specify the storage format in the Class field:

 Date fields

YYMMDD two-digit year, month, day

YYYYMMDD four-digit year, month, day

YYJJJ two-digit year, Julian day

YYYYJJJ four-digit year, Julian day

YYPP two-digit year, period

YYYYPP four-digit year, period

 Time fields

HHMM hour, minute

HHMMSS hour, minute, second

If you selected User in the Type field, specify the user subtype in the Class field. User subtypes are
used by the xfODBC user-defined processing routines and are available in the gs_inpfld structure
within UI Toolkit’s user-defined processing routines. Subtypes also affect data type mapping in
xfNetLink Java and xfNetLink .NET; see “Appendix B: Data Type Mapping” in the xfNetLink &
xfServerPlus User’s Guide for details. The available subtypes are

Alpha
Numeric
Date
Binary

Additional date storage formats are supported by xfODBC. See “Appendix B: Date and Time
Formats” in this manual for more information.

In Synergy DBL, the Binary data type is treated as an alpha.

In xfNetLink Java (when genjava is run with the -c 1.5 option) and xfNetLink .NET. a Binary
data type field in a structure is converted to a byte array on the client, and can be used, for
example, to store an RFA. For xfNetLink Synergy clients, a Binary data type field is
converted to a string.

In xfODBC, a Binary data type field is described as a binary field (SQL_BINARY). This is
also true of a User type field with a class of binary (see Class below), but in this case you
can use the routines for user-defined data types in xfODBC to manipulate the data read
from the ISAM file and return it as a binary field to the ODBC-enabled application.

Working with Fields
Defining Field Templates

3-40 Repository User’s Guide 10.3.3 (5/16)

User data. If you selected User in the Type field, specify a string of up to 30 characters to identify
your user-defined data type, and press ENTER to save it.

In a UI Toolkit input window, a user type field flags the runtime input processor to call the
ECHKFLD_METHOD, EDSPFLD_METHOD, and EEDTDSP_METHOD subroutines for
additional processing. The user data string is passed to these subroutines to be used as a control
code. The user subtype (class) is available in the gs_inpfld structure.

User type fields also flag ReportWriter to call user-overloadable subroutines (for example,
RPS_DATA_METHOD which formats the data for display). See the “Customizing ReportWriter
Routines” chapter of the ReportWriter User’s Guide for more information about the
user-overloadable subroutines called by ReportWriter.

User type fields also flag xfODBC to call user-overloadable subroutines to process the data for
those fields. The user data string is passed to these routines. See the “Creating Routines for
User-Defined Data Types” chapter of the xfODBC User’s Guide for more information.

Enumeration. If you selected Enum in the Type field, enter the enumeration name or select Edit
Template Functions > List Selections and choose it from the list.

Coerced type. If the structure that this field belongs to is included in an xfNetLink Java JAR file or
an xfNetLink .NET assembly, you can optionally specify a non-default data type for the field to be
coerced to on the client side. Type coercion is available when Type is one of the following:
Decimal, Integer, Date, Time, User. Note the following:

 For Decimal (with or without precision) and Integer types, select Default to use the default
xfNetLink type mapping.

 Date types can be coerced when the format is one of the following: YYMMDD,
YYYYMMDD, YYJJJ, YYYYJJJ.

 User types can be coerced only when the user subtype (i.e., the Class field) is Date and the
User data field contains ^CLASS^=YYYYMMDDHHMISS or
^CLASS^=YYYYMMDDHHMISSUUUUUU (case sensitive).

 For Date, Time, and User types, the default coerced type is DateTime.

See “Appendix B: Data Type Mapping” in the xfNetLink & xfServerPlus User’s Guide for more
information on data type mapping and coercion in xfNetLink.

Size. Enter the maximum number of characters the template field can contain. Note the following:

 The maximum size of an alpha, binary, or user field is 99,999.

 The maximum size of an implied-decimal field is 28.

 Valid sizes for integer fields are 1, 2, 4 and 8.

The Enum data type is not supported by UI Toolkit. To use an enumerated data field with an
allow list or selection list or window, use the Enumerated field on the Validation tab. See
Enumerated on page 3-25 for more information.

Working with Fields
Defining Field Templates

Repository User’s Guide 10.3.3 (5/16) 3-41

 If the data type is date or time, the size is automatically set when you select a storage format
and cannot be modified.

 If the data type is Boolean or Enum, the size is automatically set to 4 and cannot be modified.

 If the data type is AutoSeq or AutoTime, the size is automatically set to 8 and cannot be
modified.

Precision. If the data type is implied-decimal, enter the number of characters to the right of the
decimal point. This value must be between 1 and 28, inclusive, and must be less than or equal to the
size of the field.

Dim1–4. If the template defines an array, enter the number of elements in each dimension. The
maximum number of dimensions is 4. The maximum number of elements per dimension is 999.
If the template doesn’t define an array, the Dim field displays 1.

Excluded by Language. This value determines whether a template field is available to the Synergy
compiler. Select this option if you do not want the template field to be available to the compiler.
Excluded by Language is cleared by default, which means the field will be included when using the
.INCLUDE compiler directive to reference the structure to which this field belongs, and will be
included in any definition files generated by the Generate Definition File utility. This feature is
useful when your repository contains overlay fields defined solely for the purpose of referencing
group elements from within ReportWriter.

Excluded by Toolkit. This value determines whether a template field is available to UI Toolkit.
Select this option if you do not want to be able to reference the template field from Toolkit.
Excluded by Toolkit is cleared by default, which means the field can be referenced by the Script
compiler, Composer, and the IB_FIELD subroutine.

Excluded by ReportWriter. This value determines whether a template field is available in
ReportWriter as a selectable field. Select this option if you do not want this template field to be
selectable in ReportWriter. Excluded by ReportWriter is cleared by default, which means the field
can be selected for inclusion in a report. This flag can also be honored when generating a system
catalog in xfODBC; see “Setting catalog generation options” in the “Preliminary Steps” chapter of
the xfODBC User’s Guide for details on including and omitting fields.

Excluded by Web. This value determines how the template field is treated by xfNetLink. The
Excluded by Web flag should be used only to control how fields in an overlay are handled. If this
field is not part of a structure that contains overlays, do not select this option. Select Excluded by
Web if you do not want this template field to be included in a Synergy JAR file assembly. Excluded
by Web is cleared by default, which means that all fields are included in the Synergy component.
For details on using this flag to control how overlays are handled, see “Passing Structures as
Parameters” in the “Preparing Your Synergy Server Code” chapter of the xfNetLink & xfServerPlus
User’s Guide.

Working with Fields
Defining Field Templates

3-42 Repository User’s Guide 10.3.3 (5/16)

Do not name link. ReportWriter can use name links you establish in Repository to access related
files. This field determines whether the template field is name linked to its parent (if one exists). By
default, Repository will use the name of the parent to generate name links. Select this field if you
want Repository to use the template field’s name when generating name links. (See also
“Generating a Cross-Reference File” on page 5-24.)

Template overrides. If the current template references a parent template, the Template overrides
section indicates the template attributes that are overridden. If these override fields are read-only,
select Edit Template Functions > Access Template Overrides to make them active. (See the
description of Parent template on page 3-38 for more information about template override flags.)

2. To define display, input, validation, or method information, or to add a long description for a
template, go to the desired tab or select the entry from the Edit Template Functions menu. Refer to
the following sections for instructions:

“Display information” on page 3-12
“Input information” on page 3-18
“Validation information” on page 3-22
“Method information” on page 3-26
“Assigning a long description to a field” on page 3-29 (Long Desc tab)

3. Exit the window to save the new template and return to the Template Definitions list.

Modifying a template
1. Highlight the template in the Template Definitions list and press ENTER. The Template Definition

window is displayed, with the tab that you viewed last on top.

2. Modify data as desired on any of the tabs. The template name cannot be modified.

If you modify the parent template name, all attributes of the new parent (including display, input,
validation, and method information, as well as the long description) are copied to the current
template, with the exception of any attributes that were overridden in the current template. See the
description of Parent template on page 3-38 for more information.

For details on completing the fields on each tab, refer to the relevant section:

“Defining basic template information” on page 3-37 (Template Definition tab)
“Display information” on page 3-12
“Input information” on page 3-18
“Validation information” on page 3-22
“Method information” on page 3-26
“Assigning a long description to a field” on page 3-29 (Long Desc tab)

3. Exit the window to save your changes and return to the Template Definitions list.

Working with Fields
Defining Field Templates

Repository User’s Guide 10.3.3 (5/16) 3-43

If the template that you’re modifying is assigned to one or more fields or templates, when you save
your changes you are prompted

Modifying template “NAME” will affect one or more template, field, and key definitions.
Are you sure you want to save your modifications?

The default response is No. If you press ENTER, the template modifications are ignored and you are
returned to the Template Definitions list. If you select Yes, the new template information is applied
to all fields and templates that refer to it. Repository also applies the changes to any fields that
reference any templates that in turn reference the template being modified.

Additionally, all keys that use the updated fields are updated (key size and key data type). The
record size of all affected structures is updated.

Deleting a template
You cannot delete a template that is assigned to a field or to another template.

1. Highlight the template in the Template Definitions list.

2. Select Template Functions > Delete Template.

3. At the prompt, select Yes to delete the template or No to cancel the deletion.

Any attribute of any field or template that overrides a template or parent template attribute is
not modified.

Working with Fields
Defining Enumerations

3-44 Repository User’s Guide 10.3.3 (5/16)

Defining Enumerations
An enumeration is a set of related values. It has a name and one or more members (the maximum is
999) associated with it. The members may have values assigned to them, or you can let the
compiler assign them. An enumeration defined in the repository can be referenced by a field or
template definition, .INCLUDEd in a source file, or referenced by the Synergy Method Catalog for
use with xfServerPlus and xfNetLink.

To display the Enumeration Definitions list, select Modify > Enumerations. For each enumeration,
the unique enumeration name and a description are displayed. The total number of enumerations in
your repository is displayed at the bottom of the list. (See figure 3-12.)

Defining a new enumeration and its members
You can define a new enumeration from scratch or by copying and modifying an existing
enumeration. If enumeration definitions already exist, new definitions are inserted below the
highlighted entry.

1. From the Enumeration Definitions list,

 To define an enumeration from scratch, select Enumeration Functions > Add Enumeration.

 To define an enumeration by copying, highlight the enumeration you want to copy, and then
select Enumeration Functions > Copy Enumeration. The enumeration description and all the
enumeration members and their values are copied.

The Enumeration Definition input window is displayed. (See figure 3-13.)

2. Enter or modify data in each field as instructed below.

Enumeration name. Enter a unique name for the enumeration. The enumeration name can have a
maximum of 30 characters and must begin with a letter. The remaining characters can be letters,
digits, underscores (_), or dollar signs ($).

Figure 3-12. The Enumeration List

Working with Fields
Defining Enumerations

Repository User’s Guide 10.3.3 (5/16) 3-45

Description. Enter a description for the enumeration, with a maximum of 40 characters. This
description displays on the Enumeration Definitions list.

3. Select Member Functions > Add Member to display the Member Definition dialog. Enter or modify
data in each field as instructed below:

Member name. Enter a name for the member. The name must be unique within the enumeration.
The member name can have a maximum of 30 characters and must begin with a letter. The
remaining characters can be letters, digits, underscores (_), or dollar signs ($).

Value. (optional) Enter a numeric value for the member. The value is optional; if not supplied, it
will be computed at compile time following the rules documented in ENUM in the “Synergy DBL
Statements” chapter of the Synergy DBL Language Reference Manual.

4. Exit the Member Definition window to save the member and return to the Enumeration Definition
window.

5. Add more members as necessary. New members are added below the member that is selected when
you choose the Add function; if you need to reorder members, see “Reordering enumeration
members” on page 3-46.

6. When you’re done adding members, exit the Enumeration Definition window to save your work.

Figure 3-13. Defining an enumeration.

Working with Fields
Defining Enumerations

3-46 Repository User’s Guide 10.3.3 (5/16)

Assigning a long description to an enumeration
You can assign an 1,800-character description to each enumeration. This enables you to store more
detailed information about the enumeration and its use.

1. In the Enumeration Definitions list, highlight the enumeration to which you want to assign a long
description.

2. Select Enumeration Functions > Edit Long Description.

3. Enter a long description.

4. Exit the window to save your changes.

Modifying an enumeration and its members
1. Highlight the enumeration in the Enumeration Definitions list and press ENTER.

2. Modify the description if desired; the enumeration name cannot be modified.

 To modify (or add) a value for an existing enumeration member, highlight the member and
press ENTER. (You cannot modify the member name; you must delete the existing member and
add a new one.)

 To reorder enumeration members, see “Reordering enumeration members”, below.

 To delete an enumeration member, highlight the member and select Member Functions >
Delete Member.

3. When you are done making modifications, exit the Enumeration Definitions window to save your
changes.

Reordering enumeration members
1. Highlight the enumeration member you want to move.

2. Select Member Functions > Reorder Members. The highlighted member is enclosed in square
brackets ([]).

3. Use the UP and DOWN ARROW keys to move the bracketed member to another location in the list.

4. Select Reorder Members again to exit move mode.

Deleting an enumeration
An enumeration that is referenced by a field or template cannot be deleted.

1. Highlight the enumeration in the Enumeration Definitions list.

2. Select Enumeration Functions > Delete Enumeration.

3. At the prompt, select Yes to delete the enumeration or No to cancel the deletion.

Working with Fields
Modifying a Field

Repository User’s Guide 10.3.3 (5/16) 3-47

Modifying a Field
1. From the Field Definitions list, highlight the field you want to modify and press ENTER. The Field

Definition window is displayed, with the tab that you viewed last on top.

2. Modify data as desired on any of the tabs. Note that if you modify the template name, all attributes
of the new template are copied to the field, with the exception of any attributes that were explicitly
overridden within the field. See the description of Template name on page 3-4 for more
information. For details on completing the fields on each tab, refer to the relevant section:

“Basic field information” on page 3-4 (Field Definition tab)
“Display information” on page 3-12
“Input information” on page 3-18
“Validation information” on page 3-22
“Method information” on page 3-26
“Assigning a long description to a field” on page 3-29 (Long Desc tab)

3. Exit the window to save your changes and return to the Field Definitions list.

When you exit, Repository validates the display, input, validation, and method information. If an
error exists, correct it and then exit the window again. The SIZE field below the list is updated to
reflect any changes made to the structure size.

If the field being modified has group members, but the Group field is not set, when you exit the
input window, you are prompted

Field “NAME” is a group. Clearing the “Group” field will delete all group members. Do
you want to continue?

If you select Yes, the group members are not saved with the field definition. If you select No, you
are returned to the Field Definition tab.

If the field you’re modifying is used as a key segment for the current structure, when you exit the
input window, the following message is displayed:

This field is defined as a key. All affected keys in the current structure are updated when
you save changes.
Are you sure you want to make modifications?

If the field being modified is used as an external key segment in another structure, when you exit
the input window, you are prompted

This field is defined as an external segment by another structure. All affected keys in all
external structures are updated when you save changes.
Are you sure you want to make modifications?

Modifying a field that is a key can affect not only the keys themselves but also any relations that use
those keys.

Working with Fields
Modifying a Field

3-48 Repository User’s Guide 10.3.3 (5/16)

If you answer Yes to either of the above prompts, the key size and key data type of all affected keys
are updated when you save your changes to the current structure. If you answer No, all of your
modifications are ignored.

Modifying group members
1. Highlight the group field in the Field Definitions list.

2. Select Field Functions > Edit Group Members. (You can also press ENTER to edit the group
definition, and then select Edit Field Functions > Edit Group Members while on the primary tab of
the input window.)

The Field Definitions list for the group is displayed. If this is an explicit group, you can add,
modify, reorder, or delete member definitions. If this is an implicit group, the list is read-only, and
you can only view member definitions. (See figure 3-14.)

The name of the group is displayed at the top of the list. The number of fields in the group and the
total number of fields in the structure are displayed at the bottom of the list.

The following rules apply to groups:

 A group must have at least one member.

 A field and a group (or two groups) with the same immediate parent cannot have the same
name.

 A field and a group (or two groups) with the same name, but different parents, is allowed.

 The size of a group must be equal to or larger than the size of its members.

 Fields within groups cannot be used as key segments, tag fields, or aliased fields. Only fields
(or groups) defined at the highest (structure) level can be used for these purposes. Overlay
fields that overlay group members can be defined at the highest level.

Figure 3-14. The Field Definitions list for a group.

Working with Fields
Modifying a Field

Repository User’s Guide 10.3.3 (5/16) 3-49

 Access to fields within groups by ReportWriter is only possible using overlay field definitions.
The Excluded by ReportWriter flag can be used to prevent the inclusion of a group or field in a
report.

 Access to fields within groups by Toolkit is possible if the field name is unique. A prefix may
be specified for all the members of a particular group to ensure field name uniqueness. The
Excluded by Toolkit flag can be used to prevent a group or field’s inclusion in a window
definition.

 An overlay specified on a field definition within a group must be relative to another field
within that same level.

 The Generate Cross-Reference utility only supports the name linking of fields at the highest
(structure) level.

 If you add, delete, or modify group members while modifying a group field and then abandon
your changes, only the group field’s changes are abandoned. Changes to the group members or
their attributes are not abandoned. If, however, you add, delete, or modify group members
while adding or copying a group field and then abandon your changes, all changes—including
those to the group members—will be abandoned.

3. To return to the previous Field Definitions list or Field Definition tab, press the Exit shortcut.

When you exit, if the total size of the members exceeds the size of the group field, an error message
is displayed and you are returned to the Field Definition tab of the group field. You can either
increase the size of the group field or edit the group members individually and modify their sizes.

Working with Fields
Deleting a Field

3-50 Repository User’s Guide 10.3.3 (5/16)

Deleting a Field
A field can be deleted only when all of the following conditions are true:

 The field is not used in a key definition for the current structure.

 The field is not used in a key definition for another structure.

 The field is not used in a tag definition for the current structure.

 The deletion does not invalidate an overlay specification.

1. Highlight the field definition in the Field Definitions list.

2. Select Field Functions > Delete Field.

3. At the prompt, select Yes to delete the field or No to cancel the deletion.

If the field you’re deleting defines a group, you are prompted

Field “NAME” is a group. Deleting it will delete all group members as well. Do you want
to continue?

Enter Yes to delete the field and all its members. Enter No to cancel the deletion.

4-1

4
4 Working with Files

Files Overview 4-2

How file definitions are used in Repository and how to display the File Definitions list.

Defining Files 4-3

How to define a new file definition, make changes to an existing file definition, and delete a file
definition.

Assigning Structures to Files 4-8

How to assign a structure to a file and how to disassociate a structure from a file.

Defining Keys 4-10

How to define, modify, and delete keys, as well as use literal and external key segments.

Defining Relations between Structures 4-18

How relations between structures are used, and how to define, modify, and delete a relation.

Working with Files
Files Overview

4-2 Repository User’s Guide 10.3.3 (5/16)

Files Overview
File definitions determine which files can be accessed through Repository and which structures can
be used to access them. To use Repository with xfODBC or ReportWriter, you’ll need to specify
which files contain your data and assign the structures you’ve defined to those files. You can define
up to 9,999 files; each file may have multiple structures (up to 200) assigned to it.

The File Definitions list
To display the File Definitions list, select Modify > Files. For each file, the following information is
displayed:

FILE NAME . The unique file definition name.

DESCRIPTION. A descriptive identifier for the file definition.

TYPE. The file type:

DBL DBL ISAM

ASC ASCII

REL relative

USE user defined

The total number of files in your repository is displayed at the bottom of the list. (See figure 4-1.)

Figure 4-1. The File Definitions list.

Working with Files
Defining Files

Repository User’s Guide 10.3.3 (5/16) 4-3

Defining Files
You can define a new file definition from scratch or by copying and modifying an existing file.

1. From the File Definitions list,

 To define a file from scratch, select File Functions > Add File.

 To define a file by copying, highlight the file you want to copy, and then select File Functions >
Copy File.

The File Definition input window is displayed.

2. Enter or modify data in each field as instructed below.

To continue our customer example from the previous sections of this chapter, we define the file that
contains our customer data. (See figure 4-2.) It’s a DBL ISAM file located in the directory assigned
to the DAT logical. The file is named customer.ism. We named the file definition CUSTOMER, just
like the structure we’re going to assign to it in “Assigning Structures to Files” on page 4-8.

Filename. Enter a unique file definition name. The file name can have a maximum of 30 characters
and must begin with a letter. The remaining characters can be letters, digits, underscores (_), or
dollar signs ($).

Figure 4-2. Defining a file.

Working with Files
Defining Files

4-4 Repository User’s Guide 10.3.3 (5/16)

File type. Select the file type you want to assign:

ASCII
DBL ISAM
RELATIVE
USER DEFINED

If a structure definition with the same name as your file exists, the file type defaults to that of the
structure.

In the example, the file type defaults to DBL ISAM, because the structure, which has the same name,
is type DBL ISAM.

Description. Enter a unique and meaningful description (up to 40 characters) for the file definition.
This description is available when Repository displays a list of files, and ReportWriter can use it,
along with the structure description, to identify your files.

Open filename. Enter the name of the actual data file, including the path specification. The
filename can have a maximum of 64 characters; however, the field allows you to enter only 40
characters. To enter a longer value, select Edit File Functions > Edit Entire Text.

To edit a filename that exceeds 40 characters, you must also use the Edit Entire Text option. (If you
edit it in the Open filename field, the portion that is not displayed will be lost. Similarly, deleting
the 40 characters that are displayed in the field will delete the entire filename.)

Repository enables you to “map” a filename to simulate multiple copies of the same file definition
with slightly different open filenames. For more information, see RPS_FILNAM_METHOD in the
“Customizing ReportWriter Routines” chapter of the ReportWriter User’s Guide.

Structure. This read-only field displays the name of the structure assigned to the file (if there’s
only one) or the number of assigned structures (if there are none or more than one). If this is a new
file, the Structure field contains the text “0 structures assigned”. It will be filled with a structure
name or a number of structures after you assign one or more structures to your file, as explained in
“Assigning Structures to Files” on page 4-8.

Record type. This field applies only to ISAM files. Select the format of the records in this file:

Fixed Fixed-length records. (default)

Variable Variable-length records.

Multiple Multiple fixed-length records.

If you try to modify the file type when structures have already been assigned to the file, an
error message is displayed when you try to save your changes. To modify a file definition’s
file type, you must first disassociate all structures from that definition. The file type of the file
definition and the file type of the structures assigned to it must match.

Working with Files
Defining Files

Repository User’s Guide 10.3.3 (5/16) 4-5

Page size. This field applies only to ISAM files. Select index block page size for this file:

1024 (default)
512
2048
4096
8192
16384
32768

Key density. Enter a value between 50 and 100, inclusive, to override the default key density
percentage used for all keys in the file. The default density is around 50%. This field applies only to
ISAM files. You can also override the density percentage for a specific key; see the description Key
density on page 4-13 for more information.

Addressing. This field applies only to ISAM files. Select the file addressing for this file:

32-bit (default)
40-bit

Size limit. Enter the maximum number of megabytes that the data file (.is1) is allowed to reach.
This field applies only to REV 6 or greater ISAM files.

Record limit. Enter the maximum number of records that the file is allowed to contain. This field
applies only to REV 6 or greater ISAM files.

Temporary. Select Temporary if you do not want this file to be a selectable file in ReportWriter.
If set, the file is considered “temporary” and you will not be able to select the file for inclusion in a
report generated by ReportWriter. The “temporary” flag can optionally be honored by xfODBC to
exclude tables attached to temporary files from the system catalog. For more information on how
xfODBC handles temporary files, see “Setting catalog generation options” in the “Preliminary
Steps” chapter of the xfODBC User’s Guide.

Compress: Select this option if the data in this file is compressed. This field applies only to ISAM
files.

Static RFA. Select this option if records in this file will retain the same RFA across WRITE
operations. This field applies only to ISAM files.

Stored GRFA. Select this option if the CRC-32 portion of an RFA is to be generated and stored to
each record header on each STORE or WRITE operation. This field applies only to ISAM files.

Track changes. Select this option to enable change tracking in this file. This field applies only to
REV 6 or greater ISAM files. Selecting Track changes also selects Terabyte.

No rollback. If you selected Track changes, indicate whether you want to prohibit rollbacks on this
file. This field applies only to REV 6 or greater ISAM files.

Terabyte. Select this option if this is a 48-bit terabyte file. This field applies only to ISAM files and
is selected automatically when Track changes is selected.

Working with Files
Defining Files

4-6 Repository User’s Guide 10.3.3 (5/16)

Network encrypt. Select this option to indicate that clients that access this file must use encryption.
This field applies only to ISAM files.

Portable ints. This field allows for the definition of one or more non-key portable integer data
specifications that can be passed as an argument to the ISAMC subroutine. Non-key integer data
specifications apply only to ISAM files. Use this syntax:

I=pos:len[,I=pos:len][,...]

where pos is the starting position of non-key portable integer data and len is its length in bytes (1, 2,
4, or 8). No validation is performed on the contents of this field.

The maximum string length is 120 characters, but the Portable ints field allows you to enter only a
40-character string. To enter or edit a longer string, select Edit File Functions > Edit Entire Text.
(Note: If you edit a string longer than 40 characters in the Portable ints field, the portion that is not
displayed will be lost. Deleting the 40 characters that are displayed in the field will delete the entire
string.)

File text. This field allows for the specification of text to be added to the header of the file and
space to be allocated for user-defined text. This option applies only to REV 6 or greater ISAM files.
There are three options for the syntax:

text_size[K]
"text_string"
text_size[K]:"text_string"

where text_size is the amount of space to allocate in bytes (rounded to the nearest kilobyte) for
user-defined text, and text_string is a text string to add to the file header. No validation is performed
on the contents of this field.

The maximum string length is 1800 characters, but the File text field allows you to enter only a
40-character string. To enter or edit a longer string, use the Edit Entire Text option, as described
above for the Portable ints field.

3. Exit the window to save the new file definition.

Your next step is to assign a structure to your file, if you haven’t done so already. Follow the
instructions in “Assigning Structures to Files” on page 4-8.

You can assign structures to your file or disassociate assigned structures at this point,
without exiting the File Definition input window. See “Assigning Structures to Files” on
page 4-8 for more information.

Working with Files
Defining Files

Repository User’s Guide 10.3.3 (5/16) 4-7

Assigning a long description to a file definition
You can assign an 1,800-character description to the file definition. A long description is a place to
store more detailed information about your file definition and its use.

1. From the File Definitions list, highlight the file to which you want to assign a long description.

2. Select File Functions > Edit Long Description.

3. Enter your long description.

4. Exit the window to save your changes.

Assigning a user text string to a file definition
You can associate a 60-character user-defined text string with the file definition to store additional
information you want to access at runtime with the Repository subroutine library.

1. In the File Definitions list, highlight the file to which you want to assign a user-defined text string.

2. Select File Functions > Edit User Text.

3. Enter your user text string.

4. Exit the window to save your changes.

Modifying a file definition
1. From the File Definitions list, highlight the file definition you want to modify and press ENTER.

2. In the File Definition window, modify data as desired. The file definition name cannot be modified.
For assistance in completing the fields, see step 2 under “Defining Files” on page 4-3.

3. Exit the window to save your changes.

Deleting a file definition
1. Highlight the file in the File Definitions list.

2. Select File Functions > Delete File.

3. At the prompt, select Yes to delete the file definition or No to cancel the deletion.

You can assign structures to your file at this point (or disassociate assigned structures),
without exiting the File Definition input window. See “Assigning Structures to Files” on
page 4-8 for more information.

Working with Files
Assigning Structures to Files

4-8 Repository User’s Guide 10.3.3 (5/16)

Assigning Structures to Files
When you assign a structure to a file, you are declaring, “This data file uses this structure.” You can
assign more than one structure to a file; the maximum that can be assigned is 200. A given structure
can be assigned to one or more files.

The file type of the structure must match the file type of the file definition that it is assigned to. The
structure must have at least one field defined. In addition, the primary keys of all structures
assigned to the same file must match. (The primary key is assumed to be the first key in the list and
must be an access key.) Specifically, the following key information must match:

 Key size

 Sort order

 Dups allowed flag

 Key data type

 Number of segments

 Type, position, length, and order of each segment

See “Defining Keys” on page 4-10 for more information.

Assigning a structure to a file
1. While defining or modifying a file definition or while the filename is highlighted in the File

Definitions list, select File Functions > Assign Structures. You can also click the Assign button in
the File Definition window while defining or modifying a file definition.

The Assigned Structures list displays the names of any structures currently assigned to that file.

2. Select Structure Functions > Add Structure.

3. Complete the fields in the Assigned Structure window as instructed below:

Structure name. Enter the name of a structure to assign to the file. To display a list of available
structures whose file type matches that of the file definition, select Structure Functions > List
Selections and then select the structure you want to assign to the file.

ODBC table name. Enter the table name to use for ODBC access when using xfODBC. If
specified, the ODBC table name will be used as the name of the generated table for this particular
file/structure combination. You can use this feature to distinguish table names when the same
structure is assigned to more than one file, or you can use it to provide more descriptive names in
any situation. The table name can have a maximum of 30 characters and must begin with a letter.
The remaining characters can be letters, digits, underscores (_), or dollar signs ($).

Working with Files
Assigning Structures to Files

Repository User’s Guide 10.3.3 (5/16) 4-9

4. Exit the window to add the structure to the list in the Assigned Structures window.

If the primary key definition doesn’t match other assigned structures, you are prompted

Structure’s primary key does not match those of other assigned structures.

If you get this message, press ENTER, and select another structure name.

5. After you’ve assigned a structure, you can add other structures to the list or exit the window to
return to the File Definitions list.

If you were defining or modifying a file definition when you selected Assign Structures, when you
return to that input window, the Structure field contains either the name of the assigned structure (if
only one is assigned to this file) or a message stating the number of structures assigned.

Modifying an assigned structure
You can modify only the ODBC table name.

1. From the Assigned Structure list, highlight the structure you want to modify and press ENTER.

2. In the Assigned Structures window, modify the ODBC table name by typing over it and then press
ENTER.

3. Exit the window to save your changes.

Disassociating a structure from a file
1. Select File Functions > Assign Structures while defining or modifying a file definition or while the

filename is highlighted in the File Definitions list.

2. In the Assigned Structures list, highlight the structure you want to disassociate.

3. Select Structure Functions > Delete Structure.

4. At the prompt, select Yes to disassociate the structure and remove it from the list or No to cancel the
deletion.

Working with Files
Defining Keys

4-10 Repository User’s Guide 10.3.3 (5/16)

Defining Keys
Key definitions are associated with each structure. You can define two types of keys: access and
foreign.

 Access keys represent true keys in the data file and are used to specify relationships between
files.

 Foreign keys are also used to specify relationships between files, but they don’t have to be true
keys in the data file.

The order of your access keys determines the key of reference used by xfODBC and ReportWriter
to access the file (unless you define an explicit key of reference). The maximum number of keys
that can be defined within one structure is 99.

A relative file can have only one access key: the record number. When you create a structure whose
file type is relative, Repository automatically creates an access key for you. Its name is
RECORD_NUMBER, and it is ascending, allows no duplicates, and has one segment of type R.
You can create additional foreign keys or delete the access key that Repository created for you;
however, only one access key can exist for a relative file, and it must have the attributes described
above.

The Key Definition list
To display the Key Definitions list,

1. In the Structure Definitions list, highlight the structure for which you want to define a key.

2. Select Structure Functions > Edit Attributes.

3. Select Attributes > Keys.

The Key Definitions list displays the following information for each key in the selected structure.
The total number of keys for this structure is displayed at the bottom of the list. (See figure 4-3.)

KEY NAME. The unique key name.

TYPE. A for an access key or F for a foreign key.

ORDER. A for ascending or D for descending (for access keys only).

DUPS. Y if duplicates are allowed or N if they are not (for access keys only).

SEGMENTS. A list of segment types in the key.

SIZE. The size of the key.

If you’re using RMS indexed files, you may need to specify a key of reference greater than
99. If so, you can use the key-of-reference attribute to explicitly specify the key of reference
to be used.

Working with Files
Defining Keys

Repository User’s Guide 10.3.3 (5/16) 4-11

Reordering keys in the Key Definitions list
1. Highlight the key you want to move.

2. Select Key Functions > Reorder Keys. The highlighted key is enclosed in square brackets ([]).

3. Use the UP and DOWN ARROW keys to move the bracketed key to another location in the list.

4. Select Reorder Keys again to exit move mode. The key is inserted at the new location.

Repository assumes that the first key in the list is the primary key. Access keys must all remain at
the top of the list, followed by the foreign keys.

Defining a new key
You can define a new key from scratch or by copying and modifying an existing one. If key
definitions already exist, new definitions are inserted below the highlighted entry.

1. From the Key Definitions list,

 To define a key from scratch, select Key Functions > Add Key.

 To define a key by copying, highlight the key you want to copy, and then select Key
Functions > Copy Key.

The Key Definition input window is displayed.

2. Enter or modify data in each field as instructed below.

Key name. Enter a unique key name. The key name is used to specify the key when you define
relations. The key name must be unique within the current structure. The key name can have a
maximum of 30 characters and must begin with a letter. The remaining characters can be letters,
digits, underscores (_), or dollar signs ($).

Figure 4-3. The Key Definitions list.

Working with Files
Defining Keys

4-12 Repository User’s Guide 10.3.3 (5/16)

Description. Enter a more descriptive identifier for the key with a maximum of 40 characters.

Key type. Select the key type:

Access Your key is a true key in the data file. (default)

Foreign Your key is not a true key.

If you are defining both access keys and foreign keys, the access keys must be defined first,
followed by the foreign keys. The order of the access keys determines the key of reference used by
xfODBC and ReportWriter to access the file, unless you define an explicit key of reference. (See
the description of Key of ref on page 4-13.)

The following eleven fields apply to access keys only. If you select Foreign in the Key type field,
these fields are disabled, and the cursor moves to the first segment definition.

Sort order. Choose the option that defines how the key field data is stored: Asc (ascending; the
default) or Desc (descending).

Dups allowed. Set this field to indicate that the key field allows duplicates.

Insert at. If you set Dups allowed, specify Front or End to indicate where records with duplicate
keys are inserted relative to other records containing the same key value. This field applies only to
access keys.

Figure 4-4. Defining a key.

Working with Files
Defining Keys

Repository User’s Guide 10.3.3 (5/16) 4-13

Modifiable. Set this field to indicate that the key is modifiable. This field applies only to access
keys other than the primary key (assumed to be the first key in the list).

Null key. This field applies only to access keys other than the primary key (assumed to be the first
key in the list). Select the null key type:

No Not a null key (default)

Replicating Replicating null key

Non-replicating Non-replicating null key

Short Short null key

Null value. If you selected Replicating or Non-replicating for Null key, you can optionally
specify the null key value. If the null key value contains spaces, you must enclose the string in
quotation marks. The default null key value is a space.

The Null value can have a maximum length of 255 characters; however, the field allows you to
enter only a 20-character string. To enter a longer string, select Edit Key Functions > Edit Entire
Text.

To edit a string that exceeds 20 characters, you must also use the Edit Entire Text option. (If you
edit it in the Null value field, the portion that is not displayed will be lost. Similarly, deleting the 20
characters that are displayed in the field will delete the entire string.)

Key of ref. By default, the order of the access keys determines the key of reference used by
xfODBC and ReportWriter to access the file. For example, the first access key is key of reference 0,
the second access key is key of reference 1, and so on. Use the Key of ref field to explicitly specify
a key of reference that differs from the default.

This field can also be used to specify a key of reference greater than 99 when using RMS
indexed files.

Key density. If you want to override the key density (defined at the file level) for this specific key,
enter a number between 50 and 100 that represents the density percentage for the key. Density
represents the percentage that each index block is filled. If unspecified, the density for this key will
be the density specified for the file.

Compress index. Set this option to indicate that the key’s index is compressed. Only RMS indexed
files use this option. Compress index applies only to access keys.

Compress record. Set this option to indicate that the record within the data is compressed. Only
RMS indexed files use this option. Compress record applies only to access keys.

Compress key. Set this option to indicate that the key within the data is compressed. Only RMS
indexed files use this option. Compress key applies only to access keys.

Excluded by ODBC. This value determines whether a key is included by xfODBC in the system
catalog. Set this field if you want this key to be excluded from the system catalog, which prevents
xfODBC from attempting to use it for optimization. Excluded by ODBC is not set by default,

Working with Files
Defining Keys

4-14 Repository User’s Guide 10.3.3 (5/16)

which means the key will be used for optimization, as deemed appropriate by xfODBC, when
generating a system catalog. For more information on xfODBC optimization, see “Optimizing with
Keys” in the “Optimizing Data Access” chapter of the xfODBC User’s Guide.

Seg type. A key must contain at least one segment definition. A selection window with a list of the
valid segment types is displayed for each of the eight Seg type fields at the bottom of the window.
Select the segment type you want to use for the first key segment:

F (Field) Defines a field in the current structure as a segment.

L (Literal) Defines a literal as a segment, enabling you to append a constant to the
beginning or end of a key or embed a constant within a key.

E (External) Defines a field in another structure as a segment.

<blank> Clears the segment type.

Only foreign keys can contain literal or external segment types. See “Using literal key segments”
on page 4-15 and “Using external key segments” on page 4-16 for more information.

 If you select segment type F (field), enter a field name from the current structure in the Field
name or Literal column. Select Edit Key Functions > List Selections to display a list of
available fields.

 If the field is an arrayed field, Repository uses only the first element of that array. If you
want to specify an element other than the first, define an overlay field that overlays the
desired element and flag the field as excluded by ReportWriter.

 If the field is a group, you cannot select fields within it, but you can define an overlay field
to overlay the group members and then use the overlay field as the key.

Type: This field defines whether the data type for this specific key segment overrides the data
type for the key. When a key is created, Repository assigns it a default key data type. If all
segments have the same data type, that type becomes the key data type. If the segments have
mixed data types, the key data type is set to alpha. You can override the key data type for one or
more segments by specifying a value in the Type field.

 If the field is alpha, its segment data type can be set to N for no case (case-insensitive)
alpha.

 If the field is integer, its segment data type can be set to S for sequence, T for timestamp,
C for create timestamp, or U for unsigned integer.

 All fields can be set to A for alpha.

 User-defined fields can be set to any type.

Set Type to S, T, or C to define an autokey. Autokeys are keys that are filled in by Synergy
DBMS with the appropriate values. They can contain only one segment, consisting of an
8-byte field. Autokeys cannot be null, modifiable, or allow duplicates. See “Key type” in the
“Synergy DBMS” chapter of Synergy Tools for more information on autokeys.

Working with Files
Defining Keys

Repository User’s Guide 10.3.3 (5/16) 4-15

Order: The default key sort order is defined in the Sort order field. To override the sort order
for a specific key segment, select A for ascending or D for descending. The default key
segment order is unspecified, which means it defaults to the sort order of the key.

 If you select segment type L (literal), enter a literal value in the Field name or Literal column.
The maximum size of a literal is 30. If you don’t enter a value, Repository assumes a literal
segment consisting of 30 blanks. If you want a literal segment value to have trailing blanks,
enclose the literal in double or single quotation marks (“ ” or ‘ ’).

 If you select segment type E (external), enter a structure name in the Structure name column
and a field name in the Field name or Literal column. The field name must belong to the
structure, and the structure cannot be the current one. Select Edit Key Functions > List
Selections to display a list of available field or structure names.

If the total size of a key’s segments exceeds 255, the size is set to 255. ReportWriter uses this size
when building the key for data file access.

When a key is created, Repository assigns it a data type. ReportWriter uses this key data type when
accessing related data in other files. (See the description of the Type field above for more
information.) When keys are used in relations, we recommend that they have the same key data
type and size, but this is not required.

3. Exit the window to save the new key definition.

Using literal key segments
Literal key segments enable you to establish a relationship between two files where part of the key
data is constant.

Let’s assume the COMPANY_ID field in file B is a combination of a four-digit CLIENT_ID from
file A and a two-digit COMPANY_CODE. Let’s also assume that for a particular user, the company
code will always be 01 and is therefore not stored in any file. You can create a key for file A that is
composed of a literal segment whose value is 01 and a field segment using the CLIENT_ID field.
You would then use this key to establish a relationship to the COMPANY_ID field in file B.

You must pad literal key segments with blanks to reach the desired length if you want exact key
matches. For example, if your “from” key consists of an a4 field and the literal “ABC,” and your
“to” key consists of an a4 field and an a6 field, you must pad the literal with three blanks
(“ABC ”) to do an exact match; otherwise, ReportWriter will do a partial key match on seven
characters.

Working with Files
Defining Keys

4-16 Repository User’s Guide 10.3.3 (5/16)

Using external key segments
Repository permits a special kind of relationship between files called an external relation. An
external relation involves three or more files, where one file is accessed by a key composed of
segments from the remaining files. For example, the item type from one file (file A), along with the
item number from a second file (file B), can be used to access the item ID in a third file (file C).

The following example describes how to define the external relation defined above. (Assume that
structure A is assigned to file A, and so forth.) We’ll assume the following fields are in structures A,
B, and C:

Structure A

A_ITMTYP ,a2 ; Item type
A_TRANNO ,d5 ; Transaction #

Structure B

B_ITMNO ,d5 ; Item #
B_TRANNO ,d5 ; Transaction #

Structure C

C_ITMID ,a7 ; Item ID

Now you would do the following:

1. Establish a relationship between file A and file B. This should be a one-to-one relationship. (Each
record in file A should correspond to only one record in file B.) To do this, define a key for each
structure, and define the relationship in structure A as follows:

Structure B

Define the access key B_TRANKEY using field segment B_TRANNO.

Structure A

Define the access key A_TRANKEY using field segment A_TRANNO.

Define a relation using key A_TRANKEY related to key B_TRANKEY in structure B.

2. Define a key for structure A that contains the external key segment (the external key segment refers
to a field in file B).

Structure A

Define the foreign key A_ITMKEY using field segment A_ITMTYP and external segment
B_ITMNO from structure B.

3. Define a key for structure C.

Structure C

Define the access key C_ITMKEY using field segment C_ITMID.

Working with Files
Defining Keys

Repository User’s Guide 10.3.3 (5/16) 4-17

4. Define a relation (using the key containing the external segment) from file A to file C.

Structure A

Define a relation using key A_ITMKEY related to key C_ITMKEY in structure C.

See “Using external key segments” in the “Miscellaneous ReportWriter Information” chapter of the
ReportWriter User’s Guide for a discussion of how this relationship appears in ReportWriter.

Modifying a key
1. From the Key Definitions list, highlight the key you want to modify and press ENTER.

2. In the Definition window, modify data as desired. For detailed information on the fields, see step 2
under “Defining a new key” on page 4-11. The key name cannot be modified.

Before you modify segment definitions in the lower portion of the input window, you should check
whether any relations use this key. Changing segment definitions might change the key data type,
which will affect relations that use the key. We recommend that related keys have the same key data
type and size, but to give Repository more flexibility, this is not required.

3. Exit the window to save your changes.

Deleting a key
You can delete a key only when both of the following conditions are true:

 The key is not used in a relation defined by the current structure.

 The key is not used in a relation defined by another structure.

1. Highlight the key in the Key Definitions list.

2. Select Key Functions > Delete Key.

3. At the prompt, select Yes to delete the key or No to cancel the deletion.

Working with Files
Defining Relations between Structures

4-18 Repository User’s Guide 10.3.3 (5/16)

Defining Relations between Structures
Relations can be associated with each structure in a file. Relations enable you to link the keys of
one structure with the keys of other structures. A maximum of 99 relations can be defined for a
structure.

Defining relations enables xfODBC and ReportWriter to access information in related structures.
For example, you might relate a customer ID key in a sales transaction file with a customer ID key
in a customer file. In xfODBC, you can create SQL statements that retrieve transaction information
and associated customer information. Given the same scenario, in ReportWriter the additional
information about the customer is automatically accessed when you create a sales transaction
report.

In order for ReportWriter to be able to cross-reference data between files, you must create relations
between structures. (For information about how ReportWriter can access related files without
explicit relationships being defined in the repository, see “Generating a Cross-Reference File” on
page 5-24.)

The Relation Definitions list
To display the Relation Definitions list,

1. In the Structure Definitions list, highlight the structure for which you want to define a relation.

2. Select Structure Functions > Edit Attributes.

3. Select Attributes > Relations.

The Relation Definitions list displays the following information about relations for the current
structure. (See figure 4-5.)

NAME. The unique relation name.

FROM KEY. The name of the key to use in the current structure.

TO STRUCTURE. The name of the structure to which the current structure is related.

TO KEY. The name of the key related to in the “to” structure.

The total number of relations for this structure is displayed at the bottom of the list.

Working with Files
Defining Relations between Structures

Repository User’s Guide 10.3.3 (5/16) 4-19

Reordering relations in the Relation Definitions list
1. Highlight the relation you want to move.

2. Select Relation Functions > Reorder Relations. The highlighted relation is now enclosed in square
brackets ([]).

3. Use the up and down arrow keys to move the bracketed relation to another location in the list.

4. Select Reorder Relations again to exit move mode. The relation is inserted at the new location.

Defining a new relation
You can define a new relation from scratch or by copying and modifying an existing relation.
If relations already exist, new relations are inserted below the highlighted entry.

1. From the Relation Definitions list,

 To define a relation from scratch, select Relation Functions > Add Relation.

 To define a relation by copying, highlight the relation you want to copy, and then select
Relation Functions > Copy Relation.

The Relation Definition input window is displayed.

Figure 4-5. The Relation Definitions list.

Working with Files
Defining Relations between Structures

4-20 Repository User’s Guide 10.3.3 (5/16)

2. Enter or modify data in each field as instructed below.

The example shown in figure 4-6 relates the customer ID key in the customer file to the customer ID
key in the order file, which enables ReportWriter to cross-reference order representative data
between the two files.

Relation name. The relation name is the way the relation is identified when related files are
selected in ReportWriter. A relation must have a unique name within the current structure, and it
must be numeric. A default relation name is displayed; change it if desired.

From structure. This read-only field displays the name of the current structure.

From key. Enter the name of the key you want to relate. To display a list of the keys for the current
structure, select Edit Relation Functions > List Selections. To examine a key in more detail, see
“Examining a key” on page 4-21.

To structure. Enter the name of the structure to which you want to relate the first structure. To
display a list of available structures, select Edit Relation Functions > List Selections.

To key. Enter the name of an access key to which to relate the “from” key. To display a list of access
keys in the selected “to” structure, select Edit Relation Functions > List Selections. To examine a
key in more detail, see “Examining a key” on page 4-21.

We recommend that related keys have the same key data type and size, but to add more flexibility to
relationships, Repository does not require this.

3. Exit the window to save the new relation.

If you want to examine a relation in more detail, see “Examining a relation in detail” on page 4-21.

Figure 4-6. Defining a relation.

Working with Files
Defining Relations between Structures

Repository User’s Guide 10.3.3 (5/16) 4-21

Examining a key
When you’re entering a “from” or “to” key in the Relation Definition input window, you can view
more detailed information about the key you’re thinking of using.

1. With your cursor in the From key or To key field, select Edit Relation Functions > List Selections.
The list of Available Keys is displayed.

2. Highlight the key whose segments you’d like to view.

3. Select Key Functions > Examine Key to display the key name and its segments. (See figure 4-7.)

If the key allows duplicates, the word “Dups” is displayed to the right of the key name. The
segment information includes the type and size of each key segment: F (Field), L (Literal),
E (External), R (Record number).

If the segment is a field or external segment, the field name is specified. To display the field
description instead of the field name, select Examine Key > Toggle View. If the segment is a literal,
the literal string is displayed.

Examining a relation in detail
1. From the Relation Definitions list, highlight the relation you’d like to view.

You can also examine a relation from the Relation Definition input window while you’re defining
or modifying a relation.

2. Select Relation Functions > Examine Relation. This window describes the key segments that are
used in the current relation, and contains the names of the “from” structure, the “from” key, the “to”
structure, and the “to” key. (See figure 4-8.)

If a key allows duplicates, “Dups” is displayed to the right of the key name. The segment
information includes the type and size of each key segment: F (Field), L (Literal), E (External),
R (Record number).

Figure 4-7. Examining a key.

Working with Files
Defining Relations between Structures

4-22 Repository User’s Guide 10.3.3 (5/16)

If the segment is a field or external segment, the field name is specified. To display the field
description instead of the field name, select Examine Relation > Toggle View. If the segment is a
literal, the literal string is displayed.

3. Exit the window.

Modifying a relation
1. From the Relation Definitions list, highlight the relation you want to modify and press ENTER.

2. In the Relation Definition window, modify data as desired. For details on the fields, see step 2 under
“Defining a new relation” on page 4-19. The relation name and the “from” structure cannot be
changed.

3. Exit the window to save your changes.

Deleting a relation
1. Highlight the relation in the Relation Definitions list.

2. Select Relation Functions > Delete Relation.

3. At the prompt, select Yes to delete the specified relation or No to cancel the deletion.

Figure 4-8. Examining a relation.

5-1

5
Utility Functions

Generating a Definition File 5-2

Generate a definition file from a Repository structure.

Printing Repository Definitions 5-5

Generate a listing of your repository definitions to a file.

Verifying Your Repository 5-10

Verify the integrity of your repository.

Validating Your Repository 5-12

Validate all definitions in your repository.

Generating a Repository Schema 5-13

Generate a Synergy Data Language description of your repository to a file.

Loading a Repository Schema 5-19

Convert the contents of a Synergy Data Language file into a new repository.

Creating a New Repository 5-22

Create and initialize a new repository.

Setting the Current Repository 5-23

Change the current repository.

Generating a Cross-Reference File 5-24

Generate a file that can be used by ReportWriter to access related file/structure combinations.

Comparing a Repository to ISAM Files 5-27

Use the fcompare utility to compare repository definitions to the ISAM definitions they represent.

Generating and Loading Schema from the Command Line 5-28

Use the rpsutl utility to generate and load repository schema.

Utility Functions
Generating a Definition File

5-2 Repository User’s Guide 10.3.3 (5/16)

Generating a Definition File
The Generate Definition File utility generates a definition file from a repository structure. This file
can be .INCLUDEd in your program, and so is often referred to as an “.INCLUDE file”. You can
also .INCLUDE directly from the repository; see .INCLUDE in the “Preprocessor and Compiler
Directives” chapter of the Synergy DBL Language Reference Manual for more information.

When generating a definition file, fields are generated by name, with the exception of fields that
have been designated as “Excluded by Language”, which are generated as unnamed fields of a
given size. (Excluded overlay fields are not generated.) See Excluded by Language on page 3-10.

If any group definitions include a member prefix specification and the “Use by compiler” flag is
set, the prefix is included when the members of that group are generated. See Use by compiler on
page 3-10.

1. Select Utilities > Generate Definition File. The default repository filenames displayed are
determined by the logic discussed in “Determining the repository files used” on page 1-18.

2. Enter data in each field as instructed below.

Repository main file. Enter or select the name of the repository main file from which a definition
file should be generated.

Repository text file. Enter or select the name of the repository text file from which a definition file
should be generated.

Figure 5-1. Generating a definition file.

Utility Functions
Generating a Definition File

Repository User’s Guide 10.3.3 (5/16) 5-3

Structure name. Enter the name of the structure for which you want to generate a definition. The
file will contain only the definition of this structure, but you can generate definition files for other
structures and append them to create a single file containing multiple definitions; see step 3 below.

INCLUDE file. Enter a name for the .INCLUDE file into which the definition will be generated.
If you don’t specify an extension, it defaults to .def. By default, the file is created in the current
working directory.

Header type. Select the header type for the record definition:

Record Definition is a local record or global data structure. (default)

Common Definition is a shared data record.

None Definition has no header.

If you select None, the cursor moves to the Prefix string field.

Header name. If you selected Record or Common for the header type and want the definition to
be named, enter the name here.

Overlay. Set Overlay to indicate that the definition is to be a record overlay. When the definition is
created, “,X” will follow the header. The header type must be Record or Common if you specify
an overlay.

Prefix string. Enter a string that will prefix each field definition. You can use different prefix
strings to distinguish fields from the same structure in different definition files (since Synergy DBL
does not permit two fields to have the same name).

Record offsets. Set Record offsets to include record offsets in the field comments. By default,
Record offsets is set.

GLOBAL statement. Set this option to precede the record definition with the Synergy DBL
GLOBAL statement.

DATA, SECTION, INIT. If GLOBAL statement is set, you can include up to three optional keywords
in the GLOBAL statement. The DATA and SECTION keywords do not affect the function of the
GLOBAL statement, although you might want to include them for clarity. The INIT keyword
enables you to declare initial values within the global data area.

Here’s how the optional keywords will appear in the GLOBAL statement:

GLOBAL [DATA] [SECTION] name [,INIT]

GLOBAL name. If GLOBAL statement is set, enter a name to identify the global section.

ENDGLOBAL statement. Set this option to follow the record definition with the ENDGLOBAL
statement. If GLOBAL statement is set, this option is selected automatically, but you can clear the
check box if desired. For example, you would want to clear this field if you were appending a
record definition to an existing file.

Utility Functions
Generating a Definition File

5-4 Repository User’s Guide 10.3.3 (5/16)

3. Exit the window to generate the definition.

If the filename that you specified in the INCLUDE file field already exists, you are prompted

Cannot create file filename. File already exists. Select “No” to append output to the
existing file; “Yes” to delete it.

Select Yes to overwrite the existing file with the new definition. Select No to append the definition
to the existing file. Select Cancel to return to the INCLUDE file field and enter another filename.
When processing is complete, you are returned to the Utilities menu.

Examples
The file below is an example of a definition file that was generated by Repository.

; Structure : CUSTOMER
; File Type : DBL ISAM
; Creation Date : 24-FEB-2009, 10:00:56
; Description : Customer master file
; Record Size : 146
; # of Files : 1
; # of Fields : 10
; # of Keys : 2
; # of Relations : 2

GLOBAL DATA SECTION cust

record cust_master
 CM_CUST_ID ,D6 ; (1,6) Customer ID
 CM_CUST_NAME ,A30 ; (7,36) Cust name
 CM_SALES_REP ,D3 ; (37,39) Sales rep ID
 CM_CUST_CONT ,A25 ; (40,64) Main contact
 CM_ADDRESS ,A40 ; (65,104) Address
 CM_CITY ,A15 ; (105,119) City
 CM_STATE ,A2 ; (120,121) State
 CM_ZIP ,A10 ; (122,131) Zip code
 CM_MAILADR ,A67 @CM_ADDRESS ; (65,131) Mail address
 CM_PHONE ,A15 ; (132,146) Telephone #
ENDGLOBAL

Loading fields from a definition file
In addition to generating a definition file from a defined structure, Repository also enables you to
do the reverse: generate repository entries from a definition file. See “Loading Fields from a
Definition File” on page 3-30.

All date and time fields are stored as decimal and are indicated accordingly in the
generated file. (For example, a DT8 field is generated as D8 in the definition file.) All user
type fields (for example, U6) are generated as alpha (for example, A6).

Utility Functions
Printing Repository Definitions

Repository User’s Guide 10.3.3 (5/16) 5-5

Printing Repository Definitions
The Print Repository Definitions utility generates a listing of your repository definitions to a file.

1. Select Utilities > Print Repository Definitions. The default repository filenames displayed are
determined by the logic discussed in “Determining the repository files used” on page 1-18.

2. Enter data in each field as instructed below.

Repository main file. Enter or select the name of the repository main file to be printed.

Repository text file. Enter or select the name of the repository text file to be printed.

Filename. Enter the name of the file into which the contents of the repository should be printed.
If you don’t specify an extension, it defaults to .ddf. By default, the file is created in the current
working directory.

Figure 5-2. Printing your repository to a file.

Utility Functions
Printing Repository Definitions

5-6 Repository User’s Guide 10.3.3 (5/16)

Option. Indicate whether you want to print all definitions in the repository or specific (selected)
definitions. Selecting Specific enables you to specify individual definitions by name. You can print
a file, structure, template, format, enumeration, alias, or any combination thereof.

File. If you selected Specific in the Option field, enter the name of a file definition to print.

Structure. If you selected Specific in the Option field, enter the name of a structure definition to
print.

Fields, Keys, Relations, Formats. If you selected All in the Option field or selected Specific and
specified a structure name, indicate the level of detail (List or Detail) you want to print for field,
key, relation, and structure-specific format definitions.

Select List to print definition information in a format similar to the way Repository lists data.
For example:

FIELD NAME TYPE SIZE PREC DIMENSION OVERLAY? GROUP?
---------- ---- ---- ---- --------- -------- ------

1 CCKEY A 8
2 CCCOMP A 2 Y
3 CCCLNT A 6 Y
4 CCNAME A 40
5 CCADD1 A 40
6 CCCITY A 25
7 CCEST DT 8
8 CCBFLDR D 4
9 CCUSRC A 5 [5]
10 CCUSRI A 40 [5]

Select Detail to print one or more lines of information for that definition type, describing each
definition attribute. For example:

Field CCKEY Type ALPHA Size 8
 Description "Primary key"

Template. If you selected Specific in the Option field, enter the name of a template definition to
print.

Format. If you selected Specific in the Option field, enter the name of a format definition to print.

Enumeration. If you selected Specific in the Option field, enter the name of an enumeration
definition to print.

Alias. If you selected Specific in the Option field, enter the name of an alias definition to print.

TIP
When selecting specific definitions to print, you can enter a partial name combined with
wildcard characters (* or ?) to specify a set of definitions.

For the File, Structure, Template, Format, Enumeration, and Alias fields, you can select
from a list of definitions by selecting Utility Functions > List Selections.

Utility Functions
Printing Repository Definitions

Repository User’s Guide 10.3.3 (5/16) 5-7

3. Exit the window to print the repository definitions to the specified file.

If the file already exists, you are prompted

Cannot create file filename. File already exists. Select “No” to append output to the
existing file; “Yes” to delete it.

Select Yes to overwrite the file with the new definitions. Select No to append the definitions to the
existing file. Select Cancel to return to the Filename field and enter another filename.

As the repository is being printed, status messages are displayed in the lower-left corner of the
window. When processing is complete, a message displays the number of each type of definition
printed.

4. To return to the Utilities menu, press ENTER.

Examples
This example shows sample output from the Print Repository Definitions utility.

; "PRINT REPOSITORY OUTPUT"
;
; REPOSITORY : RPSDAT:rpsmain
; : RPSDAT:rpstext
; : Version 9.1
;
; GENERATED : 06-AUG-2009, 13:20:17
; : Version 9.1.5

File PRODUCT DBL ISAM "DAT:product.ism"
 Description "Product management file"
 Assigned structures : 1
 Structure PRODUCT DBL ISAM
 Description "Product management"

Structure PRODUCT DBL ISAM
 Description "Product management"
 Files assigned to : 1
 File PRODUCT DBL ISAM "DAT:product.ism"
 Description "Product management file"
 Record size [88]

Field count : 7

FIELD NAME TYPE SIZE PREC DIMENSION OVERLAY? GROUP?
---------- ---- ---- ---- --------- -------- ------

1 PRDT_ID D 3
2 PRDT_NAME A 25
3 PRDT_PRICE D 8 2
4 PRDT_MNGER D 3

Utility Functions
Printing Repository Definitions

5-8 Repository User’s Guide 10.3.3 (5/16)

5 PRDT_DATE DT 8
6 PRDT_STATUS A 1
7 PRDT_DESC A 40

Field PRDT_ID Type DECIMAL Size 3
 Description "Product ID"
 Report Just LEFT Prompt "ID: " Break Required

Field PRDT_NAME Type ALPHA Size 25
 Description "Product name"
 Prompt "Name: " Uppercase

Field PRDT_PRICE Type DECIMAL Size 8 Precision 2
 Description "Product price"
 Report Just LEFT Format MONEY
 Prompt "Price: " Nodecimal Blankifzero

Field PRDT_MNGER Type DECIMAL Size 3
 Description "Product manager ID"
 Report Just LEFT

Field PRDT_DATE Type DATE Size 8 Stored YYYYMMDD
 Description "Product available date"
 Format "#03 MM-DD-YYYY" Prompt "Date: "
 Date Today Date Short

Field PRDT_STATUS Type ALPHA Size 1
 Description "Prdt portability status"
 Prompt "Status: " Allow "A", "D", "O", "I"

Field PRDT_DESC Type ALPHA Size 40
 Description "Status description"
 Prompt "Description: "

Key count : 2

KEY NAME TYPE ORDER DUPS? SEGMENTS SIZE
-------- ---- ----- ----- -------- ----

1 PRODUCT_ID A A N F 3
2 PRDT MANAGER_ID A A Y F 3

Key PRODUCT_ID ACCESS Order ASCENDING Dups NO
 Segment FIELD PRDT_ID

Key PRDT_MANAGER_ID ACCESS Order ASCENDING Dups YES
 Segment FIELD PRDT_MNGER

Relation count : 2

Utility Functions
Printing Repository Definitions

Repository User’s Guide 10.3.3 (5/16) 5-9

NAME FROM KEY TO STRUCTURE : TO KEY
---- -------- ---------------------

1 1 PRODUCT_ID ORDER : PRODUCT_ID
2 2 PRODUCT_ID EMPLOYEE : EMPLOYEE_ID

Relation 1 PRODUCT PRODUCT_ID ORDER PRODUCT_ID

Relation 2 PRODUCT PRODUCT_ID EMPLOYEE EMPLOYEE_ID

Format count : 1

FORMAT NAME TYPE FORMAT STRING
----------- ---- -------------

1 MONEY N $######.##

Format MONEY Type NUMERIC "$######.##" Justify RIGHT

Utility Functions
Verifying Your Repository

5-10 Repository User’s Guide 10.3.3 (5/16)

Verifying Your Repository
The Verify Repository utility verifies the integrity of your repository and attempts to repair any
inconsistencies it finds. It then writes the repaired files to a new repository. You can specify the
name of the repository files to check, the name of the new repository to be created, and the name of
the log file where messages will be recorded. Run this utility if you suspect your repository is
corrupted. Depending on the size of your repository, this utility can take a long time to run.

1. Ensure that the file rpsload.ddf is in the RPS directory.

2. Select Utilities > Verify Repository.

3. Enter data in each field as instructed below.

Repository to verify. Enter or select the names of the repository main file and the repository text
file to verify. The default repository filenames displayed are determined by the logic discussed in
“Determining the repository files used” on page 1-18.

Repository to create. Enter the names of the repository main file and the repository text file to be
created. If the utility finds inconsistencies in the original repository, it will attempt to repair them
and then write the repaired repository to these files. If the utility finds no inconsistencies, these files
are deleted.

The default filenames for the newly created repository are rpsmain.new (and rpsmain.ne1) and
rpstext.new (and rpstext.ne1). You can change these default names to whatever you like, but you
can’t use the same names as the repository files being verified.

Verification log file. Enter the name of the file to which you want inconsistencies logged. If the file
already exists, it is overwritten. The default log file is VERIFY.LOG. If the utility finds no
inconsistencies, this file will contain summary information only.

Figure 5-3. Verifying your repository.

Utility Functions
Verifying Your Repository

Repository User’s Guide 10.3.3 (5/16) 5-11

4. Exit the window to verify the specified repository.

As the utility runs, status messages are displayed in the lower-left corner of the window. When
processing is complete, a message displays the name of the new repository files (if inconsistencies
were found) and the name of the log file.

5. To return to the Utilities menu, press ENTER.

Examples
The example below shows the type of summary information that the log file contains if no
inconsistencies are found.

23 structures verified
10 files verified
2 formats verified
6 templates verified
3 enumerations verified
792 logical records read
792 logical records written

If inconsistencies are found, they are listed before the summary information. There are two classes
of inconsistencies, informational and warning, which are preceded with either “INFO” or “WARN”
in the log file. Items marked with INFO were repaired by the utility. Items marked with WARN
could not be repaired. Contact Synergy/DE Developer Support if your log file contains warnings.

Utility Functions
Validating Your Repository

5-12 Repository User’s Guide 10.3.3 (5/16)

Validating Your Repository
The Validate Repository utility validates every definition in your repository. It performs most of the
same validations that would occur if you were to edit each definition within Repository. You should
run this utility on every new repository that you create with the Load Repository Schema utility,
especially those that have been merged.

1. Select Utilities > Validate Repository. The default repository filenames displayed are determined by
the logic discussed in “Determining the repository files used” on page 1-18.

2. Enter data in each field as instructed below.

Repository main file. Enter or select the name of the repository main file to validate.

Repository text file. Enter or select the name of the repository text file to validate.

Log file. Enter the name of the file in which you want errors to be logged. By default, the file is
named VALIDATE.LOG and created in the current working directory. If the file already exists, it
is overwritten. If the validation utility finds no errors, the file will be empty.

3. Exit the window to validate the specified repository.

As the repository is being validated, status messages are displayed in the lower-left corner of the
window. When processing is complete, a message displays the number of errors logged.

4. To return to the Utilities menu, press ENTER.

Examples
The example below shows the type of information that the log file contains if errors are found.

Format MONEY: Invalid justification specified.
Template DIG8MONY: Invalid format name specified.

Figure 5-4. Validating repository definitions.

Utility Functions
Generating a Repository Schema

Repository User’s Guide 10.3.3 (5/16) 5-13

Generating a Repository Schema
The Generate Repository Schema utility generates a Synergy Data Language description of your
repository to a file. This description is referred to as a schema. See chapter 6, “Synergy Data
Language,” for more information about Synergy Data Language and possible uses for a repository
schema file.

1. Select Utilities > Generate Repository Schema. The default repository filenames displayed are
determined by the logic discussed in “Determining the repository files used” on page 1-18.

2. Enter data in each field as instructed below.

Repository main file. Enter or select the name of the repository main file from which a schema
should be generated.

Repository text file. Enter or select the name of the repository text file from which a schema
should be generated.

Schema file. Enter the name of the file into which the repository schema should be generated.
If you don’t specify an extension, it defaults to .ddf. By default, the file is created in the current
working directory.

You can also run this utility from the command line. See “Generating and Loading Schema
from the Command Line” on page 5-28.

Figure 5-5. Generating a repository schema.

Utility Functions
Generating a Repository Schema

5-14 Repository User’s Guide 10.3.3 (5/16)

Option. Indicate whether you want to generate a schema for all definitions in the repository or for
specific (selected) definitions. Selecting Specific enables you to generate schema for a specific
format, enumeration, template, structure, file, or any combination thereof.

Generate structure timestamps. Select this option to include the date and time that each structure
definition was last modified. This option adds the MODIFIED keyword to each generated structure
definition. If you manually edit the schema, you should update this value for any structures that you
change. See STRUCTURE on page 6-60 for more information.

Format. If you selected Specific in the Option field, enter the name of a format definition to
generate.

Enumeration. If you selected Specific in the Option field, enter the name of an enumeration
definition to generate.

Template. If you selected Specific in the Option field, enter the name of a template definition to
generate.

Structure. If you selected Specific in the Option field, enter the name of a structure definition to
generate. This can be the name of an alias structure, but you must type it in, rather than select it
using the List Selections option.

Keys, Relations, Aliases. If you selected All in the Option field or selected Specific and specified
a structure name, indicate whether you want to generate the keys, relations, and aliases. By default,
all definitions associated with a structure are generated; clear the check boxes for those you do not
want generated.

File. If you selected Specific in the Option field, enter the name of a file definition to generate.

Structures, Keys, Relations, Aliases. If you selected Specific in the Option field and specified a
filename in the File field, indicate whether you want to generate the file’s assigned structures as
well. If you select Structures, all definitions associated with each assigned structure are generated
by default; clear the check boxes for Keys, Relations, and Aliases if you do not want to generate
those definitions.

To set these options when you want to generate all files, select Specific in the Option field and enter
“*” in the File field.

If you select All, the generated schema file will be valid for use by the Load Repository
Schema utility. The Specific option could result in a Synergy Data Language file that
contains duplicate definitions or missing (referenced) definitions, and which therefore may
not be valid for use by the Load Repository Schema utility. See “General usage rules” on
page 6-3 for a description of the allowed structure of a repository schema file.

TIP
When selecting specific definitions, you can enter a partial name combined with wildcard
characters (* or ?) to specify a set of definitions.

For the Format, Enumeration, Template, Structure, and File fields, you can select from a list
of definitions by selecting Utility Functions > List Selections.

Utility Functions
Generating a Repository Schema

Repository User’s Guide 10.3.3 (5/16) 5-15

3. Exit the window to generate the repository schema.

As the repository schema is being generated, status messages are displayed in the lower-left corner
of the window. When processing is complete, a message that lists the number of each type of
definition generated is displayed.

4. To return to the Utilities menu, press ENTER.

Synergy Data Language file header
The output file generated by this utility includes a header that lists the name and version of the
repository being generated, the date and time the utility was run, and information about the export
options that were chosen. Possible export options include the following:

[ALL]|[FORMAT=name][ENUMERATION=name][TEMPLATE=name]
[STRUCTURE=name][FILE=name]

Additionally, the [ALL], [STRUCTURE], and [FILE] options may include abbreviations relative to
the generated output. Possible abbreviations include the following:

-K Exclude keys

-R Exclude relations

-A Exclude aliases

+S Include assigned structures

For example, if you select All in the Option field and clear the default Keys setting, the information
in the export options line in the output file would look like this:

; EXPORT OPTIONS : [ALL-K]

If you select Specific in the Option field, specify the file definition name CUSTOMER, and
choose to generate its assigned structures but not their aliases, the export options line would look
like this:

; EXPORT OPTIONS : [FILE+S-A=CUSTOMER]

Examples
The file below is an example of the Synergy Data Language output generated by the Generate
Repository Schema utility when the All option is selected.

; SYNERGY DATA LANGUAGE OUTPUT
;
; REPOSITORY : RPSDAT:rpsmain
; : RPSDAT:rpstext
; : Version 9.1
;
; GENERATED : 06-AUG-2009, 13:23:30
; : Version 9.1.5
; EXPORT OPTIONS : [ALL]

Utility Functions
Generating a Repository Schema

5-16 Repository User’s Guide 10.3.3 (5/16)

Format STD_ID Type NUMERIC "ZZ-Z"

Template DIG8DATE Type DATE Size 8 Stored YYYYMMDD
 Description "8-digit date"
 Date Today Date Short

Structure EMPLOYEE DBL ISAM
 Description "Employee master file"

Field EMP_ID Type DECIMAL Size 3
 Description "Employee ID"
 Report Just LEFT Format STD_ID
 Break Required Paint "*"

Field EMP_NAME Type ALPHA Size 25
 Description "Employee name"
 Info Line "Enter your full name."

Field EMP_DEPT Type DECIMAL Size 2
 Description "Department ID"
 Report Just LEFT

Field EMP_MNGR Type DECIMAL Size 3
 Description "Manager ID"
 Report Just LEFT

Field EMP_TITLE Type ALPHA Size 25
 Description "Title"
 Uppercase

Field EMP_DATE Template DIG8DATE
 Description "Starting date"

Field EMP_STATUS Type ALPHA Size 1
 Description "Employee status"
 Selection List 2 2 3 Entries "A", "I", "V"

Key EMPLOYEE_ID ACCESS Order ASCENDING Dups NO
 Segment FIELD EMP_ID

Structure ORDER DBL ISAM
 Description "Sales order management"

Field ORD_ID Type DECIMAL Size 6
 Description "Order ID"
 Report Just LEFT Break Noterm Blankifzero

Field ORD_ITEM Type DECIMAL Size 3
 Description "Order item (product ID)"
 Report Just LEFT Range 1 100

Utility Functions
Generating a Repository Schema

Repository User’s Guide 10.3.3 (5/16) 5-17

Field ORD_DATE Template DIG8DATE
 Description "Order initiated date"

Field ORD_SUB Type DECIMAL Size 2 Dimension 2:2
Overlay ORD_DATE:0

 Description "Order date subscripted"
 Report Just LEFT

Field ORD_STATUS Type ALPHA Size 1
 Description "Status"
 Allow "O", "S", "B"

Field ORD_DESC Type ALPHA Size 40
 Description "Status description"

Key ORDER_ID ACCESS Order ASCENDING Dups NO
 Segment FIELD ORD_ID

Key PRODUCT_ID ACCESS Order ASCENDING Dups YES
 Segment FIELD ORD_ITEM

Structure PRODUCT DBL ISAM
 Description "Product management"

Format MONEY Type NUMERIC "$######.##" Justify RIGHT

Field PRDT_ID Type DECIMAL Size 3
 Description "Product ID"
 Report Just LEFT Format STD_ID
 Prompt "ID: " Break Required

Field PRDT_NAME Type ALPHA Size 25
 Description "Product name"
 Prompt "Name: " Uppercase

Field PRDT_PRICE Type DECIMAL Size 8 Precision 2
 Description "Product price"
 Report Just LEFT Format MONEY
 Prompt "Price: " Nodecimal Blankifzero

Field PRDT_MNGER Type DECIMAL Size 3
 Description "Product manager ID"
 Report Just LEFT

Field PRDT_DATE Template DIG8DATE
 Description "Product available date"

Field PRDT_STATUS Type ALPHA Size 1
 Description "Prdt portability status"
 Prompt "Status: " Allow "A", "D", "O", "I"

Utility Functions
Generating a Repository Schema

5-18 Repository User’s Guide 10.3.3 (5/16)

Field PRDT_DESC Type ALPHA Size 40
 Description "Status description"
 Prompt "Description: "

Key PRODUCT_ID ACCESS Order ASCENDING Dups NO
 Segment FIELD PRDT_ID

Key PRDT_MANAGER_ID ACCESS Order ASCENDING Dups YES
 Segment FIELD PRDT_MNGER

Relation 1 PRODUCT PRODUCT_ID ORDER PRODUCT_ID

Relation 2 PRODUCT PRODUCT_ID EMPLOYEE EMPLOYEE_ID

File EMPLOYEE DBL ISAM "DAT:employee.ism"
 Description "Employee master file"
 Assign EMPLOYEE

File ORDER DBL ISAM "DAT:order.ism"
 Description "Sales order management file"
 Assign ORDER

File PRODUCT DBL ISAM "DAT:product.ism"
 Description "Product management file"
 Assign PRODUCT

Utility Functions
Loading a Repository Schema

Repository User’s Guide 10.3.3 (5/16) 5-19

Loading a Repository Schema
The Load Repository Schema utility converts the contents of a Synergy Data Language file (i.e., a
schema) into one or more repository definitions. You can use this utility to add or update definitions
in an existing repository or create a new repository. See “General processing rules” on page 6-5 for
specific information on how each definition type is handled when merging and for specific Synergy
Data Language requirements. Depending on the size of your repository, this utility can take a long
time to run.

1. Ensure that the file rpsload.ddf is in the RPS directory.

2. Select Utilities > Load Repository Schema. The default repository filenames displayed are
determined by the logic discussed in “Determining the repository files used” on page 1-18.

3. Enter data in each field as instructed below.

Schema file. Enter or select the name of the file that contains the repository schema (the Synergy
Data Language description) to be loaded.

Repository main file. Enter or select the name of the repository main file to be created from the
schema or the name of an existing repository into which the schema will be merged.

Repository text file. Enter or select the name of the repository text file to be created or, if you are
merging the schema, enter the name of the existing repository text file.

Log file. Enter the name of the log file into which error messages generated during schema loading
should be written. By default, the file is named SCHEMA.LOG and created in the current working
directory. If the file already exists, it is overwritten.

You can also run this utility from the command line. See “Generating and Loading Schema
from the Command Line” on page 5-28.

Figure 5-6. Loading a repository schema.

Utility Functions
Loading a Repository Schema

5-20 Repository User’s Guide 10.3.3 (5/16)

4. Exit the window to load the repository schema.

If the repository files that you specified already exist, you are prompted

Repository files already exist. Do you want to merge the schema?

Select No to specify different repository files. Select Yes to display the Merge Repository Schema
window. (See figure 5-7.)

5. Enter data in each field as instructed below.

Repository main file. Enter the name of the “merged” repository main file to be created. The
default filename is rpsmain.new.

Repository text file. Enter the name of the “merged” repository text file to be created. The default
filename is rpstext.new.

Add new. If there are new definitions in your schema file and you want to add them to the
repository, select Yes. If there are new definitions in the schema file that you do not want added to
the repository, remove them from the file; selecting No when the file contains new definitions will
generate an error. If you are only updating existing definitions and there are no new definitions in
the schema file, this setting has no effect so you can choose either option.

Change existing. If you want to update existing definitions in the repository based on
corresponding definitions found in the schema file, select how you want the update performed.
Select Replace if you want to delete the existing definition and replace it with the definition in the
schema file. Select Overlay if you want to replace only a subset of attributes or add to those of an
existing definition. Overlay updates existing attributes and adds new ones, but does not delete any.

Figure 5-7. Merging a repository schema.

We strongly recommend that when merging a repository, both the original files and the
“merged” files be on the same drive on the same system. In some cases, failing to do this
results only in slower performance. In other cases (such as when the original files are on
Windows and the merged files on UNIX), the procedure fails with a rename error.

Utility Functions
Loading a Repository Schema

Repository User’s Guide 10.3.3 (5/16) 5-21

If there are existing definitions in the file and you do not want to either replace or overlay the
repository definitions, remove them from the file; selecting No when the file contains existing
definitions will generate an error.

Replace original repository. When merging, the utility will create a copy of your repository.
Select this field if you want the “merged” (copied) repository files to replace the original repository
files if no errors occur. If you do not select this field, you can rename the merged repository files
manually if desired.

6. Exit the window to load the repository schema.

As the repository schema is being loaded, status messages are displayed in the lower-left corner of
the window. The utility validates all Synergy Data Language statements. When an error occurs in a
statement, the utility writes a message to the log file and ignores the entire statement.

When processing is complete, Repository displays a message that lists the number of definitions
that were loaded or the number of errors that were logged.

7. To return to the Utilities menu, press ENTER.

8. If any errors were logged, check the log file for specific definition names and error messages,
correct the schema file, and reload it. The definition type and name precede the error message. For
example,

Format PHONE: Invalid format type specified.
Field DEPT (structure EMP1): Invalid data type specified.

If any error occurs while a repository is being loaded from a schema, the new (or merged)
repository is not created.

9. After you have successfully loaded the schema, run both the Verify Repository and Validate
Repository utilities. Certain repository integrity checks cannot be performed during schema
merging and must be reported on by one of these utilities.

The Load Repository Schema utility attempts to load all the definitions in the schema file
into the repository. If your file contains definitions you do not wish to load, you must remove
them from the file. For example, if your schema file contains both new and existing
definitions, and you want only to update the existing ones, you must remove the new
definitions from the file before loading the schema.

If you’re loading a schema file created by Toolkit’s Script-to-Repository conversion program
(scridl), specify the name of the existing repository in the Repository main file and
Repository text file fields. In the Add new field, select Yes; in the Change existing field,
select Overlay.

Utility Functions
Creating a New Repository

5-22 Repository User’s Guide 10.3.3 (5/16)

Creating a New Repository
The Create New Repository utility creates and initializes a new, blank repository. Every new
repository contains the predefined date and time formats listed in “Appendix B: Date and Time
Formats”.

1. Ensure that the file rpsload.ddf is in the RPS directory.

2. Select Utilities > Create New Repository. The default repository filenames displayed are
determined using the logic discussed in “Determining the repository files used” on page 1-18.

3. Enter data in each field as instructed below.

Repository main file. Enter or select the name of the repository main file to be created. The default
extension is .ism.

Repository text file. Enter or select the name of the repository text file to be created. The default
extension is .ism.0

Set as current repository. If this field is selected, the newly created repository will become the
default repository for the current session. If you don’t want to change the current default repository,
clear the field.

4. Exit the window to create the new repository.

If either of the repository files already exists, the utility displays an error message and does not
create the files. You must either specify new filenames or delete the old repository and run the
utility again.

Figure 5-8. Creating a new repository.

TIP
Although you can name the repository main and text files anything you like, we recommend
that you include “main” and “text” in the filenames. Not only does this help to identify the
files as repository files, it also enables you to take advantage of the filename defaulting that
occurs in all main and text file fields in Repository dialogs: After you enter or select the
name of a repository main file and exit the field, Repository enters a default repository text
filename by copying the main filename and changing the last occurrence of the characters
“main” to “text”.

Utility Functions
Setting the Current Repository

Repository User’s Guide 10.3.3 (5/16) 5-23

Setting the Current Repository
The Set Current Repository utility changes the default repository filenames for the current
Repository session by temporarily setting the RPSMFIL and RPSTFIL environment variables.
The default repository filenames determine the repository to open when you select an entry from
the Modify or View menu, and are also used to prefill the Repository main file and Repository text
file fields in the Utility functions.

You can also use this utility to check the current repository setting.

1. Select Utilities > Set Current Repository. The Set Current Repository dialog displays the filenames
for the current repository.

2. Enter or select the name of the main file to use and exit the field; Repository enters a default
repository text filename by copying the main filename and changing the last occurrence of the
characters “main” to “text”. (You can, of course, change the text filename if necessary.) The default
extension is .ism.

3. Exit the window to set the current repository.

Figure 5-9. Setting the current repository.

Utility Functions
Generating a Cross-Reference File

5-24 Repository User’s Guide 10.3.3 (5/16)

Generating a Cross-Reference File
The Generate Cross-Reference utility generates a file that can be used by ReportWriter to access
file relationships that are not explicitly defined in the repository. These relationships are based on
name links between fields. Provided that corresponding data fields have the same name (or use the
same template), this file can provide access to all potential relationships that exist within your
repository. If a cross-reference file exists, you can add related files to a report even though a
“relation” has not been explicitly defined.

1. Select Utilities > Generate Cross-Reference. The default repository filenames displayed are
determined by the logic discussed in “Determining the repository files used” on page 1-18.

2. Enter data in each field as instructed below.

Repository main file. Enter or select the name of the repository main file to read.

Repository text file. Enter or select the name of the repository text file to read.

Cross-reference file. Enter or select the name of the file into which the cross-reference should be
generated. The default cross-reference filename displayed is determined by the logic discussed in
“Determining the cross-reference file used”, below. If you enter a different filename, you must set
the RPSXFIL environment variable to access this file in ReportWriter.

3. Exit the window to generate the file.

When processing is complete, the name of the newly generated cross-reference file is displayed.

4. To return to the Utilities menu, press ENTER.

You can also run this utility from the command line. See “Rpsxref command line syntax” on
page 5-26.

This utility generates a cross-reference file for the specified repository in its current state.
If you add or modify fields, templates, or keys in the repository, you must regenerate the
cross-reference file.

Figure 5-10. Generating a cross-reference.

Utility Functions
Generating a Cross-Reference File

Repository User’s Guide 10.3.3 (5/16) 5-25

Determining the cross-reference file used
Repository and ReportWriter search for the cross-reference file as follows:

 If the RPSXFIL environment variable is defined, the cross-reference filename is the value of
RPSXFIL.

 If RPSXFIL is not defined, Repository and ReportWriter attempt to open the file as
RPSDAT:rpsxref.ism.

 If RPSDAT:rpsxref.ism can’t be opened, Repository and ReportWriter attempt to open
rpsxref.ism in the current directory.

How a cross-reference file is generated
Each field (and template) in the repository has a “name link” flag. This flag determines whether the
field name itself or an alternate name link should be used to find matches. The alternate name link
is the name of the field’s template or the name of the template’s parent if the name link flag is set.

Step 1: A name link is determined for each field in the repository. This name link could be the field
name, its template’s name, its template’s parent’s name, and so forth, depending on how the name
link flag is set. For more information, see the “Do not name link” on page 3-42 for field templates
or the “Do not name link” on page 3-11 for fields.

Step 2: For each access key (in all structures), the name link is determined for the first segment of
the key. If the first segment is the tag field, the name link for the second segment is used. (The tag
must be defined as a Field type tag and must use the EQ [equal] connector.)

Step 3: The list of name links determined in step 1 is compared to every name link determined in
step 2. Each match becomes a record in the cross-reference file (assuming they’re not in the same
structure).

For information on how ReportWriter uses this file to access related data, see “Determining the list
of available secondary files based on name links” in the “Miscellaneous ReportWriter Information”
chapter of the ReportWriter User’s Guide.

Utility Functions
Generating a Cross-Reference File

5-26 Repository User’s Guide 10.3.3 (5/16)

Rpsxref command line syntax
You can generate a cross-reference file by running rpsxref.dbr from the command line.

 On Windows and UNIX, use this syntax:

dbr rpsxref [-d main_file text_file] [-o output_file]

 On OpenVMS, define this symbol:

rpsxref:==$RPS:rpsxref.exe

and then use this syntax:

rpsxref [-d main_file text_file] [-o output_file]

Arguments
-d main_file text_file

(optional) Specify the names of the repository main and text files, overriding the defaults. The
default repository filenames are determined by the logic discussed in “Determining the
repository files used” on page 1-18. The main_file and text_file names can each have up to 255
characters.

-o output_file

Specify the name of the cross-reference file to create, overriding the default. The default
cross-reference filename is determined by the logic discussed in “Determining the
cross-reference file used” on page 5-25. The cross-reference filename can have up to 255
characters.

Examples
The command below generates the cross-reference file MYRPS:rpsxref.ism based on the
repository files in MYRPS:rpsmain.ism and MYRPS:rpstext.ism.

dbr rpsxref -d MYRPS:rpsmain.ism MYRPS:rpstext.ism -o MYRPS:rpsxref.ism

Assuming that RPSMFIL, RPSTFIL, and RPSXFIL are not set, the following command generates
the cross-reference file RPSDAT:rpsxref.ism based on the repository files RPSDAT:rpsmain.ism
and RPSDAT:rpstext.ism.

dbr rpsxref

Utility Functions
Comparing a Repository to ISAM Files

Repository User’s Guide 10.3.3 (5/16) 5-27

Comparing a Repository to ISAM Files
The Compare Repository to Files (fcompare) utility compares the definitions in the repository to
the actual ISAM definitions that they represent and writes the results to a log file.

1. Select Utilities > Compare Repository to Files. The default repository filenames displayed are
determined by the logic discussed in “Determining the repository files used” on page 1-18.

2. Enter data in each field as instructed below.

Repository main file. Enter or select the name of the repository main file to be compared.

Repository text file. Enter or select the name of the repository text file to be compared.

Option. To compare all repository file definitions with their associated physical files, select All.
To compare a single repository file definition, select Specific.

File. If you selected Specific in the Option field, enter the name of the file to compare.

Verify data. Select this option to turn on data verification mode, which reads through all records in
the ISAM file and verifies that date fields contain valid dates and decimal fields contain numbers.
Verification mode is available only when Option is set to Specific and can significantly increase the
time it takes to run a comparison.

Log file. Specify a log file name for output. By default, the file is named COMPARE.LOG and
created in the current working directory. If the file already exists, it is overwritten.

Verbose logging. Select this option to log general information about the files (e.g., the number of
keys and segments), warnings, and errors. Regular (non-verbose) logging logs only errors.

3. Exit the window to run the comparison.

You can also run this utility from the command line. See fcompare in the “Synergy DBMS”
chapter of Synergy Tools.

Figure 5-11. Comparing Repository and ISAM files.

Utility Functions
Generating and Loading Schema from the Command Line

5-28 Repository User’s Guide 10.3.3 (5/16)

Generating and Loading Schema from the Command
Line
Instead of using the Generate Repository Schema utility and the Load Repository Schema utility,
you can run the rpsutl.dbr program from the command line to generate (export) and load (import)
Synergy Data Language files. See chapter 6, “Synergy Data Language,” for more information about
Synergy Data Language and possible uses for repository schema files.

To export, run rpsutl with the -e option; to import, run it with -i. See the sections below for the
available options for these two operations. On Windows and UNIX, from the command line, run:

dbr rpsutl -e|-i options…

On OpenVMS, define this symbol:

rpsutl:==$RPS:rpsutl.exe

and then use this syntax:

rpsutl -e|-i options…

Exporting Synergy Data Language files
Run rpsutl with the -e option to export (generate) schema. You can export all repository
definitions, export only certain types of definitions (formats, templates, structures, etc.), or export
specific formats, templates, structures, etc., using the options below.

rpsutl -e sdl_file [-d main_file text_file] [-em [format]] [-et [template]]
[-es [structure[=[k][a][r]]]] [-ef [file[=[s][k][a][r]]]] [-ee {enumeration]] [-er] [-t]

-e

Export (generate) a repository schema.

sdl_file

Specify a Synergy Data Language file to create to hold the schema. The maximum length of
sdl_file is 255 characters. If you don’t specify an extension, it defaults to .ddf. If the file
already exists, an error is generated.

When rpsutl ends, if it encountered errors, it will exit with a status of D_EXIT_FAILURE
(1 on Windows and UNIX; 0 on OpenVMS). Otherwise, it will exit with a status of
D_EXIT_SUCCESS (0 on Windows and UNIX; 1 on OpenVMS). Most operating systems
have commands that enable you to test for the exit status. See the documentation for your
operating system for more information.

Utility Functions
Generating and Loading Schema from the Command Line

Repository User’s Guide 10.3.3 (5/16) 5-29

-d main_file text_file

(optional) Specify the names of the repository main and text files from which to generate the
schema. If not specified, the defaults are used, following the logic discussed in “Determining
the repository files used” on page 1-18.

-em [format]

(optional) Export format definitions. The default is to export all. To export a single format,
specify it by name. See the Usage section below for information on using wildcards to export
multiple formats.

-et [template]

(optional) Export template definitions. The default is to export all. To export a single template,
specify it by name. See the Usage section below for information on using wildcards to export
multiple templates.

-es [structure[=[k][a][r]]]

(optional) Export structure definitions. Default output includes the structure itself, fields, and
tags. Additional output can include keys (k), aliases (a), and relations (r). Structure may be an
alias structure. The default is to export all structures. To export a single structure definition,
specify it by name. See the Usage section below for information on using wildcards to export
multiple structures.

-ef [file[=[s][k][a][r]]]

(optional) Export file definitions. Default output includes file information only. Additional
output can include structures (s), keys (k), aliases (a), and relations (r). Options k, a, and r are
valid only if s is present. The default is to export all files. To export a single file definition,
specify it by name. See the Usage section below for information on using wildcards to export
multiple files.

-ee [enumeration]

(optional) Export enumeration definitions The default is to export all. To export a single
enumeration, specify it by name. See the Usage section below for information on using
wildcards to export multiple enumerations

-er

(optional) Export all relations. This option is equivalent to the -es structure=r option.

-t

(optional) Include in the schema the MODIFIED keyword and the date/time the structure was
last modified. If you manually edit the schema, you should update this value for any structures
that you change. See STRUCTURE on page 6-60 for more information.

-h

Display usage screen.

Utility Functions
Generating and Loading Schema from the Command Line

5-30 Repository User’s Guide 10.3.3 (5/16)

Usage
The variables for exporting specific elements in the repository (format, template, structure, file,
enumeration) can include the wildcard characters * and ?. For example, to export all enumerations
beginning with “color_”, you would specify -ee color_*.

If you want to use the s, k, a, or r options and export all structures or files, specify * before the
equals sign. For example, to export keys, aliases, and relations for all structures, you would specify
-es *=kar. To export assigned structures for all files, specify -ef *=s.

The following example exports all definitions from the repository located in
MYDICT:rpsmain.ism and MYDICT:rpstext.ism into the file mySchema.sdl.

dbr rpsutl -e mySchema.sdl -d MYDICT:rpsmain.ism MYDICT:rpstext.ism

The following example exports the structure CUSMAS from the default repository into the file
custStruct.sdl. But default, formats, fields, and tags are included; adding =kar specifies that keys,
aliases, and relations should also be exported.

dbr rpsutl -e custStruct.sdl -es CUSMAS=kar

The following example uses wildcard characters to export selected formats and enumerations from
the default repository into the file mySchema.sdl. Formats with names such as NUM1_FORMAT,
NUM2_FORMAT, etc. will be exported, along with all enumerations beginning with “COLOR_”.

dbr rpsutl -e mySchema.sdl -ef NUM?_FORMAT -ee COLOR_*

Importing Synergy Data Language files
Run rpsutl with the -i option to import (load) schema. The definitions to import may be in a single
Synergy Data Language file or in multiple files. You can use this option to create a new repository,
or you can merge new or updated definitions into an existing repository.

rpsutl -i sdl_file […] [-d main_file text_file] [-ia] [-io]|[-ir]
[-n new_main new_text] [-l [log]] [-r [sec]] [-s]

-i

Import (load) a repository schema.

sdl_file […]

Specify one or more Synergy Data Language files to use for creating or merging a repository.
The maximum number of files is 30, and the maximum length of sdl_file is 255 characters.
If you don’t specify an extension, it defaults to .ddf. On UNIX, wildcard specifications such as
*.sdl are supported.

If you specify multiple Synergy Data Language files, each one is processed and validated
separately. This means that all information required to validate a particular file must be
contained within that file or, if you are merging definitions into an existing repository, must

Utility Functions
Generating and Loading Schema from the Command Line

Repository User’s Guide 10.3.3 (5/16) 5-31

already exist in the repository. If a specified file cannot be found, no further files will be
processed, and, for a merge, the current repository will not be replaced.

-d main_file text_file

(optional) Specify the names of the repository main and text files into which definitions will be
loaded or merged. If the repository does not exist, it will be created (and will subsequently be
deleted should any errors occur). If not specified, the defaults are used, following the logic
discussed in “Determining the repository files used” on page 1-18.

-ia

Add new structures, files, templates, formats, and enumerations. Specify this option to create a
new repository by importing the formats in sdl_file. The -ia option must be specified when the
schema file contains new definitions. You can also use -ia with either -io or -ir to import into
an existing repository and add new definitions while also overlaying or replacing existing ones.

-io

Overlay attributes of existing structures, files, templates, formats, and enumerations. Use this
option when you want to replace only a subset of attributes or add to those of an existing
definition. The -io option updates existing attributes and adds new ones, but does not delete
any. Either -io or -ir must be specified when the schema file contains existing definitions; these
two options can also be used with -ia as described above. The -io option is not valid when
importing into a new repository and is not valid with -ir.

-ir

Replace existing structures, files, templates, formats, and enumerations. Use this option when
you want to delete the existing definition and replace it with the definition of the same name in
the schema file. Either -ir or -io must be specified when the schema file contains existing
definitions; these two options can also be used with -ia as described above. The -ir option is
not valid when importing into a new repository and is not valid with -io.

-n new_main new_text

(optional) Specify the names of the temporary repository main and text files to be used when
importing into an existing repository. If not specified, the names rpsmain.new and

Rpsutl attempts to load all the definitions in the schema file into the repository. If your
file contains definitions you do not wish to load, you must remove them from the file
before running rpsutl. For example, if your file contains both new and existing
definitions, and you want only to update the existing ones, you must remove the new
definitions from the file.

At least one import option (-ia, -io, -ir) must be specified when you run rpsutl -i.

Utility Functions
Generating and Loading Schema from the Command Line

5-32 Repository User’s Guide 10.3.3 (5/16)

rpstext.new, are used by default. See the Usage section below for more information on
temporary files.

-l [log]

(optional) Specify that errors generated during schema loading should be logged to a file
named log. If log is not specified, the default filename is SCHEMA.LOG, and the log file is
placed in the current working directory. If the -l option is not specified at all, errors will be
directed to standard output.

-r [sec]

(optional) Specify that if the repository is being modified by another user, rpsutl should retry
the operation after waiting sec seconds. If sec is not specified, the default retry time is 10
seconds. Rpsutl will retry indefinitely if -r is specified. If -r is not specified, rpsutl does not
retry, and you’ll receive a “files in use” error.

-s

(optional) Suppress replacement of the repository. Specify this option if you do not want the
temporary repository files (see Usage below) to be renamed. The -s option is useful when
doing a test or trial import. If you are satisfied with the results, you can rename the files
manually.

-h

Display usage screen.

Usage
When definitions are imported into an existing repository, they are actually imported into a copy of
the repository, named rpsmain.new and rpstext.new by default. (You can specify different
temporary filenames with the -n option.) If no errors occur during the import process and the -s
option is not specified, the temporary files are renamed to the original repository filenames. (If -s is
specified, both temporary and original files are retained.) If any errors occur, the temporary files are
deleted.

On OpenVMS, you must set system option #35 in order for all versions of the original files to be
renamed. See system option #35 in the “System Options” chapter of the Environment Variables and
System Options manual.

The following example imports the definitions from the files dict1.sdl and dict2.sdl, adding them
into the repository specified by newmain.ism and newtext.ism. If the repository does not exist, it
will be created. If it does exist, the definitions will be imported to a copy of the repository,

We strongly recommend that when merging a repository, both the original files and the
temporary (merged) files be on the same drive on the same system. In some cases, failing
to do this results only in slower performance. In other cases (such as when the original files
are on Windows and the temporary files on UNIX), the procedure fails with a rename error.

Utility Functions
Generating and Loading Schema from the Command Line

Repository User’s Guide 10.3.3 (5/16) 5-33

rpsmain.new and rpstext.new. If no errors occur, the rpsmain.new and rpstext.new files will
replace the newmain.ism and newtext.ism files. If errors occur, they will be logged to the file
SCHEMA.LOG, and the .new files will be deleted.

dbr rpsutl -i dict1.sdl dict2.sdl -ia -d newmain.ism newtext.ism -l

The following example imports the definitions from the file order.sdl into the default repository,
replacing the existing definitions of the same name. Because -s is specified, if no errors occur, the
copied repository, rpsmain.new and rpstext.new, will not be renamed to the default repository.
If errors occur, they will be logged to standard output, and the .new files will be deleted.

dbr rpsutl -i order.sdl -ir -s

The example below imports the definitions in customer.sdl into the default repository; new
definitions are added and existing ones are replaced. The temp repository files used during the
import will be named main.tmp and text.tmp. If the import is successful, they will be renamed to
the default filenames. If errors occur, they will be logged to standard output, and the .tmp files will
be deleted.

dbr rpsutl -i customer.sdl -ia -ir -n main.tmp text.tmp

6-1

6
Synergy Data Language

Introduction to the Synergy Data Language 6-2

The function of the Synergy Data Language and ways to use it.

Using Synergy Data Language Statements 6-3

Statement syntax conventions and the general rules you should follow when using Synergy Data
Language statements.

ALIAS – Describe an alias for a structure or field ...6-9

ENDGROUP – End a group definition ..6-11

ENUMERATION – Describe an enumeration definition ..6-12

FIELD – Describe a field definition ...6-14

FILE – Describe a file definition ..6-40

FORMAT – Describe a global or structure-specific format...6-47

GROUP – Begin a group definition..6-49

KEY – Describe a key definition..6-52

RELATION – Describe a relation definition..6-58

STRUCTURE – Describe a structure definition ..6-60

TAG – Describe a structure tag definition..6-62

TEMPLATE – Describe a template definition ...6-64

Synergy Data Language
Introduction to the Synergy Data Language

6-2 Repository User’s Guide 10.3.3 (5/16)

Introduction to the Synergy Data Language
The Synergy Data Language describes the contents of a Synergy/DE repository. It was designed as
a tool for documenting and analyzing repositories, converting foreign repositories, and modifying
repositories.

The Generate Repository Schema and Load Repository Schema utilities generate and interpret the
Synergy Data Language. (Optionally, you can use the command line utility, rpsutl.) The Generate
Repository Schema utility converts specified repository definitions into the Synergy Data
Language; this is referred to as a schema file. Conversely, the Load Repository Schema utility
converts the contents of a Synergy Data Language file into a new repository or merges the contents
into an existing repository. See the following for information on using these utilities:

 “Generating a Repository Schema” on page 5-13

 “Loading a Repository Schema” on page 5-19

 “Generating and Loading Schema from the Command Line” on page 5-28

The Synergy Data Language is also used as the basis for the Print Repository Definitions utility,
which prints the structure, file, template, format, enumeration, and detail definitions in your
repository to a file.

Because the schema file is simply a text file, it can be used in a number of ways:

 Aid in converting foreign repositories to Repository format. By writing a program to convert a
foreign repository to the Synergy Data Language, you can easily convert your existing
non-Repository definitions into Repository format.

 Make mass repository modifications. To do this, use the Generate Repository Schema utility to
generate a schema file for your repository. Then modify the file and reload it with the Load
Repository Schema utility.

 Move repository files to a different operating system. To do this, use the Generate Repository
Schema utility to generate a schema file for your repository. Copy this file to another system,
and then run the Load Repository Schema utility to convert the contents of the schema into a
new repository. This method of moving repository files works between any two systems,
regardless of operating system.

Synergy Data Language
Using Synergy Data Language Statements

Repository User’s Guide 10.3.3 (5/16) 6-3

Using Synergy Data Language Statements
We used the following conventions in documenting the syntax of the Synergy Data Language
statements:

 Statement names (such as FIELD) and keywords (such as TYPE) are shown in UPPERCASE.

 Arguments that you should replace with actual data are shown in lowercase italics.

 Optional items are enclosed in [italic square brackets].

 String data is enclosed in “quotation marks”.

 Arguments that may be repeated more than once are followed by an ellipsis (…).

Here’s an example:

General usage rules
 Names, keywords, and arguments can be specified in either uppercase or lowercase, except for

quoted definition names, which must be uppercase. All non-quoted data is converted to
uppercase on input.

 If required data is not supplied, or if it is invalid, the entire statement is ignored.

 Statements must be specified in the proper order. See “Recommended statement order” on
page 6-4.

 Keywords can be specified in any order, unless otherwise noted. In the statement syntax, we’ve
listed keywords in the order in which they are generated by the Generate Repository Schema
utility.

 A keyword that is longer than a single physical word cannot span multiple lines. For example,
the following is invalid, because the LONG DESCRIPTION keyword is split over two lines:

FIELD ccname TYPE date SIZE 8 STORED YYYYMMDD
DESCRIPTION "Opened account" LONG
DESCRIPTION "Opened account (YYYYMMDD)"

FILE name filetype “open_filename”
[DESCRIPTION “description”]
[LONG DESCRIPTION “long_desc”] [USER TEXT “string”]
[ASSIGN structure[, …]]

statement name arguments

optional keyword
and argument

keyword string datarepeating argument

Synergy Data Language
Using Synergy Data Language Statements

6-4 Repository User’s Guide 10.3.3 (5/16)

 For a few keywords, the keyword and associated data must be kept together on the same line.
Where this is the case, it is documented with the keyword.

 Keyword data that contains colons (:) (for example, the arguments for the OVERLAY and
DIMENSION keywords) cannot contain embedded spaces.

 Negative values for numeric keyword arguments are not permitted, except where noted. When
a negative value is used, it must be immediately preceded by a minus sign (for example, -3 or
-10).

 String data must be enclosed in a set of matching double or single quotation marks (“ ” or ‘ ’)
and cannot span multiple lines.

 String data can contain a quotation character if that character is different from the character
that encloses the data. For example, both of the following strings are valid:

"Type 'Return' to continue"
'Type "Return" to continue'

 Data that exceeds the maximum size allowed is truncated.

 Comments are indicated by placing a semicolon as the first character (in the first column) on
the line. Comments are not permitted within a Synergy Data Language statement.

Recommended statement order
Statements must be specified in the proper order. If one definition name is referenced by another
definition, the first definition must precede the referencing definition. For example, if you are
defining a field that references a template, you must define the template before you reference its
name in the field definition.

To avoid problems, we recommend that you define elements in the following order:

1. Define all global formats.

Global formats must be defined before any templates (if any templates reference them) and before
any structures.

2. Define all enumerations.

Enumerations must be defined before any fields or templates that reference them.

3. Define all templates in reference order.

All templates must be grouped together, and they must be specified in reference order. That is, all
parent templates must be defined before their child templates. The Generate Repository Schema
utility generates templates in reference order (when all templates are being output).

4. Define each structure in reference order, along with all of its formats, fields, keys, relations, and
aliases, in that order.

Synergy Data Language
Using Synergy Data Language Statements

Repository User’s Guide 10.3.3 (5/16) 6-5

Structures must be defined before any files that reference them. A structure referenced within an
implicit group specification or as a Struct data type must be defined before the structure that
references it.

Each structure must be followed by its formats, fields, keys, aliases, relations, and tag. The formats
must occur before any fields. The fields must be grouped together and must occur before any keys
or aliases that reference them. Relations can occur anywhere within the structure, except between
fields. (Relations can actually be defined anywhere within the schema file, since they aren’t
validated until the end of the schema loading process.) A structure’s tag must be defined before the
group of fields or after the entire group.

5. Define all files.

General processing rules
A Synergy Data Language file (schema file) can be used to create a new repository, or it can be
used to update an existing repository.

 When a schema file is used to create a new repository, you simply specify the name of the new
repository, and it is created for you by the Load Repository Schema utility. If any errors occur,
the new repository is not created; you must correct the schema file and reload it.

 When a schema file is used to update (merge) an existing repository, the Load Repository
Schema utility makes a copy of the specified repository, and then updates the copy. If any
errors occur, the copied repository is deleted; you must correct the schema file and reload it.
If no errors occur, the copied repository either replaces the original or not, depending on the
options you specified.

When a repository has been successfully loaded or updated, you should run both the Verify
Repository utility (see “Verifying Your Repository” on page 5-10) and the Validate Repository
utility (see “Validating Your Repository” on page 5-12) on the new (or copied) repository.

The Load Repository Schema utility is able to process the specification of both new and existing
repository definitions. The way each is handled depends on the options you set when running the
utility.

 If you are loading a schema into a new repository, all definitions specified in the schema file
are added. If a duplicate definition exists in the schema file, an error is logged in the log file.

 Adding new structures also adds any fields, keys, relations, formats, and tags specified for the
structure.

 If you are merging a schema into an existing repository, all new definitions are added. You can
choose to replace or overlay existing definitions.

 Replace deletes the current definition and stores the new one from the schema file.
Replacing an existing structure essentially deletes all fields, keys, etc., for the current
structure, and adds back only those specified in the schema file.

Synergy Data Language
Using Synergy Data Language Statements

6-6 Repository User’s Guide 10.3.3 (5/16)

 Overlay updates existing fields, etc., with those in the schema file and adds new fields,
etc. It does not delete any fields, etc. Overlay is typically used to add to the attributes of
existing definitions.

The table below summarizes the rules that your schema must follow to use the Load Repository
Schema utility to update (merge) an existing repository. Carefully review this table before merging
schemas.

The Load Repository Schema utility attempts to load all the definitions in the schema file
into the repository. If your file contains definitions you do not wish to load, you must remove
them from the file. For example, if your schema file contains both new and existing
definitions, and you want only to update the existing ones, you must remove the new
definitions from the file before loading the schema.

Rules for Schema Files

Option Definition type Rules

Add <All> All required keywords and data must be specified. Non-specified,
non-required attributes are set to default values.

Global formats Must be defined before any templates or structures.

Enumerations Must be defined before any templates or structures.

Templates Must be defined before any structures.

Structures Must be defined before any files.

Formats Must be defined before any fields.

Fields Must be defined before any keys.

Keys Must be defined before any relations.

Tags Must be defined before any fields or after all fields for the current
structure.

Files No additional rules.

Synergy Data Language
Using Synergy Data Language Statements

Repository User’s Guide 10.3.3 (5/16) 6-7

Replace <All> (See “Add” above.)

Global formats No additional rules.

Enumerations No additional rules.

Templates No additional rules.

Structures No additional rules.
Notes: New fields, keys, etc., are added. Existing fields, keys, etc.,
are replaced. Non-specified existing fields, keys, etc., are deleted.
New alias structures and alias fields are added. All alias fields in
existing alias structures are replaced by specified alias fields.
Non-specified alias structures (and their fields) are unaffected.

Formats No additional rules.

Fields No additional rules.

Keys No additional rules.

Relations No additional rules.

Tags No additional rules.

Files To disassociate structures from a file, specify only the ones you
want to keep. Specifying no assigned structures clears all current
assigned structures.

Rules for Schema Files (Continued)

Option Definition type Rules

Synergy Data Language
Using Synergy Data Language Statements

6-8 Repository User’s Guide 10.3.3 (5/16)

Overlay <All> The definition name must be specified, followed by the attributes to
be overlaid or added to the definition. (Exceptions to this rule are
listed below.) All other attributes remain unchanged.

Global formats All keywords and data except JUSTIFY must be respecified.

Enumerations All members must be respecified when you overlay one or more
members.

Templates No additional rules.
Notes: When a parent is added to an existing template, both the
existing override flags and the template attributes that are explicitly
specified in the schema file are retained as parent overrides.

Structures No additional rules.
Notes: New fields, keys, etc., are added. Existing fields, keys, etc.,
are updated. Non-specified existing fields, keys, etc., remain
unchanged. New alias structures and alias fields are added. All alias
fields in existing alias structures are replaced by specified alias
fields.

Formats All keywords and data except JUSTIFY must be respecified.

Fields No additional rules.
Notes: When a template is added to an existing field, only the
existing override flags and the field attributes that are explicitly
specified in the schema file are retained as template overrides.

Keys All key segments must be respecified when you overlay one or
more segments. (To clear all segments, use Replace.)
All compression options must be respecified when you overlay one
or more options.

Relations All attributes must be respecified.

Tags All attributes must be respecified.

Files All assigned structures must be respecified (along with any ODBC
table names) when changing one or more.

Rules for Schema Files (Continued)

Option Definition type Rules

Synergy Data Language
ALIAS

Repository User’s Guide 10.3.3 (5/16) 6-9

ALIAS – Describe an alias for a structure or field

ALIAS alias type name

Arguments
alias

The name of a new or existing alias. This name can have a maximum of 30 characters.

type

One of the following alias types:

STRUCTURE
FIELD

name

The name of the aliased structure or field. This name can have a maximum of 30 characters.

Discussion
The ALIAS statement describes an alternate name—an alias—for a structure or field.

Aliases enable you to associate a different name (or a name link) with a structure or field. For
example, aliases are useful when you’re converting an application to use the Repository. If your
application uses short, cryptic identifier names, but you would like to use longer names in the
repository, you can use aliases to simplify updating your Synergy code. Aliases can also be useful
when you want to define structfields, but still need that repository structure to be included as a
record in your Synergy code. You can create an alias and reference that in your structfield
definition.

When you use .INCLUDE to reference the repository from your Synergy code, you can use either
the real or the alias name. The compiler first searches for a structure or field that has the name
specified in the .INCLUDE statement. If it can’t find one, it searches for an alias with that name.
Therefore, all structure names, whether real or alias, must be unique. Likewise, all field
names—real or alias—must be unique within a given structure.

Within your Synergy Data Language file, an alias must be defined within the structure that it
references (referred to as the aliased structure). You can link more than one alias to the same
structure. Within an aliased structure, you can link more than one alias to the same field.

An aliased field is associated with the most recently defined aliased structure. If you haven’t
defined an aliased structure yet, the aliased field is ignored. You cannot alias fields that are defined
as members of a group.

Aliases for fields are supported only through the Synergy Data Language. Aliases for
structures can also be defined through the Repository user interface; see “Defining Aliases”
on page 2-9.

Synergy Data Language
ALIAS

6-10 Repository User’s Guide 10.3.3 (5/16)

Adding new definitions

The order in which you define aliased fields determines the order in which they exist within the
aliased structure. The maximum number of alias fields you can define within one aliased structure
is 650.

Replacing existing definitions

All required keywords and data must be specified. The existing aliased structure is cleared and all
of its aliased fields are deleted. The aliased structure is set to the specified attributes, and the
specified aliased fields are added. (Note that when you replace a structure, any aliased structures
that are not explicitly specified in the schema are unaffected.)

Overlaying existing definitions

All required keywords and data must be respecified. All of the aliased fields are deleted. The
current aliased structure attributes are overwritten by the attributes specified, and the specified
aliased fields are added.

Deleting aliases

To delete aliases that reference a structure or field that no longer exists, run the Verify Repository
utility. See “Verifying Your Repository” on page 5-10.

Examples
ALIAS cusmas STRUCTURE customer_master

ALIAS cusnam FIELD customer_name
ALIAS cusid FIELD customer_id
ALIAS cusadd FIELD customer_address

Synergy Data Language
ENDGROUP

Repository User’s Guide 10.3.3 (5/16) 6-11

ENDGROUP – End a group definition

ENDGROUP

Discussion
The ENDGROUP statement ends the current group definition. It must follow the last FIELD
member or GROUP definition for the current group.

Examples
See GROUP on page 6-49 for an example.

Synergy Data Language
ENUMERATION

6-12 Repository User’s Guide 10.3.3 (5/16)

ENUMERATION – Describe an enumeration definition

ENUMERATION name [DESCRIPTION “description”] [LONG DESCRIPTION “long_desc”]
MEMBERS member [value] [, member [value]] [, …]

Arguments
name

The name of a new or existing enumeration. This name can have a maximum of 30 characters.

DESCRIPTION

(optional) Indicates that an enumeration definition description follows.

description

A description of the enumeration. It can have a maximum of 40 characters and must be
enclosed in double or single quotation marks (“ ” or ‘ ’).

LONG DESCRIPTION

(optional) Indicates that a long description for the enumeration definition follows.

long_desc

A more detailed description of the enumeration and its use. It can contain 30 lines of up to 60
characters each. Each line must be enclosed in double or single quotation marks (“ ” or ‘ ’).

MEMBERS

Indicates that an enumeration member definition follows. An enumeration must have at least
one member.

member

The name of the enumeration member. This name can have a maximum of 30 characters.

value

(optional) Specifies the member value, which must be a number. If value is specified, it must
be on the same line as member.

Discussion
The ENUMERATION statement is used to describe an enumeration definition. An enumeration is a
set of related values, which has a name and one or more members associated with it.

When specifying members and values, the pair cannot be split over two lines. See the examples in
“General usage rules” on page 6-3.

Synergy Data Language
ENUMERATION

Repository User’s Guide 10.3.3 (5/16) 6-13

Adding new definitions

The maximum number of enumerations that can be defined is 9,999. The maximum number of
members that can be defined for an enumeration is 100. An enumeration must have at least one
member. The order in which you specify members determines their order in the enumeration.

Replacing existing definitions

All required keywords and data must be specified. The existing enumeration and all its members
are cleared and replaced by the specified enumeration and members.

Overlaying existing definitions

All members must be respecified when you overlay one or more members.

Examples
ENUMERATION colors DESCRIPTION "Colors of the rainbow"
MEMBERS red 1, orange 2, yellow 3, green 4, blue 5, indigo 6, violet 7

Synergy Data Language
FIELD

6-14 Repository User’s Guide 10.3.3 (5/16)

FIELD – Describe a field definition

FIELD name [TEMPLATE template] TYPE type SIZE size [STORED store_format]
[ENUM name|STRUCT name] [NODATE] [NOTIME]
[USER TYPE “user_type”] [NOUSER TYPE] [PRECISION dec_places]
[DIMENSION #elements[:#elements …]] [LANGUAGE VIEW] [LANGUAGE NOVIEW]
[SCRIPT VIEW] [SCRIPT NOVIEW] [REPORT VIEW] [REPORT NOVIEW]
[WEB VIEW] [WEB NOVIEW] [COERCED TYPE type] [NOCOERCED TYPE]
[OVERLAY field[:offset]] [NONAMELINK] [DESCRIPTION “description”] [NODESC]
[LONG DESCRIPTION “long_desc”] [NOLONGDESC]
[POSITION [pos_type] row column] [NOPOSITION]
[FPOSITION [fpos_type] frow fcolumn] [NOFPOSITION] [PROMPT “prompt”] [NOPROMPT]
[HELP “help”] [NOHELP] [INFO LINE “info_line”] [NOINFO]
[USER TEXT “user_text”] [NOUSER TEXT] [FORMAT format] [NOFORMAT]
[REPORT HEADING “heading”] [NOHEADING] [ALTERNATE NAME alt_name]
[NOALTERNATE NAME] [REPORT JUST just] [INPUT JUST ijust] [BLANKIFZERO]
[NOBLANKIFZERO] [PAINT “paint_char”] [NOPAINT] [RADIO|CHECKBOX] [NORADIO]
[NOCHECKBOX] [FONT font] [NOFONT] [PROMPTFONT prompt_font] [NOPROMPTFONT]
[READONLY] [NOREADONLY] [DISABLED] [NODISABLED|ENABLED]
[COLOR palette#] [NOCOLOR] [HIGHLIGHT] [NOHIGHLIGHT] [REVERSE] [NOREVERSE]
[BLINK] [NOBLINK] [UNDERLINE] [NOUNDERLINE] [NOATTRIBUTES]
[DISPLAY LENGTH length] [NODISPLAY LENGTH]
[VIEW LENGTH length] [NOVIEW LENGTH] [UPPERCASE] [NOUPPERCASE]
[NODECIMAL] [DECIMAL_REQUIRED] [NOTERM] [TERM]
[RETAIN POSITION] [NORETAIN POSITION]
[DEFAULT default|COPY|INCREMENT|DECREMENT] [NODEFAULT]
[AUTOMATIC] [NOAUTOMATIC] [NOECHO] [NOECHOCHR “display_char”] [ECHO]
[DATE TODAY] [DATE NOTODAY] [DATE SHORT] [DATE NOSHORT]
[TIME NOW] [TIME NONOW] [TIME AMPM] [TIME NOAMPM]
[WAIT “time”|WAIT IMMEDIATE|WAIT GLOBAL|WAIT FOREVER] [NOWAIT]
[INPUT LENGTH length] [NOINPUT LENGTH] [BREAK [break_type]] [NOBREAK]
[REQUIRED] [NOREQUIRED] [NEGATIVE [ONLY|ORZERO]] [NONEGATIVE]
[NULL ALLOWED|NULL DEFAULT|NONULL] [ALLOW entry[, …]] [NOALLOW]
[MATCH CASE] [MATCH NOCASE] [MATCH EXACT] [MATCH NOEXACT]
[SELECTION LIST sl_row sl_column sl_height ENTRIES sl_entry[, …]]
[SELECTION WINDOW sw_row sw_column sw_name] [NOSELECT]
[ENUMERATED length base step] [NOENUMERATED] [RANGE min max] [NORANGE]
[ARRIVE METHOD arrive_meth] [NOARRIVE METHOD]
[LEAVE METHOD leave_meth] [NOLEAVE METHOD]
[DRILL METHOD drill_meth] [NODRILL METHOD]
[HYPERLINK METHOD hyperlink_meth] [NOHYPERLINK METHOD]
[CHANGE METHOD change_meth] [NOCHANGE METHOD]
[DISPLAY METHOD display_meth] [NODISPLAY METHOD]
[EDITFMT METHOD editfmt_meth] [NOEDITFMT METHOD]

Synergy Data Language
FIELD

Repository User’s Guide 10.3.3 (5/16) 6-15

Arguments
name

The name of a new or existing field. This name can have a maximum of 30 characters.

TEMPLATE

(optional) Assigns a template to the field.

template

The name of a template to assign to this field. All field attributes, including type and size, are
obtained from the specified template. The maximum size of the template name is 30
characters. The specified template must already be defined. If it is not defined, the field will be
logged in error. If a template is assigned to a field and none of the template’s attributes are
overridden in the field, no additional keywords are required. The Synergy Data Language
assumes that any keywords specified in addition to the template name are overrides to the
template.

TYPE

Indicates that the data type for the field follows. This keyword and the data type are optional if
you’re overlaying an existing field or if a template is assigned to this field.

type

One of the following data types for this field:

ALPHA
DECIMAL
INTEGER
DATE
TIME
USER
BOOLEAN
ENUM
STRUCT
AUTOSEQ
AUTOTIME

If you specify DATE, a default storage format of YYMMDD is assigned. If you specify TIME,
a default storage format of HHMM is assigned. If you specify USER, a default subtype of
ALPHA is assigned. You can override these defaults with the STORED keyword.

SIZE

Indicates that the field size follows. This keyword and the size are optional if you’re overlaying
an existing field or if a template is assigned to this field.

Synergy Data Language
FIELD

6-16 Repository User’s Guide 10.3.3 (5/16)

size

The maximum number of characters the field can contain. See the table below for valid sizes
for each data type.

STORED

(optional) Indicates that the storage format for a date or time field, or the subtype for a user
field follows. If TYPE is specified, it must precede STORED.

store_format

Specifies the storage format if the data type is date or time. Specifies the subtype if the data
type is user. It can also be used to specify that an alpha field contains binary data.

If this keyword is not specified for a date field, the default format is YYMMDD. If not
specified for a time field, the default format is HHMM. If not specified for a user field, the
default subtype is ALPHA. If the data type is not date, time, user, or alpha, this value is
ignored.

If the type is date, the format must be one of the following:

YYMMDD
YYYYMMDD
YYJJJ
YYYYJJJ
YYPP
YYYYPP

Data type Valid sizes

alpha 1–99,999

decimal 28

integer 1, 2, 4, 8

date
time

The size of the specified format. E.g., 6 for YYMMDD; 4 for HHMM.

user 1–99,999

boolean 4

enum 4

struct The size of the referenced structure

autoseq 8

autotime 8

Synergy Data Language
FIELD

Repository User’s Guide 10.3.3 (5/16) 6-17

If the type is time, the format must be one of the following:

HHMM
HHMMSS

If the type is user, the format must be one of the following:

ALPHA
NUMERIC
DATE
BINARY

To specify that an alpha field contains binary data, the format must be

BINARY

ENUM

(optional) Indicates that the enumeration name follows. Required when TYPE is ENUM.

name

The name of the enumeration. The specified enumeration must already be defined. If it is not,
the field will be logged in error.

STRUCT

(optional) Indicates that the structure name follows. Required when TYPE is STRUCT.

name

The name of the structure or its alias. The specified structure must already be defined. If it is
not, the field will be logged in error.

NODATE

(optional) The default state if a date data type has not been specified. If present, NODATE
resets the date field to a normal decimal field. Specifying NODATE also clears any date
storage format and any DATE TODAY or DATE SHORT keywords.

NOTIME

(optional) The default state if a time data type has not been specified. If present, NOTIME
resets the time field to a normal decimal field. Specifying NOTIME also clears any time
storage format and any TIME NOW or TIME AMPM keywords.

In xfNetLink Java (when genjava is run with the -c 1.5 option) and xfNetLink .NET, an
alpha type with a binary format is converted to a byte array on the client and can be
used, for example, to store an RFA.

In xfODBC, an alpha type with a binary format is described as a binary field
(SQL_BINARY). This is also true of a user type with binary format, but in this case you
can use the routines for user-defined data types in xfODBC to manipulate the data read
from the ISAM file and return it as a binary field to the ODBC-enabled application.

Synergy Data Language
FIELD

6-18 Repository User’s Guide 10.3.3 (5/16)

USER TYPE

(optional) Indicates that a user data type string follows.

user_type

A string that more uniquely defines a user data type. It can have a maximum of 30 characters
and must be enclosed in double or single quotation marks (“ ” or ‘ ’). USER TYPE is ignored
for any data type other than the user data type.

NOUSER TYPE

(optional) Cancels any user data type string that has been specified.

PRECISION

(optional) Indicates that the number of decimal places in implied-decimal fields follows.
PRECISION is only valid when the field’s data type is decimal or user.

dec_places

The number of characters to the right of the decimal point in an implied-decimal field. If this
attribute is present, it must be between 1 and 28, inclusive. It also must be less than or equal to
the size of the field.

DIMENSION

(optional) Indicates that this field is arrayed.

#elements

The number of elements in each dimension if this field defines an array. The maximum number
of dimensions is four. Additional dimensions are ignored. The maximum number of elements
per dimension is 999. If more than one dimension is specified, the dimensions must be
separated by a colon and can contain no embedded spaces.

LANGUAGE VIEW

(optional) Indicates that the field will be available to the Synergy compiler when the structure
is .INCLUDEd into a source file. LANGUAGE VIEW is the default.

LANGUAGE NOVIEW

(optional) Indicates that the field will not be available to the Synergy compiler when the
structure is .INCLUDEd into a source file.

SCRIPT VIEW

(optional) Indicates that the field will be available to UI Toolkit when defining an input
window. SCRIPT VIEW is the default.

SCRIPT NOVIEW

(optional) Indicates that the field will not be available to the UI Toolkit when defining an input
window.

Synergy Data Language
FIELD

Repository User’s Guide 10.3.3 (5/16) 6-19

REPORT VIEW

(optional) Indicates that the field will be available as a selectable field in xfODBC and
ReportWriter. REPORT VIEW is the default.

REPORT NOVIEW

(optional) Indicates that the field will not be available as a selectable field in xfODBC and
ReportWriter.

WEB VIEW

(optional) Indicates that the field will be included by xfNetLink when creating Synergy
components (JAR file or assembly). WEB VIEW is the default.

WEB NOVIEW

(optional) Indicates that the field will not be included by xfNetLink when creating Synergy
components.

COERCED TYPE

(optional) Indicates that the coerced type for use by xfNetLink follows.

type

The data type to which this field should be coerced on the xfNetLink Java or xfNetLink .NET
client. Valid values depend on the value of TYPE.

If type is decimal (without precision) the coerced type may be one of the following:

DEFAULT
BYTE
SHORT
INT
LONG
SBYTE
USHORT
UINT
ULONG
BOOLEAN
DECIMAL
NULLABLE DECIMAL

If the type is decimal (with precision), the coerced type may be one of the following:

DEFAULT
DOUBLE
FLOAT
NULLABLE DECIMAL
DECIMAL

Synergy Data Language
FIELD

6-20 Repository User’s Guide 10.3.3 (5/16)

If type is integer, the coerced type may be one of the following:

DEFAULT
BYTE
SHORT
INT
LONG
SBYTE
USHORT
UINT
ULONG
BOOLEAN

If the type is date (with a format of YYMMDD, YYYYMMDD, YYJJJ, or YYYYJJJ), time,
or user (with a subtype of DATE and user data string of ^CLASS^=YYYYMMDDHHMISS
or ^CLASS^=YYYYMMDDHHMISSUUUUUU), the coerced type may be one of the
following:

DATETIME
NULLABLE_DATETIME

If this keyword is not specified for a decimal or integer field, the default is DEFAULT. If not
specified for a date field (with one of the formats mentioned above) or for a time field or for a
user field (with the restrictions mentioned above), the default is DATETIME. See
“Appendix B: Data Type Mapping” in the xfNetLink & xfServerPlus User’s Guide for more
information on data type mapping and coercion in xfNetLink.

NOCOERCED TYPE

(optional) The default state if a coerced type has not been specified. If present, NOCOERCED
TYPE cancels any coerced type for the field.

OVERLAY

(optional) Defines this field as an overlay to another field. For example, the year, month, and
day might be overlays for a date field.

field

The name of the field to overlay. The overlaid field must be a field that precedes the current
field and can be a maximum of 30 characters.

offset

(optional) Represents an offset to add to the starting position of the overlaid field. The default
offset is zero. No embedded spaces are allowed.

NONAMELINK

(optional) Indicates that the field name itself is to be used for name-linking purposes. See Do
not name link on page 3-11 for more information about name links.

Synergy Data Language
FIELD

Repository User’s Guide 10.3.3 (5/16) 6-21

DESCRIPTION

(optional) Indicates that a field definition description follows.

description

A description of the field definition. It can have a maximum of 40 characters and must be
enclosed in double or single quotation marks (“ ” or ‘ ’). This description appears as the
comment for the field when a definition file is generated by the Generate Definition File utility,
and it can be used as a way to identify fields in ReportWriter and Repository. In addition, if the
structure that this field belongs to is included in an xfNetLink Java JAR file or xfNetLink .NET
assembly, this description is included in the generated source code as a comment for the
property or field.

NODESC

(optional) Cancels any field description that has been specified.

LONG DESCRIPTION

(optional) Indicates that a long description for the field definition follows.

long_desc

A more detailed description of the field definition and its use. It can contain 30 lines of up to 60
characters each. Each line must be enclosed in double or single quotation marks (“ ” or ‘ ’).

NOLONGDESC

(optional) Cancels any field long description that has been specified.

POSITION

(optional) Provides position information for this field.

pos_type

Specifies the position type associated with this field. If pos_type is specified, it must contain
one of the following values:

ABSOLUTE (default)
RELATIVE

row

Specifies the row position to be associated with this input window field. If no prompt is
defined, the input field begins at the specified position. If a prompt is defined, the prompt
begins at the specified position. If the RELATIVE keyword precedes row, this value specifies
the number of rows that the current position will change; otherwise, it designates absolute
coordinates relative to the input window. Relative values can be negative.

column

Specifies the column position to be associated with this input window field. If no prompt is
defined, the input field begins at the specified position. If a prompt is defined, the prompt
begins at the specified position. If the RELATIVE keyword precedes the row argument, the

Synergy Data Language
FIELD

6-22 Repository User’s Guide 10.3.3 (5/16)

column value specifies the number of columns that the current position will change; otherwise,
it designates absolute coordinates relative to the input window. Relative values can be negative.

NOPOSITION

(optional) Resets the position of the prompt to the default next character available, rather than
the position specified by the POSITION keyword. NOPOSITION is the default.

FPOSITION

(optional) Provides position information for this field, independent of its prompt.

fpos_type

Specifies the position type associated with this field. If present, fpos_type must contain one of
the following values:

ABSOLUTE (default)
RELATIVE

frow

Specifies the row position to be associated with this input window field, independent of its
prompt. If the RELATIVE keyword precedes the frow argument, this value specifies the
number of rows that the current position will change; otherwise, it designates absolute
coordinates relative to the input window. Relative values can be negative.

fcolumn

Specifies the column position to be associated with this input window field, independent of its
prompt. If the RELATIVE keyword precedes the frow argument, the fcolumn value specifies
the number of columns that the current position will change; otherwise, it designates absolute
coordinates relative to the input window. Relative values can be negative.

NOFPOSITION

(optional) Resets the position of the input window field to the default next character after the
prompt, rather than the position specified by the FPOSITION keyword. NOFPOSITION is the
default.

PROMPT

(optional) Indicates that the user prompt for this field follows.

prompt

Either a fixed or a variable prompt. A fixed prompt is a string that is displayed in the input
window to prompt the user for input. The prompt string must be enclosed in double or single
quotation marks (“ ” or ‘ ’), and it must include any spacing that you want to display between
the prompt and the input field. The maximum length of a prompt string is 80 characters. Fixed
prompts may be modified at runtime with the UI Toolkit I_PROMPT subroutine. To define a
variable prompt, enter a numeric value. This value will be used by I_PROMPT to set the
variable prompt length. The quotation marks around variable prompts are optional. See also
I_PROMPT in the “Input Routines” chapter of the UI Toolkit Reference Manual.

Synergy Data Language
FIELD

Repository User’s Guide 10.3.3 (5/16) 6-23

NOPROMPT

(optional) The default state if a user prompt has not been specified. If present, NOPROMPT
cancels any prompt string.

HELP

(optional) Indicates that a help identifier for this field follows.

help

Specifies a help identifier. This help identifier is passed as an argument to the UI Toolkit
EHELP_METHOD subroutine. The help identifier string must be enclosed in double or single
quotation marks (“ ” or ‘ ’). The maximum length of a help identifier is 80 characters. See
EHELP_METHOD in the “Environment Routines” chapter of the UI Toolkit Reference
Manual for more information.

NOHELP

(optional) The default state if a help identifier has not been specified. If present, NOHELP
cancels any help identifier.

INFO LINE

(optional) Indicates that the text to appear on the information line follows.

info_line

Specifies a text string that is displayed on the information line when input is being processed
for this field. The info_line string must be enclosed in double or single quotation marks
(“ ” or ‘ ’). The maximum length of an info_line string is 80 characters.

NOINFO

(optional) The default state if an info_line string has not been specified. If present, NOINFO
cancels any info_line string.

USER TEXT

(optional) Indicates that a user-defined text string follows.

user_text

A user-defined text string associated with this input field. The user_text string must be
enclosed in double or single quotation marks (“ ” or ‘ ’). The maximum length of the user_text
string is 80 characters.

NOUSER TEXT

(optional) The default state if a user text string has not been specified. If present, NOUSER
TEXT cancels any user text string.

Synergy Data Language
FIELD

6-24 Repository User’s Guide 10.3.3 (5/16)

FORMAT

(optional) Indicates that the display format for this field follows.

format

The name of a global or structure-specific format to use with this field if it is used in a UI
Toolkit input window or is selected in a ReportWriter report. The maximum size of the format
name is 30 characters. The specified format must already be defined. If it is not defined, the
format name is ignored.

If the field is a date or time field, we recommend you use one of the formats listed in
“Appendix B: Date and Time Formats”. (ReportWriter treats these formats differently and
actually re-orders the data being displayed if necessary. For example, a date stored as
YYMMDD can be displayed as MM/DD/YY.)

NOFORMAT

(optional) The default state if a format has not been specified. If present, NOFORMAT cancels
any format for the field.

REPORT HEADING

(optional) Indicates that the report column heading for this field follows.

heading

The default column heading this field will have when it is used in a ReportWriter report. This
value is also used by xfNetLink .NET for the column caption if the structure that contains this
field is included in a DataTable class. This string can have a maximum of 40 characters and
must be enclosed in double or single quotation marks (“ ” or ‘ ’).

NOHEADING

(optional) The default state if a report heading has not been specified. If present,
NOHEADING cancels any report heading for the field.

ALTERNATE NAME

(optional) Indicates that the alternate name for this field follows.

alt_name

The alternate name for the field within the xfODBC system catalog, the xfNetLink Java JAR
file, or the xfNetLink .NET assembly. The maximum size of the name is 30 characters.

NOALTERNATE NAME

(optional) The default state if an alternate name has not been specified. If specified,
NOALTERNATE NAME cancels any alternate name for the field.

Synergy Data Language
FIELD

Repository User’s Guide 10.3.3 (5/16) 6-25

REPORT JUST

(optional) Indicates how the field’s data will be justified in a ReportWriter report.

just

The justification of the data within the column when this field is used in a ReportWriter report.
Valid values are

LEFT
RIGHT
CENTER

The default is LEFT for alpha, user, date, and time fields and RIGHT for decimal,
implied-decimal, and integer fields. CENTER is allowed only for alpha and user fields.

INPUT JUST

(optional) Indicates that a text justification argument follows.

ijust

Designates how the text is justified within the input field when this field is used in a Toolkit
input window. Valid values are

LEFT
RIGHT
CENTER

The default is LEFT for alpha, date, time, and user type fields, and RIGHT for decimal,
implied-decimal, and integer fields. CENTER alignment is not allowed for numeric fields;
neither RIGHT nor CENTER alignment is allowed for text fields (multi-dimensional alpha
fields).

BLANKIFZERO

(optional) Indicates that a decimal, implied-decimal, or integer field will be left blank if the
user enters a value of zero.

NOBLANKIFZERO

(optional) The default state if BLANKIFZERO has not been specified. If present,
NOBLANKIFZERO indicates that a zero will be displayed if the user enters a value of zero.

PAINT

(optional) Indicates that the field is filled with the specified paint character until the user
enters input.

paint_char

Used to “paint” the empty field to indicate where the user is supposed to type input. You must
enclose the paint character in double or single quotation marks (“ ” or ‘ ’).

Synergy Data Language
FIELD

6-26 Repository User’s Guide 10.3.3 (5/16)

NOPAINT

(optional) The default state if no paint character has been specified. If present, NOPAINT
cancels any paint character for the field and resets the field to use the default paint character.

RADIO

(optional) Indicates that this field is to be displayed as a set of radio buttons on Windows.
RADIO is only valid when SELECTION LIST or SELECTION WINDOW has been specified.

CHECKBOX

(optional) Indicates that this field is to be displayed as a check box on Windows. On
non-Windows environments, it will be displayed as a one-character field (“X” if non-zero, or
space if zero). You can only specify the CHECKBOX keyword when the field’s data type is
decimal, implied-decimal, or integer. Since a check box is implicitly an enumerated field, you
cannot specify the CHECKBOX keyword in conjunction with ENUMERATED.

NORADIO

(optional) The default state if RADIO has not been specified. If present, NORADIO indicates
that the field will not be displayed as a set of radio buttons.

NOCHECKBOX

(optional) The default state if CHECKBOX has not been specified. If present,
NOCHECKBOX indicates that the field will not be displayed as a check box.

FONT

(optional) Indicates that the font for this field follows.

font

The name of a font to use when displaying the contents of the input field on Windows. This
name is assumed to be defined in the font palette (specified in the [FONTS] section of the
synergy.ini or synuser.ini file).

NOFONT

(optional) The default state if a font has not been specified. If specified, NOFONT cancels any
font for the field.

PROMPTFONT

(optional) Indicates that the font for the field’s prompt follows.

prompt_font

The name of a font to use for displaying the input field’s prompt on Windows. This name must
also be defined in the font palette (specified in the [FONTS] section of the synergy.ini or
synuser.ini file).

NOPROMPTFONT

(optional) The default state if a prompt font has not been specified. If specified,
NOPROMPTFONT cancels any font for the field’s prompt.

Synergy Data Language
FIELD

Repository User’s Guide 10.3.3 (5/16) 6-27

READONLY

(optional) Indicates that this field is read-only. The READONLY keyword cannot be specified
in conjunction with RADIO, CHECKBOX, SELECTION LIST, or SELECTION WINDOW.
For data types AUTOSEQ and AUTOTIME, READONLY is required. This flag is honored by
xfNetLink Java if this field is in a structure that is included in a JAR file and genjava is run
with the -ro option. This flag is honored by xfNetLink .NET if this field is in a structure that is
included in an assembly, and structure members are generated as properties, rather than fields.

NOREADONLY

(optional) The default state if READONLY has not been specified. If present, NOREADONLY
allows modification of the field.

DISABLED

(optional) Indicates that this field is disabled.

NODISABLED | ENABLED

(optional) The default state if DISABLED has not been specified. If present, NODISABLED
(or ENABLED) allows modification and focus of the field.

COLOR

(optional) Indicates that a color palette number follows.

palette#

Specifies the color palette for the field. If this attribute is present, it must be between 1 and 16,
inclusive.

NOCOLOR

(optional) The default state if a color palette number has not been specified. If present,
NOCOLOR cancels any color for the field. Specifying NOCOLOR is the same as COLOR 0.

HIGHLIGHT

(optional) Indicates that the field is highlighted.

NOHIGHLIGHT

(optional) The default state if HIGHLIGHT has not been specified. If present,
NOHIGHLIGHT indicates that the field will not be highlighted.

REVERSE

(optional) Indicates that the field is in reverse video.

Specifying any of the following eight keywords indicates that field-level attributes are in
effect for this field, and the input window attributes are overridden. For example, if the input
window defines blink and underline, specifying HIGHLIGHT for the field will turn on
highlighting and turn off blink and underline.

Synergy Data Language
FIELD

6-28 Repository User’s Guide 10.3.3 (5/16)

NOREVERSE

(optional) The default state if REVERSE has not been specified. If present, NOREVERSE
indicates that the field will not be in reverse video.

BLINK

(optional) Indicates that the field is blinking. (On Windows, the field is displayed in italic
typeface.)

NOBLINK

(optional) The default state if BLINK has not been specified. If present, NOBLINK indicates
that the field will not blink.

UNDERLINE

(optional) Indicates that the field is underlined.

NOUNDERLINE

(optional) The default state if UNDERLINE has not been specified. If present,
NOUNDERLINE indicates that the field will not be underlined.

NOATTRIBUTES

(optional) Indicates that all attributes specified for the field should be cleared, and the input
window attributes used instead. This is the default state if none of the above eight keywords
has been specified.

DISPLAY LENGTH

(optional) Indicates that the display length follows.

length

The maximum number of characters that you want to be displayed in the field. Valid values are
0 through 65,535. Display length cannot be used in conjunction with RADIO, CHECKBOX,
SELECTION LIST, SELECTION WINDOW, or DIMENSION.

NODISPLAY LENGTH

(optional) The default state if DISPLAY LENGTH is not specified. If present, NODISPLAY
LENGTH indicates that Toolkit’s default computation for display length will be used.

VIEW LENGTH

(optional) Indicates that the view length follows.

length

The number of characters that you want to use to determine the width of the field on the screen
(i.e., the width of the area on the screen that will display data for the field). Valid values are 0
through 9,999. View length cannot be used in conjunction with RADIO or CHECKBOX.

On Windows, this value is multiplied by the width of the sizing character for the current font to
determine the field width. If view length is less than display length, the field will be scrollable

Synergy Data Language
FIELD

Repository User’s Guide 10.3.3 (5/16) 6-29

up to the display length. On UNIX and OpenVMS, the width of the field is set to the number of
characters specified. If view length is less than display length, the field will be truncated to fit
in the view length.

NOVIEW LENGTH

(optional) The default state if VIEW LENGTH is not specified. If present, NOVIEW
LENGTH indicates that Toolkit’s default computation for determining the width of the field
will be used.

UPPERCASE

(optional) Converts lowercase input characters to uppercase. UPPERCASE is valid only when
the field’s data type is alpha or user.

NOUPPERCASE

(optional) The default state if UPPERCASE has not been specified. If present,
NOUPPERCASE allows lowercase input for the field.

NODECIMAL

(optional) Indicates that the user does not need to type a decimal point when typing input in a
numeric field. NODECIMAL is valid only when the field’s data type is decimal,
implied-decimal, or integer.

DECIMAL_REQUIRED

(optional) The default state if NODECIMAL has not been specified. If present,
DECIMAL_REQUIRED aligns the numeric value based on an entered decimal point only.

NOTERM

(optional) Terminates the field automatically when the field is filled.

TERM

(optional) The default state if NOTERM has not been specified. If present, TERM indicates
that the user must press ENTER to terminate field input.

RETAIN POSITION

(optional) Indicates that the position within a text field (multi-dimensional alpha field) will be
retained on subsequent re-entry to the field, until the field is reinitialized or redisplayed. You
can specify the RETAIN POSITION keyword only for text fields.

NORETAIN POSITION

(optional) The default state if RETAIN POSITION has not been specified. If present,
NORETAIN POSITION cancels position retention in the text field.

Synergy Data Language
FIELD

6-30 Repository User’s Guide 10.3.3 (5/16)

DEFAULT

(optional) Indicates that the specified default value should be displayed in the field. DEFAULT
overrides any COPY, INCREMENT, or DECREMENT value that was previously specified.

default

The default value to be displayed in the input field. This value must be appropriate for the
field’s data type. For date and time fields, the default value must be specified in storage form
(STORED), rather than input or display form. If the default value contains spaces or is case
sensitive, you must enclose the entire value in double or single quotation marks (“ ” or ‘ ’).

COPY

(optional) Copies the value from the data area that corresponds to this field if the field is empty.
COPY overrides any DEFAULT, INCREMENT, or DECREMENT value that was previously
specified.

INCREMENT

(optional) Designates that if the user does not enter a value the first time a numeric field is
processed, the last value in the field plus one will be used. INCREMENT is only valid when
the field’s data type is decimal, implied-decimal, or integer. INCREMENT overrides any
DEFAULT, COPY, or DECREMENT value that was previously specified.

DECREMENT

(optional) Designates that if the user does not enter a value the first time a numeric field is
processed, the last value in the field minus one will be used. DECREMENT is only valid when
the field’s data type is decimal, implied-decimal, or integer. DECREMENT overrides any
DEFAULT, COPY, or INCREMENT value that was previously specified.

NODEFAULT

(optional) The default state when DEFAULT, COPY, INCREMENT, and DECREMENT have
not been specified. If present, NODEFAULT cancels any default value that is specified. It also
cancels any COPY, INCREMENT, or DECREMENT keyword.

AUTOMATIC

(optional) Specifies that when an empty field is processed, the specified default
action—default, copy, increment, or decrement—occurs automatically, as if the user had
pressed ENTER without entering any input. AUTOMATIC is only valid when one of the default
actions listed above has already been specified. If neither DEFAULT, COPY, INCREMENT,
nor DECREMENT has been specified, the AUTOMATIC keyword is ignored.

NOAUTOMATIC

(optional) The default state if AUTOMATIC has not been specified. If present,
NOAUTOMATIC cancels automatic entry of data in the field.

Synergy Data Language
FIELD

Repository User’s Guide 10.3.3 (5/16) 6-31

NOECHO

(optional) Prevents the text entered by the user from being displayed in the input field. You can
optionally specify a character to be displayed instead of each typed character; see the
display_char argument, below. You can only specify the NOECHO keyword when the field’s
data type is alpha or user.

NOECHOCHR

(optional) Indicates that a character to be displayed in place of user input follows.

display_char

The character to be displayed for every character that the user types when entering field input.
You can only specify the display character when the field’s data type is alpha or user. If you
specify a display character without specifying NOECHO, NOECHO is set automatically. The
display character must be enclosed in double or single quotation marks (“ ” or ‘ ’).

ECHO

(optional) The default state if NOECHO or NOECHOCHR has not been specified. If present,
ECHO leaves echo on for field input. It also clears any specified display_char.

DATE TODAY

(optional) Defaults the date to today’s date if the user presses ENTER without entering anything
in a blank date field.

DATE NOTODAY

(optional) The default state if DATE TODAY has not been specified. If DATE NOTODAY is
present, the date field no longer defaults to today’s date.

DATE SHORT

(optional) Displays a date type field in fewer than the normal 11 characters. You can only
specify the DATE SHORT keyword when the field’s data type is date.

DATE NOSHORT

(optional) The default state if DATE SHORT has not been specified. If present, DATE
NOSHORT cancels the short date option for the field.

TIME NOW

(optional) Defaults the time to the current system time if the user presses ENTER without
entering any data in a blank time field.

TIME NONOW

(optional) The default state if TIME NOW has not been specified. If TIME NONOW is
present, the time field no longer defaults to the current system time.

Synergy Data Language
FIELD

6-32 Repository User’s Guide 10.3.3 (5/16)

TIME AMPM

(optional) Specifies that the display format of a time field is 12-hour time, followed by an AM
or PM indicator. This keyword is valid only when the field’s data type is time.

TIME NOAMPM

(optional) The default state if TIME AMPM has not been specified. If present, TIME
NOAMPM resets the display format to 24-hour time.

WAIT

(optional) Specifies an input time-out for this field, overriding the value in the UI Toolkit
g_wait_time field.

time

(optional) Specifies the number of seconds to wait for input processing to be complete. This
value may optionally be enclosed in double or single quotation marks (“ ” or ‘ ’).

WAIT IMMEDIATE

(optional) Designates that immediate user response is required; do not wait.

WAIT GLOBAL

(optional) Designates that the global wait time (defined by g_wait_time) should be used.

WAIT FOREVER

(optional) Designates that UI Toolkit should wait until input processing is complete.

NOWAIT

(optional) The default state if WAIT has not been specified. If present, NOWAIT indicates that
the UI Toolkit g_wait_time field defines the global wait time.

INPUT LENGTH

(optional) Indicates that the input length follows.

length

The maximum number of characters the user is permitted to enter in the field. Valid values are
0 through 65,535. Input length cannot be used in conjunction with RADIO, CHECKBOX,
SELECTION LIST, SELECTION WINDOW, or DIMENSION.

NOINPUT LENGTH

(optional) The default state if INPUT LENGTH is not specified. If present, NOINPUT
LENGTH indicates that Toolkit’s default computation for input length will be used.

Synergy Data Language
FIELD

Repository User’s Guide 10.3.3 (5/16) 6-33

BREAK

(optional) Triggers a break in input set processing on a field. If the BREAK keyword is
present, a break occurs after input to this field has been processed.

break_type

Specifies a different type of break processing. If break_type is specified, it must be on the same
line as BREAK. Valid values are

ALWAYS A break occurs whenever the field is accessed.

RETURN A break occurs only when you press ENTER for that field.

NOBREAK

(optional) The default state if a break type has not been specified. If present, NOBREAK
cancels break processing on the field.

REQUIRED

(optional) Specifies that a non-blank alpha or non-zero numeric entry is required in the field.

NOREQUIRED

(optional) The default state if REQUIRED has not been specified. If present, NOREQUIRED
makes input in the field optional.

NEGATIVE

(optional) Allows negative values on decimal, implied-decimal, and integer fields.

ONLY

(optional) Specifies that only negative numbers are allowed as input for this field. If ONLY is
specified, it must be on the same line as NEGATIVE.

ORZERO

(optional) Specifies that only negative numbers or zero are allowed as input for this field.
If ORZERO is specified, it must be on the same line as NEGATIVE.

NONEGATIVE

(optional) The default state when NEGATIVE has not been specified. If present,
NONEGATIVE indicates that negative values cannot be entered as input in the field.

NULL ALLOWED

(optional) Indicates that null is permitted for the field. This keyword is used by xfODBC to
determine the null property for the column in the system catalog. Valid only for data types
alpha (except when the storage format is binary), decimal, date, and time.

NULL DEFAULT

(optional) The default state when neither NULL ALLOWED nor NONULL is specified. If
present, NULL DEFAULT indicates that the default behavior will be used in xfODBC to
determine the null property for the column.

Synergy Data Language
FIELD

6-34 Repository User’s Guide 10.3.3 (5/16)

NONULL

(optional) Indicates that null is not permitted for the field. This keyword is used by xfODBC to
determine the null property for the column in the system catalog. Valid for all data types.

ALLOW

(optional) Indicates that a list of valid entries for the field follows.

entry

An entry in the list of allowable entries for the field. If the entry contains spaces or is case
sensitive, you must enclose it in double or single quotation marks (“ ” or ‘ ’). Blank entries
must be stored in quotation marks; therefore, to specify them in your Synergy Data Language
file, you must enclose them in a second set of different quotation marks. (For example, “‘ ’”
or ‘“ ”’.) You can specify up to 99 entries, each with a maximum length of 80 characters.

NOALLOW

(optional) The default state if no ALLOW entries have been specified. If present, NOALLOW
cancels any ALLOW list for the field.

MATCH CASE

(optional) Specifies that the alpha or user field input must match the case of a specified
allowable entry. (See the ALLOW keyword, above.) This keyword is valid only when the
field’s data type is alpha or user, and an ALLOW list has already been specified.

MATCH NOCASE

(optional) The default state if MATCH CASE has not been specified. If present, MATCH
NOCASE cancels case-sensitive matching for the field.

MATCH EXACT

(optional) Specifies that the alpha or user field input must match all characters in the specified
allowable entry. (See the ALLOW keyword, above.) You can only specify the MATCH
EXACT keyword when the field’s data type is alpha or user. MATCH EXACT is only valid
when an ALLOW list has already been specified.

MATCH NOEXACT

(optional) The default state if MATCH EXACT has not been specified. If present, MATCH
NOEXACT cancels full-length matching for the field.

SELECTION LIST

(optional) Designates that when this input field is processed, a selection window will be
created, and it will contain the specified entries. The window should be placed at the given
location, and it should have the specified height.

sl_row

Specifies the screen row at which the upper-left corner of the selection window will be placed,
relative to the beginning of the data field. This value can be negative.

Synergy Data Language
FIELD

Repository User’s Guide 10.3.3 (5/16) 6-35

sl_column

Specifies the screen column at which the upper-left corner of the selection window will be
placed, relative to the beginning of the data field. This value can be negative.

sl_height

The maximum number of rows in the selection window.

ENTRIES

(optional) Indicates that a list of entries to appear in the selection window follows.

sl_entry

An entry in the selection list. If the entry contains spaces or is case sensitive, it must be
enclosed in double or single quotation marks (“ ” or ‘ ’). Blank entries must be stored in
quotation marks; therefore, to specify them in your Synergy Data Language file, you must
enclose them in a second set of different quotation marks (for example, “‘ ’” or ‘“ ”’). You
can specify up to 99 entries, each with a maximum length of 80 characters.

SELECTION WINDOW

(optional) Designates that when this input field is processed, the given selection window will
be placed on the screen at the specified location.

sw_row

Specifies the screen row at which the upper-left corner of the selection window will be placed,
relative to the beginning of the data field. This value can be negative.

sw_column

Specifies the screen column at which the upper-left corner of the selection window will be
placed, relative to the beginning of the data field. This value can be negative.

sw_name

The name of an existing selection window to associate with this field. This name can have a
maximum of 15 characters and can optionally be enclosed in double or single quotation marks
(“ ” or ‘ ’).

NOSELECT

(optional) The default state if SELECTION LIST or SELECTION WINDOW has not been
specified. If present, NOSELECT cancels any selection list or selection window associated
with the field.

ENUMERATED

(optional) Specifies that this field returns a decimal value for a displayed text entry. You can
only specify the ENUMERATED keyword when the field’s data type is decimal,
implied-decimal, or integer. You can only use the ENUMERATED keyword in conjunction
with an allow list or a selection list or window (including both existing windows and windows
built on the fly with the UI Toolkit S_SELBLD subroutine).

Synergy Data Language
FIELD

6-36 Repository User’s Guide 10.3.3 (5/16)

length

The length of the displayed field, if the field is enumerated. (Note that the length of the
displayed field and the length of the actual input field are not necessarily the same.)

base

The return value of the first entry in an enumerated field. This value can be negative.

step

The value added to each successive entry in an enumerated field. This value can be negative.

NOENUMERATED

(optional) The default state if ENUMERATED has not been specified. If present,
NOENUMERATED resets the field to a non-enumerated field.

RANGE

(optional) Indicates that a range of allowable values for a decimal, implied-decimal, integer,
date, or time field follows. For date and time fields, the range values must be specified in
storage form (STORED), rather than input or display form. You cannot specify the RANGE
keyword in conjunction with an allow list or a selection list or window.

min

Defines the minimum value for a decimal, implied-decimal, integer, date, or time field. This
value can be negative. Min must be less than or equal to the range maximum (as specified by
the max argument). For date and time fields, min must be specified in storage form.

max

Defines the maximum value for a decimal, implied-decimal, integer, date, or time field. This
value can be negative. Max must be greater than or equal to the range minimum (as specified
by the min argument). For date and time fields, max must be specified in storage form.

NORANGE

(optional) The default state if RANGE has not been specified. If present, NORANGE cancels
range-checking for the field.

ARRIVE METHOD

(optional) Indicates that the arrive method for this field follows.

arrive_method

The name of the subroutine (method) to be called before the field is processed by the UI
Toolkit I_INPUT subroutine. The maximum size of the method name is 30 characters.

NOARRIVE METHOD

The default state if an arrive method has not been specified. If specified, NOARRIVE
METHOD cancels any arrive method for the field.

Synergy Data Language
FIELD

Repository User’s Guide 10.3.3 (5/16) 6-37

LEAVE METHOD

(optional) Indicates that the leave method for this field follows.

leave_method

The name of the subroutine (method) to be called after this field is processed by the UI Toolkit
I_INPUT subroutine. The maximum size of the method name is 30 characters.

NOLEAVE METHOD

The default state if a leave method has not been specified. If specified, NOLEAVE METHOD
cancels any leave method for the field.

DRILL METHOD

(optional) Indicates that the drill method for this field follows. On Windows, if a drill method
is specified, a drilldown button will be placed to the right of the input field. If the user clicks
the button, the drill method is invoked. On both Windows and non-Windows environments, an
I_DRILL menu entry will invoke the drill method.

drill_method

The name of the subroutine (method) to be called when this field’s drill button is clicked or the
I_DRILL menu entry is selected. The maximum size of the method name is 30 characters.

NODRILL METHOD

The default state if a drill method has not been specified. If specified, NODRILL METHOD
cancels any drill method for the field.

HYPERLINK METHOD

(optional) Indicates that the hyperlink prompt method for this field follows. On Windows, if a
hyperlink method is specified, when the field is a member of an input set being processed by
I_INPUT, any prompt text associated with the field will be highlighted. If the user clicks on the
highlighted text, the hyperlink method is invoked. On both Windows and non-Windows
environments, an I_HYPER menu entry will invoke the hyperlink method.

hyperlink_method

The name of the subroutine (method) to be called when either this field’s prompt text is clicked
or the I_HYPER menu entry is selected. The maximum size of the method name is 30
characters.

NOHYPERLINK METHOD

The default state if a hyperlink method has not been specified. If specified, NOHYPERLINK
METHOD cancels any hyperlink method for the field.

Synergy Data Language
FIELD

6-38 Repository User’s Guide 10.3.3 (5/16)

CHANGE METHOD

(optional) Indicates that the change method for this field follows.

change_method

The name of the subroutine (method) to be called after this field is validated by the UI Toolkit
I_INPUT subroutine. The maximum size of the method name is 30 characters.

NOCHANGE METHOD

The default state if a change method has not been specified. If specified, NOCHANGE
METHOD cancels any change method for the field.

DISPLAY METHOD

(optional) Indicates that the display method for this field follows.

display_method

The name of the subroutine (method) to be called whenever the field is about to be displayed
by UI Toolkit. It is called after UI Toolkit has formatted the display according to its own rules.
DISPLAY METHOD cannot be specified when the field’s view is set to radio buttons or check
box, or when a selection list or window has been specified.

NODISPLAY METHOD

The default state if a display method has not been specified. If specified, NODISPLAY
METHOD cancels any display method for the field.

EDITFMT METHOD

(optional) Indicates that the edit format method for this field follows.

editfmt_method

The name of the subroutine (method) to be called by UI Toolkit whenever text in the field is
being formatted for editing purposes. It is called after UI Toolkit has formatted the display
according to its own rules. EDITFMT METHOD cannot be specified when a field’s view is set
to radio buttons, or check box, or when a selection list or window has been specified.

NOEDITFMT METHOD

The default state if an edit format method has not been specified. If specified, NOEDITFMT
METHOD cancels any edit format method for the field.

Synergy Data Language
FIELD

Repository User’s Guide 10.3.3 (5/16) 6-39

Discussion
The FIELD statement describes a field definition. This field is associated with the most recently
defined structure. If no structure has been defined, the field is ignored.

Adding new definitions

The order in which you specify the fields determines the order in which they will exist in the
structure. The maximum number of fields that can be defined in one structure is 999.

Replacing existing definitions

All required keywords and data must be specified. The existing field is deleted and replaced by the
specified one. (Note that when you’re replacing a structure, any fields that are not explicitly
specified in the schema are deleted.)

Overlaying existing definitions

Name must be respecified along with the desired attributes. The current field attributes are
overwritten with any new attributes specified. When a template is added to an existing field, both
the existing override flags and the field attributes explicitly specified in the schema are retained as
template overrides.

Keep in mind that items such as allow list or selection list entries are specified by a single keyword.
Hence, to change one allow list entry, you must respecify all allow list entries.

Examples
FIELD ccname TYPE alpha SIZE 40 DESCRIPTION "Name"
REPORT HEADING "Name" PROMPT "Name : " HELP "h_namehlp"
INFO LINE "Please enter your full name." BREAK ALWAYS

FIELD ccopen TYPE date SIZE 8 STORED YYYYMMDD
DESCRIPTION "Opened account"
LONG DESCRIPTION "Opened account (YYYYMMDD)"
REPORT JUST right REPORT HEADING "Opened account"
FORMAT "#04 MM-DD-YY" POSITION relative -3 3

FIELD transdate TEMPLATE date8
DESCRIPTION "Transaction date"
NONAMELINK

Synergy Data Language
FILE

6-40 Repository User’s Guide 10.3.3 (5/16)

FILE – Describe a file definition

FILE name filetype “open_filename” [DESCRIPTION “description”]
[LONG DESCRIPTION “long_desc”] [USER TEXT “string”] [RECTYPE rectype]
[PAGE SIZE page_size] [DENSITY percentage] [NODENSITY] [ADDRESSING addressing]
[SIZE LIMIT size_limit] [NOSIZE LIMIT] [RECORD LIMIT record_limit]
[NORECORD LIMIT] [TEMPORARY] [NOTEMPORARY] [COMPRESS] [NOCOMPRESS]
[STATIC RFA] [NOSTATIC RFA] [TRACK CHANGES] [NOTRACK CHANGES]
[TERABYTE] [NOTERABYTE] [STORED GRFA] [NOSTORED GRFA]
[NOROLLBACK] [ROLLBACK] [NETWORK ENCRYPT] [NONETWORK ENCRYPT]
[PORTABLE “integer_specs”] [NOPORTABLE] [FILE TEXT “file_text”] [NOFILE TEXT]
[ASSIGN structure [ODBC NAME name] [, structure [ODBC NAME name]] [, …]]

Arguments
name

The name of a new or existing file definition. This name can have a maximum of 30 characters.

filetype

The type of file this definition describes. Valid values are

ASCII
DBL ISAM
RELATIVE
USER DEFINED

open_filename

The name of the actual data file, including the path specification. It can have a maximum of 64
characters. This string must be enclosed in double or single quotation marks (“ ” or ‘ ’).

DESCRIPTION

(optional) Indicates that a file definition description follows.

description

A description of the file definition. It can have a maximum of 40 characters and must be
enclosed in double or single quotation marks (“ ” or ‘ ’). This description is available when
Repository displays a list of files.

LONG DESCRIPTION

(optional) Indicates that a long description for the file follows.

long_desc

A more detailed description of the file definition and its use. It can contain 30 lines of up to 60
characters each. Each line must be enclosed in double or single quotation marks (“ ” or ‘ ’).

Synergy Data Language
FILE

Repository User’s Guide 10.3.3 (5/16) 6-41

USER TEXT

(optional) Indicates that a user-defined text string follows.

string

A user-defined text string. It can contain a maximum of 60 characters and must be enclosed in
double or single quotation marks (“ ” or ‘ ’).

RECTYPE

(optional) Indicates that the record type follows.

rectype

Specifies the record type. This value is ignored if specified for a filetype other than DBL
ISAM. Valid values are

FIXED (default)
VARIABLE
MULTIPLE

PAGE SIZE

(optional) Indicates that the page size follows.

page_size

Specifies the index block page size. This value is ignored if specified for a filetype other than
DBL ISAM. Valid values are

512
1024 (default)
2048
4096
8192
16384
32768

DENSITY

(optional) Indicates that the key density percentage follows.

percentage

Specifies the key density percentage used for all keys in the file. Used for DBL ISAM files
only. Percentage must be between 50 and 100, inclusive. The default density is around 50%.

NODENSITY

(optional) Specifies that the default key density (around 50%) is to be used for all keys in
the file.

Synergy Data Language
FILE

6-42 Repository User’s Guide 10.3.3 (5/16)

ADDRESSING

(optional) Indicates that the file addressing follows.

addressing

Specifies the index block page size. This value is ignored if specified for a filetype other than
DBL ISAM. Valid values are

32BIT (default)
40BIT

SIZE LIMIT

(optional) Indicates that a size limit for the data file follows.

size_limit

Specifies the maximum number of megabytes that the data file (.is1) is allowed to reach. This
value applies only to REV 6 or greater ISAM files and is ignored if specified for a filetype other
than DBL ISAM.

NOSIZE LIMIT

(optional) Indicates that there is no size limit for this file.

RECORD LIMIT

(optional) Indicates that a record limit for the file follows.

record_limit

Specifies the maximum number of records that the file is allowed to contain. This value applies
only to REV 6 or greater ISAM files and is ignored if specified for a filetype other than DBL
ISAM.

NORECORD LIMIT

(optional) Indicates that the file has no record limit.

TEMPORARY

(optional) Specifies that the file definition is a temporary one and will be excluded from the list
of available files if used in ReportWriter or xfODBC.

NOTEMPORARY

(optional) Specifies that the file definition is not a temporary one and will be included in the
list of available files if used in ReportWriter or xfODBC.

COMPRESS

(optional) Specifies that the data in the file is compressed. This value is ignored if specified for
a filetype other than DBL ISAM.

NOCOMPRESS

(optional) Specifies that the data in the file is not compressed.

Synergy Data Language
FILE

Repository User’s Guide 10.3.3 (5/16) 6-43

STATIC RFA

(optional) Used for DBL ISAM files only and specifies that the records in this file will retain
the same RFA across WRITE operations. This value is ignored if specified for a filetype other
than DBL ISAM.

NOSTATIC RFA

(optional) Specifies that the records in this file will not retain the same RFA across WRITE
operations.

TRACK CHANGES

(optional) Specifies that change tracking is enabled in this file. This value applies only to REV
6 or greater ISAM files and is ignored if specified for a filetype other than DBL ISAM.

NOTRACK CHANGES

(optional) Specifies that change tracking is not enabled in this file.

TERABYTE

(optional) Specifies that this is a 48-bit terabyte file. This value is ignored if specified for a
filetype other than DBL ISAM.

NOTERABYTE

(optional) Specifies that this is not a 48-bit terabyte file.

STORED GRFA

(optional) Specifies that the CRC-32 portion of an RFA is to be generated and stored to each
record header on each STORE or WRITE operation. This value is ignored if specified for a
filetype other than DBL ISAM.

NOSTORED GRFA

(optional) Specifies that the CRC-32 portion of an RFA is not to be generated and stored to
each record header on each STORE or WRITE operation.

NOROLLBACK

(optional) Specifies that change tracking rollbacks to the file are prohibited. This value applies
only to REV 6 or greater ISAM files and is ignored if specified for a filetype other than DBL
ISAM.

ROLLBACK

(optional) Specifies that change tracking rollbacks to the file are permitted.

NETWORK ENCRYPT

(optional) Specifies that clients accessing this file must use encryption. This value is ignored if
specified for a filetype other than DBL ISAM.

NONETWORK ENCRYPT

(optional) Specifies that clients accessing this file must not use encryption.

Synergy Data Language
FILE

6-44 Repository User’s Guide 10.3.3 (5/16)

PORTABLE

(optional) Indicates that non-key portable integer data specifications follow. Used for DBL
ISAM files only.

integer_specs

One or more non-key portable integer data specifications that can be passed as arguments to
the ISAMC subroutine. Non-key integer data specifications have the following syntax:

I=pos:len[,I=pos:len][,…]

where pos is the starting position of non-key portable integer data and len is its length in bytes
(1, 2, 4, or 8). No validation is performed on this string.

NOPORTABLE

(optional) Specifies that no non-key portable integer data specifications are defined for the file.

FILE TEXT

(optional) Indicates that a file text specification follows.

file_text

A specification for text to be added to the header of the file and/or space to be allocated for
user-defined text. This value applies only to REV 6 or greater ISAM files and is ignored if
specified for a filetype other than DBL ISAM. The syntax of the specification must be one of
the following:

text_size[K]
"text_string"
text_size[K]:"text_string"

where text_size is the amount of space to allocate in bytes (rounded to the nearest kilobyte) for
user-defined text, and text_string is a text string to add to the file header. No validation is
performed on this string.

NOFILE TEXT

(optional) Specifies that no file text specification is defined for the file.

ASSIGN

(optional) Indicates that the name of one or more structures to be assigned to this file follows.

structure

The name of a structure to assign to the file. The specified structure must already be defined.
The maximum number of structures that can be assigned to the file is 200. The maximum size
of a structure name is 30 characters.

Synergy Data Language
FILE

Repository User’s Guide 10.3.3 (5/16) 6-45

ODBC NAME

(optional) Indicates that the table name to use for ODBC access follows.

name

The table name to use for ODBC access. The maximum size of a table name is 30 characters.

Discussion
The FILE statement is used to describe a file definition. File definitions determine which files can
be accessed through Repository and which structures can be used to access them.

Only structures whose file type matches that of the file definition can be assigned to a definition.
Also, the structure must have at least one field defined. When you assign the second or a
subsequent structure to a file, the primary key definition must match those of already assigned
structures. (The primary key is assumed to be the first key defined and must be an access key.)
Specifically, the following key information must match:

 Key size

 Sort order

 Dups allowed flag

 Key data type

 Number of segments

 Type, position, length, and order of each segment

Adding new definitions

The maximum number of files that can be defined is 9,999.

Replacing existing definitions

All required keywords and data must be specified. The existing file and its list of assigned
structures are cleared and set to the specified attributes. To disassociate structures from a file,
specify only the ones you want to keep. Omitting the ASSIGN keyword will disassociate all
assigned structures.

Overlaying existing definitions

Name, filetype, and open_filename must be specified, because they are position-dependent. The
current file attributes are overwritten with any new attributes specified. All assigned structure
names (and corresponding ODBC table names) must be respecified when changing one or more. To
clear all assigned structures, use the Replace option in the Load Repository Schema utility.

Synergy Data Language
FILE

6-46 Repository User’s Guide 10.3.3 (5/16)

Examples
FILE cmclnt dbl isam "FIL:cmclnt"
DESCRIPTION "CM Clients"
ASSIGN client

FILE cusmas dbl isam "FIL:cusmas"
DESCRIPTION "Customer Master"
RECTYPE variable DENSITY 75
PORTABLE "I=10:8,I=20:4"
ASSIGN cusmas1,cusmas2

Synergy Data Language
FORMAT

Repository User’s Guide 10.3.3 (5/16) 6-47

FORMAT – Describe a global or structure-specific format

FORMAT name TYPE type “string” [JUSTIFY just]

Arguments
name

The name of a new or existing format. This name can have a maximum of 30 characters.

TYPE

Indicates that the format type follows.

type

The format type. Valid values are

ALPHA
NUMERIC

string

The format string, which must be enclosed in double or single quotation marks (“ ” or ‘ ’). For
alpha formats, an “at” sign (@) stands for an alphanumeric character. For numeric formats,
Synergy DBL data formatting characters are used to represent the data. Refer to Appendix D
for a list of valid formatting characters. Any other characters (such as dashes, backslashes, and
so forth) appear wherever they are placed in the format. The maximum length of a format
string is 30 characters.

JUSTIFY

(optional) Indicates that the format justification follows.

just

The justification type. This affects how the format is truncated before being applied to a field.
Valid values are

NONE (default)
LEFT
RIGHT

Discussion
The FORMAT statement is used to describe a global or structure-specific format. If no structures
have previously been defined, this format is stored as a global format. Otherwise, it is associated
with the most recently defined structure.

Global formats must be defined before any templates or structures that reference them.
Structure-specific formats must be defined after the STRUCTURE statement and before any fields.

Synergy Data Language
FORMAT

6-48 Repository User’s Guide 10.3.3 (5/16)

Adding new definitions

If name is a global format, the name must be unique within the entire repository. If name is a
structure-specific format, the name must be unique for the current structure.

The maximum number of global formats that can be defined is 9,999. The maximum number of
structure-specific (local) formats that can be defined in one structure is 250.

Replacing existing definitions

All required keywords and data must be specified. The existing format is cleared and set to the
specified attributes.

Overlaying existing definitions

All required keywords and data must be respecified because “string” is position-dependent. The
current format attributes are overwritten with any new attributes that are specified.

Examples
FORMAT dig3num TYPE numeric "ZZZ"

FORMAT dig8mony TYPE numeric "ZZZ,ZZZ.ZZZ" JUSTIFY right

FORMAT license_num TYPE alpha "@@@@-@@"

Synergy Data Language
GROUP

Repository User’s Guide 10.3.3 (5/16) 6-49

GROUP – Begin a group definition

GROUP name [REFERENCE structure] [PREFIX prefix] [COMPILE PREFIX]
[NOCOMPILE PREFIX] [TEMPLATE template] TYPE type [SIZE size] [NOSIZE]
[STORED store_format] [NODATE] [NOTIME] [USER TYPE “user_type”] [NOUSER TYPE]
[PRECISION dec_places] [DIMENSION #elements[:#elements …]]
[COERCED TYPE type] [NOCOERCED TYPE] [OVERLAY]
[LANGUAGE VIEW] [LANGUAGE NOVIEW] [SCRIPT VIEW] [SCRIPT NOVIEW]
[REPORT VIEW] [REPORT NOVIEW] [WEB VIEW] [WEB NOVIEW] [NONAMELINK]
[DESCRIPTION “description”] [NODESC] [LONG DESCRIPTION “long_desc”]
[NOLONGDESC] [POSITION [pos_type] row column] [NOPOSITION]
[FPOSITION [fpos_type] frow fcolumn] [NOFPOSITION] [PROMPT “prompt”] [NOPROMPT]
[HELP “help”] [NOHELP] [INFO LINE “info_line”] [NOINFO] [USER TEXT “user_text”]
[NOUSER TEXT] [FORMAT format] [NOFORMAT] [REPORT HEADING “heading”]
[NOHEADING] [ALTERNATE NAME alt_name] [NOALTERNATE NAME]
[REPORT JUST just] [INPUT JUST ijust] [BLANKIFZERO] [NOBLANKIFZERO]
[PAINT “paint_char”] [NOPAINT] [RADIO|CHECKBOX] [NORADIO] [NOCHECKBOX]
[FONT font] [NOFONT] [PROMPTFONT prompt_font] [NOPROMPTFONT]
[READONLY] [NOREADONLY] [DISABLED] [NODISABLED|ENABLED] [COLOR palette#]
[NOCOLOR] [HIGHLIGHT] [NOHIGHLIGHT] [REVERSE] [NOREVERSE]
[BLINK] [NOBLINK] [UNDERLINE] [NOUNDERLINE] [NOATTRIBUTES]
[DISPLAY LENGTH length] [NODISPLAY LENGTH]
[VIEW LENGTH length] [NOVIEW LENGTH] [UPPERCASE] [NOUPPERCASE]
[NODECIMAL] [DECIMAL_REQUIRED] [NOTERM] [TERM] [RETAIN POSITION]
[NORETAIN POSITION] [DEFAULT default|COPY|INCREMENT|DECREMENT]
[NODEFAULT] [AUTOMATIC] [NOAUTOMATIC] [NOECHO] [NOECHOCHR “display_char”]
[ECHO] [DATE TODAY] [DATE NOTODAY] [DATE SHORT] [DATE NOSHORT]
[TIME NOW] [TIME NONOW] [TIME AMPM] [TIME NOAMPM]
[WAIT “time”|WAIT IMMEDIATE|WAIT GLOBAL|WAIT FOREVER] [NOWAIT]
[INPUT LENGTH length] [NOINPUT LENGTH] [BREAK [break_type]] [NOBREAK]
[REQUIRED] [NOREQUIRED] [NEGATIVE [ONLY|ORZERO]] [NONEGATIVE]
[NULL ALLOWED|NULL DEFAULT|NONULL] [ALLOW entry[, …]] [NOALLOW]
[MATCH CASE] [MATCH NOCASE] [MATCH EXACT] [MATCH NOEXACT]
[SELECTION LIST sl_row sl_column sl_height ENTRIES sl_entry[, …]]
[SELECTION WINDOW sw_row sw_column sw_name] [NOSELECT]
[ENUMERATED length base step] [NOENUMERATED] [RANGE min max] [NORANGE]
[ARRIVE METHOD arrive_meth] [NOARRIVE METHOD]
[LEAVE METHOD leave_meth] [NOLEAVE METHOD]
[DRILL METHOD drill_meth] [NODRILL METHOD]
[HYPERLINK METHOD hyperlink_meth] [NOHYPERLINK METHOD]
[CHANGE METHOD change_meth] [NOCHANGE METHOD]
[DISPLAY METHOD display_meth] [NODISPLAY METHOD]
[EDITFMT METHOD editfmt_meth] [NOEDITFMT METHOD]

Synergy Data Language
GROUP

6-50 Repository User’s Guide 10.3.3 (5/16)

Arguments
See FIELD on page 6-14 for a description of the arguments not listed here.

name

The name of a new or existing group (field). This name can have a maximum of 30 characters.

REFERENCE

Indicates that this is an implicit group, and that the name of the referenced structure follows.

structure

The name of the structure that defines the members of the group.

PREFIX

Indicates that the group member prefix follows.

prefix

The prefix added to group member names when accessed by Synergy DBL, UI Toolkit, and
xfODBC. This prefix can have a maximum of 30 characters.

COMPILE PREFIX

(optional) Indicates that any group member prefix specified will be added to all group member
fields when referenced by the Synergy compiler.

NOCOMPILE PREFIX

(optional) Indicates that any group member prefix specified will not be added to group member
fields when referenced by the Synergy compiler. NOCOMPILE PREFIX is the default.

SIZE

(optional) Indicates that the group size follows. If SIZE is not specified, the size of the group is
determined by the size of its members.

size

The maximum number of characters the group (field) can contain. The maximum size is
99,999 for all fields except implied-decimal fields, where the maximum size is 28. If the type is
date or time, the size must be appropriate for the selected storage format. (See store_format on
page 6-16.) For example, the size must be 6 for the format YYMMDD, 8 for the format
YYYYMMDD, and so forth.

NOSIZE

(optional) Indicates that the size of the group is unspecified and is determined by the size of its
members. NOSIZE must be explicitly specified if the group references a template, and you
want to use the size of the group members rather than the template’s size.

OVERLAY

(optional) Defines this group as an overlay to the previous non-overlay field or group.

Synergy Data Language
GROUP

Repository User’s Guide 10.3.3 (5/16) 6-51

Discussion
The GROUP statement describes a group (field) definition. This group will be associated with the
most recently defined structure. If no structure has been defined yet, the group is ignored.

Adding new definitions

The order in which you specify group and non-group fields determines the order in which they will
exist in the structure. The maximum number of group and non-group fields that can be defined in
one structure is 999.

Replacing existing definitions

All required keywords and data must be specified. The existing group is deleted and replaced by the
specified one. When replacing a group you must respecify its ancestry. In other words, you must
first specify any groups to which it belongs (parent, grandparent, and so forth). This is required
because group names are only required to be unique within their own level. (Note that when you’re
replacing a structure, any group or non-group fields that are not explicitly specified in the schema
are deleted.)

Overlaying existing definitions

Name must be respecified along with the desired attributes. The current group attributes are
overwritten with any new attributes specified. When overlaying a group you must respecify its
ancestry. In other words, you must first specify any groups to which it belongs (parent, grandparent,
and so on). This is required because group names are required to be unique only within their
own level. Keep in mind that items such as allow list or selection list entries are specified by a
single keyword. Hence, to change one allow list entry, you must respecify all allow list entries.

Examples
STRUCTURE info DBL ISAM
GROUP customer TYPE alpha
 FIELD name TYPE alpha SIZE 40
 GROUP office TYPE alpha SIZE 70
 FIELD bldg TYPE alpha SIZE 20
 GROUP address TYPE alpha SIZE 50
 FIELD street TYPE alpha SIZE 40
 FIELD zip TYPE decimal SIZE 10
 ENDGROUP
 ENDGROUP
 GROUP contact TYPE alpha SIZE 90
 FIELD name TYPE alpha SIZE 40
 GROUP address TYPE alpha SIZE 50
 FIELD street TYPE alpha SIZE 40
 FIELD zip TYPE decimal SIZE 10
 ENDGROUP
 ENDGROUP
ENDGROUP

Synergy Data Language
KEY

6-52 Repository User’s Guide 10.3.3 (5/16)

KEY – Describe a key definition

KEY name type [ORDER order] [DUPS dups] [INSERT location] [MODIFIABLE modifiable]
[NONULL|NULL REPLICATING|NULL NONREPLICATING|NULL SHORT
[VALUE value]] [DENSITY percentage] [NODENSITY] [COMPRESS [INDEX] [RECORD]
[KEY]] [NOCOMPRESS] [ODBC VIEW] [ODBC NOVIEW] [KRF krf]
[DESCRIPTION “description”] SEGMENT segtype data [SEGMENT segtype data] […]

Arguments
name

The name of a new or existing key. This name can have a maximum of 30 characters.

type

The key type. Valid values are

ACCESS
FOREIGN

Access keys represent true keys in the data file and are used to specify relationships between
files. Foreign keys are also used to specify relationships between files, but they don’t have to be
true keys in the data file.

ORDER

(optional) Indicates that the data order follows.

order

Specifies how the key data for an access key is stored. This value is ignored if it is specified for
a foreign key. If the current structure’s file type is relative, the order must be ASCENDING.
Valid values are

ASCENDING (default)
DESCENDING

DUPS

(optional) Indicates that the duplicates value follows.

dups

Specifies whether an access key allows duplicates. This value is ignored if it is specified for a
foreign key. If the current structure’s file type is relative, the DUPS value must be NO. Valid
values are

YES (default for all keys except the primary key [the first key defined])
NO

Synergy Data Language
KEY

Repository User’s Guide 10.3.3 (5/16) 6-53

INSERT

(optional) Indicates that the insertion value follows.

location

Used for access keys only and specifies where records with duplicate keys are inserted relative
to other records containing the same key value. This value is ignored if specified for a foreign
key. Valid values are

FRONT (default)
END

MODIFIABLE

(optional) Indicates that the modifiable value follows.

modifiable

Specifies whether an access key is modifiable. Used only for access keys other than the
primary key (the first one defined). This value is ignored if specified for a foreign key. Valid
values are

YES
NO (default)

NONULL

(optional) Specifies that the key is not a null key. The default null key value is NONULL. This
keyword is used to modify an existing null key.

NULL REPLICATING

(optional) Specifies that the key is a replicating null key. The null key value is a single
character and must match each byte of the specified key.

NULL NONREPLICATING

(optional) Specifies that the key is a non-replicating null key. The null key value is a string that
must match the key, from the beginning of the key and for the length of the key.

NULL SHORT

(optional) Specifies that the key is a short null key.

The following five keywords are used only for access keys other than the primary key (the
first one defined). They are ignored if specified for a foreign key.

Synergy Data Language
KEY

6-54 Repository User’s Guide 10.3.3 (5/16)

VALUE

(optional) Indicates that the null key value follows.

value

The replicating or non-replicating null key value. For a replicating null key, value is a single
character. For a non-replicating null key, value is a string. The default null value is a space.

DENSITY

(optional) Indicates that the key density value follows.

percentage

Used for access keys only and specifies a number between 50 and 100 representing the density
percentage for this key. If specified, percentage overrides the density of the file to which this
key belongs. The default key density is unspecified.

NODENSITY

(optional) Indicates that no file density override is specified, and that the key density used will
be that of the file to which the key belongs. This keyword is used to modify an existing key.

COMPRESS

(optional) Indicates that up to three key compression options follow. These options are used
only by RMS indexed files. The compression options are treated as a set. Therefore, to overlay
one or more of them, you must respecify all of them. All compression options must be
specified on the same line together with COMPRESS. No compression options are set by
default.

INDEX

Used for access keys only and specifies that the key’s index is compressed.

RECORD

Used for access keys only and specifies that the record within the data is compressed.

KEY

Used for access keys only and specifies that the key within the data is compressed.

NOCOMPRESS

(optional) Indicates that no index, record, or key compression is specified. This keyword is
used to modify an existing key.

ODBC VIEW

(optional) Indicates that the key will be available to xfODBC as a described index in the
system catalog. ODBC VIEW is the default.

ODBC NOVIEW

(optional) Indicates that the key will not be available to xfODBC as a described index in the
system catalog.

Synergy Data Language
KEY

Repository User’s Guide 10.3.3 (5/16) 6-55

KRF

(optional) Indicates that the key of reference follows.

krf

Used by ReportWriter and xfODBC to access the file. The key of reference is 0-based. For
example, the third key defined in your file is key of reference 2. You only need to specify the
key of reference when you use RMS indexed files (which allow more than 32 keys) and you
want to access your file with a key other than one of the first 32.

DESCRIPTION

(optional) Indicates that a key definition description follows.

description

A description of the key definition. It can have a maximum of 40 characters and must be
enclosed in double or single quotation marks (“ ” or ‘ ’). This description is available when
Repository displays a list of keys.

SEGMENT

Indicates that the data for a key segment follows. The segment type and data must be specified
on the same line together with SEGMENT.

segtype

The segment type for one segment of the key. A key must contain at least one segment
definition and may contain a maximum of eight segment definitions. Valid values are

FIELD Defines a field in the current structure as a segment

LITERAL Defines a literal as a segment, enabling you to preface, append,
or embed a constant within a key

EXTERNAL Defines a field in another structure as a segment

RECORD NUMBER Defines the one access key for a relative file

data

The value that helps define each segment of the key. If you specify a segtype of FIELD, data
must be in the following form:

field_name [SEGTYPE segdtype] [SEGORDER segorder] [NOSEGORDER]

field_name

The name of a field in the current structure. The maximum size is 30 characters.

SEGTYPE

(optional) Indicates that the key segment data type follows.

Synergy Data Language
KEY

6-56 Repository User’s Guide 10.3.3 (5/16)

segdtype

Used for access keys only and specifies the data type for this specific segment which
overrides the default data type of the key. The default segment data type override is
unspecified. Valid values are

ALPHA
NOCASE
DECIMAL
INTEGER
UNSIGNED
SEQUENCE
TIMESTAMP
CTIMESTAMP

SEGORDER

(optional) Indicates that the key segment order follows.

segorder

Used for access keys only. Specifies an override to the key’s sort order. The default key
segment order override is unspecified. Valid values are

ASCENDING
DESCENDING

NOSEGORDER

(optional) Used for access keys only and specifies that the key sort order (rather than key
segment sort order) is used for the key. This keyword is used to modify an existing key.

If you specify a segtype of LITERAL, data must be a literal value. If the literal value contains
spaces, the entire value must be enclosed in double or single quotation marks (“ ” or ‘ ’). The
maximum size of a literal value is 30 characters.

If you specify a segtype of EXTERNAL, data must be the name of another structure, followed
by the name of a field within that structure. The maximum size of a structure name is 30
characters.

If you specify a segtype of RECORD NUMBER, data is not required.

If a specified field or structure has not yet been defined, the segment is ignored.

Synergy Data Language
KEY

Repository User’s Guide 10.3.3 (5/16) 6-57

Discussion
The KEY statement is used to describe a key definition. This key is associated with the most
recently defined structure. If no structure has been defined yet, the key is ignored.

Adding new definitions

The first key defined for a structure is assumed to be the primary key. Access keys must be defined
first, followed by any foreign keys. The order of your access keys determines the key of reference
used by ReportWriter and xfODBC. You can define a maximum of 99 keys in one structure.

Replacing existing definitions

All required keywords and data must be specified. The existing key is deleted and replaced by the
specified one. (Note that when you replace a structure, any keys that are not explicitly specified in
the schema will be deleted.)

Overlaying existing definitions

Name and type must be respecified because type is position-dependent. The current key attributes
are overwritten with any new attributes that are specified. Keep in mind that because the key
segments are not numbered, to overlay one segment, you must respecify all of them.

Examples
KEY cckey access ORDER ascending DUPS no
SEGMENT field cccomp SEGMENT field ccclnt

KEY prim_cont foreign SEGMENT field cccomp
DESCRIPTION "Primary contact key"
SEGMENT literal "01" SEGMENT external cccont cnname

For structures whose file type is relative, only one access key can be defined, and it must
be ascending, allow no duplicates, and have one segment of type record number. Any
additional access keys are ignored.

Synergy Data Language
RELATION

6-58 Repository User’s Guide 10.3.3 (5/16)

RELATION – Describe a relation definition

RELATION name from_structure from_key to_structure to_key

Arguments
name

The name of a new or existing relation. This name can have a maximum of two characters and
must be a numeric value between 1 and 99.

from_structure

The name of the structure defining the relation. The maximum size of the name is 30
characters. The specified structure must already be defined.

from_key

The name of the key to use in the from_structure. This may be an access or foreign key. The
maximum size of the key name is 30 characters.

to_structure

The name of the structure to which you want to relate the from_structure. The maximum size
of the name is 30 characters.

to_key

The name of an access key in the to_structure, from which to relate the from_key. The
maximum size of the key name is 30 characters.

Discussion
The RELATION statement is used to describe a relation definition.

Relations enable you to link the keys of one structure with the keys of other structures. Relations
can be defined within their defining structure (from_structure, after all keys for that structure) or
after all structures. (The Generate Repository Schema utility will generate them along with their
defining structure.) At the end of the “load” process, all relations are validated. If either structure or
either key specified in a relation is undefined, an error is logged and the relation is not loaded into
the repository.

Adding new definitions

You can define a maximum of 99 relations for any one structure (from_structure).

Replacing existing definitions

All required keywords and data must be specified. The existing relation is deleted and replaced by
the specified one. (Note that when you replace a structure, any relations that are not explicitly
specified in the schema are deleted.)

Synergy Data Language
RELATION

Repository User’s Guide 10.3.3 (5/16) 6-59

Overlaying existing definitions

All required keywords and data must be respecified. The current relation attributes are overwritten
with any new attributes that are specified.

Examples
RELATION 1 client prim_cont cmcont cnkey

Synergy Data Language
STRUCTURE

6-60 Repository User’s Guide 10.3.3 (5/16)

STRUCTURE – Describe a structure definition

STRUCTURE name filetype [MODIFIED date] [DESCRIPTION “description”]
[LONG DESCRIPTION “long_desc”] [USER TEXT “string”]

Arguments
name

The name of a new or existing structure. This name can have a maximum of 30 characters.

filetype

The type of file to which this structure will be assigned. Valid values are

ASCII
DBL ISAM
RELATIVE
USER DEFINED

MODIFIED

(optional) Indicates that a modification date follows. This keyword displays in a generated
structure if the “Generate structure timestamps” option (-t) was selected when generating the
schema. When editing a structure via schema, you must modify the value of this keyword.
When the schema is reloaded, this value will be used as the timestamp value for the structure.
If it is not present, the current date and time will be used.

date

The date and time that the structure was last modified in the format YYYYMMDDHHMMSS.

DESCRIPTION

(optional) Indicates that a structure definition description follows.

description

A description of the structure definition. It can have a maximum of 40 characters and must be
enclosed in double or single quotation marks (“ ” or ‘ ’). ReportWriter can use it, along with
the file description, to identify your file. This description is available when Repository displays
a list of structures.

LONG DESCRIPTION

(optional) Indicates that a long description for the structure follows.

long_desc

A more detailed description of the structure definition and its use. It can contain 30 lines of up
to 60 characters each. Each line must be enclosed in double or single quotation marks
(“ ” or ‘ ’).

Synergy Data Language
STRUCTURE

Repository User’s Guide 10.3.3 (5/16) 6-61

USER TEXT

(optional) Indicates that a user-defined text string follows.

string

A user-defined text string. It can contain a maximum of 60 characters and must be enclosed in
double or single quotation marks (“ ” or ‘ ’).

Discussion
The STRUCTURE statement is used to describe a structure definition.

A structure is a record definition or compilation of field and key characteristics for a particular file
or files. Structures must be defined after all global formats and templates.

If a structure is invalid for any reason, it will not be loaded into the repository, nor will its fields,
keys, formats, relations, aliases, or tags be loaded.

Adding new definitions

The maximum number of structures that can be defined is 9,999.

Replacing existing definitions

All required keywords and data must be specified. The existing structure is cleared. All existing
fields, keys, relations, local formats, and tags are deleted, and only the ones specified in the schema
are added.

If aliases are specified with the structure, new aliased structures and their fields are added. All alias
fields in existing specified alias structures are replaced by specified alias fields. Existing alias
structures (and their fields) that are not specified are unaffected.

Overlaying existing definitions

Name and filetype must be respecified, because they are position-dependent. The current structure
attributes are overwritten with any new attributes specified. All specified fields, keys, relations,
local formats, and tags are updated with any new attributes as well. Any new fields, keys, and so
forth are added. Existing fields, keys, and so forth that are not specified are unaffected.

If aliases are specified with the structure, the same rules apply as when replacing existing
definitions. (See “Replacing existing definitions” above.)

Examples
STRUCTURE client dbl isam DESCRIPTION "CM Clients"

Synergy Data Language
TAG

6-62 Repository User’s Guide 10.3.3 (5/16)

TAG – Describe a structure tag definition

TAG type [field_1 op_1 value_1 [connect field_2 op_2 value_2]
[… connect field_10 op_10 value_10]]

Arguments
type

The tag type. Valid values are

FIELD
SIZE
NONE

If you specify FIELD, you must also specify the field_1, op_1, and value_1 arguments. If you
specify SIZE or NONE, the remaining arguments are not applicable and should not be
specified.

field_1 to field_10

The name of a tag field. The maximum size of the field name is 30 characters. Field_n must be
the name of a field in the current structure.

op_1 to op_10

The operator used to compare field_n with value_n. Valid values are

value_1 to value_10

The first comparison value for field_n. The maximum size of this value is 15 characters. If the
value contains spaces or is case sensitive, it must be enclosed in double or single quotation
marks (“ ” or ‘ ’).

connect

The connector used if you’re specifying more than one comparison criterion. If you specify
connect, you must also specify corresponding field_n, op_n, and value_n arguments. Valid
values are

AND
OR

EQ Equal to
NE Not equal to
LE Less than or equal to
LT Less than
GE Greater than or equal to
GT Greater than

Synergy Data Language
TAG

Repository User’s Guide 10.3.3 (5/16) 6-63

Discussion
The TAG statement is used to describe a structure tag definition. A tag definition consists of one or
more comparison criteria.

Tags are associated with a structure and are used when multiple structures are assigned to one file.
The tag information is the information that uniquely identifies one structure (or record type) from
another. Tag criteria can be used during I/O operations to filter records.

The tag is associated with the most recently defined structure. It must be defined before the first
field or after all fields for the current structure. If no structure has been defined yet, the tag is
ignored.

Adding new definitions

You can define a maximum of 10 tags although ReportWriter only supports a maximum of two.
See note above.

Replacing existing definitions

All required keywords and data must be specified. The existing tag is cleared in the current
structure and set to the specified attributes.

Overlaying existing definitions

All required keywords and data must be respecified. The current attributes are overwritten with any
new attributes that are specified.

Examples
TAG SIZE

TAG FIELD transtype EQ "C"

TAG FIELD cm_code GE 10 AND cm_code LE 15

TAG FIELD amount GE 1000 AND amount LT 5000 AND cus_type EQ "VAR"

Although you can specify multiple comparison criteria and reference multiple fields,
ReportWriter only supports a maximum of two criteria, and they must reference the same
field.

Synergy Data Language
TEMPLATE

6-64 Repository User’s Guide 10.3.3 (5/16)

TEMPLATE – Describe a template definition

TEMPLATE name [PARENT template] TYPE type SIZE size [STORED store_format]
[ENUM name] [NODATE] [NOTIME] [USER TYPE “user_type”] [NOUSER TYPE]
[PRECISION dec_places] [DIMENSION #elements[:#elements …]]
[LANGUAGE VIEW] [LANGUAGE NOVIEW] [SCRIPT VIEW] [SCRIPT NOVIEW]
[REPORT VIEW] [REPORT NOVIEW] [WEB VIEW] [WEB NOVIEW]
[COERCED TYPE type] [NOCOERCED TYPE] [OVERLAY field[:offset]] [NONAMELINK]
[DESCRIPTION “description”] [NODESC] [LONG DESCRIPTION “long_desc”]
[NOLONGDESC] [POSITION [pos_type] row column] [NOPOSITION]
[FPOSITION [fpos_type] frow fcolumn] [NOFPOSITION] [PROMPT “prompt”] [NOPROMPT]
[HELP “help”] [NOHELP] [INFO LINE “info_line”] [NOINFO] [USER TEXT “user_text”]
[NOUSER TEXT] [FORMAT format] [NOFORMAT] [REPORT HEADING “heading”]
[NOHEADING] [ALTERNATE NAME alt_name] [NOALTERNATE NAME]
[REPORT JUST just] [INPUT JUST ijust] [BLANKIFZERO] [NOBLANKIFZERO]
[PAINT “paint_char”] [NOPAINT] [RADIO|CHECKBOX] [NORADIO] [NOCHECKBOX]
[FONT font] [NOFONT] [PROMPTFONT prompt_font] [NOPROMPTFONT]
[READONLY] [NOREADONLY] [DISABLED] [NODISABLED|ENABLED]
[COLOR palette#] [NOCOLOR] [HIGHLIGHT] [NOHIGHLIGHT] [REVERSE] [NOREVERSE]
[BLINK] [NOBLINK] [UNDERLINE] [NOUNDERLINE] [NOATTRIBUTES]
[DISPLAY LENGTH length] [NODISPLAY LENGTH]
[VIEW LENGTH length] [NOVIEW LENGTH] [UPPERCASE] [NOUPPERCASE]
[NODECIMAL] [DECIMAL_REQUIRED] [NOTERM] [TERM]
[RETAIN POSITION] [NORETAIN POSITION]
[DEFAULT default|COPY|INCREMENT|DECREMENT] [NODEFAULT]
[AUTOMATIC] [NOAUTOMATIC] [NOECHO] [NOECHOCHR “display_char”] [ECHO]
[DATE TODAY] [DATE NOTODAY] [DATE SHORT] [DATE NOSHORT]
[TIME NOW] [TIME NONOW] [TIME AMPM] [TIME NOAMPM]
[WAIT “time”|WAIT IMMEDIATE|WAIT GLOBAL|WAIT FOREVER] [NOWAIT]
[INPUT LENGTH length] [NOINPUT LENGTH] [BREAK [break_type]] [NOBREAK]
[REQUIRED] [NOREQUIRED] [NEGATIVE [ONLY|ORZERO]] [NONEGATIVE]
[NULL ALLOWED|NULL DEFAULT|NONULL] [ALLOW entry[, …]] [NOALLOW]
[MATCH CASE] [MATCH NOCASE] [MATCH EXACT] [MATCH NOEXACT]
[SELECTION LIST sl_row sl_column sl_height ENTRIES sl_entry[, …]]
[SELECTION WINDOW sw_row sw_column sw_name] [NOSELECT]
[ENUMERATED length base step] [NOENUMERATED] [RANGE min max] [NORANGE]
[ARRIVE METHOD arrive_method] [NOARRIVE METHOD]
[LEAVE METHOD leave_method] [NOLEAVE METHOD]
[DRILL METHOD drill_method] [NODRILL METHOD]
[HYPERLINK METHOD hyperlink_method] [NOHYPERLINK METHOD]
[CHANGE METHOD change_method] [NOCHANGE METHOD]
[DISPLAY METHOD display_method] [NODISPLAY METHOD]
[EDITFMT METHOD editfmt_method] [NOEDITFMT METHOD]

Synergy Data Language
TEMPLATE

Repository User’s Guide 10.3.3 (5/16) 6-65

Arguments
See FIELD on page 6-14 for a description of the arguments not listed here, but note that Struct is
not a supported data type for templates.

name

The name of a new or existing template. This name can have a maximum of 30 characters.

PARENT

(optional) Assigns a parent template to the template. (A parent is to a template what a template
is to a field.)

template

The name of a different template, or parent, to assign to the current template. All template
attributes, including type and size, are obtained from the specified parent template. The
maximum size of the parent name is 30 characters. The specified parent template must already
exist in the repository or be defined previously within the schema. If it is not, an error will be
logged. If a parent is assigned to a template and none of the parent’s attributes are overridden in
the template, no additional keywords are required. The Synergy Data Language assumes that
any keywords specified in addition to the parent name are overrides to the parent.

Discussion
The TEMPLATE statement is used to describe a template. A template is a set of field characteristics
that can be assigned to one or more field or template definitions. Templates must be defined after
any global formats and before any structure definitions. Parent templates must be defined before
child templates that reference them. The maximum number of fields that can use the same template
is 6,000. The maximum number of templates that can use the same parent template is 3,000.

Adding new definitions

You can define a maximum of 9,999 templates.

Replacing existing definitions

All required keywords and data must be specified. The existing template is cleared and set to the
specified attributes.

Overlaying existing definitions

Name must be respecified along with the desired attributes. The current template attributes are
overwritten with any new attributes that are specified. When a parent is added to an existing
template, both the existing override flags and the template attributes that are explicitly specified in
the schema are retained as parent overrides.

Keep in mind that items such as allow list or selection list entries are specified by a single keyword.
Hence, to change one allow list entry, you must respecify all allow list entries.

Synergy Data Language
TEMPLATE

6-66 Repository User’s Guide 10.3.3 (5/16)

Examples
TEMPLATE amount TYPE decimal SIZE 6 PRECISION 2
DESCRIPTION "Implied-decimal amount"

TEMPLATE date8 TYPE date SIZE 8 STORED YYYYMMDD
DESCRIPTION "Four-digit year"
LONG DESCRIPTION "Four-digit year (YYYYMMDD)"
FORMAT "#03 MM-DD-YYYY" DATE TODAY

TEMPLATE color TYPE alpha SIZE 6
DESCRIPTION "Order item color"
POSITION relative 4 4 PROMPT "Enter desired color: "
ALLOW red,blue,yellow,green

TEMPLATE date_mmddyyyy PARENT date8
DESCRIPTION "Date formatted MM-DD-YYYY"

7-1

7
Subroutine Library

Using the Repository Subroutine Library 7-2

Describes the Repository subroutine library. Describes the files you need to link and include with
your program, provides syntax and discussion for the Repository subroutines. Includes two sample
programs using the Repository subroutines and a listing of the ddinfo.def file.

DD_ALIAS – Retrieve alias information ...7-4

DD_CONTROL – Retrieve control record information...7-6

DD_ENUM – Retrieve enumeration information ..7-7

DD_EXIT – Terminate an information session..7-9

DD_FIELD – Retrieve field information ...7-10

DD_FILE – Retrieve file information ..7-14

DD_FILESPEC – Retrieve file specifications..7-17

DD_FORMAT – Retrieve format information...7-19

DD_INIT – Initialize an information session ...7-21

DD_KEY – Retrieve key information ..7-22

DD_NAME – Retrieve a list of definition names ..7-25

DD_RELATION – Retrieve relation information..7-27

DD_STRUCT – Retrieve structure information...7-29

DD_TAG – Retrieve tag information ...7-32

DD_TEMPLATE – Retrieve template information ...7-34

Sample programs ..7-36

Definition file..7-45

Subroutine Library
Using the Repository Subroutine Library

7-2 Repository User’s Guide 10.3.3 (5/16)

Using the Repository Subroutine Library
The subroutines in the Repository subroutine library provide read-only access to Repository
information about structures, enumerations, files, templates, fields, keys, relations, formats, tags,
and aliases. Most of these subroutines have more than one function, which enables them to obtain a
variety of data.

These routines are useful any time you need information about repository data at runtime. They are
most often used during development, but they may also be used, for example, to construct UI input
windows at runtime. See “Sample programs” on page 7-36 for some examples.

To use the Repository subroutine library you must do the following:

 Include the file RPSLIB:ddinfo.def in your calling program using the .INCLUDE statement.
(See below for more information on using ddinfo.def.)

 Call the DD_INIT subroutine before other Repository subroutines, and call DD_EXIT after the
other Repository subroutines.

 On Windows and UNIX, link the file RPSLIB:ddlib.elb with your program. On OpenVMS,
link the file TKLIB_SH.EXE with your program. See the “Building and Running Synergy
Applications” chapter of Synergy Tools for the link commands for your operating system.

 On Synergy .NET, reference Synergex.SynergyDE.ddlib.dll in your Visual Studio project.

The ddinfo.def file

Your calling program and the Repository subroutines communicate with each other through
ddinfo.def, which contains definitions of the function codes, flags, and record layouts used by the
subroutine library. One of these record layouts is the repository control structure (dcs), which is
passed to all Repository subroutines as the first argument. The first two bytes of the control
structure hold the error code that is set by each subroutine. You should check the error code after
each subroutine returns. It will be zero if no error has occurred.

You can include and exclude parts of ddinfo.def by using DDINFO_DEFINES_ONLY and
DDINFO_INGLOBAL:

 To include only the Repository definitions (not the record layouts), define
DDINFO_DEFINES_ONLY before including ddinfo.def.

 To exclude STACK records and STRUCTUREs, which are not allowed when including
ddinfo.def within a global data section, define DDINFO_INGLOBAL before including
ddinfo.def.

You can use the ddinfo.def file for informational purposes, but you should not change its
contents. This file is distributed in your rps\lib directory. See “Definition file” on page 7-45 for
a listing of ddinfo.def.

Subroutine Library
Using the Repository Subroutine Library

Repository User’s Guide 10.3.3 (5/16) 7-3

You can change the way data structures are included by using DDINFO_STRUCTURE:

 To define all data structures as STRUCTUREs, define DDINFO_STRUCTURE before
including ddinfo.def. The elements of each data structure will be enclosed in a
STRUCTURE–ENDSTRUCTURE statement. (See STRUCTURE–ENDSTRUCTURE in the
“Synergy DBL Statements” chapter of the Synergy DBL Language Reference Manual.)

 To define all data structures as RECORDs, leave DDINFO_STRUCTURE undefined, or
undefine it if it was previously defined. The elements of each data structure will be enclosed in
a RECORD–ENDRECORD statement. (See RECORD–ENDRECORD in the “Synergy DBL
Statements” chapter of the Synergy DBL Language Reference Manual.)

Defining DDINFO_STRUCTURE also affects how arrays within data structures are handled. When
DDINFO_STRUCTURE is defined, arrays within data structures are defined as real arrays, because
pseudo arrays are not allowed within a STRUCTURE statement. When DDINFO_STRUCTURE is
not defined, arrays within data structures are defined as pseudo arrays for compatibility with
existing code.

Subroutine Library
DD_ALIAS

7-4 Repository User’s Guide 10.3.3 (5/16)

DD_ALIAS – Retrieve alias information

xcall DD_ALIAS(dcs, DDA_INFO, name, a_info)

or

xcall DD_ALIAS(dcs, DDA_SLIST, names_req, array, [array2], [start][, #names])

Arguments
dcs

The repository control structure.

DDA_INFO

Returns general alias information and sets the current alias.

name

The unique alias name. (a30)

a_info

Returned with the alias data. See the a_info record definition in the ddinfo.def file.

DDA_SLIST

Returns the current alias structure’s alias and aliased field names in sequence order.

names_req

The number of alias names requested. (d3)

array

Returned with the array of alias field names. ((*)a30)

array2

(optional) Returned with the array of aliased field names. ((*)a30)

start

(optional) Contains the alias field name at which to start. (a30)

#names

(optional) Returned with the number of alias field names. (d3)

WT WN U V

Subroutine Library
DD_ALIAS

Repository User’s Guide 10.3.3 (5/16) 7-5

Discussion
The DD_ALIAS subroutine returns information about aliases. There are two ways to call
DD_ALIAS:

 DDA_INFO enables you to retrieve general information about an alias.

 DDA_SLIST enables you to retrieve a list of alias and aliased fields for an alias structure.

DDA_INFO

If you pass DDA_INFO, the DD_ALIAS subroutine reads the specified alias. If that alias is not
found, the relevant error code is returned in the control structure. If the alias is found, information
about the alias is recorded in the control structure, and general information is returned in a_info.

Once you set a current alias with the DDA_INFO function, the DDA_SLIST function becomes
valid.

DDA_SLIST

Once an alias has been selected, the DDA_SLIST function becomes valid. The DDA_SLIST
function returns an array of alias field names for the current alias structure. The names are returned
in sequence order (the order defined within the alias structure), starting with either the first name or
the specified name. If you pass array2, DD_ALIAS also returns a corresponding list of the aliased
field names. You can then use DD_FIELD to obtain general information about the aliased fields.

DD_ALIAS returns as many field names as are found or as are requested, whichever is smaller. The
actual number of names in the array can be returned in #names. You must make sure that the buffer
passed is large enough to hold the number of names that you are requesting.

Subroutine Library
DD_CONTROL

7-6 Repository User’s Guide 10.3.3 (5/16)

DD_CONTROL – Retrieve control record information

xcall DD_CONTROL(dcs, DDC_INFO, c_info)

Arguments
dcs

The repository control structure.

DDC_INFO

Returns general repository control record information.

c_info

Returned with the control record data. See the c_info record definition in the ddinfo.def file.

Discussion
The DD_CONTROL subroutine returns control record information about the current repository.
This information includes the repository version and the date and time of the last repository
modification.

WT WN U V

Subroutine Library
DD_ENUM

Repository User’s Guide 10.3.3 (5/16) 7-7

DD_ENUM – Retrieve enumeration information

xcall DD_ENUM(dcs, DDE_INFO, name, e_info)

or

xcall DD_ENUM(dcs, DDE_TEXT, field, data)

or

xcall DD_ENUM(dcs, DDE_MBRS, names_req, array, array2, [start] [,#names])

Arguments
dcs

The repository control structure.

DDE_INFO

Returns general enumeration information and sets the current enumeration.

name

The unique enumeration definition name. (a30)

e_info

Returned with the enumeration data (including number of members). See the e_info record
definition in the ddinfo.def file.

DDE_TEXT

Returns textual information about the current enumeration.

field

A field in the e_info record that indicates what type of textual information should be returned
in data (if the field is non-zero):

ei_desc Short description. (a40)

ei_ldesc Long description. (a1800)

data

Returned with the requested textual data.

DDE_MBRS

Returns an enumeration’s member names and values.

names_req

The number of member names requested. (d3)

WT WN U V

Subroutine Library
DD_ENUM

7-8 Repository User’s Guide 10.3.3 (5/16)

array

Returned with an array of member names. ((*)a30)

array2

Returned with an array of corresponding member values. ((*)a11)

start

(optional) Contains the member name at which to start. (a30)

#names

(optional) Returned with the number of member names. (d3)

Discussion
The DD_ENUM subroutine returns information about enumerations. There are three ways to call
DD_ENUM:

 DDE_INFO enables you to retrieve general information about an enumeration.

 DDE_TEXT enables you to retrieve textual information about an enumeration.

 DDE_MBRS enables you to retrieve the enumeration’s member names and values.

DDE_INFO

If you pass DDE_INFO, the DD_ENUM subroutine reads the specified enumeration. If that
enumeration is not found, the relevant error code is returned in the control structure. If it is found,
the enumeration name is recorded in the control structure and general information is returned in
e_info.

DDE_TEXT

Once an enumeration has been selected, the DDE_TEXT function is valid. DDE_TEXT is used to
obtain textual information about the enumeration. For each type of textual information, a
corresponding field in the e_info record is non-zero. For example, if the ei_desc field in the e_info
record is non-zero, a short description exists for the enumeration. If you pass DDE_TEXT along
with the non-zero field, the corresponding textual information is returned.

DDE_MBRS

Once an enumeration has been selected, the DDE_MBRS function is valid. DDE_MBRS returns
two arrays: the first is an array of member names defined for this enumeration and the second is a
list of corresponding values. The names are returned in the order defined in the enumeration,
starting with either the first name or the name specified with start. DD_ENUM returns all the
member names found or the number requested, whichever is smaller. The count of member names
in the array can be returned in #names. You must ensure that the buffer passed is large enough to
hold the number of names that you are requesting.

Subroutine Library
DD_EXIT

Repository User’s Guide 10.3.3 (5/16) 7-9

DD_EXIT – Terminate an information session

xcall DD_EXIT(dcs)

Arguments
dcs

The repository control structure.

Discussion
DD_EXIT closes the repository files and terminates the information session. It must be the last
subroutine called when using the Repository information subroutines.

This subroutine closes the open file channels and clears the control structure.

WT WN U V

Subroutine Library
DD_FIELD

7-10 Repository User’s Guide 10.3.3 (5/16)

DD_FIELD – Retrieve field information

xcall DD_FIELD(dcs, DDF_LIST, names_req, array, [start][, #names])

or

xcall DD_FIELD(dcs, DDF_SLIST, names_req, array, [start][, #names])

or

xcall DD_FIELD(dcs, DDF_INFO, name, f_info)

or

xcall DD_FIELD(dcs, DDF_TEXT, field, data)

or

xcall DD_FIELD(dcs, DDF_GROUP, name)

or

xcall DD_FIELD(dcs, DDF_ENDGROUP)

Arguments
dcs

The repository control structure.

DDF_LIST

Returns the current structure’s field names in alphabetical order.

DDF_SLIST

Returns the current structure’s field names in sequence order.

names_req

The number of field names requested. (d3)

array

Returned with the array of field names. ((*)a30)

start

(optional) Contains the field name at which to start. (a30)

#names

(optional) Returned with the number of field names. (d3)

WT WN U V

Subroutine Library
DD_FIELD

Repository User’s Guide 10.3.3 (5/16) 7-11

DDF_INFO

Returns general field information and sets the current field.

name

The unique field name. (a30)

f_info

Returned with the field data. See the f_info record definition in the ddinfo.def file.

DDF_TEXT

Returns textual information about the current field.

field

A field in the f_info record that indicates what type of textual information should be returned
in data (if the field is non-zero):

fi_struct Referenced structure for implicit group. (a30)

fi_prefix Group member prefix. (a30)

fi_desc Short description. (a40)

fi_ldesc Long description. (a1800)

fi_usrtyp User data type string. (a30)

fi_enmfld Enumeration name for Enum field. (a30)

fi_strfld Structure (or alias) name for Struct field. (a30)

fi_heading Column heading. (a40)

fi_prompt Prompt text. (a80)

fi_help Help identifier. (a80)

fi_infoln Information string. (a80)

fi_utext User text string. (a80)

fi_altnm Alternate field name. (a30)

fi_font Font. (a30)

fi_prmptfont Prompt font. (a30)

fi_def Default value. (a80)

fi_alwlst Allow list entries. (See fti_entlst in ddinfo.def.)

fi_range Range values. (See fti_range in ddinfo.def.)

fi_enum Enumerated field data. (See fti_enum in ddinfo.def.)

fi_sellist Selection list entries. (See fti_entlst in ddinfo.def.)

Subroutine Library
DD_FIELD

7-12 Repository User’s Guide 10.3.3 (5/16)

fi_arrivemeth Arrive method. (a30)

fi_leavemeth Leave method. (a30)

fi_drillmeth Drill method. (a30)

fi_hypermeth Hyperlink method. (a30)

fi_changemeth Change method. (a30)

fi_dispmeth Display method. (a30)

fi_editfmtmeth Edit format method. (a30)

data

Returned with the requested textual data.

DDF_GROUP

Sets field context to the first member of the group name.

DDF_ENDGROUP

Sets field context back to the group member’s parent field.

Discussion
The DD_FIELD subroutine returns information about fields for the current structure. There are six
ways to call DD_FIELD:

 DDF_LIST and DDF_SLIST enable you to retrieve the structure’s field names.

 DDF_INFO enables you to retrieve general information about a field.

 DDF_TEXT enables you to retrieve textual information about a field.

 DDF_GROUP and DDF_ENDGROUP enable you to establish group context.

You must have previously set the current structure with the DD_STRUCT subroutine. The same
DD_STRUCT call should also have told you the number of fields that exist.

DDF_LIST and DDF_SLIST

If you pass DDF_LIST or DDF_SLIST, the DD_FIELD subroutine returns an array of field names
for the current structure. If you pass DDF_LIST, the names are returned in alphabetical order,
starting with either the first name found or the specified name. If you pass DDF_SLIST, the names
are returned in sequence order (the order defined within the structure), starting with either the first
name defined or the specified name.

DD_FIELD returns as many field names as are found or as are requested, whichever is smaller. The
actual number of names in the array can be returned in #names. You must make sure that the buffer
passed is large enough to hold the number of names that you are requesting.

To obtain a list of fields for an alias structure, use the DD_ALIAS subroutine.

Subroutine Library
DD_FIELD

Repository User’s Guide 10.3.3 (5/16) 7-13

When you pass DDF_LIST or DDF_SLIST, the DD_FIELD subroutine returns field names from
the structure level only. To access the fields that are members of a group, you must first use
DDF_INFO on each field and test the group flag (fi_group). If the group flag is set, then the field is
a group. You must next determine if it is an explicit group or an implicit group (fi_struct is
non-blank for implicit groups).

If the field is an explicit group, you must use DDF_GROUP to establish context for that group, and
then use DDF_LIST or DDF_SLIST to access its members. This logic must be programmed in a
recursive manner, as there is no limit to the number of nested groups.

If the field is an implicit group, you must copy the data from the current dcs into another control
structure, and then pass it and fi_struct to the DD_STRUCT subroutine to establish context for
obtaining the implicit group members. You would then use DD_FIELD to access its members, just
as you did for the original structure. Remember that this structure can have implicit and explicit
groups as well.

DDF_INFO

If you pass DDF_INFO, the DD_FIELD subroutine reads the specified field. If that field is not
found, the relevant error code is returned in the control structure. If it is found, the field name is
recorded in the control structure and general information is returned in f_info.

DDF_TEXT

Once a field has been selected, the DDF_TEXT function is valid. The DDF_TEXT function is used
to obtain textual or variable-length information about the field. For each type of textual
information, a corresponding field in the f_info record is non-zero. For example, if the fi_desc field
in the f_info record is non-zero, a short description exists for the field. If you pass DDF_TEXT
along with the non-zero field, the corresponding textual information is returned.

DDF_GROUP and DDF_ENDGROUP

If you pass DDF_GROUP, the DD_FIELD subroutine sets the context to group level name if name
is an explicit group within the current level. (An explicit group is a field definition which has the
group flag set, but does not reference another structure.) All subsequent calls to DD_FIELD will
access fields at that group level until DD_FIELD is called with the DDF_ENDGROUP function.

If name is not found at the current level, the relevant error code is returned in the control structure.
If it is found, but is not an explicit group, context will not be changed.

If you pass DDF_ENDGROUP, the DD_FIELD subroutine resets the context to the current level’s
parent. If the current level is the structure, the context is not changed.

Subroutine Library
DD_FILE

7-14 Repository User’s Guide 10.3.3 (5/16)

DD_FILE – Retrieve file information

xcall DD_FILE(dcs, DDL_INFO, name, fl_info)

or

xcall DD_FILE(dcs, DDL_TEXT, field, data)

or

xcall DD_FILE(dcs, DDL_STRS, names_req, array, [start], [#names][, array2])

Arguments
dcs

The repository control structure.

DDL_INFO

Returns general file information and sets the current file.

name

The unique file definition name. (a30)

fl_info

Returned with the file data (including file type, open filename, number of assigned structures,
and name of the first assigned structure). See the fl_info record definition in the ddinfo.def
file.

DDL_TEXT

Returns textual information about the current file.

field

A field in the fl_info record that indicates what type of textual information should be returned
in data (if the field is non-zero):

fli_desc Short description. (a40)

fli_ldesc Long description. (a1800)

fli_utext User-defined text string. (a60)

fli_portable Portable integer specifications. (a120)

fli_filetext File text. (a1800)

data

Returned with the requested textual data.

WT WN U V

Subroutine Library
DD_FILE

Repository User’s Guide 10.3.3 (5/16) 7-15

DDL_STRS

Returns a file’s assigned structure names.

names_req

The number of assigned structure names requested. (d3)

array

Returned with the array of assigned structure names. ((*)a30)

start

(optional) Contains the assigned structure name at which to start. (a30)

#names

(optional) Returned with the number of assigned structure names. (d3)

array2

(optional) Returned with the array of corresponding ODBC table names. ((*)a30)

Discussion
The DD_FILE subroutine returns information about file definitions. There are three ways to call
DD_FILE:

 DDL_INFO enables you to retrieve general information about a file.

 DDL_TEXT enables you to retrieve textual information about a file.

 DDL_STRS enables you to retrieve the file’s assigned structure names.

DDL_INFO

If you pass DDL_INFO, the DD_FILE subroutine reads the specified file. If that file is not found,
the relevant error code is returned in the control structure. If it is found, the file name is recorded in
the control structure and general information is returned in fl_info.

Once a file has been selected, the other functions are valid.

DDL_TEXT

The DDL_TEXT function is used to obtain textual or variable-length information about the file. For
each type of textual information, a corresponding field in the fl_info record is non-zero. For
example, if the fli_desc field in the fl_info record is non-zero, a short description exists for the file.
If you pass DDL_TEXT along with the non-zero field, the corresponding textual information is
returned.

DDL_STRS

If you pass DDL_STRS, this subroutine returns an array of structure names assigned to this file. If
only one structure is assigned, that name is returned in fl_info from the DDL_INFO function. The
names are returned either in the order in which they were assigned, starting with the first one, or

Subroutine Library
DD_FILE

7-16 Repository User’s Guide 10.3.3 (5/16)

starting with the specified name. DD_FILE returns as many structure names as are found or as are
requested, whichever is smaller. The actual number of names in the array can be returned in
#names. You must ensure that the buffer passed is large enough to hold the number of names that
you are requesting.

Subroutine Library
DD_FILESPEC

Repository User’s Guide 10.3.3 (5/16) 7-17

DD_FILESPEC – Retrieve file specifications

xcall DD_FILESPEC(dcs, name, [structure], fls_info, k_info[, …])

Arguments
dcs

The repository control structure.

name

The unique file definition name. (a30)

structure

(optional) Contains the name of a structure assigned to the file. (a30)

fls_info

Returned with the file specification data. See the fls_info record in the ddinfo.def file.

k_info

(optional) Returned with the key information for a maximum of 99 access keys. See the k_info
record in the ddinfo.def file. (This can be a dimensioned argument. See below.)

Discussion
The DD_FILESPEC subroutine returns information related to the given file definition, with which
the calling routine can create the file. If DD_FILESPEC can’t find the specified file definition, the
relevant error code is returned in the control structure.

If you don’t specify the structure name, the name of the first structure assigned to the file is used. If
no structures are assigned or if the specified structure is not assigned to the file, the relevant error
code is returned in the control structure.

If both the file definition name and the assigned structure are found, the file specification
information is returned in fls_info. This information includes the actual open filename, the file type,
the structure name, the record size, and the number of keys.

The DD_FILESPEC subroutine returns information for a maximum of 99 access keys. The
information for each key is returned in k_info. Optionally, you can pass one k_info argument which
is declared as a real (bracketed) array. You must pass it to DD_FILESPEC without the brackets. To
obtain textual information about each key, such as a description or null key value, use the DD_KEY
subroutine.

WT WN U V

Subroutine Library
DD_FILESPEC

7-18 Repository User’s Guide 10.3.3 (5/16)

DD_FILESPEC returns the keys in sequence number order and assumes that all access keys are
defined before any foreign keys. DD_FILESPEC returns either as many keys as the number of
k_info arguments passed to it (or the number of elements in the k_info array) or as many keys as it
finds, depending on which number is smaller. The fls_info record contains the total number of
access keys that are defined for the given file.

Subroutine Library
DD_FORMAT

Repository User’s Guide 10.3.3 (5/16) 7-19

DD_FORMAT – Retrieve format information

xcall DD_FORMAT(dcs, DDM_INFO, name, type, format)

or

xcall DD_FORMAT(dcs, DDM_LIST, names_req, array, [start][, #names])

or

xcall DD_FORMAT(dcs, DDM_SINFO, sname, stype, sformat)

Arguments
dcs

The repository control structure.

DDM_INFO

Returns general global or predefined format information.

name

The unique global or predefined format name. (a30)

type

Returned with the global format type. (a1)

format

Returned with the global format string. (a30)

DDM_LIST

Returns the current structure’s format names.

names_req

The number of structure-specific format names requested. (d4)

array

Returned with the array of structure-specific format names. ((*)a30)

start

(optional) Contains the structure-specific format name at which to start. (a30)

#names

(optional) Returned with the number of structure-specific format names. (d4)

WT WN U V

Subroutine Library
DD_FORMAT

7-20 Repository User’s Guide 10.3.3 (5/16)

DDM_SINFO

Returns general structure-specific format information.

sname

The structure-specific format name. (a30)

stype

Returned with the structure-specific format type. (a1)

sformat

Returned with the structure-specific format string. (a30)

Discussion
The DD_FORMAT subroutine returns information about global, predefined, and structure-specific
format definitions. (Predefined formats are the date and time formats.) There are three ways to call
DD_FORMAT:

 DDM_INFO enables you to retrieve global or predefined information about a format.

 DDM_LIST enables you to retrieve a structure’s format names.

 DDM_SINFO enables you to retrieve structure-specific format information.

You must have previously set the current structure with the DD_STRUCT subroutine to access
information about structure-specific formats. You should know the number of structure-specific
formats that exist from that same DD_STRUCT call.

DDM_INFO

If you pass DDM_INFO, this subroutine reads the specified global or predefined date or time
format. (It searches for a predefined format first.) If that format is not found, the relevant error code
is returned in the control structure. If it is found, information about the format is returned.

DDM_LIST

If you pass DDM_LIST, this subroutine returns an array of format names for the current structure.
The names are returned in alphabetical order, starting with either the first name found or the
specified name. DD_FORMAT returns either as many format names as it finds or as you request,
depending on which is smaller. The actual number of names in the array can be returned in #names.

DDM_SINFO

If you pass DDM_SINFO, this subroutine reads the specified structure-specific format. If that
format is not found, the relevant error code is returned in the control structure. If the format is
found, information about the format is returned.

Subroutine Library
DD_INIT

Repository User’s Guide 10.3.3 (5/16) 7-21

DD_INIT – Initialize an information session

xcall DD_INIT(dcs, [main_file], [text_file], [main_open][, text_open])

Arguments
dcs

The repository control structure.

main_file

(optional) Contains the name of the repository main file to open. (a255)

text_file

(optional) Contains the name of the repository text file to open. (a255)

main_open

(optional) Returned with the name of the repository main file opened. (a255)

text_open

(optional) Returned with the name of the repository text file opened. (a255)

Discussion
The DD_INIT subroutine initializes an information session for a particular repository. It must be
the first subroutine called when using the Repository subroutines. It initializes the repository
control structure that is passed to it.

You can optionally specify the name of the repository main and text files to use. If the main_file and
text_file arguments are not passed or are blank, DD_INIT opens the repository main and text files
specified by the environment variables RPSMFIL and RPSTFIL. If these environment variables are
not set, DD_INIT opens the repository files found in the RPSDAT directory (rpsmain.ism and
rpstext.ism).

Once the files are found, their channel numbers are stored in the control structure. If main_open
and text_open are passed, they are returned with the names of the opened files. If no files are found
or if the specified files can’t be opened, an error is returned in the control structure. One of three
error codes (defined in ddinfo.def) is returned:

E_OPNERRM
E_OPNERRT
E_BADVERS

If the error code in dcs is non-zero after calling DD_INIT, the contents of main_open and text_open
are undefined.

WT WN U V

Subroutine Library
DD_KEY

7-22 Repository User’s Guide 10.3.3 (5/16)

DD_KEY – Retrieve key information

xcall DD_KEY(dcs, DDK_LIST, names_req, array, [start][, #names])

or

xcall DD_KEY(dcs, DDK_SLIST, names_req, array, [start][, #names])

or

xcall DD_KEY(dcs, DDK_INFO, name, k_info)

or

xcall DD_KEY(dcs, DDK_TEXT, field, data)

Arguments
dcs

The repository control structure.

DDK_LIST

Returns the current structure’s key names in alphabetical order.

DDK_SLIST

Returns the current structure’s key names in sequence order.

names_req

The number of key names requested. (d2)

array

Returned with the array of key names. ((*)a30)

start

(optional) Contains the key name at which to start. (a30)

#names

(optional) Returned with the number of key names. (d2)

DDK_INFO

Returns general key information.

name

The unique key name. (a30)

WT WN U V

Subroutine Library
DD_KEY

Repository User’s Guide 10.3.3 (5/16) 7-23

k_info

Returned with the key data. See the k_info record definition in the ddinfo.def file.

DDK_TEXT

Returns textual information about the current key.

field

A field in the k_info record that indicates what type of textual information should be returned
in data (if the field is non-zero):

ki_desc Short description. (a40)

ki_nullval Null key value. (a255)

data

Returned with the requested textual data.

Discussion
The DD_KEY subroutine returns information about keys for the current structure. There are four
ways to call DD_KEY:

 DDK_LIST and DDK_SLIST enable you to retrieve the structure’s key names.

 DDK_INFO enables you to retrieve general information about a key.

 DDK_TEXT enables you to retrieve textual information about a key.

You must have previously set the current structure with the DD_STRUCT subroutine. The same
DD_STRUCT call should also have told you the number of keys that exist.

DDK_LIST and DDK_SLIST

If you pass DDK_LIST or DDK_SLIST, the DD_KEY subroutine returns an array of key names for
the current structure. If you pass DDK_LIST, the names are returned in alphabetical order, starting
with either the first name found or the specified name. If you pass DDK_SLIST, the names are
returned in sequence order (the order defined in the structure), starting with either the first name
found or the specified name. DD_KEY returns as many key names as are found or as are requested,
whichever is smaller. The actual number of names in the array can be returned in #names.

You must make sure that the buffer passed is large enough to hold the number of names that you are
requesting.

DDK_INFO

If you pass DDK_INFO, this subroutine reads the specified key. If that key is not found, the
relevant error code is returned in the control structure. If it is found, general key information is
returned in k_info.

Subroutine Library
DD_KEY

7-24 Repository User’s Guide 10.3.3 (5/16)

DDK_TEXT

Once a key has been selected, the DDK_TEXT function is then valid. The DDK_TEXT function is
used to obtain textual or variable-length information about the key. For each type of textual
information, a corresponding field in the k_info record is non-zero. For example, if the ki_desc
field in the k_info record is non-zero, a short description exists for the key. If you pass DDK_TEXT
along with this non-zero field, the corresponding textual information is returned.

Subroutine Library
DD_NAME

Repository User’s Guide 10.3.3 (5/16) 7-25

DD_NAME – Retrieve a list of definition names

xcall DD_NAME(dcs, DDN_COUNT, c_id, count)

or

xcall DD_NAME(dcs, DDN_LIST, l_id, names_req, array, [start][, #names])

Arguments
dcs

The repository control structure.

DDN_COUNT

Returns the count for a given definition type.

c_id

One of the following functions:

DDN_STRUCT Returns the count of structure definitions.

DDN_FILE Returns the count of file definitions.

DDN_TEMPLATE Returns the count of template definitions.

DDN_ENUM Returns the count of enumeration definitions.

DDN_FMT Returns the count of global format definitions.

DDN_DFMT Returns the count of predefined date formats.

DDN_TFMT Returns the count of predefined time formats.

count

Returned with the item count. (d4)

DDN_LIST

Returns a list of definition names.

l_id

One of the following functions:

DDN_STRUCT Returns structure definition names.

DDN_FILE Returns file definition names.

DDN_TEMPLATE Returns template definition names.

DDN_ENUM Returns enumeration definition names.

WT WN U V

Subroutine Library
DD_NAME

7-26 Repository User’s Guide 10.3.3 (5/16)

DDN_FMT Returns global format definition names.

DDN_DFMT Returns predefined date format definition names.

DDN_TFMT Returns predefined time format definition names.

names_req

The number of names requested. (d4)

array

Returned with the array of names. ((*)a30)

start

(optional) Contains the name at which to start. (a30)

#names

(optional) Returned with the number of names. (d4)

Discussion
The DD_NAME subroutine enables you to find out how many definitions of a given definition type
exist, and then ask for a list of their names. There are two ways to call DD_NAME:

 DDN_COUNT enables you to retrieve the count for a definition type.

 DDN_LIST enables you to retrieve a list of definition names.

DDN_COUNT

If you pass DDN_COUNT, the DD_NAME subroutine returns the number of definitions that exist
for the specified type.

DDN_LIST

If you pass DDN_LIST, DD_NAME returns an array of definition names for the requested type.
You can retrieve as many names as you want, and you can specify the name at which to start. These
names are returned in alphabetical order, starting with either the first name found or the specified
name. DD_NAME returns as many names as are found or as are requested, whichever is smaller.
The actual number of names in the array can be returned in #names.

You must make sure that the buffer passed is large enough to hold the number of names that you are
requesting.

Subroutine Library
DD_RELATION

Repository User’s Guide 10.3.3 (5/16) 7-27

DD_RELATION – Retrieve relation information

xcall DD_RELATION(dcs, DDR_LIST, names_req, array, [start][, #names])

or

xcall DD_RELATION(dcs, DDR_INFO, name, from_key, to_struct, to_key)

Arguments
dcs

The repository control structure.

DDR_LIST

Returns the current structure’s relation names.

names_req

The number of relation names requested. (d2)

array

Returned with the array of relation names. ((*)a30)

start

(optional) Contains the relation name at which to start. (a30)

#names

(optional) Returned with the number of relation names. (d2)

DDR_INFO

Returns general relation information.

name

The unique relation name. (a30)

from_key

Returned with the name of the relation’s “from” key. (a30)

to_struct

Returned with the name of the relation’s “to” structure. (a30)

to_key

Returned with the name of the relation’s “to” key. (a30)

WT WN U V

Subroutine Library
DD_RELATION

7-28 Repository User’s Guide 10.3.3 (5/16)

Discussion
The DD_RELATION subroutine returns information about relations for the current structure. There
are two ways to call DD_RELATION:

 DDR_LIST enables you to retrieve the structure’s relation names.

 DDR_INFO enables you to retrieve general information about a relation.

You must have previously set the current structure with the DD_STRUCT subroutine. The same
DD_STRUCT call should also have told you the number of relations that exist.

DDR_LIST

If you pass DDR_LIST, the DD_RELATION subroutine returns an array of relation names for the
current structure. The names are returned in alphabetical order, starting with either the first name
found or the specified name. DD_RELATION returns as many relation names as are found or as are
requested, whichever is smaller. The actual number of names in the array can be returned in
#names.

You must ensure that the buffer passed is large enough to hold the number of names you are
requesting.

DDR_INFO

If you pass DDR_INFO, this subroutine reads the specified relation. If that relation is not found, the
relevant error code is returned in the control structure. If it is found, general relation information is
returned.

Subroutine Library
DD_STRUCT

Repository User’s Guide 10.3.3 (5/16) 7-29

DD_STRUCT – Retrieve structure information

xcall DD_STRUCT(dcs, DDS_INFO, name, s_info[, s_name])

or

xcall DD_STRUCT(dcs, DDS_TEXT, field, data)

or

xcall DD_STRUCT(dcs, DDS_FILS, names_req, array, [start][, #names])

Arguments
dcs

The repository control structure.

DDS_INFO

Returns general structure information and sets the current structure.

name

The unique structure name. It can be the name of an alias structure. (a30)

s_info

Returned with the structure data (including file type, record size, number of fields, keys,
relations, formats, number of files to which it is assigned, name of the first file to which it is
assigned, and structure tag information). See the s_info record definition in ddinfo.def.

s_name

(optional) Returned with the name of the aliased structure, if name is an alias structure name.

DDS_TEXT

Returns textual information about the current structure.

field

A field in the s_info record that indicates what type of textual information should be returned
in data (if the field is non-zero):

si_desc Short description. (a40)

si_ldesc Long description. (a1800)

si_utext User-defined text string. (a60)

data

Returned with the requested textual data.

WT WN U V

Subroutine Library
DD_STRUCT

7-30 Repository User’s Guide 10.3.3 (5/16)

DDS_FILS

Returns the list of files to which a structure is assigned.

names_req

The number of assigned file definition names requested. (d3)

array

Returned with the array of assigned file definition names. ((*)a30)

start

(optional) Contains the assigned file definition name at which to start. (a30)

#names

(optional) Returned with the number of assigned file definition names. (d3)

Discussion
The DD_STRUCT subroutine returns information about structures. It also sets the current structure.
There are three ways to call DD_STRUCT:

 DDS_INFO enables you to retrieve general information about a structure.

 DDS_TEXT enables you to retrieve textual information about a structure.

 DDS_FILS enables you to retrieve a structure’s list of assigned files.

DDS_INFO

If you pass DDS_INFO, the DD_STRUCT subroutine reads the specified structure. If that structure
is not found, an error code is returned in the control structure. If it is found, information about the
structure is recorded in the control structure and general information is returned in s_info.

The structure can be an alias structure, in which case the name of the aliased structure can be
returned in s_name. Also, the structure name recorded in the control structure (the current
structure) will be the name of the aliased structure.

Once you set a current structure with the DDS_INFO function, you can then use other subroutines
to access information about the fields, keys, relations, formats, and tag associated with that
structure. The DDS_TEXT and DDS_FILS functions also become valid.

The s_info record returns the total number of fields in the structure (including any groups) in
si_nmflds. However, because si_nmflds is only a d3, if the field count is equal to or greater
than 999, si_nmflds is set to 999, and your application must iterate through the structure
and its groups to calculate the total field count using si_childct and fi_childct (which are
what Repository uses internally to calculate the total).

Subroutine Library
DD_STRUCT

Repository User’s Guide 10.3.3 (5/16) 7-31

DDS_TEXT

The DDS_TEXT function is used to obtain textual or variable-length information about the
structure. For each type of textual information, a corresponding field in the s_info record is
non-zero. For example, if the si_desc field in the s_info record is non-zero, a short description
exists for the structure. If you pass DDS_TEXT along with the non-zero field, the corresponding
textual information is returned.

DDS_FILS

If you pass DDS_FILS, this subroutine returns an array of file definition names to which this
structure is assigned. If this structure is assigned to only one file, that file definition name is
returned in s_info. The names are returned in the order in which the structure was assigned to them,
starting with either the first one or the specified name. DD_STRUCT returns either as many file
definition names as it finds or as you request, whichever is smaller. The actual number of names in
the array can be returned in #names. You must ensure that the buffer passed is large enough to hold
the number of names you are requesting.

Subroutine Library
DD_TAG

7-32 Repository User’s Guide 10.3.3 (5/16)

DD_TAG – Retrieve tag information

xcall DD_TAG(dcs, DDTG_LIST, names_req, array, [start][, #names])

or

xcall DD_TAG(dcs, DDTG_INFO, name, tg_info)

Arguments
dcs

The repository control structure.

DDTG_LIST

Returns the current structure’s tag names.

names_req

The number of tag names requested. (d2)

array

Returned with the array of tag names. ((*)a30)

start

(optional) Contains the tag name at which to start. (a30)

#names

(optional) Returned with the number of tag names. (d2)

DDTG_INFO

Returns general tag information.

name

The unique tag name. (a30)

tg_info

Returned with the tag data. See the tg_info record definition in the ddinfo.def file.

Discussion
The DD_TAG subroutine returns information about tags for the current structure. There are two
ways to call DD_TAG:

 DDTG_LIST enables you to retrieve the structure’s tag names.

 DDTG_INFO enables you to retrieve general information about a tag.

WT WN U V

Subroutine Library
DD_TAG

Repository User’s Guide 10.3.3 (5/16) 7-33

You must have previously set the current structure with the DD_STRUCT subroutine. The same
DD_STRUCT call should also have told you the number of tags that exist.

DDTG_LIST

If you pass DDTG_LIST, the DD_TAG subroutine returns an array of tag names for the current
structure. The names are returned in alphabetical order, starting with either the first name found or
the specified name. DD_TAG returns as many tag names as are found or as are requested,
whichever is smaller. The actual number of names in the array can be returned in #names.

You must ensure that the buffer passed is large enough to hold the number of names you are
requesting.

DDTG_INFO

If you pass DDTG_INFO, this subroutine reads the specified tag. If that tag is not found, the
relevant error code is returned in the control structure. If it is found, general tag information is
returned in tg_info.

Subroutine Library
DD_TEMPLATE

7-34 Repository User’s Guide 10.3.3 (5/16)

DD_TEMPLATE – Retrieve template information

xcall DD_TEMPLATE(dcs, DDT_INFO, name, t_info)

or

xcall DD_TEMPLATE(dcs, DDT_TEXT, field, data)

Arguments
dcs

The repository control structure.

DDT_INFO

Returns general template information and sets the current template.

name

The unique template name. (a30)

t_info

Returned with the template data. See the t_info record definition in ddinfo.def.

DDT_TEXT

Returns textual information about the current template.

field

A field in the t_info record that indicates what type of textual information should be returned
in data (if the field is non-zero):

ti_desc Short description. (a40)

ti_ldesc Long description. (a1800)

ti_usrtyp User data type string. (a30)

ti_heading Column heading. (a40)

ti_prompt Prompt text. (a80)

ti_help Help identifier. (a80)

ti_infoln Information string. (a80)

ti_utext User text string. (a80)

ti_altnm Alternate field name. (a30)

ti_font Font. (a30)

WT WN U V

Subroutine Library
DD_TEMPLATE

Repository User’s Guide 10.3.3 (5/16) 7-35

ti_prmptfont Prompt font. (a30)

ti_def Default value. (a80)

ti_alwlst Allow list entries. (See fti_entlst in ddinfo.def.)

ti_range Range values. (See fti_range in ddinfo.def.)

ti_enum Enumerated template data. (See fti_enum in ddinfo.def.)

ti_sellist Selection list entries. (See fti_entlst in ddinfo.def.)

ti_arrivemeth Arrive method. (a30)

ti_leavemeth Leave method. (a30)

ti_drillmeth Drill method. (a30)

ti_hypermeth Hyperlink method. (a30)

ti_changemeth Change method. (a30)

ti_dispmeth Display method. (a30)

ti_editfmtmeth Edit format method. (a30)

data

Returned with the requested textual data.

Discussion
The DD_TEMPLATE subroutine returns information about template definitions. There are two
ways to call DD_TEMPLATE:

 DDT_INFO enables you to retrieve general information about a template.

 DDT_TEXT enables you to retrieve textual information about a template.

DDT_INFO

If you pass DDT_INFO, the DD_TEMPLATE subroutine reads the specified template. If that
template is not found, the relevant error code is returned in the control structure. If it is found, the
template name is recorded in the control structure and general information is returned in t_info.

DDT_TEXT

Once a template has been selected, the DDT_TEXT function is then valid. The DDT_TEXT
function is used to obtain textual or variable-length information about the template. For each type
of textual information, a corresponding field in the t_info record is non-zero. For example, if the
ti_desc field in the t_info record is non-zero, a short description exists for the template. If you pass
DDT_TEXT along with the non-zero field, the corresponding textual information is returned.

Subroutine Library
Sample programs

7-36 Repository User’s Guide 10.3.3 (5/16)

Sample programs
The program below uses the Repository subroutine library to display a selection window. Program
2 on page 7-43 illustrates how to traverse fields and groups in a structure.

Program 1
; This program displays a selection window containing a list of all
; structures in a repository. From that window, the user can then select
; a structure and a second selection window displays, containing a list
; of all fields in that structure.

; Script for Repository information subroutine demo

.column c_select, "Select"

.entry o_exit, "Exit", key(f4)

.entry o_nxtpg, "Next page", key(next)

.entry o_prvpg, "Previous page", key(prev)

.entry s_up, "Move up", key(up)

.entry s_down, "Move down", key(down)

.end

; dddemo.dbl - Demo Repository information subroutines

.include "RPSLIB:ddinfo.def" ;.defines and data structures

.include "WND:tools.def"

.include "WND:windows.def"

.define SELWND_SIZE ,10 ;# rows in selection window

.define MAX_PAGE ,98 ;Max pages in selection window

record
 struct ,a30 ;A structure name
 structs ,SELWND_SIZE a30 ;Structure names
 sinfo ,SELWND_SIZE a62 ;Selection window items
 st_base ,MAX_PAGE a30 ;Base struct for selection page
 field ,a30 ;A field name
 fields ,SELWND_SIZE a30 ;Field names
 finfo ,SELWND_SIZE a49 ;Selection window items
 fld_base ,MAX_PAGE a30 ;Base field for selection page
 colid ,i4 ;Selection window column ID
 st_id ,i4 ;Structure selection window ID
 fld_id ,i4 ;Field selection window id

;Selection window titles
 nmstrcts ,d5 ;Number of structures
 nmflds ,d5 ;Number of fields
 ret ,d2 ;Number of items retrieved
 sx ,d3 ;Structure index
 fx ,d3 ;Field index

Subroutine Library
Sample programs

Repository User’s Guide 10.3.3 (5/16) 7-37

record st_title
,a*,' Structures - Page '

 st_page ,d2
,a*,' of '

 st_last ,d2

record st_info
 st_name ,a30 ;Structure name

 ,a4
 st_filtyp ,a15 ;File type

 ,a3
 st_desc ,a10 ;First 10 chars of short description

record fld_title
,a*,' Fields in '

 fld_sname ,a30
,a*,' - Page '

 fld_page ,d2
,a*,' of '

 fld_last ,d2

record fld_info
 fld_name ,a30 ;Field name

,a2
 fld_type ,a1 ;Field type
 fld_size ,a4 ;Field size

,a2
 fld_desc ,a10 ;First 10 chars of short description

proc
 xcall u_start("dddemo") ;Start UI Toolkit
 xcall m_ldcol(colid, g_utlib, "c_select")

;Load selection column
 xcall dd_init(dcs) ;Start repository routines
 if (error) ;Check error state in dcs
 call error

;Get count of structures
 xcall dd_name(dcs, DDN_COUNT, DDN_STRUCT, nmstrcts)
 if (error)
 call error
 st_page = 1 ;Start at the beginning (novel)
 st_last = nmstrcts/SELWND_SIZE ;Compute last page
 if (st_last*SELWND_SIZE .lt. nmstrcts)
 incr st_last
 call load_structs ;Load a selection page
 do
 call process_structs ;Process selection window

Subroutine Library
Sample programs

7-38 Repository User’s Guide 10.3.3 (5/16)

 until (g_select) ;Unsatisfied menu entry = Exit
 xcall dd_exit(dcs) ;Shut down repository routines
 xcall u_finish ;Shut down UI Toolkit
 stop
;
; Description: Load the selection window for structures
;
load_structs,

;Get a page full of names
 xcall dd_name(dcs, DDN_LIST, DDN_STRUCT, SELWND_SIZE,
 & structs, st_base(st_page), ret)
 if (error) ;Check error state
 call error
 for sx from 1 thru ret ;Get info about each structure
 begin
 st_name = structs(sx)
 xcall dd_struct(dcs, DDS_INFO, st_name, s_info)
 if (error)
 call error
 st_filtyp = si_filtyp ;Load the file type
 if (si_desc) then ;Is there a short description?
 begin
 xcall dd_struct(dcs, DDS_TEXT, si_desc, st_desc)
 if (error)
 call error
 end
 else ;No short description,
 if (si_ldesc) then ;Is there a long description?
 begin
 xcall dd_struct(dcs, DDS_TEXT, si_ldesc, st_desc)
 if (error)
 call error
 end
 else ;No short or long description,
 clear st_desc ; clear it
 sinfo(sx) = st_info ;Load array for the selection wnd
 end
 sx = 1 ;Start with the first one
 if (st_id)
 xcall u_window (D_DELETE, st_id) ;Delete any previous

; version and build the window
 xcall s_selbld(st_id, "STRUCTS", ret, ret, sinfo)

;Put the title on it
 xcall w_brdr(st_id, WB_TITLE, st_title, WB_TPOS, WBT_TOP,
 & WBT_CENTER)
 xcall u_logwnd(st_id) ;Log it with UI Toolkit
 xcall u_window(D_PLACE, st_id, 3, 10) ;Place it at 3,10
 return

Subroutine Library
Sample programs

Repository User’s Guide 10.3.3 (5/16) 7-39

;
; Description: Process the structure selection window
;
process_structs,
 xcall s_select(st_id, sx, struct,, sx);Let user select one
 if (g_select) then ;If user chose a menu entry
 begin
 case g_entnam of
 begincase
 'O_EXIT ':
 return ;Exit
 'O_NXTPG ':
 call next_struct_page ;Load next page
 'O_PRVPG ':
 call prev_struct_page ;Load previous page
 endcase
 end ;Note that any other menu entry

 ; returns as well
 else
 begin ;Select the structure
 xcall dd_struct(dcs, DDS_INFO, struct, s_info)
 if (error)
 call error
 nmflds = si_nmflds ;Load number of fields
 fld_page = 1 ;Start at the first page
 clear fld_base(1)
 fld_last = nmflds/SELWND_SIZE ;Compute last page
 if (fld_last*SELWND_SIZE .lt. nmflds)
 incr fld_last
 fld_sname = struct ;Load structure name in title
 call load_fields ;Load a selection window page
 do
 call process_fields ;Process selection window
 until (g_select) ;Until unsatisfied menu entry
 if (g_entnam .eq. "O_EXIT ") ;Exit only one level
 clear g_select
 xcall u_window(D_DELETE, fld_id) ;Delete fields window
 end
 return

;
; Description: Go to the next page of structures
;
next_struct_page,
 if (st_page .ge. st_last) then ;Check for overflow
 call ding

Subroutine Library
Sample programs

7-40 Repository User’s Guide 10.3.3 (5/16)

 else
 begin
 incr st_page
 st_base(st_page) = structs(SELWND_SIZE ;Start w/ last
 ; structure on prev page
 call load_structs ;Load the window
 end
 clear g_select ;Menu entry satisfied
 return

;
; Description: Go to the previous page of structures
;
prev_struct_page,
 if (st_page .le. 1) then ;Avoid underflow
 call ding
 else
 begin
 decr st_page
 call load_structs ;Load the window
 end
 clear g_select ;Menu entry satisfied
 return

;
; Description: Load a page of fields into a selection window
;
load_fields,
 ;Load a page of field
names
 xcall dd_field(dcs, DDF_LIST, SELWND_SIZE, fields,
 & fld_base(fld_page), ret)
 if (error)
 call error
 for fx from 1 thru ret ;For each field loaded
 begin
 fld_name = fields(fx) ;Get field information
 xcall dd_field(dcs, DDF_INFO, fld_name, f_info)
 if (error)
 call error
 fld_type = fi_type
 fld_size = fi_size [left]
 if (fi_desc) then ;Is there a short description?
 begin
 xcall dd_field(dcs, DDF_TEXT, fi_desc, fld_desc)
 if (error)
 call error
 end

Subroutine Library
Sample programs

Repository User’s Guide 10.3.3 (5/16) 7-41

 else if (fi_ldesc) then ;No, is there a long description?
 begin
 xcall dd_field(dcs, DDF_TEXT, fi_ldesc, fld_desc)
 if (error)
 call error
 end
 else
 clear fld_desc
 finfo(fx) = fld_info ;Load selection window array
 end
 fx = 1 ;So we start with the first one
 if (fld_id)
 xcall u_window (D_DELETE, fld_id) ;Delete any prev version

;and build the window
 xcall s_selbld(fld_id, "FIELDS", ret, ret, finfo)

;Put the title on it
 xcall w_brdr(fld_id, WB_TITLE, fld_title, WB_TPOS, WBT_TOP,
 & WBT_CENTER)
 xcall u_logwnd(fld_id) ;Log it with UI Toolkit
 xcall u_window(D_PLACE, fld_id, 5, 20);Place it at 5,20
 return

;
; Description: Process the field selection window
;
process_fields,
 xcall s_select(fld_id, fx, field,, fx);Let user select one
 if (g_select) then ;If user chose a menu entry
 begin
 case g_entnam of
 begincase
 'O_EXIT ':
 return ;Exit
 'O_NXTPG ':
 call next_field_page ;Load next page
 'O_PRVPG ':
 call prev_field_page ;Load previous page
 endcase
 end ;Note that any other menu entry

 ; returns also
 else
 begin ;Select the structure
 xcall dd_field(dcs, DDF_INFO, field, f_info)
 if (error)
 call error
 end
 return

Subroutine Library
Sample programs

7-42 Repository User’s Guide 10.3.3 (5/16)

;
; Description: Go to the next page of fields
;
next_field_page,
 if (fld_page .ge. fld_last) then ;Check for overflow
 call ding
 else
 begin
 incr fld_page
 fld_base(fld_page) = fields(SELWND_SIZE)
 call load_fields ;Load the window
 end
 clear g_select ;Menu entry satisfied
 return

;
; Description: Go to the previous page of fields
;
prev_field_page,
 if (fld_page .le. 1) then ;Avoid underflow
 call ding
 else
 begin
 decr fld_page
 call load_fields ;Load the window
 end
 clear g_select ;Menu entry satisfied
 return

;
; Description: Abort on a repository access error. This
; routine is called to provide a full traceback of where
; the error occurred.
;
error,
 xcall u_abort("Error in Repository info routines", %a(error))

;
; Description: Ring the terminal bell
;
ding,
 display (g_terminal, 7)
 return
.end

Subroutine Library
Sample programs

Repository User’s Guide 10.3.3 (5/16) 7-43

Program 2
; This program traverses all fields and groups in a structure. It assumes
; all groups are explicit groups.
;
.include "RPSLIB:ddinfo.def"

.define MAX_FLDS ,99

.define MAX_LVLS ,10

.define PUTOUT(msg) writes(chan, (msg))

.define ERROUT(msg) PUTOUT("Error # " + %string(error) + " " + (msg))

common
 chan ,i4

proc
 xcall u_start
 xcall u_open(chan, "o:s", "TST:output.txt")

 xcall dd_init(dcs, "TST:testmain.ism", "TST:testtext.ism")
 if (error)
 begin
 xcall u_message("Cannot open repository file due to error " +
 & %string(error))
 xcall u_finish
 stop
 end

 xcall dd_struct(dcs, DDS_INFO, "COMPANY", s_info)
 if (error) then
 ERROUT("Cannot load COMPANY")
 else
 PUTOUT("Structure COMPANY")

 ; Traverse the structure
 xcall check_level(dcs)
 xcall u_close(chan)
 xcall u_finish
 stop
.end

subroutine check_level, reentrant, stack
 a_dcs ,a

.include "RPSLIB:ddinfo.def"

common
 chan ,i4

Subroutine Library
Sample programs

7-44 Repository User’s Guide 10.3.3 (5/16)

record clear_a
 ix ,d4 ;Loop index
 num_fields ,d3 ;Number of fields returned
 field_names ,MAX_FLDS a30 ;Array of field names
 name ,a30 ;Current name for optimization

static record
 level ,i4 ;Group level (1 = main structure)

proc
 clear clear_a
 dcs = a_dcs
 incr level

 xcall dd_field(dcs, DDF_SLIST, MAX_FLDS, field_names(1),, num_fields)
 if (error)
 ERROUT("Cannot load level " + %string(level))

 for ix from 1 thru num_fields
 begin
 name = field_names(ix)
 xcall dd_field(dcs, DDF_INFO, name, f_info)
 if (fi_group) then
 begin
 PUTOUT("Group " + (name))
 xcall dd_field(dcs, DDF_GROUP, name)
 xcall check_level(dcs) ;Recurse to its members
 xcall dd_field(dcs, DDF_ENDGROUP)
 PUTOUT("Endgroup")
 end
 else
 PUTOUT("Field " + (name))
 end
 decr level
 a_dcs = dcs
 xreturn
endsubroutine

Subroutine Library
Definition file

Repository User’s Guide 10.3.3 (5/16) 7-45

Definition file
The information below is included in the definition file RPSLIB:ddinfo.def, which you must
.INCLUDE in your Synergy DBL source code in order to use the Repository information
subroutines. This file contains .DEFINEs for the various function codes and the data structures
returned from the routines.

See “The ddinfo.def file” on page 7-2 for details on using this file.

.ifndef DDF_LIST ; Prevent duplicate definition in RW and Composer

.ifndef DBLV5
 .include "DBLDIR:dbl.def"
.endc

; Defines for XCALL DD_ALIAS

 .define DDA_INFO ,1 ; General alias information
 .define DDA_SLIST ,2 ; List of alias/aliased fields

; Defines for XCALL DD_CONTROL

 .define DDC_INFO ,1 ; Control record information

; Defines for XCALL DD_ENUM

 .define DDE_INFO ,1 ; General enumration information
 .define DDE_MBRS ,2 ; List of member names/values
 .define DDE_TEXT ,3 ; Textual information

; Defines for XCALL DD_FIELD

 .define DDF_LIST ,1 ; List of field names
 .define DDF_INFO ,2 ; General field information
 .define DDF_TEXT ,3 ; Textual information
 .define DDF_SLIST ,4 ; List of field names
 ; (in sequence order)
 .define DDF_FORMAT ,5 ; Field format
 .define DDF_GROUP ,6 ; Set current group context
 .define DDF_ENDGROUP ,7 ; End current group context

 .define DDF_NSGET ,8 ; Get namespace(s) for fields in
 ; structure
 .define DDF_NSINFO ,9 ; Get field info using namespace
 .define DDF_NSREL ,10 ; Release namespace(s) and
 ; associated data

; Defines for XCALL DD_FILE

 .define DDL_INFO ,1 ; General file information
 .define DDL_STRS ,2 ; List of assigned structures
 .define DDL_LIST ,2 ; (For compatibility with v2)
 .define DDL_TEXT ,3 ; Textual information

Subroutine Library
Definition file

7-46 Repository User’s Guide 10.3.3 (5/16)

; Defines for XCALL DD_FORMAT

 .define DDM_INFO ,1 ; General format information
 .define DDM_LIST ,2 ; List of (local) format names
 .define DDM_SINFO ,3 ; General (local) format info

; Defines for XCALL DD_KEY

 .define DDK_LIST ,1 ; List of key names
 .define DDK_INFO ,2 ; General key information
 .define DDK_TEXT ,3 ; Textual information
 .define DDK_SLIST ,4 ; List of key names
 ; (in sequence order)
; Defines for XCALL DD_NAME

 .define DDN_COUNT ,1 ; Definition count
 .define DDN_LIST ,2 ; Definition list

 .define DDN_STRUCT ,1 ; Structure
 .define DDN_FILE ,2 ; File
 .define DDN_TEMPLATE ,3 ; Template
 .define DDN_FMT ,4 ; Format
 .define DDN_DFMT ,5 ; Pre-defined Date Format
 .define DDN_TFMT ,6 ; Pre-defined Time Format
 .define DDN_ENUM ,7 ; Enumeration

; Defines for XCALL DD_RELATION

 .define DDR_LIST ,1 ; List of relation names
 .define DDR_INFO ,2 ; General relation information

; Defines for XCALL DD_STRUCT

 .define DDS_INFO ,1 ; General structure info
 .define DDS_FILS ,2 ; List of files assigned to
 .define DDS_LIST ,2 ; (For compatibility with v2)
 .define DDS_TEXT ,3 ; Textual information

; Defines for XCALL DD_TAG

 .define DDTG_LIST ,1 ; List of tag names
 .define DDTG_INFO ,2 ; General tag information

; Defines for XCALL DD_TEMPLATE

 .define DDT_INFO ,1 ; General template information
 .define DDT_TEXT ,2 ; Textual information

; Possible error codes returned in the control structure

 .define E_OK ,0 ; No error
 .define E_NOFIND ,1 ; Record not found

Subroutine Library
Definition file

Repository User’s Guide 10.3.3 (5/16) 7-47

 .define E_OPNERR ,2 ; Cannot open file
 .define E_INVFNC ,3 ; Invalid function
 .define E_OPNERRM ,4 ; Cannot open main repository file
 .define E_OPNERRT ,5 ; Cannot open repository text file
 .define E_BADVERS ,6 ; Incompatible repository version
 .define E_OLDDCS ,7 ; Old version of dcs structure

; Defines for Data type fields (fi_type or ti_type)

 .define T_ALP ,'A' ; fi_type or ti_type = ALPHA
 .define T_DEC ,'D' ; fi_type or ti_type = DECIMAL
 .define T_INT ,'I' ; fi_type or ti_type = INTEGER
 .define T_USR ,'U' ; fi_type or ti_type = USER DEFINED

; Defines for Data type subclass (fi_class or ti_class)

; If fi_type = T_DEC, and fi_class equals one of the following,
; OR, ti_type = T_DEC, and ti_class equals one of the following,
; then it's a DATE or TIME type.

 .define C_YYMMDD ,1
 .define C_YYYYMMDD ,2
 .define C_YYJJJ ,3
 .define C_YYYYJJJ ,4
 .define C_YYPP ,5
 .define C_YYYYPP ,6

 .define C_HHMMSS ,8
 .define C_HHMM ,9

; If fi_type = T_ALP, then fi_class defines the subtype, OR,
; if ti_type = T_ALP, then ti_class defines the subtype.

 .define C_BINARY ,1
 .define C_STRFLD ,2 ; For Fields only, not Templates

; If fi_type = T_INT, then fi_class defines the subtype, OR,
; if ti_type = T_INT, then ti_class defines the subtype.

 .define C_BOOLEAN ,1
 .define C_ENUM ,2
 .define C_AUTOSEQ ,3
 .define C_AUTOTIME ,4

; If fi_type = T_USR, then fi_class defines the subtype, OR,
; if ti_type = T_USR, then ti_class defines the subtype.

 .define C_ALPHA ,0
 .define C_NUMERIC ,1
 .define C_DATE ,2
 .define C_UBINARY ,3

Subroutine Library
Definition file

7-48 Repository User’s Guide 10.3.3 (5/16)

; If fi_type = T_DEC, T_INT, T_USR, fi_coertype defines the
; coerced type, OR, if ti_type = T_DEC, T_INT, or T_USR, then
; ti_coertype defines the coerced type.

 .define CT_DEFAULT ,0
 .define CT_BYTE ,1
 .define CT_SHORT ,2
 .define CT_INT ,3
 .define CT_LONG ,4
 .define CT_SBYTE ,5
 .define CT_USHORT ,6
 .define CT_UINT ,7
 .define CT_ULONG ,8
 .define CT_BOOLEAN ,9
 .define CT_DEC ,10
 .define CT_NULLDEC ,11
 .define CT_AUTOTIME ,12 ; only used by genxml

; .define CT_DEFAULT ,0 ; Already defined above
 .define CT_DOUBLE ,1
 .define CT_FLOAT ,2
 .define CT_NULLDECIMAL ,3
 .define CT_DECIMAL ,4

 .define CT_DATETIME ,0
 .define CT_NULLDATETIME ,1

; Defines for view flags. NOTE THAT 0 = YES, 1 = NO.

 .define FI_VW ,0 ; fi_dblvw, fi_rptvw, fi_scrptvw, fi_webvw = YES
 .define FI_NVW ,1 ; fi_dblvw, fi_rptvw, fi_scrptvw, fi_webvw = NO

; Defines for selection window types

 .define FI_SELWND ,1 ; fi_seltyp = Name of window supplied
 .define FI_SELLST ,2 ; fi_seltyp = List of entries supplied

; Defines for Negative value allowed?

 .define FI_NONEG ,0 ; fi_negalw = NO
 .define FI_NEG ,1 ; fi_negalw = YES
 .define FI_NEGONLY ,2 ; fi_negalw = ONLY
 .define FI_NEGORZERO ,3 ; fi_negalw = ORZERO

; Defines for Break value

 .define FI_NOBRK ,0 ; fi_break = NO
 .define FI_BRK ,1 ; fi_break = YES
 .define FI_BRKALL ,2 ; fi_break = ALWAYS
 .define FI_BRKRET ,3 ; fi_break = RETURN

Subroutine Library
Definition file

Repository User’s Guide 10.3.3 (5/16) 7-49

; Defines for Null allowed

 .define FI_NULLDFLT ,0 ; fi_null = DEFAULT
 .define FI_NULLALW ,1 ; fi_null = YES
 .define FI_NONULL ,2 ; fi_null = NO

; Defines for Default action

 .define FI_NONE ,0 ; fi_defact = NONE
 .define FI_DEFAULT ,1 ; fi_defact = DEFAULT
 .define FI_COPY ,2 ; fi_defact = COPY
 .define FI_INCR ,3 ; fi_defact = INCREMENT
 .define FI_DECR ,4 ; fi_defact = DECREMENT

; Defines for justification

 .define FI_LEFT ,0 ; fi_inpjust = LEFT
 .define FI_RIGHT ,1 ; fi_inpjust = RIGHT
 .define FI_CENTER ,2 ; fi_inpjust = CENTER

; Defines for input field position type

 .define FI_ABS ,1 ; fi_postyp or fi_fpostyp = ABSOLUTE
 .define FI_REL ,2 ; fi_postyp or fi_fpostyp = RELATIVE

; Defines for input field wait

 .define FI_WAITNON ,0 ; fi_wait or ti_wait = NO
 .define FI_WAIT_TIME ,1 ; fi_wait or ti_wait = WAIT TIME
 .define FI_WAITIMMD ,2 ; fi_wait or ti_wait = IMMEDIATE
 .define FI_WAITGLBL ,3 ; fi_wait or ti_wait = GLOBAL
 .define FI_WAITFRVR ,4 ; fi_wait or ti_wait = FOREVER

; Defines for View as

 .define FI_FIELDVW ,0 ; fi_view or ti_view = FIELD
 ; <reserved>
 .define FI_RADIOVW ,2 ; fi_view or ti_view = RADIO BUTTONS
 .define FI_CHECKVW ,3 ; fi_view or ti_view = CHECKBOX

; Defines for Group flag

 .define F_NOGROUP ,0 ; fi_group = NO
 .define F_GROUPFLD ,1 ; fi_group = YES
 .define F_GROUPOVRFLD ,2 ; fi_group = OVERLAY

; Defines for testing bits in fi_flags (15i1) and ti_flags (15i1)

 ; fi_flags(1) and ti_flags(1)
 .define B_DESC ,0 ; fi_desc, ti_desc
 .define B_LDESC ,1 ; fi_ldesc, ti_ldesc
 .define B_DBLTYPE ,2 ; fi_dbltype, ti_dbltype
 .define B_USRTYP ,3 ; fi_usrtyp, ti_usrtyp
 .define B_DBLSIZE ,4 ; fi_dblsize, ti_dblsize

Subroutine Library
Definition file

7-50 Repository User’s Guide 10.3.3 (5/16)

 .define B_PREC ,6 ; fi_prec, ti_prec
 .define B_DIM ,7 ; fi_dim, ti_dim

 ; fi_flags(2) and ti_flags(2)
 .define B_DBLVW ,1 ; fi_dblvw, ti_dblvw
 .define B_RPTVW ,2 ; fi_rptvw, ti_rptvw
 .define B_SCRPTVW ,3 ; fi_scrptvw, ti_scrptvw
 .define B_WEBVW ,4 ; fi_webvw, ti_webvw

 ; fi_flags(4) and ti_flags(4)
 .define B_HDG ,0 ; fi_hdg, ti_hdg
 .define B_FMT ,1 ; fi_fmt, ti_fmt
 .define B_RPTJUST ,2 ; fi_rptjust, ti_rptjust
 .define B_INPJUST ,3 ; fi_inpjust, ti_inpjust
 .define B_FPOSTYP ,4 ; fi_fpostyp, ti_fpostyp
 .define B_POSTYP ,6 ; fi_postyp, ti_postyp
 .define B_BZRO ,7 ; fi_bzro, ti_bzro

 ; fi_flags(5) and ti_flags(5)
 .define B_PAINT ,0 ; fi_paint, ti_paint
 .define B_VIEW ,1 ; fi_view, ti_view
 .define B_PROMPT ,2 ; fi_prompt, ti_prompt
 .define B_HELP ,3 ; fi_help, ti_help
 .define B_INFOLN ,4 ; fi_infoln, ti_infoln
 .define B_UTEXT ,6 ; fi_utext, ti_utext
 .define B_ALTNM ,7 ; fi_altnm, ti_altnm
 .define B_ODBCNM ,7 ; (For compatibility with pre-v7.5)

 ; fi_flags(6) and ti_flags(6)
 .define B_FONT ,0 ; fi_font, ti_font
 .define B_PRMPTFONT ,1 ; fi_prmptfont, ti_prmptfont
 .define B_RENDINFO ,2 ; fi_color, ti_color, fi_attrib,
 ; ti_attrib, fi_highlight, etc
 .define B_READONLY ,3 ; fi_readonly, ti_readonly
 .define B_DISABLED ,4 ; fi_disabled, ti_disabled
 .define B_DISPLEN ,6 ; fi_displen, ti_displen
 .define B_VIEWLEN ,7 ; fi_viewlen, ti_viewlen

 ; fi_flags(7) and ti_flags(7)
 .define B_NOECHO ,0 ; fi_noecho, ti_noecho
 .define B_ECHOCHR ,1 ; fi_echochr, ti_echochr
 .define B_DEFACT ,2 ; fi_defact, ti_defact
 .define B_AUTO ,3 ; fi_auto, ti_auto
 .define B_TODAY ,4 ; fi_today, ti_today
 .define B_SHORT ,6 ; fi_short, ti_short
 .define B_NOW ,7 ; fi_now, ti_now

 ; fi_flags(8) and ti_flags(8)
 .define B_AMPM ,0 ; fi_ampm, ti_ampm
 .define B_WAIT ,1 ; fi_wait, ti_wait
 .define B_UC ,2 ; fi_uc, ti_uc
 .define B_NODEC ,3 ; fi_nodec, ti_nodec
 .define B_NOTERM ,4 ; fi_noterm, ti_noterm

Subroutine Library
Definition file

Repository User’s Guide 10.3.3 (5/16) 7-51

 .define B_RETPOS ,6 ; fi_retpos, ti_retpos
 .define B_INPLEN ,7 ; fi_inplen, ti_inplen

 ; fi_flags(10) and ti_flags(10)
 .define B_REQ ,0 ; fi_req, ti_req
 .define B_BREAK ,1 ; fi_break, ti_break
 .define B_NEGALW ,2 ; fi_negalw, ti_negalw
 .define B_ALWLST ,3 ; fi_alwlst, ti_alwlst
 .define B_MATCHCS ,4 ; fi_matchcs, ti_matchcs
 .define B_MATCHEX ,6 ; fi_matchex, ti_matchex
 .define B_RANGE ,7 ; fi_range, ti_range

 ; fi_flags(11) and ti_flags(11)
 .define B_ENUM ,0 ; fi_enum, ti_enum
 .define B_SELLST ,1 ; fi_sellist, ti_sellist
 .define B_NULL ,2 ; fi_null, ti_null

 ; fi_flags(13) and ti_flags(13)
 .define B_ARVMETH ,0 ; fi_arrivemeth, ti_arrivemeth
 .define B_LVMETH ,1 ; fi_leavemeth, ti_leavemeth
 .define B_DRLMETH ,2 ; fi_drillmeth, ti_drillmeth
 .define B_HYPMETH ,3 ; fi_hypermeth, ti_hypermeth
 .define B_CHGMETH ,4 ; fi_changemeth, ti_changemeth
 .define B_DSPMETH ,6 ; fi_dispmeth, ti_dispmeth
 .define B_EDTFMTMETH ,7 ; fi_editfmtmeth, ti_editfmtmeth

; Defines for file record type

 .define FLI_FIXED ,0 ; fli_rectyp = FIXED
 .define FLI_VAR ,1 ; fli_rectyp = VARIABLE
 .define FLI_MULT ,2 ; fli_rectyp = MULTIPLE

; Defines for file page size

 .define FLI_PS1024 ,0 ; fli_pagesize = 1024
 .define FLI_PS512 ,1 ; fli_pagesize = 512
 .define FLI_PS2048 ,2 ; fli_pagesize = 2048
 .define FLI_PS4096 ,3 ; fli_pagesize = 4096
 .define FLI_PS8192 ,4 ; fli_pagesize = 8192
 .define FLI_PS16384 ,5 ; fli_pagesize = 16384
 .define FLI_PS32768 ,6 ; fli_pagesize = 32768

; Defines for file addressing

 .define FLI_32BIT ,0 ; fli_addressing = 32BIT
 .define FLI_40BIT ,1 ; fli_addressing = 40BIT

; Defines for key record length

 .define K_INFO_LEN ,888 ; Size of k_info record

Subroutine Library
Definition file

7-52 Repository User’s Guide 10.3.3 (5/16)

; Defines for key type

 .define KI_FOR ,0 ; ki_ktype = FOREIGN key
 .define KI_ACC ,1 ; ki_ktype = ACCESS key

; Defines for key order

 .define KI_ASC ,0 ; ki_order = ASCENDING
 .define KI_DES ,1 ; ki_order = DESCENDING

; Defines for key duplicates value

 .define KI_NDPS ,0 ; ki_dups = NO DUPS allowed
 .define KI_DPS ,1 ; ki_dups = DUPS allowed

; Defines for duplicate key insert value

 .define KI_FRT ,0 ; ki_insert = INSERT AT FRONT
 .define KI_END ,1 ; ki_insert = INSERT AT END

; Defines for modifiable key value

 .define KI_NMDF ,0 ; ki_mod = NOT MODIFIABLE
 .define KI_MDF ,1 ; ki_mod = MODIFIABLE

; Defines for null key types

 .define KI_NONULL ,0 ; ki_null = Not a NULL key
 .define KI_REP ,1 ; ki_null = REPLICATING
 .define KI_NONREP ,2 ; ki_null = NON_REPLICATING
 .define KI_SHORT ,3 ; ki_null = SHORT

; Defines for key segment types

 .define KI_SG_FLD ,'F' ; ki_segtyp = FIELD
 .define KI_SG_LIT ,'L' ; ki_segtyp = LITERAL
 .define KI_SG_EXT ,'E' ; ki_segtyp = EXTERNAL
 .define KI_SG_REC ,'R' ; ki_segtyp = RECORD NUMBER

; Defines for key segment order override
; If ki_segord = 0, use the key order, ki_order

 .define KI_SG_ASC ,1 ; ki_segord = ASCENDING
 .define KI_SG_DES ,2 ; ki_segord = DESCENDING

; Defines for optional key segment data type
; If ki_segdtyp = 0, look up the field type, fi_type

 .define KI_SG_ALP ,1 ; Alpha key segment (Used for k_segdtyp)
 .define KI_SG_NOC ,2 ; NoCase Alpha key segment " "
 .define KI_SG_DEC ,3 ; Decimal key segment " " "
 .define KI_SG_INT ,4 ; Integer key segment " " "
 .define KI_SG_UNS ,5 ; Unsigned Integer key segment " "

Subroutine Library
Definition file

Repository User’s Guide 10.3.3 (5/16) 7-53

 .define KI_SG_SEQ ,6 ; Sequence (integer) key segment " "
 .define KI_SG_TIM ,7 ; Timestamp (integer) key segment " "
 .define KI_SG_CRT ,8 ; Create timestamp (integer) key segment " "

; Defines for structure tag types

 .define TAGNON ,0 ; si_tagtyp = No tag
 .define TAGFLD ,1 ; si_tagtyp = Field & value
 .define TAGSIZ ,2 ; si_tagtyp = Record size

; Defines for tag field comparison operators

 .define TGI_EQ ,1 ; tgi_tagcmp = EQ
 .define TGI_NE ,2 ; tgi_tagcmp = NE
 .define TGI_LE ,3 ; tgi_tagcmp = LE
 .define TGI_LT ,4 ; tgi_tagcmp = LT
 .define TGI_GE ,5 ; tgi_tagcmp = GE
 .define TGI_GT ,6 ; tgi_tagcmp = GT

; Defines for tag field comparison connectors

 .define TGI_AND ,1 ; tgi_tagcon = AND
 .define TGI_OR ,2 ; tgi_tagcon = OR

; Defines for namespace inclusion

 .define NSI_DBL ,^x(0001) ; Include if available to Language
 .define NSI_UI ,^x(0002) ; Include if available to UI Toolkit
 .define NSI_RW ,^x(0004) ; Include if available to Report Writer
 .define NSI_WEB ,^x(0008) ; Include if available to Web

 .define NSI_NAMES ,^x(0100) ; Index by name
 .define NSI_SEQ ,^x(0200) ; Index by sequence number

 .define NSI_ALL ,^x(FFFF) ; Index all fields both ways

; Macro for creating a key in the sequence namespace

 .define M_SEQKEY(sequence) %string(sequence,"SXXXXXXXX")

 .define DCS_SIZE ,262 ; dcs size in version 9.3 (was 198)
.endc

; Repository Control Structure

.ifndef DDINFO_DEFINES_ONLY ; Prevent getting data when only defines needed

.ifdef DBL8CMP

.define endrecord

.define endstructure

.endc

.ifndef DDINFO_INGLOBAL ; Exclude STACK records when used in global section

.ifdef DDINFO_STRUCTURE

.define record structure

Subroutine Library
Definition file

7-54 Repository User’s Guide 10.3.3 (5/16)

.define endrecord endstructure

.else
 .define record stack record
.endc
.endc
 record dcs
 error ,d2 ; Non-zero = error (See .defines above)
 mchn_r ,i4 ; Main repository channel
 tchn_r ,i4 ; Repository text channel
 sname ,a30 ; Current structure name
 sid ,a4 ; Current structure ID
 flname ,a30 ; Current file name
 tname ,a30 ; Current template name
 fname ,a30 ; Current field name
 aid ,a4 ; Current alias' aliased structure ID
 kname ,a30 ; Current key name
 grpid ,a4 ; Current group ID (0 if group = AC_STR)
 ename ,a30 ; Current enumeration name
 dcs_filler ,a60 ; Room to grow
 endrecord

; Alias information structure

 record a_info
 ai_name ,a30 ; Aliased structure name
 endrecord

; Control record information structure

 record c_info
 ci_tstamp ,a14 ; Timestamp of last repository modification
 ci_ver ,a8 ; Repository version
 ci_str_tstamp ,a14 ; Timestamp of last structure addition/deletion
 endrecord

; Field information structure

 record f_info
 fi_seqnm ,d3 ; Sequence number
 fi_mbrct ,d3 ; Number of members if field is a group
 fi_nosize ,d1 ; TRUE if group size = size of all members
 fi_pos ,d5 ; Starting position within the record or group
 fi_ovrfld ,a30 ; Name of the field being overlaid
 fi_ovroff ,d5 ; Overlay offset within the above field
 fi_group ,d1 ; Group flag (see .defines above)
 fi_struct ,d2 ; Non-zero = struct name for implicit group
 fi_prefix ,d2 ; Non-zero = group member prefix exists
 fi_template ,a30 ; Template referenced by this field
 fi_desc ,d2 ; Non-zero = short description exists
 fi_ldesc ,d2 ; Non-zero = long description exists
 fi_type ,a1 ; Data type (see .defines above)
 fi_class ,d2 ; DBL type subclass (see .defines above)
 fi_usrtyp ,d2 ; Non-zero = user data type string exists

Subroutine Library
Definition file

Repository User’s Guide 10.3.3 (5/16) 7-55

 fi_enmfld ,d2@fi_usrtyp ; Or...enumeration name for Enum fields
 fi_strfld ,d2@fi_usrtyp ; Or...structure name for Struct fields
 fi_ndtype ,a1 ; Native data type
 fi_size ,d5 ; Data size
 fi_prec ,d2 ; # digits to the right of the decimal pt.
.ifdef DDINFO_STRUCTURE
 fi_dim ,[4]d3 ; Dimension (used for arrays)
.else
 fi_dim ,4d3 ; Dimension (used for arrays)
.endc
 fi_ndsize ,d5 ; Native data size
 fi_dblvw ,d1 ; Is field NOT available to DBL? (see .defines)
 fi_rptvw ,d1 ; Is field NOT available to RW? (see .defines)
 fi_scrptvw ,d1 ; Is field NOT available to UI? (see .defines)
 fi_nolnk ,d1 ; Field name is the name link (boolean)
 fi_cmppref ,d1 ; TRUE if member prefix will be used by Compiler
 fi_webvw ,d1 ; Is field NOT available to WEB? (see .defines)
 fi_coertype ,d2 ; Coerced type (see .defines)
 fi_filler1 ,a18 ; (Reserved for future use)
 fi_heading ,d2 ; Non-zero = column heading exists
 fi_fmt ,a30 ; Defines a global or local format name
 fi_rptjust ,d1 ; RW field justification (see .defines above)
 fi_inpjust ,d1 ; Input field justification (see .defines above)
 fi_fpostyp ,d1 ; Input field position type (see .defines above)
 fi_finprow ,d3 ; Input field row position
 fi_finpcol ,d3 ; Input field column position
 fi_postyp ,d1 ; Input prompt position type (see .defines above)
 fi_inprow ,d3 ; Input prompt row position
 fi_inpcol ,d3 ; Input prompt column position
 fi_bzro ,d1 ; Blank if zero? (boolean)
 fi_paint ,d1 ; Is a paint character specified? (boolean)
 fi_pntchr ,a1 ; Paint character for empty fields
 fi_view ,d1 ; View as Field, Radio buttons, or Checkbox
 fi_prompt ,d2 ; Non-zero = prompt text exists
 fi_help ,d2 ; Non-zero = help id exists
 fi_infoln ,d2 ; Non-zero = info line text exists
 fi_utext ,d2 ; Non-zero = user text string exists
 fi_altnm ,d2 ; Non-zero = alternate field name exists
 fi_odbcnm ,d2 @fi_altnm ; (For compatibility with pre-v7.5)
 fi_font ,d2 ; Non-zero = field font name exists
 fi_prmptfont ,d2 ; Non-zero = prompt font name exists
 fi_color ,d2 ; Color palette (1-16)
 fi_attrib ,d1 ; If non-zero, then the following four fields
 ; override the window's attributes
 fi_highlight ,d1 ; Highlight attribute
 fi_reverse ,d1 ; Reverse attribute
 fi_blink ,d1 ; Blink attribute
 fi_underline ,d1 ; Underline attribute
 fi_readonly ,d1 ; Is the field read-only? (boolean)
 fi_disabled ,d1 ; Is the field disabled? (boolean)
 fi_displen ,d5 ; Display length
 fi_viewlen ,d5 ; View length
 fi_filler2 ,a10 ; (Reserved for future use)

Subroutine Library
Definition file

7-56 Repository User’s Guide 10.3.3 (5/16)

 fi_noecho ,d1 ; Do not display text input in field? (boolean)
 fi_echochr ,a1 ; No echo character. Replaces text input.
 fi_defact ,d1 ; Default action (see .defines above)
 fi_def ,d2 ; Non-zero = default value exists
 fi_auto ,d1 ; Automatic default action? (boolean)
 fi_today ,d1 ; Default date to TODAY? (boolean)
 fi_short ,d1 ; Allow short date? (boolean)
 fi_now ,d1 ; Default time to NOW? (boolean)
 fi_ampm ,d1 ; Display meridian indicator? (boolean)
 fi_wait ,d1 ; Input timeout value (see .defines above)
 fi_waittime ,d5 ; Input timeout time if fi_wait = WAIT TIME
 fi_uc ,d1 ; Convert all input to uppercase? (boolean)
 fi_nodec ,d1 ; No decimal needs to be input? (boolean)
 fi_noterm ,d1 ; Field terminates auto. when filled? (boolean)
 fi_retpos ,d1 ; Retain cursor position in text field (boolean)
 fi_inplen ,d5 ; Input length
 fi_filler3 ,a5 ; (Reserved for future use)
 fi_req ,d1 ; Is field input required? (boolean)
 fi_break ,d1 ; Break field? (see .defines above)
 fi_negalw ,d1 ; Negative allowed? (see .defines above)
 fi_alwlst ,d2 ; Non-zero = allow list exists
 fi_alwct ,d2 ; Number of allow list entries
 fi_alwlen ,d3 ; Length of longest allow list entry
 fi_matchcs ,d1 ; Match case? (boolean)
 fi_matchex ,d1 ; Match exact? (boolean)
 fi_range ,d2 ; Non-zero = min/max values exist
 fi_enum ,d2 ; Non-zero = enumerated field info exists
 fi_sellist ,d2 ; Non-zero = selection list exists
 fi_selct ,d2 ; Number of selection list entries
 fi_sellen ,d3 ; Length of longest selection list entry
 fi_seltyp ,d1 ; Current selection type (see .defines above)
 fi_selrow ,d2 ; Current selection window row
 fi_selcol ,d2 ; Current selection window column
 fi_selwin ,a15 ; Current selection window name...
 fi_selht ,d2 ; ...OR selection window height
 fi_null ,d1 ; Null allowed? (see .defines above)
 fi_filler4 ,a9 ; (Reserved for future use)
 fi_arrivemeth ,d2 ; Non-zero = arrive method exists
 fi_leavemeth ,d2 ; Non-zero = leave method exists
 fi_drillmeth ,d2 ; Non-zero = drill method exists
 fi_hypermeth ,d2 ; Non-zero = hyperlink prompt method exists
 fi_changemeth ,d2 ; Non-zero = change method exists
 fi_dispmeth ,d2 ; Non-zero = display method exists
 fi_editfmtmeth,d2 ; Non-zero = edit format method exists
 fi_filler5 ,a4 ; (Reserved for future use)
.ifdef DDINFO_STRUCTURE
 fi_flags ,[15]i1 ; Template override flags (see .defines above)
.else
 fi_flags ,15i1 ; Template override flags (see .defines above)
.endc
 endrecord

Subroutine Library
Definition file

Repository User’s Guide 10.3.3 (5/16) 7-57

; Field range information structure

 record fti_range
 fti_rgmin ,d28.10 ; Current field range minimum
 fti_rgmax ,d28.10 ; Current field range maximum
 endrecord

; Enumerated field information structure

 record fti_enum
 fti_enmlen ,d2 ; Current enumerated field display length
 fti_enmbase ,d2 ; Current enumerated field base
 fti_enmstep ,d2 ; Current enumerated field step
 endrecord

; Field selection information structure

 record fti_entlst
.ifdef DDINFO_STRUCTURE
 fti_entlstary ,[100]a80 ; Current selection or allow list entries
.else
 fti_entlstary ,100a80 ; Current selection or allow list entries
.endc
 endrecord

; File information structure

 record fl_info
 fli_tstamp ,a14 ; Timestamp of last modification
 fli_filtyp ,a15 ; File type (e.g., "DBL ISAM", "ASCII")
 fli_fname ,a255 ; Actual filename
 fli_temp ,d1 ; Is file definition "temporary"? (boolean)
 fli_nmstructs ,d3 ; Number of structures assigned to the file
 fli_struct ,a30 ; First (or only) assigned structure
 fli_desc ,d2 ; Non-zero = short description exists
 fli_ldesc ,d2 ; Non-zero = long description exists
 fli_utext ,d2 ; Non-zero = user text string exists
 fli_rectyp ,d1 ; Fixed, Variable, Multiple records
 fli_pagesize ,d1 ; Page (index block) size
 fli_density ,d3 ; File density
 fli_addressing ,d1 ; File addressing
 fli_compress ,d1 ; Compress record data? (boolean)
 fli_staticrfa ,d1 ; Static RFA's? (boolean)
 fli_portable ,d2 ; Non-zero = portable int specs exist
 fli_track ,d1 ; Track changes? (boolean)
 fli_tbyte ,d1 ; Terabyte? (boolean)
 fli_sgrfa ,d1 ; Stored GRFA? (boolean)
 fli_netencrypt ,d1 ; Network encrypt? (boolean)
 fli_norollback ,d1 ; No change tracking rollback (boolean)
 fli_sizelimit ,d5 ; File size limit in MB
 fli_reclimit ,d8 ; Number of records limit
 fli_filetext ,d2 ; Non-zero = file text exists
 fli_filler ,a30 ; Room to grow
 endrecord

Subroutine Library
Definition file

7-58 Repository User’s Guide 10.3.3 (5/16)

; File specification structure

 record fls_info
 flsi_name ,a255 ; Actual filename
 flsi_filtyp ,a15 ; File type (e.g., "DBL ISAM", "ASCII")
 flsi_sname ,a30 ; Structure name
 flsi_recsz ,d5 ; Record size
 flsi_nmkeys ,d2 ; Number of ACCESS keys
 flsi_rectyp ,d1 ; Fixed, Variable, Multiple records
 flsi_pagesize ,d1 ; Page (index block) size
 flsi_density ,d3 ; File density
 flsi_addressing ,d1 ; File addressing
 flsi_compress ,d1 ; Compress record data? (boolean)
 flsi_staticrfa ,d1 ; Static RFA's? (boolean)
 flsi_portable ,a120 ; Portable integer specs
 flsi_track ,d1 ; Track changes? (boolean)
 flsi_tbyte ,d1 ; Terabyte? (boolean)
 flsi_sgrfa ,d1 ; Stored GRFA? (boolean)
 flsi_netencrypt ,d1 ; Network encrypt? (boolean)
 flsi_norollback ,d1 ; No change tracking rollback (boolean)
 flsi_sizelimit ,d5 ; File size limit in MB
 flsi_reclimit ,d8 ; Number of records limit
 flsi_filler ,a2 ; Room to grow
 endrecord

; Enumeration information structure

 record e_info
 ei_tstamp ,a14 ; Timestamp of last modification
 ei_nmmbrs ,d3 ; Number of member definitions
 ei_desc ,d2 ; Non-zero = short description exists
 ei_ldesc ,d2 ; Non-zero = long description exists
 ei_filler ,a50 ; Room to grow
 endrecord

; Key information structure

 record k_info
 ki_seqnm ,d3 ; Sequence number
 ki_name ,a30 ; Key name (for use with dd_filespec)
 ki_ktype ,d1 ; Key type (see .defines above)
 ki_size ,d3 ; Total size of all key segments
 ki_desc ,d2 ; Non-zero = short description exists
 ki_filler1 ,d4 ; (Reserved for future use)
 ki_order ,d1 ; Sort order (see .defines above)
 ki_dups ,d1 ; Are dups allowed? (see .defines above)
 ki_insert ,d1 ; If dups, insert at front or end (see .defines)
 ki_mod ,d1 ; Modifiable? (boolean)
 ki_null ,d1 ; Null key? (see .defines above)
 ki_nullval ,d2 ; Non-zero = null value string exists
 ki_krf ,d3 ; Optional explicit key of reference

Subroutine Library
Definition file

Repository User’s Guide 10.3.3 (5/16) 7-59

 ki_density ,d3 ; Key density
 ki_cmpidx ,d1 ; Compress index? (boolean)
 ki_cmprec ,d1 ; Compress record? (boolean)
 ki_cmpkey ,d1 ; Compress key? (boolean)
 ki_nmseg ,d1 ; Number of segments in this key
.ifdef DDINFO_STRUCTURE
 ki_segtyp ,[8]a1 ; Segment types (see .defines above)
 ki_segpos ,[8]d5 ; Segment field positions
 ki_seglen ,[8]d3 ; Segment field/literal lengths
 ki_fldnam ,[8]a30 ; Segment field names
 ki_strnam ,[8]a30 ; Segment structure names
 ki_litval ,[8]a30 ; Segment literal values (lengths in ki_seglen)
 ki_segdtyp ,[8]d1 ; Optional, segment data type
 ki_segord ,[8]d1 ; Optional, segment order
.else
 ki_segtyp ,8a1 ; Segment types (see .defines above)
 ki_segpos ,8d5 ; Segment field positions
 ki_seglen ,8d3 ; Segment field/literal lengths
 ki_fldnam ,8a30 ; Segment field names
 ki_strnam ,8a30 ; Segment structure names
 ki_litval ,8a30 ; Segment literal values (lengths in ki_seglen)
 ki_segdtyp ,8d1 ; Optional, segment data type
 ki_segord ,8d1 ; Optional, segment order
.endc
 ki_odbcvw ,d1 ; Is key accessible to ODBC? (boolean)
 ki_filler2 ,a19 ; Room to grow
 endrecord

; Structure information

 record s_info
 si_tstamp ,a14 ; Timestamp of last modification
 si_filtyp ,a15 ; File type (ie "DBL ISAM", "ASCII")
 si_desc ,d2 ; Non-zero = short description exists
 si_ldesc ,d2 ; Non-zero = long description exists
 si_utext ,d2 ; Non-zero = user text string exists
 si_recsz ,d5 ; Record size
 si_nmflds ,d3 ; Number of associated fields
 si_nmkeys ,d3 ; Number of associated keys
 si_nmrels ,d2 ; Number of associated relations
 si_nmfils ,d3 ; Number of files assigned to
 si_nmfmts ,d3 ; Number of associated local formats
 si_nmtags ,d2 ; Number of associated tags
 si_tagtyp ,d1 ; Structure tag type (see .defines above)
 si_childct ,d3 ; Number of fields/groups in first level
 si_file ,a30 ; First (or only) file assigned to
 si_filler ,a50 ; Room to grow
 endrecord

; Tag information structure

 record tg_info
 tgi_seqnm ,d3 ; Sequence number
 tgi_tagcon ,d1 ; Tag field comparison connector (see .defines)

Subroutine Library
Definition file

7-60 Repository User’s Guide 10.3.3 (5/16)

 tgi_tagfld ,a30 ; Field name if si_tagtyp = TAGFLD
 tgi_tagcmp ,d1 ; Tag field comparison operator (see .defines)
 tgi_tagval ,a15 ; Tag field comparison value
 tgi_filler ,a20 ; Room to grow
 endrecord

; Template information structure

 record t_info
 ti_tstamp ,a14 ; Timestamp of last modification
 ti_template ,a30 ; Template referenced by this template
 ti_desc ,d2 ; Non-zero = short description exists
 ti_ldesc ,d2 ; Non-zero = long description exists
 ti_type ,a1 ; Data type (see .defines above)
 ti_class ,d2 ; DBL type subclass (see .defines above)
 ti_usrtyp ,d2 ; Non-zero = user data type string exists
 ti_enmfld ,d2@ti_usrtyp ; Or...enumeration name for Enum templates
 ti_ndtype ,a1 ; Native data type
 ti_size ,d5 ; Data size
 ti_prec ,d2 ; # digits to the right of the decimal pt.
.ifdef DDINFO_STRUCTURE
 ti_dim ,[4]d3 ; Dimension (used for arrays)
.else
 ti_dim ,4d3 ; Dimension (used for arrays)
.endc
 ti_ndsize ,d5 ; Native data size
 ti_dblvw ,d1 ; Is field NOT available to DBL? (see .defines)
 ti_rptvw ,d1 ; Is field NOT available to RW? (see .defines)
 ti_scrptvw ,d1 ; Is field NOT available to UI? (see .defines)
 ti_nolnk ,d1 ; Field name is the name link (boolean)
 ti_webvw ,d1 ; Is field NOT available to WEB? (see .defines)
 ti_coertype ,d2 ; Coerced type (see .defines)
 ti_filler1 ,a19 ; (Reserved for future use)
 ti_heading ,d2 ; Non-zero = column heading exists
 ti_fmt ,a30 ; Defines a global or local format name
 ti_rptjust ,d1 ; RW field justification (see .defines above)
 ti_inpjust ,d1 ; Input field justification (see .defines above)
 ti_fpostyp ,d1 ; Input field position type (see .defines above)
 ti_finprow ,d3 ; Input field row position
 ti_finpcol ,d3 ; Input field column position
 ti_postyp ,d1 ; Input prompt position type (see .defines above)
 ti_inprow ,d3 ; Input prompt row position
 ti_inpcol ,d3 ; Input prompt column position
 ti_bzro ,d1 ; Blank if zero? (boolean)
 ti_paint ,d1 ; Is a paint character specified? (boolean)
 ti_pntchr ,a1 ; Paint character for empty fields
 ti_view ,d1 ; Is field viewed as radio buttons or checkbox
 ti_prompt ,d2 ; Non-zero = prompt text exists
 ti_help ,d2 ; Non-zero = help id exists
 ti_infoln ,d2 ; Non-zero = info line text exists
 ti_utext ,d2 ; Non-zero = user text string exists
 ti_altnm ,d2 ; Non-zero = alternate field name exists
 ti_odbcnm ,d2 @ti_altnm ; (For compatibility with pre-v7.5)

Subroutine Library
Definition file

Repository User’s Guide 10.3.3 (5/16) 7-61

 ti_font ,d2 ; Non-zero = field font name exists
 ti_prmptfont ,d2 ; Non-zero = prompt font name exists
 ti_color ,d2 ; Color palette (1-16)
 ti_attrib ,d1 ; If non-zero, then the following four fields
 ; override the window's attributes
 ti_highlight ,d1 ; Highlight attribute
 ti_reverse ,d1 ; Reverse attribute
 ti_blink ,d1 ; Blink attribute
 ti_underline ,d1 ; Underline attribute
 ti_readonly ,d1 ; Is the field read-only? (boolean)
 ti_disabled ,d1 ; Is the field disabled? (boolean)
 ti_displen ,d5 ; Display length
 ti_viewlen ,d5 ; View length
 ti_filler2 ,a10 ; (Reserved for future use)
 ti_noecho ,d1 ; Do not display text input in field? (boolean)
 ti_echochr ,a1 ; No echo character. Replaces text input.
 ti_defact ,d1 ; Default action (see .defines above)
 ti_def ,d2 ; Non-zero = default value exists
 ti_auto ,d1 ; Automatic default action? (boolean)
 ti_today ,d1 ; Default date to TODAY? (boolean)
 ti_short ,d1 ; Allow short date? (boolean)
 ti_now ,d1 ; Default time to NOW? (boolean)
 ti_ampm ,d1 ; Display meridian indicator? (boolean)
 ti_wait ,d1 ; Input timeout value (see .defines above)
 ti_waittime ,d5 ; Input timeout time if fi_wait = WAIT TIME
 ti_uc ,d1 ; Convert all input to uppercase? (boolean)
 ti_nodec ,d1 ; No decimal needs to be input? (boolean)
 ti_noterm ,d1 ; Field terminates auto. when filled? (boolean)
 ti_retpos ,d1 ; Retain cursor position in text field (boolean)
 ti_inplen ,d5 ; Input length
 ti_filler3 ,a5 ; (Reserved for future use)
 ti_req ,d1 ; Is field input required? (boolean)
 ti_break ,d1 ; Break field? (see .defines above)
 ti_negalw ,d1 ; Negative allowed? (see .defines above)
 ti_alwlst ,d2 ; Non-zero = allow list exists
 ti_alwct ,d2 ; Number of allow list entries
 ti_alwlen ,d3 ; Length of longest allow list entry
 ti_matchcs ,d1 ; Match case? (boolean)
 ti_matchex ,d1 ; Match exact? (boolean)
 ti_range ,d2 ; Non-zero = min/max values exist
 ti_enum ,d2 ; Non-zero = enumerated field info exists
 ti_sellist ,d2 ; Non-zero = selection window info exists
 ti_selct ,d2 ; Number of selection list entries
 ti_sellen ,d3 ; Length of longest selection list entry
 ti_seltyp ,d1 ; Current selection type (see .defines above)
 ti_selrow ,d2 ; Current selection window row
 ti_selcol ,d2 ; Current selection window column
 ti_selwin ,a15 ; Current selection window name
 ti_selht ,d2 ; ...OR selection window height
 ti_null ,d1 ; Null allowed? (see .defines above)
 ti_filler4 ,a9 ; (Reserved for future use)
 ti_arrivemeth ,d2 ; Non-zero = arrive method exists
 ti_leavemeth ,d2 ; Non-zero = leave method exists

Subroutine Library
Definition file

7-62 Repository User’s Guide 10.3.3 (5/16)

 ti_drillmeth ,d2 ; Non-zero = drill method exists
 ti_hypermeth ,d2 ; Non-zero = hyperlink prompt method exists
 ti_changemeth ,d2 ; Non-zero = change method exists
 ti_dispmeth ,d2 ; Non-zero = display method exists
 ti_editfmtmeth,d2 ; Non-zero = edit format method exists
 ti_filler5 ,a4 ; (Reserved for future use)
.ifdef DDINFO_STRUCTURE
 ti_flags ,[15]i1 ; Template override flags (see .defines above)
.else
 ti_flags ,15i1 ; Template override flags (see .defines above)
.endc
 endrecord

 ; Namespace control argument

 record ns_ctl
 ns_name ,i4 ; Handle to namespace ordered by name (or 0)
 ns_seq ,i4 ; Handle to namespace ordered by sequence (or 0)
 endrecord

.ifndef DDINFO_INGLOBAL ; Exclude STRUCTUREs when used in global section
 structure nsf_info ; Namespace information structure for fields
 nsf_pos ,i4 ; Absolute structure position
 nsf_dup ,i4 ; Is the name non-unique?
 nsf_invisible ,i4 ; Is the field invisible? (not in name namespace)
 nsf_implicit ,i4 ; Is the field a member of an implicit group?
 nsf_seqnm ,i4 ; Absolute sequence number
 nsf_parent ,i4 ; Sequence number of parent group, or 0 if struct
 nsf_parentid ,a4 ; ID of parent group or structure
 nsf_name ,a30 ; Name of the field (including any prefix)
 nsf_nsp ,a30 ; Name sans prefix
endstructure

.undefine record

.ifdef DDINFO_STRUCTURE

.undefine endrecord

.endc

.ifdef DBL8CMP

.undefine endrecord

.undefine endstructure

.endc

.endc ; DDINFO_INGLOBAL

.endc ; DDINFO_DEFINES_ONLY

Appendices

Appendix A: Maximums

Lists all size and number maximums permitted by Repository.

Appendix B: Date and Time Formats

Lists the date and time storage and display formats that Repository supports.

Appendix C: Error Messages

Lists error messages that may appear in Repository, along with an explanation of the problem
that caused the error to occur.

Appendix D: Data Formats

Explains Synergy DBL data formatting.

Appendix E: Distributed Shortcuts

Lists the Repository shortcuts as they are originally distributed.

A-1

A
Maximums

Maximum Values Permitted by Repository

Item Maximum

Aliases 999

Alias fields per alias structure 650

Array dimensions 4

Array elements per dimension 999

Digits to right of decimal point 28

Enumerations 9,999

Enumeration members 999

Enumeration definition name (size in characters) 30

Enumeration description (short) (size in characters) 40

Enumeration description (long) (size in characters) 1,800

Enumeration member name (size in characters) 30

Enumeration value (size in characters)) 11

Field (size in characters) 99,999

Field allow list entries 99

Field allow list entry (size in characters) 80

Field default input value (size in characters) 80

Field definition name (size in characters) 30

Field description (long) (size in characters) 1,800

Field description (short) (size in characters) 40

Maximums

A-2 Repository User’s Guide 10.3.3 (5/16)

Field display length 65,535

Field font and prompt font names (size in characters) 80

Field help string (size in characters) 80

Field information line (size in characters) 80

Field input length 65,535

Field input prompt (size in characters) 80

Field minimum/maximum range value (size in characters) 18

Field report heading (size in characters) 40

Field selection window entries 99

Field selection window entry (size in characters) 80

Field selection window name (size in characters) 15

Field user data type string (size in characters) 30

Field user-defined text string (size in characters) 80

Field view length 9,999

Fields per structure or group 999

Fields to which a template is assigned 6,000

Fields which may reference a structure as an implicit group 200

File definition name (size in characters) 30

File definition’s ODBC table name (size in characters) 30

File definition’s open filename (size in characters) 64

File definition’s portable integer specification (size in characters) 120

File definitions 9,999

File description (long) (size in characters) 1,800

File description (short) (size in characters) 40

Maximum Values Permitted by Repository (Continued)

Item Maximum

Maximums

Repository User’s Guide 10.3.3 (5/16) A-3

File user-defined text string (size in characters) 60

Files which may be assigned to a structure 200

Format definition name (size in characters) 30

Format string (size in characters) 30

Global data section name (size in characters) 30

Global formats 9,999

Group member prefix (size in characters) 30

Implied-decimal field (size in bytes) 28

Key (size in bytes) 255

Key definition name (size in characters) 30

Key description (short) (size in characters) 40

Keys per structure 99

Record 99,999

Relations per structure 99

Segment (field or external type) (size in bytes) 255

Segment (literal type) (size in characters) 30

Segments per key 8

Structures 9,999

Structure definition name (size in characters) 30

Structure description (long) (size in characters) 1,800

Structure description (short) (size in characters) 40

Structure user-defined text string (size in characters) 60

Structures assigned to a file 200

Structure-specific formats per structure 250

Maximum Values Permitted by Repository (Continued)

Item Maximum

Maximums

A-4 Repository User’s Guide 10.3.3 (5/16)

Structure use in an external relation or external key segment
definition (number of times)

200

Tags per structure 10

Templates 9,999

Template definition name (size in characters) 30

Template description (long) (size in characters) 1,800

Template description (short) (size in characters) 40

Templates to which a template is assigned 3,000

Maximum Values Permitted by Repository (Continued)

Item Maximum

B-1

B
Date and Time Formats

This appendix lists the date and time storage formats supported by Repository and xfODBC, as
well as the date and time display formats built into every repository.

Date and time formats selected in Repository also how data is converted when a structure is
included in a Synergy component (JAR file or assembly). For information on how the various date
and time formats are handled by xfNetLink clients, see “Appendix B: Data Type Mapping” in the
xfNetLink & xfServerPlus User’s Guide.

Date and Time Formats
Date Formats

B-2 Repository User’s Guide 10.3.3 (5/16)

Date Formats

Date storage formats supported by Repository

Date storage formats supported by xfODBC
To specify these formats in your repository, define the field as a user type and include the following
within the field’s 30-character user data string:

^CLASS^ = format

where format is one of the following:

DDMMYY
DDMMYYYY
MMDDYY
MMDDYYYY
YYYYMMDDHHMISS
YYYYMMDDHHMISSUUUUUU
DDMonYY
DDMonYYYY
MonDDYY
MonDDYYYY
YYMonDD
YYYYMonDD
JJJYY
JJJYYYY
JJJJJJ
PPYY
PPYYYY

YYMMDD two-digit year, month, day
YYYYMMDD four-digit year, month, day
YYJJJ two-digit year, Julian day
YYYYJJJ four-digit year, Julian day
YYPP two-digit year, period
YYYYPP four-digit year, period

Date and Time Formats
Date Formats

Repository User’s Guide 10.3.3 (5/16) B-3

Date display formats that are built into every repository

where

The format size and the display size don’t have to match. For example, you can pick a two-digit
year format for a field that’s stored as a four-digit year, and ReportWriter will automatically omit
the century from the display format.

#01 MM/DD/YYYY
#02 MM/DD/YY
#03 MM-DD-YYYY
#04 MM-DD-YY
#05 Mon/DD/YYYY
#06 Mon/DD/YY
#07 Mon-DD-YYYY
#08 Mon-DD-YY
#09 YYYY/MM/DD
#10 YY/MM/DD
#11 YYYY-MM-DD
#12 YY-MM-DD
#13 YYYY/Mon/DD
#14 YY/Mon/DD
#15 YYYY-Mon-DD
#16 YY-Mon-DD
#17 DD/MM/YYYY
#18 DD/MM/YY
#19 DD-MM-YYYY
#20 DD-MM-YY
#21 DD/Mon/YYYY
#22 DD/Mon/YY
#23 DD-Mon-YYYY
#24 DD-Mon-YY
#25 PP/YYYY
#26 PP/YY
#27 PP-YYYY
#28 PP-YY

MM is the one- or two-digit month.
Mon is the three-letter abbreviation for the month.
DD is the one- or two-digit day.
YYYY is the year, including the century.
YY is the last two digits of the year.
PP is the period.

Date and Time Formats
Time Formats

B-4 Repository User’s Guide 10.3.3 (5/16)

Time Formats

Time storage formats supported by Repository

Time display formats that are built into every repository

where

HHMM (hour and minute)
HHMMSS (hour, minute, and second)

#01 12:MM
#02 24:MM
#03 12:MMm
#04 12:MM:SS
#05 24:MM:SS
#06 12:MM:SSm

12 is the hour in 12-hour notation.
24 is the hour in military (24-hour) notation.
MM is the minute.
SS is the second.
m is the meridian a or p (ante or post).

C-1

C
Error Messages

This appendix lists messages that may appear in Repository, along with explanations of the
problems that may have caused the error. If you receive messages that are not listed in this
appendix, contact your Synergy/DE Developer Support engineer at 800.366.3472 (in the U.S. and
Canada) or 916.635.7300.

Filename is not a version 7 or version 10 repository.

Repository version 10 can only open repository files that are in version 7 format or version 10
format. (Version 7 format was used by Repository versions 7, 8, and 9; it can be converted to
version 10 format by the version 10 Repository.) It is likely that the specified repository
predates version 7 and therefore can be neither opened nor converted by version 10. If this is
the case, you must use the repository conversion program to convert it. Refer to the Repository
release notes (REL_RPS.TXT) for instructions.

Filename is not a version 10 repository.

The specified repository is not in version 10 format. To convert it to version 10 format, open it
for modification in Repository and select Yes when prompted to convert. Once a repository has
been converted, it cannot be accessed by pre-version 10 Repository programs and tools.

Filename is not a version 10 repository. Do you want to convert it?

The repository being opened for modification is not in version 10 format. Select Yes to convert
it. Once a repository has been converted, it cannot be accessed by pre-version 10 Repository
programs and tools. Select No to leave the repository in its current format and return to the
menu or input window.

A field or group with the same name already exists.

While adding or copying a field, you’ve specified the name of an existing field or group. Field
names must be unique within the current structure or group.

A file with the same name already exists.

While adding or copying a file, you’ve specified the name of an existing file. Filenames must
be unique within the repository.

Error Messages

C-2 Repository User’s Guide 10.3.3 (5/16)

A format with the same name already exists.

While adding or copying a format, you’ve specified the name of an existing format.
Structure-specific format names must be unique within the current structure, and global format
names must be unique within the repository.

A key with the same name already exists.

While adding or copying a key, you’ve specified the name of an existing key. Key names must
be unique within the current structure.

A member with the same name already exists.

While adding an enumeration member, you’ve specified the name of an existing member.
Member names must be unique within the current enumeration.

A relation with the same name already exists.

While adding or copying a relation, you’ve specified the name of an existing relation. Relation
names must be unique within the current structure.

A structure with the same name already exists.

While adding or copying a structure, you’ve specified the name of an existing structure.
Structure names must be unique within the repository.

A tag with the same name already exists.

While adding or copying a tag, you’ve specified the name of an existing tag. Tag names must
be unique within the current structure.

A template with the same name already exists.

While adding or copying a template, you’ve specified the name of an existing template.
Template names must be unique within the repository.

Access keys are defined for this structure. File type cannot be modified.

You cannot change a file type to Relative if access keys already exist for the structure, because
relative structures can only have one access key (the record number). If the original file type is
relative and the record number key has not been deleted, the only file type to which you can
change is User defined.

Access keys cannot contain external segments.

You’ve specified the External segment type for an access key. Access keys define true keys in
the data file and therefore cannot contain external segments.

Error Messages

Repository User’s Guide 10.3.3 (5/16) C-3

Access keys cannot contain literal segments.

You’ve specified the Literal segment type for an access key. Access keys define true keys in
the data file and therefore cannot contain literal segments.

Alias cannot be deleted. Field reference exists.

You cannot delete the current alias because it is referenced within one or more struct type field
definitions. Use the Print Repository Definitions utility to see where it is referenced. See
“Printing Repository Definitions” on page 5-5.

An access key already exists for this relative file type.

Only one access key, the record number, is allowed for a relative file. If you have modified the
record number segment, reselect Access as the key type.

An alias with the same name already exists.

While adding an alias structure, you’ve specified an existing alias or structure name. Alias
names must be unique within the repository not only among alias names, but among structure
names as well.

An enumeration with the same name already exists.

While adding or copying an enumeration, you’ve specified the name of an existing
enumeration. Enumeration names must be unique within the repository.

At least one field must be defined for the structure you are trying to assign.

The structure you’re attempting to assign to a file doesn’t contain any field definitions.

At least one field must be defined for the structure you are trying to reference.

The structure you’re attempting to reference as an implicit group or Struct type field doesn’t
contain any field definitions.

Cannot open main repository file filename.

Repository can’t find the repository main file specified either by the RPSMFIL logical or the
RPSDAT logical or in the current directory. Another possible explanation is that you don’t
have the necessary system privileges to access this file.

Cannot open Repository cross-reference file filename.

Repository can’t find the repository cross-reference file specified by either the RPSXFIL
logical, the RPSDAT logical, or the current directory. Another possible explanation is that you
don’t have the necessary system privileges to access this file.

Error Messages

C-4 Repository User’s Guide 10.3.3 (5/16)

Cannot open Repository message file filename.

Repository can’t find the message file in either the RPSDAT logical or the current directory.
Another possible explanation is that you don’t have the necessary system privileges to access
this file.

Cannot open repository text file filename.

Repository can’t find the repository text file specified either by the RPSTFIL logical or the
RPSDAT logical or in the current directory. Another possible explanation is that you don’t
have the necessary system privileges to access this file.

Cannot open Repository window library filename.

Repository can’t find its window library file in either the directory specified by the RPS logical
or the current directory. Another possible explanation is that you don’t have the necessary
system privileges to access this file.

Creation specifications are incomplete.

You have not entered all the required information. To create a new repository, you must enter
both repository main and text filenames.

Cross-reference specifications are incomplete.

You have not entered all the required information. To generate a cross-reference file, you must
specify the repository filenames and the name of the cross-reference file into which to generate
the information.

Definition specifications are incomplete.

You have not entered all the required information. To generate a definition file, you must
specify both the structure name and the name of the .INCLUDE file into which your definition
is to be generated. If you’ve designated that you want your definition to include a global data
section, you must specify the global data section name.

Deleting the current field will invalidate overlay field field name.

You cannot delete the current field, because to do so would invalidate one or more overlay
fields that are defined after it. For example, if your structure contains the following two fields:

FIELD_ONE ,A20
FIELD_TWO ,A15 @FIELD_ONE

and you try to delete FIELD_ONE, Repository won’t allow the deletion because it would cause
FIELD_TWO to be an invalid overlay definition.

Enumeration cannot be deleted. Field reference exists.

You cannot delete the current enumeration because it is referenced within one or more field
definitions. Use the Print Repository Definitions utility to see where it is referenced.

Error Messages

Repository User’s Guide 10.3.3 (5/16) C-5

Enumeration cannot be deleted. Template reference exists.

You cannot delete the current enumeration because it is referenced within one or more template
definitions. Use the Print Repository Definitions utility to see where it is referenced.

Enumeration no longer exists.

The enumeration you tried to select was deleted by another user between the time it was
displayed in a list and the time you selected it.

External segment structure cannot be the current structure.

The structure name you specified in an external segment definition is the current structure.
Because external segments define fields in other structures, you are not allowed to specify the
current structure.

Field field name is a group. Deleting it will delete all group members as well. Do you
want to continue?

The field you are deleting is defined as a group. To delete it will delete all its members, and all
their members, and so forth. If you don’t want to delete the group, select No.

Field field name is a group. Clearing the “Group” field will delete all group members.
Do you want to continue?

Saving the current group field definition will delete all group members, and all their members,
and so forth. If you don’t want to delete the group, select No.

Field cannot be deleted. It is defined as a key.

The field you’re trying to delete is used as a key segment in the current structure. Before you
can delete the field, you must delete all keys that reference it.

Field cannot be deleted. It is defined as a tag field.

The field you’re trying to delete is a tag field for the current structure. Before you can delete
the field, you must remove it as a structure tag.

Field cannot be deleted. It is defined as an external key segment.

The field you’re trying to delete is used in an external key segment that is defined by another
structure. Before you can delete the field, you must delete all references to it in any external
structures.

Field data type modification will invalidate key key name.

You have modified the data type of a field that is referenced within a key definition, and whose
data type is overridden within that key. The modified data type is invalid for the key’s
overridden data type.

Error Messages

C-6 Repository User’s Guide 10.3.3 (5/16)

Field definition is incomplete.

You have not entered all the required information. When you define a field, you must specify
the field name, data type, and size. Size is optional if you are defining a group field.

Field modifications will invalidate overlay field field name.

The field modifications you’re trying to make would cause one or more overlay field
definitions to become invalid. For example, if your structure contains the following two fields:

FIELD_ONE ,A20
FIELD_TWO ,A15 @FIELD_ONE

and you’re trying to modify FIELD_ONE to be an A10 field, the modification would make
FIELD_TWO’s overlay information invalid because it would attempt to overlay itself. You
cannot change the size of FIELD_ONE unless you first modify FIELD_TWO appropriately.

File definition is incomplete.

You haven’t entered all the required information. When you define a file, you must specify the
name, file type, description, and open filename.

File no longer exists.

The file you attempted to select was deleted by another user between the time it was displayed
in a list and the time you selected it.

File type of specified structure does not match that of the file definition.

The file type of the structure you’re attempting to assign to a file doesn’t match the file type of
the file definition.

Foreign keys cannot contain record number segments.

You’ve modified the key type of a record number key from access to foreign. You must now
change the record number segment to be a field, literal, or external segment.

Format format name referenced by field field name no longer exists.

The global format that was assigned to this field has since been deleted. You can select another
format, or you can press the “Abandon” shortcut to abandon your changes and then create a
new format with the same name.

Format cannot be deleted. It is assigned to a field.

One or more fields use the structure-specific format you’re trying to delete.

Format definition is incomplete.

You have not entered all the required information. When you define a format, you must specify
the format name, format type, and format string.

Error Messages

Repository User’s Guide 10.3.3 (5/16) C-7

Format no longer exists.

The format you attempted to select was deleted by another user between the time it was
displayed in a list and the time you selected it.

Internal reference buffer is full. Please exit to save changes.

Repository maintains many types of references so that it can preserve the integrity of your data
base. It maintains a temporary reference buffer when you’re working with a structure, and then
the temporary buffer becomes permanent when you save your changes. If this temporary buffer
becomes full while you’re working with a structure, you will get this message. You must save
your changes at this point by pressing the “Exit” shortcut. Once you’ve saved your changes,
you can further modify the structure.

Invalid autokey specification.

Autokeys (sequence, timestamp, and create timestamp) must be a single segment consisting of
an 8-byte field. They cannot be null, modifiable, or allow duplicates.

Invalid display format selected for given Date storage type.

Either the storage format for this date field is a period format (for example, YYYYPP) and
you’re trying to assign a non-period display format to it, or the storage format is non-period
(for example, YYMMDD) and you’re trying to assign a period display format to it.

Invalid group size specified. Group size must be equal to or larger than the size of
its members.

In your group field definition, you’ve specified an explicit size, but the total size of the group
members exceeds it. Edit the group members and adjust their total size, or increase the size of
the group field.

Invalid key segment type.

In your key definition, you’ve specified a segment data type that is invalid for the data type of
the field defined in that segment. When the field type is alpha, valid segment types are
A (alpha) and N (nocase alpha). When the field type is integer, valid segment types are
I (integer), S (sequence), T (timestamp), C (create timestamp), and U (unsigned integer).
D (decimal) is the only valid segment type for decimal fields.

Invalid overlay field specified.

In your field definition, you’ve specified an invalid field name as the optional field to overlay.
Press the “List Selections” shortcut to display a list of valid overlay fields.

Error Messages

C-8 Repository User’s Guide 10.3.3 (5/16)

Invalid parent template specified. Recursive references not allowed.

In your template definition, you’ve specified a parent template that is the descendant of the
template you are currently editing. Attempting to reference this template creates a recursive
reference.

Invalid precision specified.

For implied-decimal fields, the precision value must be less than or equal to the field size.

Invalid structure name specified. Recursive reference not allowed.

In your implicit group or Struct type field definition, you’ve specified a structure that contains
a reference to the structure you are currently editing. Attempting to reference this structure
creates a recursive reference.

Invalid tag comparison connector.

In your tag criteria, you’ve specified an invalid comparison connector.

Invalid tag comparison operator.

In your tag criteria, you’ve specified an invalid comparison operator.

Invalid value.

In your tag criteria, you’ve attempted to compare a numeric field with an alphanumeric literal.

Key cannot be deleted. It is defined as a “FROM” KEY in a relation.

You cannot delete the current key because it is used in a relation defined by the current
structure.

Key cannot be deleted. Key reference exists.

You cannot delete the current key because it is used as a “to” key in a relation defined by
another structure.

Key definition is incomplete.

You have not entered all the required information. When you define a key, you must specify the
key name, the key type, and at least one segment definition.

Key type cannot be foreign. It is defined as a “TO” KEY in a relation.

You’ve attempted to change the type of the current key to Foreign. Repository won’t allow
this, because the key is defined as a “to” key in a relation, and only access keys can be “to”
keys. Access keys are used to specify relationships between files and are true keys in the
data file.

Error Messages

Repository User’s Guide 10.3.3 (5/16) C-9

Line line number too long (len=line length, max=150)... Truncated.

A line in the definition record that is being loaded from your .INCLUDE file exceeds the
maximum allowed. It was truncated.

Load fields information is incomplete.

You haven’t entered all the required information. When you load fields, you must specify the
.INCLUDE file and the record number.

Maximum field size (99999) has been exceeded.

The current field specification is larger than the maximum field size of 99,999. (If the field is
arrayed, this is the maximum for each array element.)

Maximum implied-decimal field size (28) has been exceeded.

The current implied-decimal field specification is larger than the maximum implied-decimal
field size of 28.

Maximum key size (255) has been exceeded. Data beyond 255 will be ignored.

The current key specification is larger than the maximum key size of 255. ReportWriter will
use only the first 99 bytes of the key.

Maximum number of alias structures (999) has been defined.

You attempted to define more than 999 aliases. You cannot add any more alias definitions to
the repository until you delete one or more.

Maximum number of enumerations (9999) has been defined.

You attempted to define more than 9,999 enumerations. You cannot add any more enumeration
definitions to the repository until you delete one or more.

Maximum number of field references (6000) has been defined for template template
name.

A field reference documents each time a template is used by a field. The maximum number of
field references per template is 6,000. You cannot assign this template to any more fields until
you remove it from one or more other fields.

Maximum number of fields (999) has been defined.

You attempted to define more than 999 fields. You cannot add any more field definitions to the
current structure until you delete one or more.

Maximum number of fields (999) has been loaded.

Your .INCLUDE file contains more than 999 fields to load. The remaining fields have been
ignored.

Error Messages

C-10 Repository User’s Guide 10.3.3 (5/16)

Maximum number of file references (200) has been defined for structure structure
name.

You attempted to assign the specified structure to more than 200 files. You cannot assign the
current structure to any more files until you disassociate it from one or more files.

Maximum number of files (9999) has been defined.

You attempted to define more than 9,999 files. You cannot add any more file definitions to the
repository until you delete one or more.

Maximum number of formats (9999) has been defined.

You attempted to define more than 9,999 global formats. You cannot add any more global
format definitions to the repository until you delete one or more.

Maximum number of key references (200) has been defined for structure structure
name.

A key reference documents each time a structure is used as a “to” structure in a relation and
each time a structure is used in an external key segment definition. The maximum total number
of these two types of references is 200 per structure. You cannot define any more external key
segments or relations for the specified “to” structure until you reduce the number of key
references.

Maximum number of keys (99) has been defined.

You’ve attempted to define more than 99 keys for the current structure. You cannot add any
more key definitions to the structure until you delete one or more.

Maximum number of members (100) has been defined.

You’ve attempted to define more than 100 members for an enumeration. You cannot add any
more member definitions to the enumeration until you delete one or more.

Maximum number of relations (99) has been defined.

You’ve attempted to define more than 99 relations for the current structure. You cannot add any
more relation definitions to the current structure until you delete one or more.

Maximum number of structure-specific formats (250) has been defined.

You’ve attempted to define more than 250 structure-specific formats for the current structure.
You cannot add any more format definitions to the structure until you delete one or more.

Maximum number of structures (200) has been assigned to the file.

You’ve attempted to assign more than 200 structures to the current file. You cannot assign any
more structures to the file until you disassociate one or more structures.

Error Messages

Repository User’s Guide 10.3.3 (5/16) C-11

Maximum number of structures (9999) has been defined.

You’ve attempted to define more than 9999 structures. You cannot add any more structure
definitions to the repository until you delete one or more.

Maximum number of tags (10) has been defined.

You’ve attempted to define more than 10 tags for the current structure. You cannot add any
more tag definitions to the structure until you delete one or more.

Maximum number of template references (3000) has been defined for parent
template template name.

A template reference is created each time a parent template is used by another template. The
maximum number of parent references per template is 3000. You cannot assign this parent
template to any more templates until you remove it from one or more other templates.

Maximum number of templates (9999) has been defined.

You’ve attempted to define more than 9999 templates. You cannot add any more template
definitions to the repository until you delete one or more.

Maximum precision (28) has been exceeded.

The current precision specification is larger than the maximum precision size of 10.

Missing array dimension.

An array dimension is missing. For example, you may have specified Dim1 and 3, but not 2.
Array dimension specifications must be contiguous.

Missing field name.

You’ve defined a key segment of type Field, but you haven’t entered a field name in the Field
name or Literal column.

Missing group member definition. At least one member must be defined.

You have not defined any members for the current group field. Define one or more group
members by selecting “Edit Group Members” from the Edit Field Functions menu, or clear the
Group field.

Missing member definition. At least one member must be defined.

You attempted to save an enumeration definition containing no members. Enumerations must
contain at least one member.

Missing segment definition.

You skipped a key segment definition. Segment definitions must be contiguous.

Error Messages

C-12 Repository User’s Guide 10.3.3 (5/16)

Missing segment definition. At least one segment must be defined.

You have not defined any segments for the current key. Segment number 1 must be defined.

Missing segment type.

You entered a field name, a structure, and/or a literal in the appropriate column(s), but you
haven’t selected a segment type in the Seg type column.

Missing structure name.

You’ve defined a key segment of type External, but you haven’t entered an external structure
name in the Structure name column.

Modifying enumeration enumeration name will affect one or more template and field
definitions. Are you sure you want to save your modifications?

A change to the current enumeration data could affect field definitions that are .INCLUDEd
into Synergy DBL source files or referenced in xfServerPlus method catalog definitions. If you
don’t want to save the modifications, select No.

Modifying template template name will affect one or more template, field, and key
definitions. Are you sure you want to save your modifications?

A change to the current template data will cause all affected field and template definitions to be
modified. In addition, all keys (the size and type of keys in the current structure and external
segments in other structures) that use those fields will be updated. The record sizes of all
affected structures will be updated as well. If you don’t want to make such modifications,
select No.

Moving the current field will invalidate its (an) overlay specification.

Either the field you’re attempting to move is an overlay field whose specification would be
invalid at the new location, or moving the current field would invalidate one or more other
overlay fields. If your goal is to redefine overlay attributes, remove all overlay attributes before
reordering the fields. When the fields are in the desired order, add the overlay information.

New repository is invalid. Correct errors in schema file and reload.

Errors have been found in the schema file being loaded by the Load Repository Schema utility.
Do not use the new or copied repository. Look at the log file that was created to determine
which definitions contain errors. Correct the schema file and reload it.

Original repository cannot be copied. Files are in use.

You are merging a schema into an existing repository. The merge takes place using a copy of
the original repository, but the copy cannot be created because the repository is in use by
another user. Try again later when the repository is not in use.

Error Messages

Repository User’s Guide 10.3.3 (5/16) C-13

Original repository cannot be replaced. Files are in use.

You are merging a schema into an existing repository. The merge takes place using a copy of
the original repository, and you have chosen to replace the original when the merge is
complete. But the original cannot be replaced because it is use by another user. You can either
keep trying or clear the Replace original repository check box. If you are running rpsutl from
the command line, repeat the command and suppress (-s) the replacement of the original
repository.

Overlaid field does not exist.

An overlay specification in your .INCLUDE file refers to a field that doesn’t exist.

Print specifications are incomplete.

You have not entered all the required information. To print repository definitions, you must
specify the repository filenames, the name of the file into which to print, and the print option.
Additionally, if you’ve selected the Single option, you must specify the structure, file,
template, and/or format name.

Record locked. Do you want to view the definition?

You have selected to modify a structure, file, template, format, or enumeration that another
user is already modifying. Only one user at a time can modify these definitions. To view the
definition without being able to modify it, select Yes.

Record locked. Please try again later.

Another user is currently modifying a record that you need to modify. This message can occur
in any of the following circumstances:

 Deleting a structure, file, template, format, or enumeration

 Saving changes to a structure, file, template, format, or enumeration

 Adding or copying a structure

 Adding a group

 Saving a field that is a group

 Selecting the Attributes menu for the first time after having copied a structure

Record locked. Structure references cannot be saved.

Another user is currently modifying a structure that either references or is referenced by the
definition that you are attempting to modify. Try again later.

TIP
For detailed information on record locking in Repository, see “Record locking” on page 1-19.

Error Messages

C-14 Repository User’s Guide 10.3.3 (5/16)

Record locked. Template references cannot be saved.

Another user is currently modifying a template or enumeration that is referenced by the
definition that you are attempting to modify. Try again later.

Referenced structure cannot be the current structure.

The referenced structure name you’ve specified within an implicit group or Struct type field
definition is the same as the current structure name.

Relation cannot be examined. Specifications are invalid.

You’ve tried to examine a relation without entering all of the required information. You must
specify the “from” and “to” structure and the “from” and “to” key before you can examine the
relation.

Relation definition is incomplete.

You have not entered all the required information. When you define a relation, you must
specify the “from” key, the “to” structure, and the “to” key.

Repository filenames cannot be the same.

When specifying the two repository files to verify and the two repository files to create, you
did not enter unique filenames.

Repository files already exist. Do you want to merge the schema?

You have specified the name of an existing repository for the Load Repository Schema utility.
If you want the utility to create a new repository into which to load the schema, select No and
specify another repository. If you want to merge the schema definitions into the existing
repository, select Yes. You must then specify how you want both new and existing definitions
to be handled.

Schema specifications are incomplete.

You have not entered all the required information. To generate the schema (Synergy Data
Language), you must specify the repository filenames and the name of the file into which the
schema is to be generated. To load the schema, you must specify the name of the file that
contains the schema to be loaded, the repository filenames, and the log filename.

Set specifications are incomplete.

You have not entered all the required information to set the current repository. You must enter
both repository main and text filenames.

Size of selected Date type field cannot be modified.

Repository determines the field size based on the storage format selected for a Date type field.
You cannot alter this size.

Error Messages

Repository User’s Guide 10.3.3 (5/16) C-15

Size of selected Struct type field cannot be modified.

Repository determines the field size based on the structure selected for a Struct type field. You
cannot alter this size.

Size of selected Time type field cannot be modified.

Repository determines the field size based on the storage format selected for a Time type field.
You cannot alter this size.

“Structure” can only be specified when no explicit group members are defined.

You’ve specified a structure name (which designates an implicit group) when explicit group
members are already defined. Either remove the structure name or delete the explicit group
members.

Structure cannot be deleted. Field reference exits.

You cannot delete the current structure because it is referenced within one or more implicit
group or Struct type field definitions. Use the Print Repository Definitions utility to see where
it is referenced.

Structure cannot be deleted. File reference exists.

The current structure is assigned to one or more file definitions. You cannot delete it until you
disassociate it from all files. Use the Print Repository Definitions utility to see where it is
referenced.

Structure cannot be deleted. Key reference exists.

Either this structure is used as a “to” structure in a relation defined by another structure, or a
field in this structure is defined as an external key segment by another structure. You cannot
delete the structure.

Structure definition is incomplete.

You haven’t entered all the required information. When you define a structure, you must
specify the name, file type, and description.

Structure has been modified. Do you want to save changes?

Whenever you modify a structure’s attributes, a temporary copy of that structure is created.
As a result, you have the opportunity to abandon any changes you’ve made since entering the
“Edit Attributes” function.

Structure is assigned to a file. File type cannot be modified.

You cannot modify the file type of this structure, because it must match the file type of the file
it’s assigned to. Before you can change a structure’s file type, you must disassociate it from
all files.

Error Messages

C-16 Repository User’s Guide 10.3.3 (5/16)

Structure is referenced as a group, and therefore at least one field must be defined.

The current structure is referenced within an implicit group specification. Groups must contain
at least one member. Use the Print Repository Definitions utility to see where the structure is
referenced.

Structure no longer exists.

The structure you tried to select was deleted by another user between the time it was displayed
in a list and the time you selected it.

Structure structure name is referenced as an implicit group or structfield. Modifying
it will affect one or more field and key definitions. Are you sure you want to save
your modifications?

A change to the current structure data will cause all affected field definitions to be modified. In
addition, all keys (the size and type of keys in the current structure and external segments in
other structures) that use those fields will be updated. The record sizes of all affected structures
will be updated as well. If you don’t want to make such modifications, select No.

Structure’s primary key does not match those of other assigned structures.

If more than one structure is assigned to a file, the primary key definition must be the same for
all assigned structures. (The primary key is assumed to be the first key defined and must be an
access key.) The following primary key information will be compared: key size; sort order;
dups allowed flag; key data type; number of segments; and type, position, length and order of
each segment. You will get this message if the key information is not the same.

Structures are assigned to this file. File type cannot be modified.

You cannot modify the file type of this file, because it must match the file type of the structures
assigned to it.

Tag definition is incomplete.

You haven’t entered all the required information. When you define a field type tag, you must
specify the field name and the comparison operator.

Tag fields are defined for this structure. Tag type cannot be modified.

You cannot modify the tag type of this structure because there are tag fields defined. Before
you can change the structure’s tag type, you must delete all tag definitions.

Template cannot be deleted. Field reference exists.

You cannot delete the current template because one or more field definitions use it. Use the
Print Repository Definitions utility to see where it is referenced.

Error Messages

Repository User’s Guide 10.3.3 (5/16) C-17

Template cannot be deleted. Template reference exists.

You cannot delete the current template because one or more template definitions use it as a
parent, which means you cannot delete it. Use the Print Repository Definitions utility to see
where it is referenced.

Template definition is incomplete.

You haven’t entered all the required information. When you define a template, you must
specify the name, data type, and size.

Template name and parent template cannot be the same.

The parent template name you’ve specified is the same as the current template name. The
parent must be a template other than the current one.

Template no longer exists.

The template you attempted to select was deleted by another user between the time it was
displayed in a list and the time you selected it.

This field is defined as a key. All affected keys in the current structure will be
updated when you save changes. Are you sure you want to make modifications?

A change to the current field definition will cause the key size and type of all affected key
definitions in the current structure to be modified. In addition, the current structure’s record
size will be updated. If you don’t want to make modifications, select No.

This field is defined as an external segment by another structure. All affected keys in
all external structures will be updated when you save changes. Are you sure you
want to make modifications?

A change to the current field definition will cause the key size and type of all affected key
definitions in external structures to be updated. The record sizes of all affected structures will
be updated as well. If you don’t want to make modifications, select No.

“TO” KEY must be an ACCESS key.

You’ve tried to specify a foreign key as a “to” key in a relation. Only true keys in the data file
(that is, access keys) can be used as “to” keys.

Validation specifications are incomplete.

You have not entered all the required information to validate the repository. You must specify
the repository filenames to validate, as well as the log filename.

Verification specifications are incomplete.

You have not entered all the required information. To verify the repository, you must specify
the repository filenames to verify, the repository filenames to create (if inconsistencies are
found), and the log filename.

D-1

D
Data Formats

The format specification is a sequence of characters that depicts how the contents of the field will
look. The characters listed in the table below have special meanings. Any other character that
appears in a format string is inserted directly into the field.

If the format size (number of data characters) is larger than the field size, an alpha field will
be left-justified and the format string truncated, while a decimal field will be right-justified
and the format string truncated. If the format size is smaller than the field size, the data will
be truncated.

Character Meaning

@ Represents a single alpha character.

X Represents a single digit. It causes a digit from the source data to be inserted
into the specified position in the field. Digits are extracted from the source data
beginning at the right and continuing to the left; the rightmost X in the format is
loaded with the rightmost digit in the source data. If there are more X
characters than there are significant digits in the source data, the leftmost X
positions are loaded with zeros.

Z Represents a single digit. Z differs from X if there are more Z characters than
significant digits to be transferred from the source data. The Z position is
loaded with a blank if no X character or period appears to the left of it in the
format. If a period appears to the left but not to the right, the Z position is
loaded with a zero. A zero is also loaded if an X appears to the left of the Z.

* Represents a digit position. The * is similar to an X, except that when there are
no more significant digits, the position is loaded with an asterisk rather than a
zero.

money sign Represents a digit position. If there are more significant digits to be transferred,
the position is loaded with the next digit. If no more significant digits remain to
be transferred, the position is loaded with a blank. The rightmost money
character is changed to a dollar sign when field loading is concluded. The
default money sign is “$”, but you can use the MONEY subroutine to change it
to any character. See MONEY in the “System-Supplied Subroutines and
Functions” chapter of the Synergy DBL Language Reference Manual.

Data Formats

D-2 Repository User’s Guide 10.3.3 (5/16)

– Causes a minus sign to be inserted at the corresponding position in the field if
the – is the first or last character of a format. If the source data is positive, a
blank will be inserted. If the – is used within the format, a hyphen is inserted at
the corresponding position in the field.

. Causes a decimal point to be inserted at the corresponding position in the field.
In addition, any Z that appears to the right of the decimal point is treated as an
X.

, Causes a comma to be inserted at the corresponding destination position, but
only if one of the following conditions is true:
 More significant source digits remain to be transferred.
 There is an X character to the left of the comma.

Character Meaning

E-1

E
Distributed Shortcuts

The table below lists some of the Repository shortcuts as they appear in your original distribution.

Menu entry VT-style
shortcut

PC-style
shortcut

Abandon CTRL+A CTRL+A

Access Template Overrides F12 SHIFT+F2

Add Field (File, Format, Group, Key, Relation, Structure,
Tag, Template)

INS INS

Assign Structures CTRL+G CTRL+G

Copy Field (File, Format, Key, Relation, Structure, Tag,
Template)

F18 SHIFT+F8

Delete Field (File, Format, Key, Relation, Structure, Tag,
Template)

REM DEL

Edit ENTER ENTER

Edit Attributes PF3 F3

Edit Display Information CTRL+H CTRL+H

Edit Group Members CTRL+G CTRL+G

Edit Input Information CTRL+W CTRL+W

Edit Validation Information CTRL+v CTRL+V

Examine Key (Relation) CTRL+E CTRL+E

Exit PF4 F4

First Entry CTRL+F CTRL+F

Help PF1 F1

Last Entry CTRL+L CTRL+L

Distributed Shortcuts

E-2 Repository User’s Guide 10.3.3 (5/16)

List Selections F7 F7

Load Fields F9 F9

Next Tab TAB CTRL+TAB

Previous Tab F8 CTRL+SHIFT+TAB

Reorder Fields (Formats, Keys, Relations, Tags) F17 SHIFT+F7

Toggle View CTRL+V CTRL+V

Menu entry VT-style
shortcut

PC-style
shortcut

Repository User’s Guide 10.3.3 (5/16) Glossary-1

Glossary

access key Represents a true key in a data file and is used to specify relationships
between files.

alias An alternate name for a structure or field. Your repository can contain
aliases for your Synergy DBL identifier names.

arrayed field A field definition from the repository that represents a group of fields,
each of the same size and data type. Arrayed fields can have between
one and four dimensions.

attributes The characteristics of a structure that describe fields, keys, relations,
tags, and redisplay formats.

autokey A DBL ISAM key that is automatically filled in by Synergy DBMS
with the appropriate value. Supported autokey types are SEQUENCE,
TIMESTAMP, and CTIMESTAMP (creation timestamp). They must
be 8 bytes and defined as read-only. The corresponding data types are
AutoSeq and AutoTime (used by both timestamps).

definition file Contains standard Synergy DBL local, common, or global record
layouts.

enumeration A set of related values. An enumeration has a name and one or more
members, which may have values assigned to them.

explicit group A group in which the members are defined within the Field
Definitions list. See also implicit group.

external key An external key allows for a key to be composed of a segment from
the defining structure and one or more fields from another structure or
structures.

field A named area of computer memory used to store a specific type of
data.

field header The text that appears at the top of the column for a field (if you choose
to print page headers) on each page of a report in ReportWriter. The
default field header is the header that you specify during the “Define
Fields” phase of repository maintenance.

Glossary

Glossary-2 Repository User’s Guide 10.3.3 (5/16)

file A physical data file.

file definition Describes a particular file and defines which structures can be used to
access it.

file type Defines a specific class of data file (for example, ASCII or DBL
ISAM). File types are assigned to structures and file definitions.
User-defined file types enable developers to supply subroutines to
handle I/O for file types that are not supported by ReportWriter.

foreign key A key used to specify relationships between files but which does not
have to be a true key in the data file. Foreign keys may consist of one
or more literal segments. Foreign keys may also consist of one or more
external segments (fields from another structure).

format Designates the way a field will be displayed in your report. Global
formats are available for use by any field definition in Repository and
also in ReportWriter. Structure-specific formats are defined and only
valid for a particular structure. Predefined formats for date and time
fields are built into every repository.

“from” key Refers to the key in the structure that is defining a relation. The “from”
key may be an access key or a foreign key.

“from” structure Refers to the structure that is defining a relation.

group A structure within a structure, as defined by the GROUP statement.
Fields or other group definitions can be members of a group.

implicit group A group in which the members are defined by referencing another
structure. See also explicit group.

information line A single line at the bottom of the screen body that Repository uses to
display messages and general information.

input window A window that can contain text, input fields, and buttons, in which the
user enters information.

key The portion of a data record that identifies and is used to access the
record. A key can be composed of discontiguous data segments from
within the record.

literal A specific value that represents itself (as opposed to a variable). Both
numbers and text can be literal values.

modifiable list A list of entries that you can edit. You can also add, delete, and
sometimes move entries in the list.

Glossary

Repository User’s Guide 10.3.3 (5/16) Glossary-3

name link Used to associate fields with access keys in other structures. These
associations can then be used by ReportWriter to access related files.

non-modifiable list A list of entries that you can only select from.

numeric type Refers to decimal, implied-decimal, and integer types.

overlaid field A field that is “covered” by one or more overlay fields. It must precede
the overlay field(s) in your field definition list.

overlay field A field that lays on top of another field (the overlaid field) so that the
two fields share all or part of the same data space. For example, if your
overlaid field is a date, your overlay fields might be the month, the
day, and the year.

overlay offset The overlay offset is the amount to add to the first character in the
overlaid field to determine where the overlay begins. (For example, if
the overlay begins at the first character of the overlaid field, the offset
is 0; if the overlay begins at the second character, the offset is 1; and
so on.)

parent A template referenced by another template. Once a template
references another template, the attributes of the parent template are
inherited.

precision The number of places after the decimal point in an implied-decimal
field.

pseudo array A single-dimension array of type a, d, d., i1, i2, i4, i8, p, or p. (for
example, 10a5).

real array A single or multi-dimensional array of type a, d, d., i1, i2, i4, i8, p,
or p. that is specified in square brackets immediately preceding the
data type (for example, [10]a5).

record A unit of data. Each record is divided into one or more fields.

relation Enables you to link the keys of one structure with the keys of other
structures.

rendition A combination of the display attributes and color of portions of
the screen.

renditions file Contains predefined and default renditions. Renditions files can be
defined and modified with UI Toolkit.

repository Where your data definitions are stored.

Glossary

Glossary-4 Repository User’s Guide 10.3.3 (5/16)

Repository The Synergy/DE application that orders and defines your data
structures, files, and attributes.

schema A description of a repository written in Synergy Data Language.

script information The data associated with a field that affects how the field is used in UI
Toolkit input windows. When a field is defined, Repository creates
default script information for that field.

selection window A window that contains a choice of one or more entries that can be
selected (usually with arrow keys).

struct A data type, which is represented as a structfield in code and definition
files.

structure A record definition or compilation of field and key characteristics for a
particular file or files.

tag The information that uniquely identifies a particular record structure
(or record type) in a multi-record structure file. A structure tag can be
either the record size or one or more particular fields in the structure
and their associated comparison values.

template A set of field characteristics that can be assigned to one or more field
definitions or templates.

“to” key The key in the structure which is being related to in a relation. The
“to” key must be an access key.

“to” structure The structure being related to in a relation.

Repository User’s Guide 10.3.3 (5/16) Index-1

Index

A
access key 4-10, 4-12

relative file 4-10
Synergy Data Language 6-52

action, default 3-20
occurring automatically 3-20, 6-30

ADDRESSING keyword 6-42
addressing, file 4-5
Alias Definitions list 2-9
ALIAS statement 6-9
aliases

defining for field 6-9
defining for structure 2-9, 6-9
deleting 2-9, 6-10
retrieving information about 7-4
Synergy Data Language 6-9
viewing for structure 2-9

ALLOW keyword 6-34
allow lists

defining entries for 3-24
Synergy Data Language 6-34
unwanted spaces in entry 3-24

alpha field, justification D-1
alpha format character D-1
alternate field name 3-15
ALTERNATE NAME keyword 6-24
alternate name. See aliases
array fields

how defined in structures 7-3
specifying number of elements in dimensions 3-8

Synergy Data Language 6-18
specifying number of elements in dimensions

(template) 3-41
arrive method, associating with field or template 3-26
ARRIVE_METHOD keyword 6-36
arrow keys

modifying 1-17
using as shortcut 1-10

ASSIGN keyword 6-44
assigning a structure to a file 4-8 to 4-9

asterisk, using in format specification D-1
at sign, using in format specification D-1
attributes

defining for structures 2-4
of a field 3-17

autokeys 4-14
AUTOMATIC keyword 6-30
availability of fields

to ReportWriter 3-10, 3-41, 3-49, 4-5
Synergy Data Language 6-19

to Synergy DBL 3-10, 3-41
inclusion in definition file 3-10, 3-41, 5-2
Synergy Data Language 6-18

to UI Toolkit 3-10, 3-41, 3-49
Synergy Data Language 6-18

to xfNetLink 3-10, 3-41
Synergy Data Language 6-19

to xfODBC 3-10, 3-41
Synergy Data Language 6-19

B
blank field if user enters zero 3-16, 6-25
BLANKIFZERO keyword 6-25
blink attribute 3-17
BLINK keyword 6-28
break in input processing 3-23
BREAK keyword 6-33

C
case matching 3-24

Synergy Data Language 6-34
case sensitivity

in a field 3-24
in Synergy Data Language statements 6-3

change method, associating with field or template 3-27
CHANGEMETHOD keyword 6-38
check box, displaying field as 3-17

Synergy Data Language 6-26
CHECKBOX keyword 6-26
COERCED TYPE keyword 6-19

D

Index-2 Repository User’s Guide 10.3.3 (5/16)

COLOR keyword 6-27
color of field 3-17

Synergy Data Language 6-27
column headings (reports) 3-15

Synergy Data Language 6-24
comma, using in format specification D-2
comment in Synergy Data Language 6-4
Compare Repository to Files utility 5-27
COMPILE PREFIX keyword 6-50
COMPRESS keyword 6-42, 6-54
compression

file 4-5
index 4-13
key 4-13
record 4-13

control record information, retrieving 7-6
control structure 7-2

initializing 7-21
converting foreign repository 6-2
COPY keyword 6-30
copying

enumerations 3-44
fields 3-4
files 4-3
formats 3-33
keys 4-11
relations 4-19
repository files to other systems 1-20
structures 2-3, 2-9
tags 2-7
templates 3-36
value from data area 3-20

Synergy Data Language 6-30
Create New Repository utility 5-22
cross-reference file 5-24 to 5-26

moving to other systems 1-20
CTIMESTAMP 6-56
cursor movement. See data entry
customizing Repository display with window library

files 1-17

D
data entry 1-9 to 1-17

canceling changes 1-14
deleting data from a field 1-12
editing fields 1-11 to 1-13
insert vs. overstrike mode 1-11
joining lines 1-12

lists 1-14 to 1-15
selection windows 1-16
tabbed dialogs 1-13
wrapping text 1-12

data format string 3-33
data types

abbreviations for on Field Definitions list 3-2
assigned to key by Repository 4-15
coercing for xfNetLink 3-8, 3-40
specifying for a field 3-6
specifying for a field template 3-38
user-defined 3-7, 3-40

Synergy Data Language 6-18
date display formats B-3

See also date fields; date storage formats
date fields

defaulting to today’s date 3-20
Synergy Data Language 6-31

in a definition file 5-4
short period date 3-20

Synergy Data Language 6-31
See also date display formats; date storage formats

DATE NOSHORT keyword 6-31
DATE NOTODAY keyword 6-31
DATE SHORT keyword 6-31
date storage formats 3-6, B-2

default 6-15
supported by xfODBC B-2
Synergy Data Language 6-15, 6-16
See also date fields

DATE TODAY keyword 6-31
DD_ALIAS subroutine 7-4
DD_CONTROL subroutine 7-6
DD_ENUM subroutine 7-7
DD_EXIT subroutine 7-9
DD_FIELD subroutine 7-10
DD_FILE subroutine 7-14
DD_FILESPEC subroutine 7-17
DD_FORMAT subroutine 7-19
DD_INIT subroutine 7-21
DD_KEY subroutine 7-22
DD_NAME subroutine 7-25
DD_RELATION subroutine 7-27
DD_STRUCT subroutine 7-29
DD_TAG subroutine 7-32
DD_TEMPLATE subroutine 7-34
DDINFO_DEFINES_ONLY 7-2
DDINFO_INGLOBAL 7-2

D

Repository User’s Guide 10.3.3 (5/16) Index-3

DDINFO_STRUCTURE 7-3
ddinfo.def file. See RPSLIB:ddinfo.def file
ddlib.dll 7-2
ddlib.olb file. See RPSLIB:ddlib.elb file
ddmain.new file. See rpsmain.new file
ddtext.new file. See rpstext.new file
ddutl program. See rpsutl.dbr program
ddxref program. See rpsxref.dbr program
ddxref.ics file. See RPSDAT:rpsxref.ism file
decimal field, justification D-1
decimal place

specifying for field 3-8
specifying for template 3-41

decimal point
making optional 3-19

Synergy Data Language 6-29
using in format specification D-2

DECIMAL REQUIRED keyword 6-29
DECREMENT keyword 6-30
decrementing last value in field by default 3-20

Synergy Data Language 6-30
default action in field 3-20

setting to occur automatically 3-20
Synergy Data Language 6-30

default date and time format 6-15
DEFAULT keyword 6-30
default value, displaying in field 3-20

setting to display automatically 3-20
Synergy Data Language 6-30

defining
aliases 2-9
enumerations 3-44 to 3-46
fields 3-2 to 3-50
files 4-1 to 4-7
formats 3-32 to 3-35
group fields 3-4
keys 4-10 to 4-17
relations 4-18 to 4-22
structures 2-1 to 2-5
tags 2-6 to 2-8
templates 3-36 to 3-43

definition files
generating 5-2 to 5-4
loading fields from 3-30 to 3-31
RPSLIB:ddinfo.def 7-2, 7-45

definition names, retrieving list of 7-25

definitions
validating 5-12
viewing 1-16

deleting
aliases 2-9, 6-10
data from a field 1-12
enumerations 3-46
fields 3-50
files 4-7
formats 3-35
keys 4-17
relations 4-22
structures 2-11
tags 2-8
templates 3-43

DENSITY keyword 6-41, 6-54
density of key 4-5, 4-13
DESCRIPTION keyword

enumeration 6-12
field 6-21
file 6-40
key 6-55
structure 6-60

descriptions
enumeration 3-45

Synergy Data Language 6-12
field 3-5

Synergy Data Language 6-21
file 4-4

Synergy Data Language 6-40
structure 2-3

Synergy Data Language 6-60
DIMENSION keyword 6-18
dimension of array. See array fields
DISABLED keyword 6-27
disabling a field 3-17
disassociating a structure from a file 4-9
display information, defining for a field 3-12 to 3-18
DISPLAY LENGTH keyword 6-28
DISPLAY METHOD keyword 6-38
display method, associating with field or template 3-27
drill method, associating with field or template 3-27
DRILLMETHOD keyword 6-37
duplicates, allowing in key field 4-12

Synergy Data Language 6-52
DUPS keyword 6-52

E

Index-4 Repository User’s Guide 10.3.3 (5/16)

E
ECHKFLD_METHOD subroutine 3-7, 3-40
ECHO keyword 6-31
echo of input, preventing 3-20

display character 3-20, 6-31
Synergy Data Language 6-31

edit format method, associating with field or
template 3-28

EDITFMT METHOD keyword 6-38
editing text. See data entry
ENABLED keyword 6-27
ENDGLOBAL statement 5-3
ENDGROUP statement 6-11
ENTRIES keyword 6-35
ENUM keyword 6-17
enumerated data fields, specifying 3-25

Synergy Data Language 6-35
ENUMERATED keyword 6-35
Enumeration Definitions list 3-44
ENUMERATION statement 6-12
enumerations 3-44 to 3-46

copying to define new 3-44
defining as fields 3-7
defining as templates 3-40
defining new 3-44
deleting 3-46
describing with ENUMERATION statement 6-12
description (long)

entering 3-46
Synergy Data Language 6-12

reordering members 3-46
retrieving information about with DD_ENUM 7-7

environment variables
RPSDAT 1-18
RPSMFIL 1-18, 5-23
RPSTFIL 1-18, 5-23
RPSTMP 1-19
RPSXFIL 5-24

error code set by subroutine 7-2
error messages C-1 to C-17
errors while using Load Repository Schema utility 6-5
exclusion of fields

by ReportWriter 3-10, 3-41, 3-49, 4-5
Synergy Data Language 6-19

by Synergy DBL 3-10, 3-41
inclusion in definition file 5-2 to 5-4
Synergy Data Language 6-18

by UI Toolkit 3-10, 3-41, 3-49
Synergy Data Language 6-18

by xfNetLink 3-10, 3-41
Synergy Data Language 6-19

by xfODBC 3-10, 3-41
Synergy Data Language 6-19

exiting
current function 1-16
Repository 1-17

explicit group 3-9
external key segments, using 4-16

Synergy Data Language 6-55
external relation 4-16

F
fcompare utility 5-27
Field Definitions list 3-2
.FIELD qualifier 3-12, 3-18, 3-22, 3-26
FIELD statement 6-14 to 6-39
fields 3-2 to 3-50

alias name for 6-9
allowable entries in 3-23, 3-24

Synergy Data Language 6-34
alternate name for 3-15
column name in ODBC catalog 3-15
copying to define new 3-4
defining new 3-4 to 3-11
deleting 3-50
describing with FIELD statement 6-14 to 6-39
description (long) 3-29

Synergy Data Language 6-21
description (short) 3-5

Synergy Data Language 6-21
disabling 3-17
display information, defining 3-12 to 3-18
display length 3-15
enumerated data 3-25

Synergy Data Language 6-35
font on Windows 3-18
format name to associate with 3-16

Synergy Data Language 6-24
input information, defining 3-18 to 3-21
input length 3-21
justification of data in 3-16
loading from .INCLUDE file 3-30 to 3-31
making required 3-23
maximum number per structure 3-2, A-2
methods, associating with 3-26 to 3-29

F

Repository User’s Guide 10.3.3 (5/16) Index-5

modifying 3-47 to 3-49
modifying when defined as key 3-47
naming 3-4
order of within structure 3-2
overlay 3-8
position of 3-12

independent of prompt 3-13
precision 3-8
prompt 3-14

position of 3-12
Synergy Data Language 6-22

range of values, defining 3-23
Synergy Data Language 6-36

reordering 3-3
report column heading 3-15

Synergy Data Language 6-24
retrieving information about with DD_FIELD 7-10
segment type 6-55
size of, specifying maximum 3-8

Synergy Data Language 6-15
truncation when format size does not match field

size D-1
user-defined text string 3-14
validation information, defining 3-22 to 3-26
view length 3-15
viewing 1-16, 3-2
See also availability of fields; data entry; groups

File Definitions list 4-2
file locking. See records: locking
FILE statement 6-40
FILE TEXT keyword 6-44
file type, assigning

to file 4-4
Synergy Data Language 6-40

to structure 2-3
Synergy Data Language 6-60

files 4-1 to 4-7
adding to report without explicit relation 5-24
addressing 4-5
assigning structure to 4-8 to 4-9
changing those used by Repository 5-23
compression of 4-5
copying to define new 4-3
defining new 4-3 to 4-6
deleting 4-7
describing with FILE statement 6-40

description (long)
entering 4-7
Synergy Data Language 6-40

description (short) 4-4
Synergy Data Language 6-40

determing those used by Repository 1-18
mapping name 4-4
maximum number 4-3
modifying 4-7
naming 4-3
page size 4-5
portable integers 4-6
record type (for ISAM files) 4-4
retrieving information about with DD_FILE 7-14
retrieving list of with DD_NAME 7-25
retrieving specifications for with

DD_FILESPEC 7-17
static RFA 4-5
temporary 1-19
viewing 1-16, 4-2

finding data in lists 1-15
font

used to display field contents on Windows 3-18
used to display prompt on Windows 3-18

FONT keyword 6-26
foreign key 4-10, 4-12
foreign language, translating text into 1-21
Format Definitions list 3-32
FORMAT keyword 6-24
FORMAT statement 6-47
formats 3-32 to 3-35

associated with field 3-16
Synergy Data Language 6-24

copying to define new 3-33
data D-1 to D-2
date. See date display formats; date storage formats
defining new 3-33 to 3-34
deleting 3-35
describing with FORMAT statement 6-47
justification 3-34

Synergy Data Language 6-47
modifying 3-34
retrieving information about with

DD_FORMAT 7-19
size of string A-3
specifications D-1 to D-2

G

Index-6 Repository User’s Guide 10.3.3 (5/16)

time. See time display formats; time storage formats
viewing 1-16, 3-32
See also global formats; structure-specific formats

formatting character 3-33
FPOSITION keyword 6-22
“from” key 4-20

Synergy Data Language 6-58
“from” structure 4-20

Synergy Data Language 6-58

G
Generate Cross-Reference utility 5-24 to 5-26
Generate Definition File utility 5-2 to 5-4
Generate Repository Schema utility 5-13 to 5-18
global formats 3-32

no longer exist message 3-12
retrieving list of with DD_NAME 7-25

GLOBAL statement 5-3
GROUP statement 6-49
groups

defining 3-4
describing definition with GROUP statement 6-49
designating field as 3-9
ending definition with ENDGROUP statement 6-11
explicit 3-9, 3-10
implicit 3-9, 3-10
member prefix 3-10
modifying members 3-48
overlay 3-9
rules for 3-48 to 3-49
size of, overriding template size in Synergy Data

Language 6-50
size of, specifying maximum in Synergy Data

Language 6-50

H
header type (file) 5-3
heading for report column 3-15

formatting 3-15
Synergy Data Language 6-24

help identifier 3-14
Synergy Data Language 6-23

HELP keyword 6-23
help messages, modifying for Repository 1-17
help, online 1-10
highlight attribute 3-17
HIGHLIGHT keyword 6-27

hyperlink method, associating with field or
template 3-27

HYPERLINKMETHOD keyword 6-37

I
I_USER subroutine, using to access user-defined text

string 3-14
ICS Definition Language. See Synergy Data Language
ICS. See Repository
icsload.ddf file. See rpsload.ddf file
implicit group 3-9
implied-decimal data type, size of field 3-8
.INCLUDE file

generating 5-2 to 5-4
loading fields from 3-30 to 3-31
using with REPOSITORY option 1-2

INCREMENT keyword 6-30
incrementing last value in field by default 3-20

Synergy Data Language 6-30
INDEX keyword 6-54
INFO LINE keyword 6-23
information line 1-9

displaying text on 3-14
Synergy Data Language 6-23

information session
initializing 7-21
terminating 7-9

input fields in Repository. See data entry
input information, defining 3-18 to 3-21
INPUT JUST keyword 6-25
INPUT LENGTH keyword 6-32
input, automatically terminated 3-19

Synergy Data Language 6-29
INSERT keyword 6-53
ISAM files, comparing to repository definitions 5-27
isload utility 1-21

J
joining lines (data entry) 1-12
justification

format 3-34
Synergy Data Language 6-47

of data in report column 3-16
Synergy Data Language 6-25

of text in a field 3-16
Synergy Data Language 6-25

when format size does not match field size D-1
JUSTIFY keyword 6-47

K

Repository User’s Guide 10.3.3 (5/16) Index-7

K
Key Definitions list 4-10
KEY keyword 6-54
key segments

clearing type 4-14
displaying information about 4-21
examining in relation 4-21
external, using 4-16
literal, using 4-15
matching exactly 4-15
maximum number per key A-3
modifying, effect of 3-47
size of 4-15
sort order 4-15
Synergy Data Language 6-55
type 4-14
See also keys

KEY statement 6-52
key types 4-10

specifying 4-12
Synergy Data Language 6-52

keys 4-10 to 4-17
copying to define new 4-11
default data type 4-14, 4-15
defining new 4-11 to 4-15
deleting 4-17
density 4-5

overriding 4-13
duplicates, allowing 4-12

Synergy Data Language 6-52
excluding from xfODBC system catalog 4-13, 6-54
maximum number per structure 4-10, A-3
modifying 4-17
of reference, RMS indexed file 4-10, 4-13
primary 4-8
reordering 4-11
retrieving information about with DD_KEY

subroutine 7-22
sort order of data 4-12

Synergy Data Language 6-52
viewing 1-16, 4-10, 4-21
See also key segments; key types

KRF keyword 6-55

L
LANGUAGE NOVIEW keyword 6-18
LANGUAGE VIEW keyword 6-18
leave method, associating with field or template 3-26

LEAVEMETHOD keyword 6-37
lists

searching in 1-15
using (data entry) 1-14 to 1-15

literal key segments, using 4-15
literal segment type 6-55
Load Repository Schema utility 5-19 to 5-21

processing new and existing definitions 6-5
loading fields from .INCLUDE file 3-30 to 3-31
locking records 1-19
log files

Compare Repository to Files utility 5-27
Load Repository Schema utility 5-19
Validate Repository utility 5-12
Verify Repository utility 5-10

LONG DESCRIPTION keyword
enumeration 6-12
field 6-21
file 6-40
structure 6-60

long descriptions, assigning
to enumerations 3-46

Synergy Data Language 6-12
to fields 3-29

Synergy Data Language 6-21
to files 4-7

Synergy Data Language 6-40
to structures 2-4

Synergy Data Language 6-60
to templates 3-29

M
mapping filenames 4-4
MATCH CASE keyword 6-34
MATCH EXACT keyword 6-34
MATCH NOCASE keyword 6-34
MATCH NOEXACT keyword 6-34
matching

case of field input 3-24
Synergy Data Language 6-34

field input 3-24
Synergy Data Language 6-34

literal key segments 4-15
maximum values permitted by Repository A-1 to A-4
member prefix for group member names 3-10
MEMBERS keyword 6-12
menu column headings, modifying for Repository 1-17

See also column headings (reports)

N

Index-8 Repository User’s Guide 10.3.3 (5/16)

menu entries, modifying for Repository 1-17
menus, using in Repository 1-10
merging schemas 5-19 to 5-21, 6-5

rules for 6-6
messages, modifying for Repository 1-17
methods

associating with field or template 3-26 to 3-29
defining in Workbench 3-28

minus sign, using in format specification D-2
MODIFIABLE keyword 6-53
modifying

enumerations 3-46
fields 3-47 to 3-49
files 4-7
formats 3-34
keys 4-17
relations 4-22
structures 2-10
tags 2-8
templates 3-42
window library file 1-17

money sign, using in format specification D-1
moving

cross-reference files 1-20
repository files to other systems 1-20
See also reordering

multiple record types, using 2-6
multiple structures, using 2-6
multi-user system, record locking in 1-19

N
name links

determining for a field in a repository 5-25
flag in field and template definitions 5-25
generating cross-reference of potential relations 5-24
overriding default field 6-20

NEGATIVE keyword 6-33
negative value allowed in field 3-23

Synergy Data Language 6-33
NETWORK ENCRYPT keyword 6-43
NOALLOW keyword 6-34
NOALTERNATE NAME keyword 6-24
NOARRIVEMETHOD keyword 6-36
NOATTRIBUTES keyword 6-28
NOAUTOMATIC keyword 6-30
NOBLANKIFZERO keyword 6-25
NOBLINK keyword 6-28
NOBREAK keyword 6-33

NOCHANGEMETHOD keyword 6-38
NOCHECKBOX keyword 6-26
NOCOERCED TYPE keyword 6-20
NOCOLOR keyword 6-27
NOCOMPILE PREFIX keyword 6-50
NOCOMPRESS keyword 6-42, 6-54
NODATE keyword 6-17
NODECIMAL keyword 6-29
nodecimal, setting for field 3-19
NODEFAULT keyword 6-30
NODENSITY keyword 6-41, 6-54
NODESC keyword 6-21
NODISABLED keyword 6-27
NODISPLAY LENGTH keyword 6-28
NODISPLAY METHOD keyword 6-38
NODRILLMETHOD keyword 6-37
NOECHO keyword 6-31
noecho, setting for field 3-20
NOECHOCHR keyword 6-31
NOEDITFMT METHOD keyword 6-38
NOENUMERATED keyword 6-36
NOFILE TEXT keyword 6-44
NOFONT keyword 6-26
NOFORMAT keyword 6-24
NOFPOSITION keyword 6-22
NOHEADING keyword 6-24
NOHELP keyword 6-23
NOHIGHLIGHT keyword 6-27
NOHYPERLINKMETHOD keyword 6-37
NOINFO keyword 6-23
NOINPUT LENGTH keyword 6-32
NOLEAVEMETHOD keyword 6-37
NOLONGDESC keyword 6-21
NONAMELINK keyword 6-20
NONEGATIVE keyword 6-33
NONETWORK ENCRYPT keyword 6-43
NONULL keyword 6-34, 6-53
NOODBC NAME keyword. See NOALTERNATE

NAME keyword
NOPAINT keyword 6-26
NOPORTABLE keyword 6-44
NOPOSITION keyword 6-22
NOPROMPT keyword 6-23
NOPROMPTFONT keyword 6-26
NORADIO keyword 6-26
NORANGE keyword 6-36
NOREADONLY keyword 6-27
NORECORD LIMIT keyword 6-42

O

Repository User’s Guide 10.3.3 (5/16) Index-9

NOREQUIRED keyword 6-33
NORETAIN POSITION keyword 6-29
NOREVERSE keyword 6-28
NOROLLBACK keyword 6-43
NOSEGORDER keyword 6-56
NOSELECT keyword 6-35
NOSIZE keyword 6-50
NOSIZE LIMIT keyword 6-42
NOSTATIC RFA keyword 6-43
NOSTORED GRFA keyword 6-43
NOTEMPORARY keyword 6-42
NOTERABYTE keyword 6-43
NOTERM keyword 6-29
noterm, setting for field 3-19
NOTIME keyword 6-17
NOTRACK CHANGES keyword 6-43
NOUNDERLINE keyword 6-28
NOUPPERCASE keyword 6-29
NOUSER TEXT keyword 6-23
NOUSER TYPE keyword 6-18
NOVIEW LENGTH keyword 6-29
NOWAIT keyword 6-32
NULL ALLOWED keyword 6-33
Null allowed option 3-23
NULL DEFAULT keyword 6-33
NULL NONREPLICATING keyword 6-53
NULL REPLICATING keyword 6-53
NULL SHORT keyword 6-53
numeric format character D-1

O
ODBC column name 3-15, 6-24
ODBC NAME keyword 6-45

See also ALTERNATE NAME keyword
ODBC NOVIEW keyword 6-54
ODBC table name 4-8, 6-45
ODBC VIEW keyword 6-54
offset in definition file (record) 5-3
offset position for overlay 3-8
ORDER keyword 6-52
OVERLAY keyword 6-20, 6-50
overlays

definition file 5-3
field 3-8
group 3-9
Synergy Data Language 6-20, 6-50

overriding template attributes 3-5, 3-38
setting flag 3-5, 3-38
Synergy Data Language 6-15
viewing status 3-5, 3-11, 3-38, 3-42

P
page size (file) 4-5
PAGE SIZE keyword 6-41
paint character 3-16

Synergy Data Language 6-25
paint field 3-16
PAINT keyword 6-25
PARENT keyword 6-65
parent template

assigning 3-38
Synergy Data Language 6-65

period, using in format specification D-2
portable integers 4-6
PORTABLE keyword 6-44
position

associated with input window field 3-12
Synergy Data Language 6-21

of field independent of prompt 3-13
Synergy Data Language 6-22

retaining within text field 3-19
Synergy Data Language 6-29

POSITION keyword 6-21
precision (implied-decimal field) 3-8

in a template 3-41
PRECISION keyword 6-18
prefix

definition field name 5-3
group member names 3-10

PREFIX keyword 6-50
primary key 4-8
Print Repository Definitions utility 5-5 to 5-9
printing repository to a file 5-5 to 5-9, 6-2
process-menu key 1-10
PROMPT keyword 6-22
PROMPTFONT keyword 6-26
prompts

defining 3-14
display font on Windows 3-18
modifying for Repository 1-17
position of 3-12
Synergy Data Language 6-22

Q

Index-10 Repository User’s Guide 10.3.3 (5/16)

Q
quick-select character 1-10

R
radio button, display field as 3-17

Synergy Data Language 6-26
RADIO keyword 6-26
RANGE keyword 6-36
range value 3-23

size of minimum and maximum A-2
Synergy Data Language 6-36

read-only field 3-16
READONLY keyword 6-27
RECORD keyword 6-54
RECORD LIMIT keyword 6-42
“Record locked” message 1-19
record number, segment type 6-55
records

locking 1-19
size of A-3
type (for ISAM files) 4-4

RECTYPE keyword 6-41
REFERENCE keyword 6-50
Relation Definitions list 4-18
RELATION statement 6-58
relations 4-18 to 4-22

copying to define new 4-19
defining new 4-19 to 4-20
deleting 4-22
describing with RELATION statement 6-58
external 4-16
maximum number that can be defined for a

structure 4-18
modifying 4-22
reordering 4-19
retrieving information about with

DD_RELATION 7-27
viewing 1-16, 4-21

relative files 6-57
key 2-4, 4-10
restrictions 2-10

renditions 3-17
reordering

enumeration members 3-46
fields 3-3
keys 4-11

relations 4-19
structure-specific formats 3-34
tags 2-8

REPORT HEADING keyword 6-24
REPORT JUST keyword 6-25
REPORT NOVIEW keyword 6-19
REPORT VIEW keyword 6-19
ReportWriter

accessing repository definitions 1-4
availability of fields to 3-10, 3-41
calling user-overloadable subroutines 3-7, 3-40
specifying column heading 3-15

Repository
customizing display 1-17
displaying version information 1-9
entering data in 1-9 to 1-17
error messages C-1 to C-17
exiting 1-17
integration with UI Toolkit 1-3
menus, using 1-10
overview of 1-2 to 1-20
prompts, help messages, and other text 1-17
record locking in 1-19
screen description 1-9
setting up 1-5 to 1-8
shortcuts 1-10, E-1 to E-2
starting 1-5
subroutine library 7-2 to 7-62
using with ReportWriter 1-4
window library file 1-17

repository
changing default 5-23
comparing definitions to ISAM files 5-27
converting foreign to Repository format 6-2
converting to another language 1-21
copying to other systems 1-20
creating new 5-22
determining files used 1-18
filenames for main and text files 1-18, 5-22
moving to other systems 1-20
opening 5-23
printing to a file 5-5 to 5-9
repairing 5-10 to 5-11
schemas. See schemas
setting current 5-23
validating definitions 5-12
verifying integrity of 5-10 to 5-11

S

Repository User’s Guide 10.3.3 (5/16) Index-11

repository control structure 7-2
required fields, defining 3-23

Synergy Data Language 6-33
REQUIRED keyword 6-33
RETAIN POSITION keyword 6-29
reverse attribute 3-17
REVERSE keyword 6-27
RMS indexed file key of reference 4-10, 4-13
ROLLBACK keyword 6-43
RPS environment variable. See Environment Variables &

System Options
RPS_DATA_METHOD subroutine, calling 3-7, 3-40
RPS_SEQ*files 1-19
rpsctl.ism file 1-17
rpsctl.wsc file 1-17
RPSDAT environment variable 1-18

See also Environment Variables & System Options
RPSDAT:rpsxref.ism file 5-24
RPSLIB:ddinfo.def file 7-2, 7-45
RPSLIB:ddlib.elb file 7-2
rpsload.ddf file 5-10
rpsmain.ne1 file 5-10
rpsmain.new file 5-10
RPSMFIL environment variable 1-18, 5-23

See also Environment Variables & System Options
rpstext.ne1 file 5-10
rpstext.new file 5-10
RPSTFIL environment variable 1-18, 5-23

See also Environment Variables & System Options
RPSTMP environment variable 1-19

See also Environment Variables & System Options
rpsutl.dbr program 5-28 to 5-33
RPSXFIL environment variable 5-24

See also Environment Variables & System Options
rpsxref.dbr program 5-26

S
SCHEMA.LOG file 5-19
schemas

generating 5-13 to 5-18, 6-2
loading 5-19 to 5-21, 6-2

from scridl 5-21
merging 5-19 to 5-21, 6-5

rules for 6-6
scridl utility 5-21
script file, overriding repository attributes 3-12, 3-18,

3-22, 3-26
script information, modifying 3-18 to 3-21, 3-22, 3-26

SCRIPT NOVIEW keyword 6-18
Script utility 1-17
SCRIPT VIEW keyword 6-18
Script-to-Repository conversion utility 5-21
searching for data in lists 1-15
SEGMENT keyword 6-55
segments. See key segments; keys
SEGORDER keyword 6-56
SEGTYPE keyword 6-55
SELECTION LIST keyword 6-34
selection lists

defining entries for 3-25
unwanted spaces in entry 3-25

SELECTION WINDOW keyword 6-35
selection windows

displaying 3-24
Synergy Data Language 6-34

entries in 3-25
Synergy Data Language 6-35

placement of 3-25
Synergy Data Language 6-35

using in Repository. See data entry
SEQ* files 1-19
Set Current Repository utility 5-23
shortcuts 1-10, E-1 to E-2

modifying for Repository 1-17
SIZE keyword 6-15, 6-50
SIZE LIMIT keyword 6-42
spaces (unwanted) in selection or allow list entries 3-24,

3-25
starting Repository 1-5
static RFA 4-5
STATIC RFA keyword 6-43
STORED GRFA keyword 6-43
STORED keyword 6-16
string data, using in Synergy Data Language 6-4
STRUCT keyword 6-17
Structure Definitions list 2-2
STRUCTURE statement 6-60
structures 2-1 to 2-11

alias name for 2-9, 6-9
assigning to file 4-8 to 4-9

maximum number 4-8, A-3
Synergy Data Language 6-44

copying to define new 2-3, 2-9
defining new 2-3 to 2-5
deleting 2-11
describing with STRUCTURE statement 6-60

T

Index-12 Repository User’s Guide 10.3.3 (5/16)

description (long)
entering 2-4
Synergy Data Language 6-60

description (short) 2-3
Synergy Data Language 6-60

disassociating from file 4-9
maximum number A-3
modifying 2-10
naming 2-3
referenced within a group 3-10
retrieving information about with DD_STRUCT 7-29
retrieving list of with DD_NAME 7-25
tag. See tags
user-defined text string 2-5

structure-specific formats 3-32
maximum number 3-32
reordering 3-34
See also formats

subroutine library 7-2 to 7-62
sample programs 7-36 to 7-62
using 7-2
See also specific subroutines

Synergex.SynergyDE.ddlib.dll 7-2
Synergy Data Language 6-2 to 6-66

case sensitivity 6-3
comments in 6-4
converting to new repository 5-19 to 5-21
generating 5-13 to 5-18, 6-2

from command line 5-28 to 5-33
interpreting 6-2
keywords, how to specify 6-3
loading schema from command line 5-28 to 5-33
overview 6-2 to 6-8
processing rules 6-5
sample output 5-15
statement order 6-3
string data 6-4
usage rules 6-3

T
tab key, modifying 1-17
tabbed dialogs, using 1-13

See also data entry
tabbed input window. See tabbed dialog
TAG statement 6-62

tags 2-6 to 2-8
copying to define new 2-7
creating field type tag 2-6 to 2-8
creating record size tag 2-6
deleting 2-8
describing with TAG statement 6-62
filtering records 6-62
maximum number per structure A-4
modifying 2-8
reordering 2-8
retrieving information about with DD_TAG 7-32
viewing 1-16, 2-7

Template Definitions list 3-36
TEMPLATE keyword 6-15
TEMPLATE statement 6-64
templates 3-36 to 3-43

assigning to fields 3-4
assigning to templates 3-38
copying to define new 3-36
defining new 3-36 to 3-42
deleting 3-43
describing with TEMPLATE statement 6-64
description (long), assigning 3-29
display information, defining 3-12 to 3-18
input information, defining 3-18 to 3-21
maximum number allowed 3-36, A-4
method information 3-26 to 3-29
modifying 3-42
overriding attributes 3-5, 3-11, 3-38, 3-42

Synergy Data Language 6-15
PARENT keyword 6-65
parent template 3-38
retrieving information about with

DD_TEMPLATE 7-34
retrieving list of with DD_NAME 7-25
validation information, defining 3-22 to 3-26
viewing 1-16, 3-36

TEMPORARY keyword 6-42
temporary repository files 1-19
TERABYTE keyword 6-43
TERM keyword 6-29
text string. See user-defined text string
TIME AMPM keyword 6-32
time display formats B-4

See also time fields

U

Repository User’s Guide 10.3.3 (5/16) Index-13

time fields
12-hour vs. 24-hour 3-20

Synergy Data Language 6-32
defaulting to current system time 3-20

Synergy Data Language 6-31
in a definition file 5-4
See also time storage formats

TIME NOAMPM keyword 6-32
TIME NONOW keyword 6-31
TIME NOW keyword 6-31
time storage formats 3-6, B-4

Synergy Data Language 6-15, 6-16
See also time display formats; time fields

time-out. See wait qualifier
TKLIB_SH.EXE 7-2
“to” key 4-20

Synergy Data Language 6-58
“to” structure 4-20

Synergy Data Language 6-58
Toolkit See UI Toolkit
TRACK CHANGES keyword 6-43
Track changes option 4-5
translating text to other languages 1-21
true key 4-10
truncation of data when format size does not match field

size D-1
type coercion 3-8, 3-40
TYPE keyword 6-15, 6-47

U
UI Toolkit

accessing repository definitions 1-3
availability of fields to 3-10, 3-41
script information 3-18, 3-22, 3-26

underline attribute 3-17
UNDERLINE keyword 6-28
UPPERCASE keyword 6-29
uppercase letters, converting input to 3-18
user data type 3-7, 3-40

subtype (class) 3-6 to 3-7, 3-39
Synergy Data Language 6-18

user subtype 3-39
USER TEXT keyword 6-23, 6-41, 6-61
USER TYPE keyword 6-18
user-defined fields 3-7, 3-40

user-defined text strings
associating with a file definition 4-7

Synergy Data Language 6-41
associating with a structure 2-5

Synergy Data Language 6-61
associating with an input field 3-14

Synergy Data Language 6-23
size of A-2, A-3

utilities
Compare Repository to Files 5-27
Create New Repository 5-22
Generate Cross-Reference 5-24 to 5-26
Generate Definition File 5-2 to 5-4
Generate Repository Schema 5-13 to 5-18

from command line 5-28 to 5-33
Load Repository Schema 5-19 to 5-21

from command line 5-28 to 5-33
Print Repository Definitions 5-5 to 5-9
Set Current Repository 5-23
Validate Repository 5-12

using after loading repository schema 5-21
Verify Repository 5-10 to 5-11

using after loading repository schema 5-21

V
Validate Repository utility 5-12
validating

field data 3-47
field information 3-11
repository definitions 5-12

validation information, defining 3-22 to 3-26
VALUE keyword 6-54
Verify Repository utility 5-10 to 5-11
VERIFY.LOG file 5-10
“view as” option for input windows 3-17
VIEW LENGTH keyword 6-28
view-only mode 1-16, 1-19

W
WAIT FOREVER keyword 6-32
WAIT GLOBAL keyword 6-32
WAIT IMMEDIATE keyword 6-32
WAIT keyword 6-32
wait qualifier 3-21
WEB NOVIEW keyword 6-19
WEB VIEW keyword 6-19

X

Index-14 Repository User’s Guide 10.3.3 (5/16)

window library file, customizing 1-17
word wrap in selection or allow list entries 3-24, 3-25
Workbench, launching from Method tab 3-28
wrapping text (data entry) 1-12

X
X, using in format specification D-1
xfNetLink

availability of fields to 3-10, 3-41
Synergy Data Language 6-19

read-only fields and 3-17
specifying alternate field name 3-15
specifying data type for coercion 3-8, 3-40

Synergy Data Language 6-19
using report heading for column caption 3-15

xfODBC
availability of fields to 3-10, 3-41, 6-19
availability of files to 4-5
availability of keys for optimization 4-13, 6-54
calling user-overloadable subroutines 3-7, 3-40
date storage formats B-2
ODBC column name 3-15, 6-24
ODBC table name 4-8, 6-45

Z
Z, using in format specification D-1

	Repository User’s Guide
	Contents
	Preface
	1 Welcome to Repository
	What Is Repository?
	Using Repository with other Synergy/DE components

	Getting Started
	Starting Repository
	Setting up your repository

	Using the Repository Interface
	Making a menu selection (UNIX and OpenVMS)
	Entering data
	Using lists
	Using selection windows
	Exiting the current function
	Viewing Repository definitions
	Customizing the display
	Exiting Repository

	Understanding Repository Files
	Determining the repository files used
	Temporary work files
	Record locking
	Moving Repository files

	Converting Repositories to Another Language

	2 Working with Structures
	Structures Overview
	Defining a New Structure
	Assigning a long description to a structure
	Assigning a user-defined text string to a structure

	Defining Tags
	Creating a record size tag
	Creating a field type tag
	Modifying a tag
	Reordering tags in the Tag Definitions list
	Deleting a tag

	Defining Aliases
	Defining an alias
	Deleting an alias

	Modifying a Structure
	Deleting a Structure

	3 Working with Fields
	Fields Overview
	The Field Definitions list
	Reordering fields in the Field Definitions list

	Defining a New Field
	Basic field information
	Display information
	Input information
	Validation information
	Method information
	Assigning a long description to a field

	Loading Fields from a Definition File
	Defining Field Formats
	The Format Definitions list
	Defining a new format
	Reordering structure-specific formats
	Modifying a format
	Deleting a format

	Defining Field Templates
	Defining a new template
	Modifying a template
	Deleting a template

	Defining Enumerations
	Defining a new enumeration and its members
	Modifying an enumeration and its members
	Deleting an enumeration

	Modifying a Field
	Modifying group members

	Deleting a Field

	4 Working with Files
	Files Overview
	The File Definitions list

	Defining Files
	Assigning a long description to a file definition
	Assigning a user text string to a file definition
	Modifying a file definition
	Deleting a file definition

	Assigning Structures to Files
	Assigning a structure to a file
	Modifying an assigned structure
	Disassociating a structure from a file

	Defining Keys
	The Key Definition list
	Reordering keys in the Key Definitions list
	Defining a new key
	Using literal key segments
	Using external key segments
	Modifying a key
	Deleting a key

	Defining Relations between Structures
	The Relation Definitions list
	Reordering relations in the Relation Definitions list
	Defining a new relation
	Examining a relation in detail
	Modifying a relation
	Deleting a relation

	5 Utility Functions
	Generating a Definition File
	Printing Repository Definitions
	Verifying Your Repository
	Validating Your Repository
	Generating a Repository Schema
	Loading a Repository Schema
	Creating a New Repository
	Setting the Current Repository
	Generating a Cross-Reference File
	Rpsxref command line syntax

	Comparing a Repository to ISAM Files
	Generating and Loading Schema from the Command Line
	Exporting Synergy Data Language files
	Importing Synergy Data Language files

	6 Synergy Data Language
	Introduction to the Synergy Data Language
	Using Synergy Data Language Statements
	General usage rules
	Recommended statement order
	General processing rules
	ALIAS – Describe an alias for a structure or field
	ENDGROUP – End a group definition
	ENUMERATION – Describe an enumeration definition
	FIELD – Describe a field definition
	FILE – Describe a file definition
	FORMAT – Describe a global or structure-specific format
	GROUP – Begin a group definition
	KEY – Describe a key definition
	RELATION – Describe a relation definition
	STRUCTURE – Describe a structure definition
	TAG – Describe a structure tag definition
	TEMPLATE – Describe a template definition

	7 Subroutine Library
	Using the Repository Subroutine Library
	The ddinfo.def file
	DD_ALIAS – Retrieve alias information
	DD_CONTROL – Retrieve control record information
	DD_ENUM – Retrieve enumeration information
	DD_EXIT – Terminate an information session
	DD_FIELD – Retrieve field information
	DD_FILE – Retrieve file information
	DD_FILESPEC – Retrieve file specifications
	DD_FORMAT – Retrieve format information
	DD_INIT – Initialize an information session
	DD_KEY – Retrieve key information
	DD_NAME – Retrieve a list of definition names
	DD_RELATION – Retrieve relation information
	DD_STRUCT – Retrieve structure information
	DD_TAG – Retrieve tag information
	DD_TEMPLATE – Retrieve template information

	Sample programs
	Definition file

	Appendix A: Maximums
	Appendix B: Date and Time Formats
	Date Formats
	Time Formats

	Appendix C: Error Messages
	Appendix D: Data Formats
	Appendix E: Distributed Shortcuts
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Send us your comments

	OSWS:
	OSWN:
	OSU:
	OSV:

