
Professional Series
Portability Guide

Version 10.3.3

Printed: May 2016

The information contained in this document is subject to change without notice and should not be construed
as a commitment by Synergex. Synergex assumes no responsibility for any errors that may appear in this
document.

The software described in this document is the proprietary property of Synergex and is protected by
copyright and trade secret. It is furnished only under license. This manual and the described software may be
used only in accordance with the terms and conditions of said license. Use of the described software without
proper licensing is illegal and subject to prosecution.

 Copyright 1997–2016 by Synergex

Synergex, Synergy, Synergy Development Environment, Synergy/DE, and all Synergy/DE product names
are trademarks or registered trademarks of Synergex.

Visual Studio, Windows, Windows Vista, and Windows Server are registered trademarks of Microsoft
Corporation. Linux is the registered trademark of Linus Torvalds in the U.S. and other countries. Xamarin is
a trademark of Xamarin, Inc. Mono is a trademark of Novell. Android is a trademark of Google Inc. IOS is a
trademark of Cisco. OS X is a trademark of Apple Inc.

All other product and company names mentioned in this document are trademarks of their respective
holders.

DCN PG-01-10.3_04

Synergex
2330 Gold Meadow Way
Gold River, CA 95670 USA

www.synergex.com
phone 916.635.7300
fax 916.635.6549

Portability Guide 10.3.3 (5/16) iii

Contents

Preface

About this manual ix
Manual conventions ix
Other resources x
Product support information x
Synergex Professional Services Group xi
Comments and suggestions xi

1 Windows Development

Windows Characteristics 1-2

What your application will look like 1-2
Big-endian and little-endian 1-2
Color 1-3

Requirements 1-4

Requirements for developing Synergy programs 1-4
Requirements for running Synergy programs 1-4
C interface requirements 1-5

Using Initialization Settings 1-6

Synergy DBL Statements and Routines on Windows 1-7

Synergy DBL statements 1-7
Synergy DBL subroutines and functions 1-9
Synergy windowing API routines 1-10
Record locking 1-13

UI Toolkit on Windows 1-14

Script commands 1-14
UI Toolkit routines 1-16
Other Toolkit differences 1-20

Contents

iv Portability Guide 10.3.3 (5/16)

Printing 1-23

Printing with the Synergy Windows printing API 1-23
Printing with LPQUE 1-23

2 UNIX Development

System Requirements 2-3

UNIX Characteristics 2-4

Case sensitivity 2-4
Big-endian and little-endian 2-4
Machine-specific characteristics 2-6

Synergy DBL Statements 2-7

Synergy DBL Routines 2-9

Record Locking 2-10

Terminal Numbers Used by Synergy DBL 2-11

Terminal Settings Used by Synergy DBL 2-12

Synergy DBL and the UNIX Terminal Database 2-13

Determining which database you should use 2-13
Terminal database file syntax 2-14
The terminal capabilities status program 2-16
Terminal codes used by Synergy DBL 2-22
Screen attributes 2-22
Screen graphics 2-23

Printing 2-27

DBLDIR:dblpq 2-27
The LPNUM option 2-27

Serial Ports 2-29

Windowing System 2-30

Enabling color 2-30
Enabling hardware scrolling 2-30

System Options 2-31

Message Facilities 2-32

Contents

Portability Guide 10.3.3 (5/16) v

3 OpenVMS Development

OpenVMS Characteristics 3-3

Shared images 3-3
File structures supported by Synergy DBL 3-3

Installing Multiple Versions of Synergy DBL 3-5

Using the alternative version 3-5

Limitations on OpenVMS 3-6

Synergy DBL Statements 3-7

Synergy DBL Subroutines and Functions 3-11

OpenVMS-specific routines 3-11
Routines that work differently on OpenVMS 3-12
Subroutines that have no meaning on OpenVMS 3-17
AST support in Synergy DBL 3-17
DBLSTARLET directory 3-18
Floating-point arguments 3-18

Record Locking 3-19

ISAM Utilities 3-20

Terminal Numbers 3-21

Peripheral Devices 3-22

Printer setup 3-22
Synergy DBL and LTA devices 3-22

System Options 3-24

Message Facilities 3-25

Starting the message manager 3-25

Error Handling 3-26

Interfacing with Other Languages 3-27

Porting OpenVMS Code to Windows and UNIX 3-28

Porting Windows and UNIX Code to OpenVMS 3-30

Contents

vi Portability Guide 10.3.3 (5/16)

4 .NET Development

Differences for .NET 4-2

Runtime 4-2
Building (compiling) 4-2
Debugging 4-3
Data types 4-3
Directives 4-6
Boxing and unboxing 4-6
Exception handling 4-7
Memory 4-7
Structures, records, and fields 4-7
Statements 4-8
Subroutines and functions 4-10
System-supplied classes 4-12
APIs 4-12
Repository subroutine library 4-13
Environment variables and initialization files 4-13

Unsupported Features in Synergy .NET 4-14

Data types 4-14
Directives 4-14
Statements and statement modifiers 4-14
Subroutines and functions 4-15
APIs 4-15
Synergy/DE products 4-16
Utilities 4-16
Environment variables 4-17
System options 4-18
.NET Framework features 4-19
Visual Studio features 4-19

Unsupported Features for Universal Windows Platform 4-20

Subroutines and functions 4-20
Arrays 4-20
APIs 4-20
Synergy/DE products 4-21
Encryption 4-21
Environment variables and initialization files 4-21
System options 4-21

Contents

Portability Guide 10.3.3 (5/16) vii

Unsupported Features for Mono 4-22

Data and ISAM files 4-22
Statements 4-22
Subroutines and functions 4-23
APIs 4-23
Encryption 4-23
Environment variables and initialization files 4-24
System options 4-24
Synergy/DE products 4-24
Utilities 4-24

Unsupported Features for Portable Class Libraries 4-25

Subroutines and functions 4-25
Arrays 4-25
APIs 4-25
Statements 4-26

Index

Portability Guide 10.3.3 (5/16) ix

Preface

About this manual
Synergy/DE® is designed to be portable, but there are cases where functions, requirements, and
processes differ on the various supported platforms. There are also differences and compatibility
issues between the major versions of Synergy/DE. The goal of this guide is to document the
functions, requirements, and processes that are unique to each of the platforms on which
Synergy/DE runs.

The Professional Series Portability Guide is written for users who are already familiar with
programming concepts and terminology (but not necessarily with Synergy DBL) and are familiar
with the platforms discussed in this guide.

Manual conventions
Throughout this manual, we use the following conventions:

 In code syntax, text that you type is in Courier typeface. Variables that either represent or
should be replaced with specific data are in italic type.

 Optional arguments are enclosed in [italic square brackets]. If an argument is omitted and the
comma is outside the brackets, a comma must be used as a placeholder, unless the omitted
argument is the last argument in a subroutine. If an argument is omitted and the comma is
inside the brackets, the comma may also be omitted.

 Arguments that can be repeated one or more times are followed by an ellipsis…

 A vertical bar (|) in syntax means to choose between the arguments on either side of the bar.

 Data types are boldface. The data type in parentheses at the end of an argument description
(for example, (n)) documents how the argument will be treated within the routine. An a
represents alpha, a d represents decimal or implied-decimal, an i represents integer, and an n
represents numeric (which means the type can be d or i).

Preface

x Portability Guide 10.3.3 (5/16)

Other resources
 Getting Started with Synergy/DE

 UI Toolkit Reference Manual

 Synergy DBL Language Reference Manual

 Synergy Tools

 Environment Variables & System Options

 Repository User’s Guide

 ReportWriter User’s Guide

 Synergy/DE Release Notes

Product support information
If you cannot find the information you need in this manual or in the publications listed above, you
can reach the Synergy/DE Developer Support department at the following numbers:

800.366.3472 (in the U.S. and Canada)
916.635.7300 (in all other locations)

To learn about your Developer Support options, contact your Synergy/DE account manager at one
of the above phone numbers.

Before you contact us, make sure you have the following information:

 The version of Synergy/DE product(s) you are running

 The name and version of the operating system you are running

 The hardware platform you are using

 The error mnemonic and any associated error text (if you need help with a Synergy/DE error)

 The statement at which the error occurred

 The exact steps that preceded the problem

 What changed (for example, code, data, hardware) before this problem occurred

 Whether the problem happens every time and whether it is reproducible in a small test program

 Whether your program terminates with a traceback, or whether you are trapping and
interpreting the error

Preface

Portability Guide 10.3.3 (5/16) xi

Reporting Synergy .NET issues
If you are having any of the following problems, please send us the complete set of source files to
re-create the issue, and send us the information in the BuildVersion.txt files in the
\MSBuild\Synergex\dbl and \Synergex\SynergyDE\dbl directories in “Program Files” or “Program
Files (x86)”.

 Visual Studio lock up or crash

 Compiler crash

 Unusual MSIL Assembler (ilasm.exe) issues

 “Invalid program” errors

 “JIT Compiler has encountered an internal limitation” error at runtime

For Visual Studio issues, zip the entire project.

Note that for untrapped errors, you won’t get a traceback, as you would with traditional Synergy.
Instead, you’ll get the Windows Dr. Watson box. And if you click Debug, you’ll go into the
debugger. If the program was not built with debug information, and you instead click Cancel, you’ll
get a traceback.

Synergex Professional Services Group
If you would like assistance implementing new technology or would like to bring in additional
experienced resources to complete a project or customize a solution, Synergex® Professional
Services Group (PSG) can help. PSG provides comprehensive technical training and consulting
services to help you take advantage of Synergex’s current and emerging technologies. For
information and pricing, contact your Synergy/DE account manager at 800.366.3472 (in the U.S.
and Canada) or 916.635.7300.

Comments and suggestions
We welcome your comments and suggestions for improving this manual. Send your comments,
suggestions, and queries, as well as any errors or omissions you’ve discovered, to
doc@synergex.com.

mailto:doc@synergex.com

1-1

1
Windows Development

This chapter contains information on Synergy DBL and UI Toolkit that is specific to Windows
environments.

Windows Characteristics 1-2

Discusses filenames, what your application will look like on Windows, the differences between
big-endian and little-endian integer storage and their effect on Synergy/DE development in a
Windows environment, and Windows-specific information about color.

Requirements 1-4

Discusses requirements for developing and running Synergy™ applications in Windows
environments.

Using Initialization Settings 1-6

Discusses using synergy.ini and synuser.ini to define your Windows environment.

Synergy DBL Statements and Routines on Windows 1-7

Contains Windows-specific information about Synergy DBL statements, functions, and
subroutines, including the windowing subroutines.

UI Toolkit on Windows 1-14

Contains Windows-specific information about UI Toolkit script commands and routines.

Printing 1-23

Contains information about printing on Windows.

Windows Development
Windows Characteristics

1-2 Portability Guide 10.3.3 (5/16)

Windows Characteristics
Synergy/DE on Windows provides a graphical environment for developing applications. This
graphical environment offers greater control of your applications than that offered by traditional
UNIX and OpenVMS environments. You can run multiple applications simultaneously, allowing
background applications to run while you use the foreground application. The number of multiple
applications that can run simultaneously is limited only by your system’s available memory.

What your application will look like
When a Synergy application starts in Windows, a native application window appears. A separate
window is created when the Synergy debugger or the Toolkit window debugger is invoked. For
more information, see “Using the debugger on Windows” in the “Debugging Synergy Programs”
chapter of Synergy Tools.

Big-endian and little-endian
Computer systems store integers in either big-endian or little-endian format. For big-endian
systems, the low-order byte has the highest address. For little-endian systems, the low-order byte
has the lowest address. See the table on page 2-5 for a list of the endian types of various systems.

Microsoft Windows environments are little-endian systems. Synergy applications developed in
Windows environments are therefore portable across little-endian machines (such as Linux 32-bit).
The reverse is also true: you can run a Synergy application developed on a Linux 32-bit machine in
a Windows environment without re-creating the executables. To make your applications more
Windows-like, however, there are changes that you need to make.

Depending upon the screen resolution being used, the number of rows and columns being
displayed, the font used for the application window, and the setting of the
MINIMIZE_LEADING environment variable, when an application starts up it may require
more space than the screen affords.

If so, it will be limited to the available space, and a vertical or horizontal scroll bar will be
displayed to allow the user to scroll to the unseen area of the application window. Rather
than enlarging the application window to add the scroll bar, the scroll bar occupies part of
the initial size of the application window, in order to avoid unpleasant resizing of the
application window upon startup or whenever the scroll bars are removed.

Because of this, however, it is likely that the addition of one scroll bar (for instance, the
vertical one) will result in the addition of the other (for instance, horizontal) scroll bar, so that
the user may view the portion of the application which was just occluded by the first scroll
bar. To eliminate the second scroll bar, the user may stretch the application window along
that scroll bar’s axis until it disappears.

Windows Development
Windows Characteristics

Portability Guide 10.3.3 (5/16) 1-3

Color
The WNDC environment variable is not used on Windows. Instead, a default color palette (with 16
default color palette entries) and a default set of Synergy color definitions (color 0 through color
511) are loaded into memory when the Synergy runtime starts. See “Colors and the color palette on
Windows” in the “Synergy Windowing API” chapter of the Synergy DBL Language Reference
Manual for more information.

Windows Development
Requirements

1-4 Portability Guide 10.3.3 (5/16)

Requirements
The following sections discuss the specific requirements for developing and running Synergy
applications in a Windows environment.

Requirements for developing Synergy programs
You need to have installed Synergy/DE Professional Series to develop a Synergy program on
Windows.

You may also choose to develop on other little-endian systems, such as Linux 32-bit, instead of
developing in a Windows environment, and then move to a Windows environment to run and test
your application.

Development tools
You can run the Synergy/DE development tools from a command prompt window. This is
important if you usually create batch files to build your executables.

Requirements for running Synergy programs
If you are using UI Toolkit subroutines, you need to have installed Synergy/DE Professional Series
to run a Synergy program under Windows.

Running existing applications
Most existing Synergy applications will run without any additional work beyond installing and
using the Windows runtime. Note the following:

 First check for any conditionally compiled code. If any exists, evaluate it for possible changes
when running on Windows.

If changes are necessary, you can use the built-in compiler identifier D_GUI to conditionalize
your code. If you make any changes, you must recompile and relink your application.

We recommend conditionalizing the code at runtime by comparing the machine argument
returned from the ENVRN subroutine to the 101 or 104 system code. With this method, you
can take advantage of little-endian system compatibility, which requires no recompiling or
relinking.

 If your application has been compiled and linked using an older version of dbl and dblink
(older than the versions running on Windows) or has been built on a big-endian system, you
must recompile and relink your application.

Windows Development
Requirements

Portability Guide 10.3.3 (5/16) 1-5

Running existing UI Toolkit applications
If your existing Toolkit application runs on non-Windows little-endian systems and was compiled
and linked with the same versions running on Windows, it will work with Synergy/DE on
Windows. You will just need to do the following:

1. Copy any Toolkit window libraries from your other little-endian system to your Windows system.

2. If your application is currently linked with tklib.olb, relink with the Toolkit’s executable library,
tklib.elb.

If your existing Toolkit application runs on non-Windows big-endian systems and was compiled
and linked with the same versions running on Windows, it will work with Synergy/DE on
Windows. You will need to do the following:

1. Recompile and relink your application with the Toolkit’s executable library, tklib.elb.

2. Rescript your window libraries on Windows.

For more information on recompiling and relinking, see the “Building and Running Synergy
Applications” chapter of Synergy Tools.

C interface requirements
The C interface enables you to call C routines from within your Synergy application by creating a
DLL or shared object containing the C routines and then accessing that DLL or object via the
Synergy DLL API.

To use a DLL with Synergy/DE on Windows, you must

 create a DLL. Refer to your Microsoft Windows documentation for more information.

 explicitly “export” the routines that your Synergy program will call.

 use the Synergy DLL API to access the routines in the DLL. Refer to the “Synergy DLL API”
chapter of the Synergy DBL Language Reference Manual for syntax specifications.

Windows Development
Using Initialization Settings

1-6 Portability Guide 10.3.3 (5/16)

Using Initialization Settings
Initialization files define your Windows environment. Windows applications modify their operation
according to users’ requirements set in initialization files. Refer to your Microsoft documentation
for more information on Windows initialization files.

Synergy.ini and synuser.ini are the initialization files that contain environment variables affecting
the Synergy runtime and Synergy/DE development tools and executables on Windows. The
synergy.ini file contains system-specific or application-specific settings for multiple users. The
synuser.ini file contains user-specific settings (for example, personal preferences such as colors,
fonts, the state of the application window, the position and size of the print preview window, and
any overrides to system-specific settings).

Refer to the “Environment Variables” chapter of Environment Variables & System Options for more
information on Synergy initialization files and initialization settings syntax.

Windows Development
Synergy DBL Statements and Routines on Windows

Portability Guide 10.3.3 (5/16) 1-7

Synergy DBL Statements and Routines on Windows
Synergy DBL on Windows supports the same statements, subroutines, and functions that other
Synergy DBL products support, with some slight variations. Though all versions of Synergy DBL
are portable, each operating system offers different features, imposes a few unique constraints, and
requires some system-specific procedures. This section identifies such specific features,
constraints, and procedures for Windows environments. For more information, refer to the Synergy
DBL Language Reference Manual.

Synergy DBL statements

ACCEPT

The ACCEPT statement should not be used with the W_xxx routines because the characters are
displayed in a “console” window. Use the WD_ACCEPT function of the W_DISP routine instead.

In Windows, the F10 key is a reserved key that activates the system menu. It will not be returned to
your application when using ACCEPT, but it will be returned in a UI Toolkit application.

DETACH

The DETACH statement is not available.

DISPLAY

The DISPLAY statement should not be used with the W_xxx routines because the characters are
displayed in a “console” window.

The DISPLAY $SCR_ATT function sets screen attributes. The attributes BOLD, UNDERLINE,
REVERSE, and NORMAL are supported. The BLINK attribute (to produce blinking text) is not
supported in Windows. If set, BLINK will produce italicized text.

LPQUE

The FORM and ALIGN qualifiers do not affect printing on Windows unless system option #22 is
set. The LPNUM value must be an alpha variable specifying the printer device in the form “name,
[device]”, unless system option #22 is set. See “Printing” on page 1-23 for more information.

Italicized text extends beyond the bounds of a character cell; therefore, part of the last
italicized character (in the window or preceding unitalicized text) will not be visible.

Windows Development
Synergy DBL Statements and Routines on Windows

1-8 Portability Guide 10.3.3 (5/16)

OPEN

The following OPEN statement qualifiers are ignored (these are only meaningful on OpenVMS):

 BKTSIZ

 BLKSIZ

 BUFNUM

 BUFSIZ

 CONTIG

 DEQ

 RECTYPE

OPTIONS qualifier

The following options for the OPTIONS qualifier are ignored (these are only meaningful on
OpenVMS):

 /bufnum

 /bufsiz

 /deq

 /rectype

 /stream

READS

A difference of behavior exists between Windows and other platforms when performing a READS
from the terminal. On UNIX and OpenVMS, any text that was previously displayed at the location
of the READS remains displayed until the user types over it. On Windows, this text is erased for the
width of the buffer passed to READS. The reason for this difference is that on Windows, the input
is performed using an edit control to give the user the benefit of editing features (arrow keys,
home/end, cut/copy/paste, and so forth.). In order for text to be displayed within the edit control, it
would also have to be returned to the program if the user merely pressed ENTER. This would not be
operationally equivalent to the behavior on UNIX and OpenVMS systems, where the text, although
displayed, is not returned in the READS buffer unless the user types it in. We therefore opted for
keystroke compatibility, as opposed to visual compatibility, with other systems. The behavior on
UNIX and OpenVMS is actually the less consistent of the two, but because it has historical
precedent, we cannot change it without breaking existing code.

If you want to be able to prefill an area for input, use a different input method. Possibilities include
various UI Toolkit routines (I_INPUT, I_INPFLD, U_FLD) or the low-level windowing routine
W_DISP with the WD_READS subfunction.

Windows Development
Synergy DBL Statements and Routines on Windows

Portability Guide 10.3.3 (5/16) 1-9

The READS statement should not be used with the W_xxx routines because the characters are
displayed in a “console” window.

In Windows, the F10 key is a reserved key that activates the system menu. It will not be returned to
your application when using READS, but it will be returned in a UI Toolkit application.

Synergy DBL subroutines and functions
Using the following subroutines may make your programs nonportable. Synergy/DE on Windows
ignores any system-supplied subroutines that are not appropriate for the Windows environment.

%DLL_xxx

The %DLL_xxx functions allow you to call subroutines in Windows dynamic link libraries (DLLs)
and UNIX shared libraries (.so files). See the “Synergy DLL API” chapter of the Synergy DBL
Language Reference Manual for details and function syntax.

JBNO

The JBNO routine returns the current process ID of the application as “ID.” JBNO returns the
desktop’s window handle as the “parent ID.” JBNO returns the network adaptor card ID number as
the “group ID.” For more information, see the JBNO routine in the “System-Supplied Subroutines
and Functions” chapter of the Synergy DBL Language Reference Manual.

KILL

The KILL subroutine terminates the current process but doesn’t log out as on multi-user systems.

RENAM

Because of physical limitations, the RENAM subroutine cannot rename files across logical drives.
For example, the following statement is not allowed:

xcall renam("c:\target.ddf", "d:\source.ddf")

In this situation, a copy must be done, which is beyond the scope of RENAM.

RUNJB

The RUNJB subroutine supports only two arguments: program and pid. The terminal, subprocess,
and io_flag arguments are ignored.

The maximum number of processes is limited only by system resources.

SETLOG

The SETLOG subroutine affects only the current environment and child processes. When a
program terminates, the specified environment variable is the same as when the program began.

Windows Development
Synergy DBL Statements and Routines on Windows

1-10 Portability Guide 10.3.3 (5/16)

SHELL

The SHELL subroutine has a third argument, mode, specifically for Windows. For more
information see SHELL in the “System-Supplied Subroutines and Functions” chapter of the
Synergy DBL Language Reference Manual.

SPAWN

The SPAWN subroutine’s second argument, mode, has specific options for Windows. See SPAWN
in the “System-Supplied Subroutines and Functions” chapter of the Synergy DBL Language
Reference Manual.

TNMBR

The TNMBR subroutine uses the TNMBR environment variable setting for the system terminal
number.

Subroutines included for compatibility

The GTPPN subroutine returns 0 in Windows environments and is provided for compatibility.

The PAINT subroutine is ignored on Windows.

The following subroutines are ignored on Windows:

 EXEC

 TFLSH

Synergy windowing API routines
This section describes the Synergy DBL windowing subroutines and functions that work differently
in Windows or are not supported.

W_AREA

When using the WA_ATTR function, ATTR_BLINK will display italic typeface.

W_BRDR

On Windows, Synergy/DE supports three border options: no border, dialog frame, and caption
frame. Specifying no border on Windows is the same as specifying no border on UNIX or
OpenVMS. The dialog frame border contains only a solid frame around the window. The caption
frame border contains the system menu box and the drag bar (with space for the title, or caption).
Users can drag windows with a caption frame border. Caption frame is the default border type (see
WB_DRAGON below), and only caption frame windows can be moved.

Italicized text extends beyond the bounds of a character cell; therefore, part of the last
italicized character (in the window or preceding unitalicized text) will not be visible.

Windows Development
Synergy DBL Statements and Routines on Windows

Portability Guide 10.3.3 (5/16) 1-11

Keep in mind that window borders do not take up an entire “cell” as they do on UNIX and
OpenVMS; if you are depending on one window’s border to fully occlude a certain area of another
window, this will not be the case. Because the border does not take up an entire cell, you may want
to enable borders for Windows (but not for UNIX and OpenVMS) using the WB_NOCELL
function.

Note the following W_BRDR functions:

 WB_OFF changes a window border to the no border style.

 WB_ON restores the window border back to its previous type (caption or dialog frame).

 WB_NOCELL behaves like WB_ON, but if the window is displayed on UNIX or OpenVMS,
it will not have a border.

 WB_TITLE only works with caption frame borders, and the title is always positioned at
WBT_TOP and WBT_CENTER.

 WB_DRAGOFF changes a caption frame border to a dialog frame border. If the border is off
as a result of WB_OFF, you won’t see the border style change until you do WB_ON or
WB_NOCELL.

 WB_DRAGON changes a dialog frame border to a caption frame border. This is the default
window frame state, except for one-line windows, which default to WB_DRAGOFF.

The following W_BRDR functions are ignored in the Windows environment:

 WB_ATTR

 WB_CHAR

 WB_COLOR

 WB_PARTIAL

 WB_TATTR

 WB_TCOLOR

 WB_TPOS

W_CAPTION

The W_CAPTION subroutine allows you to retrieve or load the window caption. This subroutine is
specific to Windows environments and will be ignored on UNIX and OpenVMS. For more
information see W_CAPTION in the “Synergy Windowing API” chapter of the Synergy DBL
Language Reference Manual.

W_DISP

Note the following W_DISP functions:

 WD_ACCEPT uses the caret to designate where text is to be entered.

 When using the WA_ATTR function, ATTR_BLINK will display italic typeface. See the note
on page 1-10.

Windows Development
Synergy DBL Statements and Routines on Windows

1-12 Portability Guide 10.3.3 (5/16)

 WD_GETS is implemented exactly like WD_READS (see below).

 WD_READS uses a native Windows edit control sized according to the size of the field being
read into. When the cursor is moved over the edit control, it changes to an I-beam and, when
you click the mouse, places the caret within the field. Double-clicking the mouse highlights the
field contents. You can also click and drag to highlight a portion of the field. When any or all of
the field is highlighted, typing a character will replace the highlighted text. WD_READS will
terminate on ENTER, EOF, or any extended key press (function key or up and down arrow keys).
Left and right arrow keys are processed by the edit control to move within the field, rather than
being returned to the caller. Three routines elicit the terminate character:

%RDTRM

RDTRM

%RTERM

W_FLDS

Note the following W_FLDS functions:

 Input done through WF_INPUT will override the WF_ATTR and WF_COLOR subroutines
since WF_INPUT uses a native edit control.

 Input done through WF_INPUT will not return extended keys in the normal manner. Extended
keys will be accelerated if there is an entry in the Windows accelerator table, and a value other
than the scan code will be returned.

 WF_INPUT is supported only through UI Toolkit. We do not recommend direct use of
WF_INPUT.

W_INFO

The following W_INFO functions are ignored in the Windows environment:

 WI_BCHR

 WI_XFR (WIX_SAGET)

 WI_XFR (WIX_SDGET)

The WI_WINDOW function always returns a value of 0 for the occlude flag.

%W_INFO

The WIF_OCLFLG function of %W_INFO is ignored in the Windows environment.

W_INIT

The #rows and #cols arguments specify the initial size of the window only. If they are not passed,
the APP_WIDTH and APP_HEIGHT initialization file settings will determine the initial size of the
window. If these settings are not specified, the screen size will be 80 x 25.

Windows Development
Synergy DBL Statements and Routines on Windows

Portability Guide 10.3.3 (5/16) 1-13

W_PROC

Note the following W_PROC functions:

 WP_CURSOR affects only the cursor used with WD_ACCEPT.

 The foreground and background numbers for WP_PALET can be between 0 and 511 on
Windows but only between 0 and 255 on UNIX and OpenVMS; the significance of the values
is system specific. (On Windows, these values are Synergy DBL colors, which can be defaults
set by the Synergy runtime or overrides set by the COLORn environment variables or previous
calls to W_PROC.)

 Using WP_RESIZE to switch to 132 columns also requires setting FONT_ALTERNATE in
synergy.ini or synuser.ini to resize the characters.

 WP_OPTION is ignored on Windows.

Record locking
If you’re migrating from UNIX, be aware that record locks on Windows are channel-based. If the
same program opens the same file on two different channels in update mode, both channels will be
affected by each other’s locks, which may cause unexpected $ERR_LOCKED errors.

Windows Development
UI Toolkit on Windows

1-14 Portability Guide 10.3.3 (5/16)

UI Toolkit on Windows
The UI Toolkit routines enable you to use native Microsoft Windows features such as menus,
message boxes, combo boxes, edit controls, status windows, scroll bars, buttons, and list boxes.
Because Toolkit gives your application the ability to use most standard Windows features, we
recommend that you take full advantage of these Toolkit subroutines.

This section provides general information only. Specific syntax and usage rules can be found in the
UI Toolkit Reference Manual.

Script commands
The following window script commands and qualifiers function differently on Windows than they
do on other operating systems. Those that are only applicable to Windows are marked as “Windows
only.” The “Windows only” commands are ignored on other operating systems but are retained in
the window library, so that the same window library can be used in both Windows and UNIX or
OpenVMS (little-endian) environments.

.BORDER

Renditions specified in conjunction with .BORDER have no meaning in a Windows environment
and are ignored. Use the Windows Control Panel to change border renditions.

.BORDER DRAGBAR

(Windows only) By default, the DRAGBAR qualifier to the .BORDER command creates a window
that has a border and a drag bar. The drag bar is the portion of a window’s border in which the
caption is displayed, and is so called because the user can click on it and drag the window about the
screen. For windows created at runtime, use the WB_DRAGON or WB_DRAGOFF options to the
W_BRDR subroutine to create or remove drag bars.

.BORDER NOCELL

(Windows only) The NOCELL qualifier to the .BORDER command designates that a window
should only have a border if the border does not require a full character cell for display. In other
words, the window has a border on Windows but not on UNIX and OpenVMS. For windows
created at runtime, you can pass the WB_NOCELL option to the W_BRDR subroutine.

.COLUMN RIGHT and CENTERED

The justification argument for .COLUMN is ignored on Windows.

By default, one-line input windows do not have a drag bar.

Windows Development
UI Toolkit on Windows

Portability Guide 10.3.3 (5/16) 1-15

.ENTRY NORESET

The NORESET qualifier to the .ENTRY script command is ignored.

.ENTRY RIGHT and CENTERED

The RIGHT and CENTERED qualifiers to the .ENTRY script command do not generate expected
results. Menu entry text should always be left-justified (the default).

.FIELD NOTERM

The NOTERM qualifier to the .FIELD script command is ignored.

.FIELD PAINT

Paint characters specified by the PAINT qualifier to the .FIELD script command are ignored.

.ITEM RIGHT and CENTERED

The RIGHT and CENTERED qualifiers to the .ITEM script command do not generate expected
results. Selection items should always be left-justified (the default).

.ITEM SELECT

Quick-select characters specified by the .ITEM script command are ignored. The first non-blank
character of the entry is always used as the quick-select character. See also S_SELBLD on
page 1-17.

.PAINT

Paint characters specified by the .PAINT script command are ignored.

.TITLE

Window titles are always in the top border, and they are always left-justified (indicated as
BEGINNING) regardless of their settings in the script file, so you can maintain them differently on
UNIX and OpenVMS if desired.

The options for the rendition argument have no meaning in a Windows environment and are
ignored. Use the Windows Control Panel to change title renditions.

Windows Development
UI Toolkit on Windows

1-16 Portability Guide 10.3.3 (5/16)

UI Toolkit routines
The following routines function differently on Windows than they do on other operating systems.
Those that are only available on Windows are marked as “Windows only” and are ignored on other
systems.

E_SECT (D_HEADER and D_CAPTION options)

If the size of your application header is set to 1 or 0 or is not specified, the header text (caption)
passed to E_SECT appears in the title bar. You can use D_HEADER or D_CAPTION to set or
modify the header text. For compatibility between all environments, we recommend that you
always use D_HEADER.

If the size of your application header is greater than 1, an area below the title bar is used for
displaying the header. Use D_HEADER to access this area. Use D_CAPTION to set and modify an
additional line of text in the application’s title bar.

The maximum visible length of header text (caption) is 78 characters.

Specifying D_CENTER or D_RIGHT for the header text (caption) is ignored. Captions on
Windows are always left-justified. However, D_LEFT, D_RIGHT, and D_CENTER can be used to
divide the status bar into sections and specify the justification for text.

E_STATE (D_RETURNBTN option)

By default, the ENTER key is used to move from one field to another. On Windows, the ENTER key
can be made to simulate clicking the default button by setting the D_RETURNBTN state within the
E_STATE subroutine. If the default button is not specified, it will be the first button in the tabbing
order. For more information on determining the default button, see the Windows-specific
information in the Discussion for E_STATE in the “Environment Routines” chapter of the UI
Toolkit Reference Manual. This setting is ignored on UNIX and OpenVMS.

EFKEY_METHOD

The user-overloadable EFKEY_METHOD is not supported on Windows.

L_INPUT

The no_termination argument is ignored on Windows. It is always treated as D_NOTERM.

L_SECT (D_TITLE)

Specifying D_CENTER or D_RIGHT for the title text is ignored. Titles on Windows lists are
always left-justified.

Windows Development
UI Toolkit on Windows

Portability Guide 10.3.3 (5/16) 1-17

L_SECTDRAW

On Windows, L_SECTDRAW either adds unexpected characters to the header or footer or is
ignored. For standard (non-ActiveX) lists, L_SECTDRAW may add unexpected characters if it is
followed by an L_SECT call that doesn’t erase existing text. L_SECTDRAW is ignored for
ActiveX Toolkit lists.

LLOAD_METHOD

The use of a list load method is required when doing list processing on Windows. A load method on
Windows may be called at different times than on UNIX or OpenVMS (for example, during
L_INPUT). Code your load method routine with this in mind.

M_PROCESS

Typically, Windows applications do not pull menu columns down automatically. Instead, menus are
explicitly invoked by the user using the mouse or the ALT key. Rather than change the default
M_PROCESS behavior (which could require a redesign of your program flow), you may suppress
the automatic menu pull-down feature of M_PROCESS by setting the environment variable
DTK_MENU_UP or by calling M_DEFCOL(0).

For compatibility with other platforms, the input_string argument to M_PROCESS must match the
keystrokes for a UNIX or OpenVMS environment, even though it requires fewer arrow movements
to be pressed after the ALT key on Windows.

Additionally, input_string can only specify a submenu entry if it follows a valid menu entry. For
example, the following is allowed:

xcall m_process("[menu_entry]<E>[submenu_entry]")

The following is not allowed:

xcall m_process("<R><D><D><E>[submenu_entry]")

S_SELBLD

Quick-select characters specified by S_SELBLD are ignored. The first nonblank character of the
entry is always used as the quick-select character. See also .ITEM SELECT on page 1-15.

T_EDIT/T_VIEW

General windows that have been converted to text windows using T_SETUP display a scroll bar
when necessary in T_EDIT but not in T_VIEW.

%TB_BUTTON

(Windows only) The %TB_BUTTON function enables you to load and manipulate toolbar buttons.
Toolbar buttons can contain either text or a bitmap.

Windows Development
UI Toolkit on Windows

1-18 Portability Guide 10.3.3 (5/16)

%TB_TOOLBAR

(Windows only) The %TB_TOOLBAR function enables you to create and manipulate an
application toolbar.

U_ABORT

If g_throwabort is set to zero (the default), U_ABORT uses a Windows message box with a stop
sign icon and an OK button.

U_ABOUT

U_ABOUT uses a Windows message box to display the “About” information. Text is left-justified,
and the window contains an OK button and the application’s icon (specified through U_ICON).

U_BAR

You cannot use U_BAR to remove the menu bar without first removing all menus.

U_CHARSB

The U_CHARSB subroutine does nothing in a Windows environment.

U_CREATESB

The U_CREATESB subroutine does nothing in a Windows environment.

U_DEBUG

The U_DEBUG subroutine brings up the Toolkit window debugger in a separate application
window. The initial size and placement of this window is user-definable using the DBG_X,
DBG_Y, DBG_WIDTH, and DBG_HEIGHT initialization settings in synergy.ini. The font is
user-definable using the FONT_DEBUG setting.

U_EDITREND

Windows overrides many of the renditions set with U_EDITREND (as well as Proto and
U_REND). Most renditions are under the control of the Windows Control Panel. See “Customizing
the Look of Your Application” in the “Customizing UI Toolkit” chapter of the UI Toolkit Reference
Manual for a table that identifies where the various renditions are set.

%U_GETFILENAME

%U_GETFILENAME displays a standard Windows “Open” or “Save As” dialog box.

%U_ICON

(Windows only) The %U_ICON function defines the icon for a window, which is used when the
window is minimized and represents the system menu. The Synergy runtime icon is used as a
default if you do not specify an icon.

Windows Development
UI Toolkit on Windows

Portability Guide 10.3.3 (5/16) 1-19

U_MESSAGE

U_MESSAGE uses a Windows message box with an icon and an OK button. If you pass
D_ERROR, the icon is an exclamation point (!). If you pass D_ALERT, the icon is an information
icon (i).

%U_MSGBOX

%U_MSGBOX uses a Windows message box with an icon and one to three buttons, depending on
the arguments passed. The icon can be a STOP sign, an exclamation point (!), a question mark (?),
or the information (i) icon. Button choices are Yes, No, OK, Cancel, Abort, Retry, and Ignore.

U_POPUP

U_POPUP uses a Windows message box with an OK button.

%U_PRINTQUERY

(Windows only) The %U_PRINTQUERY function retrieves information about the currently
selected printer or a specified printer from your Windows Print Manager. It can also retrieve the
names of all configured printers.

%U_PRINTSETUP

(Windows only) The %U_PRINTSETUP function enables a user to change the default printer or
printer properties. See “Printing” on page 1-23 for more information on Windows printing.

U_REND

Windows overrides many of the renditions set with U_REND (as well as Proto and
U_EDITREND). Most renditions are under the control of the Windows Control Panel. See
“Customizing the Look of Your Application” in the “Customizing UI Toolkit” chapter of the UI
Toolkit Reference Manual for a table that identifies where the various renditions are set.

U_START

Regardless of the number of lines specified for footer_lines, the maximum size of the footer is one
line. If the screen_rows and screen_columns arguments are not passed, Toolkit uses the
APP_WIDTH and APP_HEIGHT initialization settings in synergy.ini to determine the initial
window size. If these are not set, the size will be 80 x 25.

U_UPDATESB

The U_UPDATESB subroutine does nothing in a Windows environment.

U_WAIT

U_WAIT uses a Windows message box with an OK button.

Windows Development
UI Toolkit on Windows

1-20 Portability Guide 10.3.3 (5/16)

%U_WINHELP

(Windows only) The %U_WINHELP function invokes WinHelp Help. The API is nearly identical
to the Windows SDK “WinHelp” function and enables the contents of the specified file to be
displayed in the Help window.

%U_WNDEVENTS

(Windows only) The %U_WNDEVENTS function enables your application to respond to window
mouse events. These events include mouse clicks, double-clicks, and moving, sizing, and closing a
window.

%U_WNDFONT

(Windows only) The %U_WNDFONT function enables you to set or retrieve font information.
This function can set a specific font, or (using the D_CHOOSEFONT subfunction) it can display a
standard font dialog from which the user can select a font.

%U_WNDSTYLE

(Windows only) The %U_WNDSTYLE function enables you to change the vertical spacing on a
window-by-window or list-by-list basis.

Other Toolkit differences
The Toolkit debugger is displayed in a separate window. The debugger is invoked with XCALL
U_DEBUG or by pressing CTRL+ R when the DTKDBG environment variable is set to 1.

Fill patterns do not extend into the area added to an input window for buttons; however, fill
colors do.

The initial state of the application window (minimized, maximized, hidden, or normal) is
determined by the APP_STATE setting in the synergy.ini file or the environment. If this setting is
not specified, the initial state is normal. See APP_STATE in the “Environment Variables” chapter
of Environment Variables and System Options for more information.

System menu

For an application window, the system menu is always displayed. The Close menu entry on the
system menu is enabled if an application close method is registered using the
D_METH_APPCLOSE option in the E_METHOD subroutine.

For general windows, input windows, selection windows, and lists, the system menu is displayed if
a window close, size, minimize, or maximize method is registered using the D_EVENT_XXX
options in the %U_WNDEVENTS function.

Windows Development
UI Toolkit on Windows

Portability Guide 10.3.3 (5/16) 1-21

Close box

For an application window, the close box is displayed by default.

For general windows, input windows, selection windows, and lists, a close box is displayed if a
close window method has been registered using the D_EVENT_CLOSE option in the D_CREATE
subfunction of %U_WNDEVENTS. When the user clicks the close box, the close window method
is called. It is common for this method to simply signal a menu entry such as O_ABANDON using
%M_SIGNAL, which the input loop is already set up to handle.

Menu processing

The menu bar is displayed only when menus are placed.

Menu shortcut keys do not work when a menu is pulled down. We recommend that you set the
environment variable DTK_MENU_UP or call M_DEFCOL(0).

Blank, line, and text menu entries can be highlighted but not selected.

Disabled menu entries can be highlighted but not selected.

Quick-select characters are always designated by an underscore.

The mouse or ALT and arrow keys can be used to process the menu. ALT+P, CTRL+P, or any other
“process-menu” keys you may have defined do not always activate the menu.

Shortcut keys are mapped to a native Windows accelerator table to enable their use. The key
mapping function available through Proto or U_EDITKEYS has an effect only on the shortcut text
displayed in the menus. The actual keystrokes required for each function code are fixed. (For
example, you cannot change the designated key from F4 to F2, but you can change “F4” to be
represented as “PF4” when displayed in the menu.) The keystrokes required for each function code
are reflected in the key map MSWINDOWS, which is the default key map for this environment.

The global variable g_plc_col_args (defined in tkctl.def) controls the display of the input, edit, and
select menus. When g_plc_col_args is false (the default on Windows), routines that place or
remove these menus, such as I_INPUT and S_SELECT, no longer do so. The keystrokes for entries
typically on these menus (the reserved menu entries) are inherently understood by the Windows
control being processed (for example, an input window or selection list).

The only reason to set g_plc_col_args to true is if your input, edit, or select menus contain menu
entries other than the reserved ones. This is not recommended. Instead, we recommend that you
move any nonreserved menu entries to other, placed menus and not set g_plc_col_args. This will
reduce the amount of menu bar flicker that occurs when input is entered, text is edited, and so on.

Input processing

Input time-outs behave differently on Windows. On UNIX and OpenVMS, the time-out is reset
after the user presses the first keystroke in an input field. On Windows, the time-out is not reset
after the first or any other keystroke. Additionally, no time-out occurs while a menu is pulled down
or when the application is otherwise suspended. When the application continues, the time-out
occurs as soon as the application can process the message from the system.

Windows Development
UI Toolkit on Windows

1-22 Portability Guide 10.3.3 (5/16)

List processing

Toolkit uses a Windows list box for list processing. The list box itself is contained in a window that
also contains the optional list header and footer and the list title as the window caption (title bar).
List boxes take up slightly more screen area on Windows than on UNIX or OpenVMS due to the
caption frame and slightly larger scroll bars.

The window that contains the list can be resized or moved. The list can have vertical and horizontal
scroll bars. You can use the .LISTCLASS NOCELLHBAR and NOCELLVBAR options to
suppress scroll bars on UNIX and OpenVMS but display them on Windows.

When using UI Toolkit lists on Windows, the following limitations exist:

 Only single-line list entries are supported.

 Field-to-field mouse movement when performing input into a list is not supported.

 Disabled list entries are not supported.

 There is no visual difference between an enabled and disabled list; both use the same Windows
Control Panel setting for background and foreground colors.

Selection list processing

Quick-select characters are supported but never highlighted, and invalid quick-select characters do
not beep when pressed.

Text, line, and blank items have no meaning in a Windows environment. Selection list items should
always be left-justified. Any other option does not operate as expected.

The ARROW keys, HOME key, and END key are captured by the selection window and are not
returned to the calling application. For this reason, and to reduce menu-bar flicker, the optional
select menu passed to S_SELECT is placed only when the global variable g_plc_col_args is true.

Windows Development
Printing

Portability Guide 10.3.3 (5/16) 1-23

Printing
When printing on Windows, you can either use the Synergy Windows printing API or the LPQUE
statement.

Printing with the Synergy Windows printing API
We recommend using the Synergy Windows printing API to print from Synergy applications on
Windows. It provides access to the Microsoft Windows printing API and enables you to use
extended printer features in a true Windows environment. You can embed graphics, preserve
complex formatting, and perform print previews. See the “Synergy Windows Printing API” chapter
of the Synergy DBL Language Reference Manual for details.

Printing with LPQUE
The LPQUE statement, which is used for printing on UNIX and OpenVMS, can also be used on
Windows to queue a text file for printing by the system. This statement relies closely on the
spooling facilities offered by the operating system. LPQUE works in conjunction with system
option #22 and the PRINT_METHOD environment variable, as shown in figure 1-1 on page 1-24.

System option #22 determines how the LPQUE statement interfaces with the operating system.
This option can be set in the environment or the synergy.ini file.

If this option is set, the runtime sends LPQUE arguments to the file DBLDIR:dblpq.bat, which
can contain customized print commands. You must create a dblpq.bat file or use one of the sample
files (dblpq.tst and dblpq.nvl) included in the dbl\examples directory. The LPQUE options
specified in your Synergy program are passed as arguments to dblpq.bat. These arguments can
then be processed as replaceable parameters (%1, %2, %3, etc.) within dblpq.bat. Although not all
systems support all of the LPQUE options, a value is passed for each as shown in the table below.

DBLPQ argument LPQUE option Possible values Default value

%1 filename

%2 LPNUM 0 - 99 0

%3 COPIES 0 - 99 1

%4 FORM “string” NOFORM

%5 ALIGN 1 or 0 0

%6 DELETE 1 or 0 0

Windows Development
Printing

1-24 Portability Guide 10.3.3 (5/16)

Figure 1-1. Printing with LPQUE on Windows.

Runtime

Application Printing section

Write ASCII text to file

Call LPQUE statement

Receive LPQUE statement
from application

Send LPQUE
arguments to

dblpq.bat

Send file directly
to print queue

Send file to default
Windows printer driver

PRINT_METHOD
= escape

System option
#22 set

Yes

Yes

No

No

Windows Development
Printing

Portability Guide 10.3.3 (5/16) 1-25

The following table shows examples of LPQUE statements and the arguments they send to
dblpq.bat:

If system option #22 is not set, the PRINT_METHOD environment variable is checked. You can set
PRINT_METHOD globally, for a specific application in the synergy.ini file, or by using the
SETLOG routine to change the print method within an application.

If PRINT_METHOD=escape is set, the file is sent direct to the printer, bypassing the Windows
Print Manager.

If PRINT_METHOD is not set, the Windows Print Manager is used. The default printer is used
unless specified otherwise with the LPNUM argument in the LPQUE statement. If there are no
printers defined, the LPQUE statement will fail. If you are using Toolkit, you can call
%U_PRINTSETUP to display a Windows printing dialog and let the user choose a printer.
(See %U_PRINTSETUP in the “Utility Routines” chapter of the UI Toolkit Reference Manual for
more information.)

See LPQUE in the “Synergy DBL Statements” chapter of the Synergy DBL Language Reference
Manual for more information about the LPQUE statement and its options.

LPQUE statement DBLPQ arguments

lpque(“test.ddf”) TEST.DDF 0 1 NOFORM 0 0

lpque(“test.ddf”, lpnum:1, copies:2) TEST.DDF 1 2 NOFORM 0 0

lpque(“test.ddf”, lpnum:1, copies:2, form:var) TEST.DDF 1 2 VAR 0 0

lpque(“test.ddf”, lpnum:1, copies:2, align,
delete)

TEST.DDF 1 2 NOFORM 1 1

2-1

2
UNIX Development

This chapter contains information on Synergy DBL that is specific to the UNIX operating system.
When used in this document, the term “UNIX system” includes all machines on which UNIX,
UNIX-derivative, or UNIX-compatible operating systems, including Linux, run.

System Requirements 2-3

Describes the requirements for running Synergy DBL on your UNIX system.

UNIX Characteristics 2-4

Discusses the characteristics of UNIX that affect Synergy DBL on UNIX: case sensitivity,
big-endian and little-endian systems, and machine-specific limitations.

Synergy DBL Statements 2-7

Discusses Synergy DBL statements that are either unique to UNIX or function differently in UNIX
environments.

Synergy DBL Routines 2-9

Discusses subroutines and functions that are either unique to UNIX or function differently in UNIX
environments.

Record Locking 2-10

Discusses Synergy DBL and record locking on UNIX.

Terminal Numbers Used by Synergy DBL 2-11

Discusses terminal numbers used by Synergy DBL on UNIX and explains how Synergy DBL
determines a terminal number.

Terminal Settings Used by Synergy DBL 2-12

Discusses terminal settings used by Synergy DBL on UNIX and explains how to change default key
functions by changing certain STTY settings.

Synergy DBL and the UNIX Terminal Database 2-13

Discusses the terminal database files used by Synergy DBL on UNIX.

UNIX Development

2-2 Portability Guide 10.3.3 (5/16)

Printing 2-27

Discusses printing and Synergy/DE on UNIX.

Serial Ports 2-29

Discusses how to access serial ports on UNIX systems.

Windowing System 2-30

Explains how to enable color and hardware scrolling on UNIX.

System Options 2-31

Lists the system options that are specific to or work differently on Synergy/DE on UNIX.

Message Facilities 2-32

Describes what you need to do to use the Synergy message manager on UNIX.

UNIX Development
System Requirements

Portability Guide 10.3.3 (5/16) 2-3

System Requirements
Synergy DBL will not run on UNIX unless you have Interprocess Communication (IPC) on your
system. Most UNIX machines come with IPC, but check your system to make sure you have it.
(IPC is a layered product on some machines.)

UNIX Development
UNIX Characteristics

2-4 Portability Guide 10.3.3 (5/16)

UNIX Characteristics

Case sensitivity
The UNIX file system is case sensitive, which means that it distinguishes lowercase letters from
uppercase letters. As a result, Synergy DBL on UNIX command lines are also case sensitive. If you
enter a filename in uppercase letters and do not specify an extension, Synergy DBL on UNIX will
look for an uppercase extension. If you enter a filename in lowercase letters, Synergy DBL on
UNIX will look for a lowercase extension.

For example, if you enter

dbl DEMO

Synergy DBL on UNIX will look for

DEMO.DBL

However, if you enter

dbl demo

Synergy DBL on UNIX will look for

demo.dbl

Note that the OPEN statement on UNIX is also case sensitive; be careful to use the correct case for
filenames in the OPEN statement.

Refer to DBLCASE in the “Environment Variables” chapter of Environment Variables & System
Options for a way to override this behavior and externally enforce filename case from your
program.

Big-endian and little-endian
Integers on UNIX systems are represented in either big-endian or little-endian format. For big
endian, the low-order byte has the highest address. For little endian, the low-order byte has the
lowest address. Computers with Motorola 68xxx series chips and non-Compaq RISC chips are
big-endian systems. Computers with Intel and Compaq chips are little-endian systems.

Synergy DBL executable programs and libraries can run on any system with the same endian
format as the system on which they were built, with one exception: Version 8.1.5d or higher is
required in order for object libraries to be portable between little-endian UNIX and Windows
systems.

If your development system and the system you’re porting to have the same endian type, you can
use the same executables on both. If one is big endian and the other is little endian, you must
re-create your executables on the system you’re porting to.

UNIX Development
UNIX Characteristics

Portability Guide 10.3.3 (5/16) 2-5

Database files that contain integer data (including ISAM files) are not portable between big-endian
and little-endian machines. You can use the %CNV_IP and %CNV_PI intrinsic functions to convert
the integers in your database files to and from a portable format. Refer to the “System-Supplied
Subroutines and Functions” chapter of the Synergy DBL Language Reference Manual for details.

ISAM files that do not contain integer data (and may contain integer keys) are portable between
big-endian and little-endian machines. Also, starting with version 7, integer data can be made
portable with ISAM files. You can define where nonkey integer data resides within a record and
have the conversion done automatically from portable to native form on read and write operations.

The following table lists the endian types of various systems.

Configuration Endian type

Android 32-bit ARM Little

HP OpenVMS Alpha Alpha Native Little

HP OpenVMS I64 Itanium Native Little

HP-UX 32-bit Big

HP-UX 64-bit (PA-RISC) 64-bit Big

HP-UX 64-bit (Itanium) 64-bit Big

IBM AIX 32-bit Big

IBM AIX 64-bit 64-bit Big

Linux 32-bit Little

Linux 64-bit (x64) 64-bit Little

Oracle Solaris 32-bit Big

Oracle Solaris 64-bit (x86-64) 64-bit Little

Oracle Solaris 64-bit (SPARC) 64-bit Big

Windows 32-bit Little

Windows 64-bit (x86) 64-bit Little

UNIX Development
UNIX Characteristics

2-6 Portability Guide 10.3.3 (5/16)

Machine-specific characteristics

Linux characteristics
If you execute a script from the EXEC, SPAWN or RUNJB subroutines or the STOP or OPEN (“|”)
statements, Linux requires the first line to begin with “#! interpreter”; otherwise, the script will not
execute. For example:

#! /bin/bash

If you are using option #22 for LPQUE, make sure the first line of dblpq includes this line.

UNIX Development
Synergy DBL Statements

Portability Guide 10.3.3 (5/16) 2-7

Synergy DBL Statements

ACCEPT
The ACCEPT statement and the WD_ACCEPT subfunction of the W_DISP subroutine map LF to
CR LF when input is redirected. Most input files on UNIX are composed of lines containing
characters followed by an LF. To properly handle this lack of a CR, one is added when ACCEPT or
WD_ACCEPT encounters an LF.

DETACH
The DETACH statement is only available on UNIX.

LPQUE
The LPQUE statement, which causes a disk file to be queued for transfer to a spooled device, relies
closely on the spooling facilities offered by each operating system. As a result, it works slightly
differently and uses different options on different systems. On UNIX, LPQUE ignores the FORM
and ALIGN options if system option #22 is not set. LPQUE uses the following UNIX commands,
which don’t have these options:

System V lp

BSD lpr

By setting system option #22, you can customize the dblpq.bat file to recognize all options. For
more information, see “Printing” on page 2-27 of this manual and system option #22 in the
“System Options” chapter of Environment Variables & System Options.

OPEN
On UNIX and OpenVMS systems, you can optionally execute a keyboard command through an
opened pipe using a special syntax of the OPEN statement. Although the options below are not
available on Windows and UNIX, they can be used on Windows or UNIX to access files remotely
on an OpenVMS platform.

The following OPEN statement qualifiers are only available on OpenVMS:

 BKTSIZ

 BLKSIZ

 BUFNUM

 BUFSIZ

 CONTIG

 DEQ

 RECTYPE

UNIX Development
Synergy DBL Statements

2-8 Portability Guide 10.3.3 (5/16)

The following options for the OPTIONS qualifier are only meaningful on OpenVMS:

 /bufnum

 /bufsiz

 /deq

 /rectype

 /stream

Refer to the documentation for the OPEN statement in the “Synergy DBL Statements” chapter of
the Synergy DBL Language Reference Manual for more information.

SEND
On UNIX, the SEND statement has a maximum message length of 4080 bytes.

SLEEP
If system option #12 and the TBUF environment variable are set, the I/O buffer will be flushed
before the SLEEP statement is executed.

UNIX Development
Synergy DBL Routines

Portability Guide 10.3.3 (5/16) 2-9

Synergy DBL Routines
The following routines are only available on UNIX:

 BREAK – Issue a break to the channel

 FORK – Split the current process

 STTY – Control terminal settings

The following routines function differently on UNIX than they do on other operating systems:

 For the GTPPN subroutine on UNIX, project is the group ID and programmer is the user ID.
Privilege is 1 if you have root privileges.

 The JBNO subroutine handles the process group identification number differently on UNIX.

 The KILL subroutine on UNIX only kills those processes in the same process group ID as the
processes that are executing the KILL. (The process group ID includes all jobs spawned by the
same original log-in.)

 The SETLOG subroutine only affects the current environment and any child processes; when
your program terminates, the specified environment variable is the same as when your program
began. If you don’t pass a translation value, the SETLOG subroutine will unset (or delete) the
specified environment variable.

 The SHELL subroutine works differently on each operating system.

 The mode argument of the SPAWN subroutine has specific options on UNIX. On UNIX, the
runtime resets terminal (tty) settings by default when SPAWN is executed.

 The TNMBR subroutine determines the terminal number differently on UNIX than it does on
other operating systems. See page 2-11 for more information about terminal numbering.

 The status argument of the TTSTS subroutine can be returned with the number of pending
characters on OpenVMS and some UNIX systems.

 The %DLL_xxx functions allow you to call subroutines in UNIX shared libraries (.so files).

Most of the subroutines mentioned above are described in the “System-Supplied Subroutines and
Functions” chapter of the Synergy DBL Language Reference Manual. The %DLL_xxx functions are
described in the “Synergy DLL API” chapter of the Synergy DBL Language Reference Manual.

UNIX Development
Record Locking

2-10 Portability Guide 10.3.3 (5/16)

Record Locking
Locks on UNIX are process-based; if the same program opens the same file on two different
channels in update mode, one channel won’t be affected by the other’s locks. Also, if the same
record is read by both channels, the record will be unlocked by one channel without the other
channel being aware of it.

Setting the LOCK:Q_NO_LOCK qualifier will override an exclusively locked file that has been
opened using the SHARE:Q_EXCL_RW qualifier, unless you enforce mandatory locking with
protection at the operating system level (with chmod).

If a user opens a file on more than one channel, Synergy DBL defers the actual system closing of
the file until it has been closed on all channels opened by that user. This feature is necessary to
maintain locks set by the other open channels. When the file is closed on one of the channels but
remains open on other channels, Synergy DBL “holds” the channel until the file has been closed on
all of the channels.

If you’re migrating from Windows or OpenVMS, be aware that record locks are no longer
channel-based as they are on these systems.

UNIX Development
Terminal Numbers Used by Synergy DBL

Portability Guide 10.3.3 (5/16) 2-11

Terminal Numbers Used by Synergy DBL
Synergy DBL uses terminal numbers in the TNMBR subroutine and in one form of the SEND
statement. Synergy DBL determines the terminal number in one of three ways:

1. Synergy DBL looks in the environment of the current process for the environment variable
TNMBR = number and uses the specified number as the current terminal number. This method has
one disadvantage: you can easily give the same terminal number to more than one terminal. For
example, if two people define TNMBR as equal to 1 in their log-in file and both are logged in at the
same time, both of their terminals will have the number 1.

2. Synergy DBL looks in the file /etc/ttys for the terminal name of the current process and uses the
line number (beginning with line number 0) in the file as the terminal number. For example, if your
terminal is called /dev/junk, and your /etc/ttys file contains the lines

console
tty01
tty02
junk

your terminal number will be 3 (because junk is on the fourth line, and the first line is 0). The
advantage of this terminal numbering system is that it automatically assigns terminal numbers for
the entire system, and it works for non-numeric terminal names.

3. If you haven’t set TNMBR and /etc/ttys doesn’t exist, Synergy DBL will assign a number based on
the name of your terminal. This method works if all of your terminal names end in a unique
number. However, if some of the numbers are duplicates or if the name is non-numeric, the results
are unpredictable.

On systems where the /etc/ttys file exists, you can edit the file and rearrange the lines to
alter the terminal numbers; don’t change the format of the lines. Other characters may
appear on each line, but these characters are ignored; do not delete them. If the /etc/ttys
file doesn’t exist (which means your operating system doesn’t use it), you can create your
own ttys file. On systems with network devices, this file can be extremely large.

UNIX Development
Terminal Settings Used by Synergy DBL

2-12 Portability Guide 10.3.3 (5/16)

Terminal Settings Used by Synergy DBL
By changing certain STTY settings, you can change default key functions like interrupt and
backspace. For example, UNIX commonly uses the delete key as interrupt and the backspace key as
erase by default, but you might want to change these default settings to the Compaq style, making
the delete key erase and CTRL+C interrupt. To do so, follow these steps:

1. View all of your terminal settings, as follows:

System V stty -a

BSD stty everything

2. Change your settings from the command line:

stty intr CTRL+C
stty erase DELETE

You must actually press the DELETE and CTRL+C keys (and then press ENTER) to change the settings.

3. To add these settings to your .profile or .login file, type the following lines in your file:

stty intr "^c"
stty erase "^?"

At runtime, Synergy DBL makes the following changes to the terminal settings:

 Turns ECHO off

 Turns ICANON off

 Turns ICRNL off

 Sets VMIN to 1

All other settings are left alone.

See your UNIX command manual for more information about changing terminal settings.

You can also control terminal settings using the STTY subroutine. See STTY in the
“System-Supplied Subroutines and Functions” chapter of the Synergy DBL Language Reference
Manual for information.

UNIX Development
Synergy DBL and the UNIX Terminal Database

Portability Guide 10.3.3 (5/16) 2-13

Synergy DBL and the UNIX Terminal Database
The Synergy runtime on UNIX knows the escape sequences used by VT100-class ANSI terminals.
If you are using a VT100 terminal and have set the TERM environment variable to vt100, you don’t
need to read the rest of this section; everything used by the Synergy runtime is already available.

Synergy DBL on UNIX uses one of the following terminal database files for non-VT100 screen
displays: /etc/termcap or /usr/lib/terminfo/*. If you have a non-VT100 terminal, you may need to
modify the entry for your terminal.

The difference between termcap and terminfo is that termcap is a general purpose database that
allows direct access to specific terminal capabilities, while terminfo is a compiled database that
requires specific routines to access terminal entries. Because terminfo has a defined structure of
terminal capabilities that it recognizes, there’s no way to add new unsupported capabilities.

If your operating system normally has terminfo, the Synergy runtime will be built with the
terminfo database. You can verify that your runtime is built with terminfo by entering the what
system command:

what $DBLDIR/bin/dbr

(This command may be a layered product on your system and may not be available.)

Among other things, the what utility reports which terminal database is being used. A runtime file,
dbr.tc, is commonly distributed that includes the termcap library support.

Determining which database you should use
To determine which terminal database you should use, first find out if your terminal emulates a
VT100-class ANSI terminal. If it does, set your terminal up as a VT100-class ANSI terminal and
set TERM to vt100.

If you’re using a terminal that cannot emulate a VT100-class ANSI terminal, and your application
requires some capability that your terminal isn’t performing properly, you’ll need to modify the
terminal database. If the runtime is built with terminfo, modify the terminfo data file for your
terminal by doing the following:

1. Look for the terminfo source file for your terminal. This file should have the extension .src. If your
system distributes this source file, you may find it in /usr/lib/terminfo or one of its subdirectories.

2. If you can’t find a distributed terminfo source file, you may need to create one. You can either
create the source file using infocmp, which is available with System V Release 3 (but not with any
previous release), or you can create it from scratch.

3. If the terminfo file isn’t available for your terminal, you will need to create one.

System option #30 sets VT102 escape sequences. See system option #30 in the “System
Options” chapter of Environment Variables & System Options for more information.

UNIX Development
Synergy DBL and the UNIX Terminal Database

2-14 Portability Guide 10.3.3 (5/16)

4. After making any of the above changes, compile the terminfo source file using the tic compiler (if
it’s available on your system).

5. Check your changes by running the tstat.ti utility. See “The terminal capabilities status program”
on page 2-16 for more information.

If you need to add a capability that isn’t available with terminfo, or if you can’t complete any one
of the steps listed above, you’ll have to use termcap instead.

Terminal database file syntax
The syntax of a termcap entry is as follows:

names:code=esc_seq:[code=esc_seq:…]

The syntax of a terminfo entry is as follows:

names, code=esc_seq, [code=esc_seq:…],

Arguments
names

Lists the three names that are known for the terminal. The names are separated by the vertical
bar character (|). The first name is always two characters long for compatibility with older
systems. The second name is the most common abbreviation for the terminal and the name
used in the TERM environment variable setting. The third name should be a long name that
fully identifies the terminal. Only the third name can contain blanks for readability.

code

The terminal capability code. All of the terminal capability codes used by Synergy DBL are
listed in “Terminal codes used by Synergy DBL” on page 2-22.

esc_seq

The escape sequence (or substitute character, in the case of a graphics character) for the
terminal capability code. Look for the escape sequences in your system or terminal
documentation.

If you’re familiar with terminfo, go ahead and use it; but we recommend that you use
termcap for the following reasons:

 Termcap is not compiled, which makes it easier to change.

 Not all Synergy DBL features are supported by terminfo.

UNIX Development
Synergy DBL and the UNIX Terminal Database

Portability Guide 10.3.3 (5/16) 2-15

Discussion
A few special codes that are significant to Synergy DBL do not use the code=esc_seq syntax:

 bs

 ms

 sg#1

You can list as many code=esc_seq groups as you want, as long as termcap groups are separated
by colons (:) and terminfo groups are separated by commas (,).

Termcap entries must be one continuous logical line. The continuation character for a termcap
entry is a backslash (\). Terminfo entries, on the other hand, don’t require a single line, so no
continuation character is necessary.

The following is the standard ANSI CRT termcap entry (\E represents an escape character):

li|ansi|Ansi standard crt:\
 :al=\E[L:ms:am:bs:cd=\E[J:ce=\E[K:cl=\E[2J\E[H:cm=\E[%i%d;%dH:co#80:\
 :dc=\E[P:dl=\E[M:do=\E[B:bt=\E[Z:ei=:ho=\E[H:ic=\E[@:im=:li#25:\
 :nd=\E[C:pt:so=\E[7m:se=\E[m:us=\E[4m:ue=\E[m:up=\E[A:\
 :kb=^h:ku=\E[A:kd=\E[B:kl=\E[D:kr=\E[C:eo:\
 :sf=\E[S:sr=\E[T:\
 :cc=\E[2K:cb=\E[1K:CT=\E[1J:\
 :md=\E[1m:mb=\E[5m:mr=\E[7m:me=\E[m:\
 :ac=x\263u\264k\277m\300v\301w\302t\303q\304n\305j\331l\332:\
 :CW=\E[M:NU=\E[N:RF=\E[O:RC=\E[P:\
 :WL=\E[S:WR=\E[T:CL=\E[U:CR=\E[V:\
 :HM=\E[H:EN=\E[F:PU=\E[I:PD=\E[G:\
 :fD=\E[30m:fB=\E[34m:fG=\E[32m:fC=\E[36m:\
 :fR=\E[31m:fM=\E[35m:fY=\E[33m:fW=\E[37m:\
 :bD=\E[40m:bB=\E[44m:bG=\E[42m:bC=\E[46m:\
 :bR=\E[41m:bM=\E[45m:bY=\E[43m:bW=\E[47m:

The following is the standard ANSI CRT terminfo entry:

ansi|generic ansi standard terminal,
 am, xon, ms,
 cols#80, lines#24,
 bel=^G, blink=\E[5m, bold=\E[1m, cbt=\E[Z,
 clear=\E[H\E[J, cr=\r, cub=\E[%p1%dD, cub1=\b,
 cud=\E[%p1%dB, cud1=\n, cuf=\E[%p1%dC, cuf1=\E[C,
 cup=\E[%i%p1%d;%p2%dH, cuu=\E[%p1%dA, cuu1=\E[A,
 dch1=\E[P, dl=\E[%p1%dM, dl1=\E[M, ed=\E[J, el=\E[K,
 home=\E[H, ht=\t, hts=\EH,
 ind=\n, invis=\E[8m, kbs=\b, kcub1=\E[D, kcud1=\E[B,
 kcuf1=\E[C, kcuu1=\E[A, khome=\E[H,
 rev=\E[7m, rmso=\E[m,
 rmul=\E[m,
 sgr0=\E[0m, smso=\E[7m, smul=\E[4m, tbc=\E[2g,

UNIX Development
Synergy DBL and the UNIX Terminal Database

2-16 Portability Guide 10.3.3 (5/16)

When the Synergy runtime processes a screen function, it searches the database for the appropriate
terminal capability entry. If the entry isn’t found and there is no alternative capability, the runtime
ignores the function and doesn’t flag an error. If a capability doesn’t work as you expect, you can
either remove the entry from the database (if it isn’t a crucial feature) or correct the entry. If your
terminal has a capability that’s not listed in the database, you can add the entry.

The terminal capabilities status program
We provide a utility called tstat (tstat.tc for termcap and tstat.ti for terminfo) that tests the
terminal entry for your terminal type and identifies entries you may need to change.

Tstat has two test sections. The first section scans your terminal database file and lists terminal
capabilities that are used by Synergy DBL but that aren’t defined in the database file. The second
section is a series of tests for each Synergy DBL screen function. As you run the tests, compare the
results on the screen with the expected results. If the results are different, you may need to modify
your terminal database file. Check your terminal documentation to verify that your terminal
(defined by the TERM environment variable) can physically perform the screen function you need.

Tstat – first section
Set the environment variable TERM to specify your terminal type, and run the appropriate tstat
program for your database (tstat.tc or tstat.ti). The first section of the program lists information for
the following Synergy DBL areas:

 TERM

 $SCR_POS

 $SCR_CLR

 $SCR_MOV

 $SCR_ATT

 Windows

 Cursor motion with attributes set

We’ll use tstat.tc as an example. If tstat.tc finds the terminal entry in /etc/termcap, it lists the
terminal type. If all of the required terminal capabilities exist in termcap for each of the above
functions, tstat displays the word “Passed” next to the function. If tstat lists a capability as
missing, the termcap entry for your terminal type doesn’t define it. (However, your terminal may
still be able to perform that function.)

The Windows section of the test checks for “line wrap off” (RA) and “line wrap on” (SA). In some
cases, a window that is placed on the right edge or bottom of the screen can cause the screen to
scroll upward. If you can’t change screen wrap through escape sequences in termcap, disable
screen wrap at the hardware level if possible. If you can’t disable screen wrap at all, position your
windows away from the edges of the screen.

UNIX Development
Synergy DBL and the UNIX Terminal Database

Portability Guide 10.3.3 (5/16) 2-17

Your output from the first section of tstat.tc might look like this:

TERM=ansi
$SCR_POS: Passed
$SCR_CLR: Passed
$SCR_MOV: Passed
$SCR_ATT:
 SAVE: cannot save attribute [sc]
 RESTORE: cannot restore attribute [rc]
Windows: Passed

-- Cursor motion is ok with attributes set [ms present]
Press return to perform tests: [n to quit]

If you want to add any of the missing attributes to your termcap entry, type “n” to exit the program;
otherwise, press ENTER to go on to the second section of tstat.

Tstat – second section
The second section of tstat performs six tests. For each test, press ENTER to run the test or type “n”
to skip the test and go on to the next one. Only tests with existing terminal capabilities in the
termcap file are run. The following prompts appear for each test.

Test 1: Press return to clear screen [n to skip]:

When you press ENTER, test 1 clears the screen and moves the cursor to the upper left corner. If
anything else occurs, check the “clear screen” (cl) and “screen cursor positioning” (cm) entries in
the termcap file.

Test 2: Press return to test screen positioning [n to skip, or #]:

Test 2 has an optional argument for the number of lines on your terminal. (The default is 23.) When
you press ENTER, test 2 places a set of boxes on the screen. Each box is made of two square
brackets. The right half of a box is in the upper left corner of the screen. The test also places an X in
each box.

The box and X placement are designed to test the most critical (x,y) coordinates. If the Xs are not
placed inside the boxes, either your screen doesn’t have 23 lines (in which case you should rerun
test 2 and specify the correct number of lines for your terminal at the prompt), or termcap has the
wrong entry for “screen cursor positioning” (cm).

Test 3: Press return to test relative movement [n to skip]:

When you press ENTER, this test places a set of boxes on the screen and puts asterisks (*) inside
them using relative screen movement. If the asterisks aren’t inside the boxes, verify that “cursor up”
(up), “cursor down” (do), “cursor right” (nd), and “cursor left” (bc) were found in the first section
of the tstat utility; otherwise modify the termcap file to use the correct sequences.

Test 4: Press return to test line clearing [n to skip]:

UNIX Development
Synergy DBL and the UNIX Terminal Database

2-18 Portability Guide 10.3.3 (5/16)

When you press ENTER, this test places four rows of Xs on the screen. It then tests the following
clearing functions: EOL, EOS, BOL, BOS, and LINE. The four rows of Xs are redrawn after each
clear function. If any of the functions don’t clear the correct part of the screen, check the following
termcap entries: “clear to end of line” (ce), “clear to end of screen” (cd), “clear to beginning of
line” (cb), “clear to top of screen” (CT), and “clear line” (cc).

Test 5: Press return to test attributes [n to skip]:

When you press ENTER, this test lists the name of each screen attribute and several groups of
attributes on separate lines, then sets the appropriate attribute for each line. Note that when several
attributes are set in one statement, Synergy DBL doesn’t combine them but sets them one at a time.
For more information on screen attributes, See “Screen attributes” on page 2-22.

Test 6: Press return to graphics [n to skip]:

When you press ENTER, test 6 displays a graphics character list, which is required by the windowing
subroutines.

This test displays the graphics character after each description in square brackets. If any of the
characters don’t match their description, check the appropriate termcap entry. Turn a graphics
character set on and off with the termcap entries “graphics start” (GS) and “graphics end” (GE).
See “Screen graphics” on page 2-23 for more information.

Sample tstat.tc session
The following example leads you through a sample tstat.tc test and revision session for an ANSI
terminal. We’ll assume the original /etc/termcap file contains this entry:

li|ansi|Ansi standard crt:\
:al=\E[L:am:bs:cd=\E[J:ce=\E[K:cl=\E[2J\E[H:\
:cm=\E[%i%d;%dH:co#80:dc=\E[P:dl=\E[M:do=\E[B:\
:bt=\E[Z:ei=:ho=\E[H:ic=\E[@:im=:li#25:\
:nd=\E[C:ms:pt:so=\E[7m:se=\E[m:us=\E[4m:ue=\E[m:up=\E[A:\
:kb=^h:ku=\E[A:kd=\E[B:kl=\E[D:kr=\E[C:eo:\
:sf=\E[S:sr=\E[T:\
:GS=\E[12m:GE=\E[10m:GV=\63:GH=D:\
:GC=b:GL=v:GR=t:\
:G1=?:G2=Z:G3=@:G4=Y:\
:GU=A:GD=B:RT=^J:\
:CW=\E[M:NU=\E[N:RF=\E[O:RC=\E[P:\
:WL=\E[S:WR=\E[T:CL=\E[U:CR=\E[V:\
:HM=\E[H:EN=\E[F:PU=\E[I:PD=\E[G:

UNIX Development
Synergy DBL and the UNIX Terminal Database

Portability Guide 10.3.3 (5/16) 2-19

With the above termcap entry, tstat.tc gives the following information in its first section:

TERM = ansi
$SCR_POS: Passed
$SCR_CLR:
 LINE: missing clear line capability [cc]
 BOL: missing clear to beginning of line capability [cb]
 BOS: missing clear to top of screen capability [CT]
$SCR_MOV: Passed
$SCR_ATT:
 SAVE: cannot save attribute [sc]
 RESTORE: cannot restore attribute [rc]
Windows:
 Missing cursor off capability [CF]
 Missing wrap off capability [RA]

-- Cursor motion is ok with attributes set [ms present]
Press return to perform tests: [n to quit]

Tstat.tc shows that termcap needs the following entries: cc, cb, CT, sc, rc, CF, and RA. We’ll type
n to stop the program and edit the termcap file. Let’s assume our example program doesn’t save or
restore attributes and doesn’t need the missing window capabilities.

We’ll add the following line to the termcap file:

:cc=\E[2K:cb=\E[1K:CT=\E[1J:\

Now we’ll run tstat.tc again. The results should look like this:

TERM = ansi
$SCR_POS: Passed
$SCR_CLR: Passed
$SCR_MOV: Passed
$SCR_ATT:
 SAVE: cannot save attribute [sc]
 RESTORE: cannot restore attribute [rc]
Windows:
 Missing cursor off capability [CF]
 Missing wrap off capability [RA]
-- Cursor motion is ok with attributes set [ms present]
Press return to perform tests: [n to quit]

These results work with our imaginary Synergy application. We’ll press ENTER and begin the next
section of tstat.tc. Our first prompt looks like this:

Test 1: Press return to clear screen [n to skip]:

UNIX Development
Synergy DBL and the UNIX Terminal Database

2-20 Portability Guide 10.3.3 (5/16)

When we press ENTER, the screen clears and the cursor moves to the top left corner, which means
that the “clear screen” (cl) entry is correct. The second prompt is as follows:

Test 2: Press return to test screen positioning [n to skip, or #]:

We’ll press ENTER to use the default number of screen lines (23). The screen clears, and seven and
one-half boxes appear on the screen. An X is placed above each box, which means that our terminal
has more than 23 screen lines. We’ll press the interrupt character and rerun test 2, this time
specifying the correct screen length instead of just pressing ENTER. Now the Xs are correctly placed
inside each box, and we know “screen cursor positioning” (cm) is correct. The third prompt is as
follows:

Test 3: Press return to test relative movement [n to skip]:

When we press ENTER, the screen clears and then four boxes appear. An asterisk fills each square,
indicating that the “cursor up” (up), “cursor down” (do), “cursor right” (nd), and “cursor left” (bc)
entries work. The fourth prompt is as follows:

Test 4: Press return to test line clearing [n to skip]:

When we press ENTER, the test displays four rows of Xs with the screen attribute EOL in the center.
The test clears to the end of the line, redraws the four rows of Xs, and tests the EOS, BOL, BOS,
and LINE attributes. Each works correctly. The fifth prompt is as follows:

Test 5: Press return to test attributes [n to skip]:

After we press ENTER, the following words are listed in one column on the left side of the screen:
BLINK, BOLD, UNDERLINE, REVERSE, BOLD + UNDERLINE, and BLINK + BOLD +
REVERSE + UNDERLINE. Each word (or group of words) should be displayed in its screen
attribute, but BLINK, BOLD, and REVERSE appear in reverse video.

The following attributes aren’t tested because they aren’t defined in termcap: SAVE GRAPHICS,
RESTORE GRAPHICS, and CURSOR OFF. (If your terminal supports these attributes and you
define them in termcap, they will also be tested.) The final prompt is as follows:

Test 6: Press return to graphics [n to skip]:

We’ll press ENTER to continue testing. The list of graphics characters is displayed, but the last three
characters are wrong. Therefore, we’ll need to redefine the termcap entries “left tee” (GL), “right
tee” (GR) and “center crossing” (GC).

UNIX Development
Synergy DBL and the UNIX Terminal Database

Portability Guide 10.3.3 (5/16) 2-21

One complete tstat.tc round is now completed. Now we’ll add the “blink,” “bold,” and “reverse”
entries and fix the graphics characters in the termcap file. We’ll look in our terminal manual for the
correct entries and make the following changes to /etc/termcap:

We’ll change

:GC=b:GL=v:GR=t:\

to

:GC=E:GL=C:GR=\64:\

and add

:md=\E[1m:mb=\E[5m:mr=\E[7m:\

Now we’ll rerun tstat.tc to check how our changes affect tests 5 and 6. If each test works, testing is
finished. The final /etc/termcap entry should look like this (changed lines are marked with an
asterisk):

li|ansi|Ansi standard crt:\
:al=\E[L:am:bs:cd=\E[J:ce=\E[K:cl=\E[2J\E[H:\
:cm=\E[%i%d;%dH:co#80:dc=\E[P:dl=\E[M:do=\E[B:\
:bt=\E[Z:ei=:ho=\E[H:ic=\E[@:im=:li#25:\
:nd=\E[C:ms:pt:so=\E[7m:se=\E[m:us=\E[4m:ue=\E[m:up=\E[A:\
:kb=^h:ku=\E[A:kd=\E[B:kl=\E[D:kr=\E[C:eo:\
:sf=\E[S:sr=\E[T:\
 *
:cc=\E[2K:cb=\E[1K:CT=\E[1J:\
:GS=\E[12m:GE=\E[10m:GV=\63:GH=D:\
 *
:GC=E:GL=C:GR=\64:\
:G1=?:G2=Z:G3=@:G4=Y:\
:GU=A:GD=B:RT=^J:\
 *
:md=\E[1m:mb=\E[5m:mr=\E[7m:\
:CW=\E[M:NU=\E[N:RF=\E[O:RC=\E[P:\
:WL=\E[S:WR=\E[T:CL=\E[U:CR=\E[V:\
:HM=\E[H:EN=\E[F:PU=\E[I:PD=\E[G:

UNIX Development
Synergy DBL and the UNIX Terminal Database

2-22 Portability Guide 10.3.3 (5/16)

Terminal codes used by Synergy DBL
Below is a list of functions used by Synergy DBL and the termcap and terminfo codes that affect
them. Some codes used in termcap have alternates. Some alternates have the same functionality as
their main termcap requirement but different names. Other alternates produce slightly different
results and may not work as expected. The alternate for “cursor up” (ku), for example, may
function differently than its main requirement. Some keyboards generate the same escape sequence
for the keyboard up arrow key as the terminal requires for the cursor up function, others do not.

Screen attributes
Termcap traditionally defines only “standout” (so) and “underline” (us) capabilities for screen
attributes. We’ve added entries for “bold” (md), “blink” (mb), and “reverse” (mr) to increase screen
attribute portability. These codes came from UNIX System V terminfo definitions.

If your terminal supports these attributes, you can add the md, mb, and mr entries to your termcap
file. If the runtime doesn’t find these entries, it will use “standout” (so), which is usually reverse
video.

The same situation exists for clear attributes. “Standout end” (se) and “underline end” (ue) are
normally the only attribute-clearing entries in termcap, so we added the entry “clear attributes”
(me) to clear all attributes. If your terminal supports a single escape sequence to clear attributes, we
recommend defining me to that sequence; otherwise, define me as all of the clearing sequences in
one string.

For example, if your terminal has the clear sequences ESC[1n (clear bold), ESC[2n (clear
underline), ESC[3n (clear reverse), and ESC[4n (clear blink), the following termcap definition
clears all attributes at once in a Synergy program:

me=\E[1n\E[2n\E[3n\E[4n

If the screen attributes extend to the end of each line, delete the “move in standout” mode (ms)
entry from your termcap file. The Synergy DBL windowing subroutines won’t work correctly on
terminals that don’t support “move in standout” mode if the ms code is specified. If the attributes
appear to be normal, be sure that ms is present, because it increases screen performance.

Be sure the lines begin at the far left side of the screen. If they start one column to the right, your
terminal uses embedded attributes. (In other words, setting or clearing an attribute uses a character
position on the screen.) Unfortunately, this means that Synergy DBL cannot support attributes on
your terminal. To make Synergy DBL ignore attribute calls, be sure to add the following special
termcap entry for embedded attributes:

sg#1

UNIX Development
Synergy DBL and the UNIX Terminal Database

Portability Guide 10.3.3 (5/16) 2-23

Screen graphics

If your terminal supports 8-bit graphics, you can use octal values for the graphics characters instead
of ASCII characters. For example, if the upper-right corner character is octal 263, use the following
termcap entry:

G1=\263

Another, sometimes easier, method for setting graphics is the “ac” termcap entry. Here is a sample
“ac” termcap entry:

:ac=x\263u\264k\277m\300v\301w\302t\303q\304n\305j\331l\332:\

Character description Character Termcap entry “ac” index

Upper-right corner G1 k

Upper-left corner G2 l

Lower-left corner G3 m

Lower-right corner G4 j

Horizontal line GH q

Vertical line GV x

Bottom tee GU v

Top tee GD w

Left tee GL t

Right tee GR u

Center crossing GC n

The character set definition is the only place 8-bit characters are recognized in the termcap
file; other termcap functions strip off the eighth bit.

TIP
When changing a termcap entry, set the TERMCAP environment variable to a test file
where you can modify the entry. (See TERMCAP in the “Environment Variables” chapter of
Environment Variables & System Options for more information.) This will prevent you from
accidentally disturbing other users’ settings if you make an error.

UNIX Development
Synergy DBL and the UNIX Terminal Database

2-24 Portability Guide 10.3.3 (5/16)

The letters x, u, k, m, v, w, t, q, n, j, and l represent an index for the graphics characters as listed in
the table above. (For example, x is the vertical line character, u is the right tee character, k is the
upper-right corner character, and so forth.) The three-digit numbers preceded by a “\” are octal
values that represent the graphics for your terminal.

Alternatively, instead of the \nnn format, you can specify a single character that corresponds to the
three-digit ASCII representation of the graphic for your terminal. For example, “xAuBkC”
indicates that A equals the vertical line character, B equals the right tee character, and C equals the
upper-right corner character.

The order of the index letters (x, u, k, and so on) in the “ac” termcap entry is not important, but
each letter must immediately precede its \nnn or A character.

Termcap code Terminfo code Function

[ac] [acsc] Graphics character list

[bs][bc][le] [cub1] Cursor left

[bx] [box1] Enable line drawing characters on the IBM
RS-6000

[cb] [el1] Clear to beginning of line

<cc> Clear current line

[cd] [ed] Clear to end of screen

[ce] [el] Clear to end of line

[CF][vi] [civis] Cursor off

[cl] [clear] Clear screen

[cm] [cup] Screen cursor positioning

[CO][ve] [cvvis] Cursor on

<CT> Clear to top of screen

[do] [cud1] Cursor down

[eA] [enacs] Enable graphics character set

[ec] [ech] Erase character (high-speed clearing)

[G1] Upper-right corner

[G2] Upper-left corner

[G3] Lower-left corner

UNIX Development
Synergy DBL and the UNIX Terminal Database

Portability Guide 10.3.3 (5/16) 2-25

[G4] Lower-right corner

[GC] Cross

[GD] Top tee

[GE][ae] [rmacs] (or [font0] on AIX) Exit alternate character set

[GH] Horizontal bar

[GL] Left tee

[GR] Right tee

[GS][as] [smacs] (or [font1] on AIX) Enter alternate character set

[GU] Bottom tee

[GV] Vertical bar

[mb][so] [blink][smso] Blink

[md][so] [bold][smso] Bold start

[me] [sgr0] Clear attributes

[mr][so] [rev][smso] Reverse start

[ms] [msgr] Move in standout

[nd] [cuf1] Cursor right

[RA] [rmam] Turn off line wrap

[rc] [rc] Restore cursor position and attributes

[SA] [smam] Turn on line wrap

[sc] [sc] Save cursor position and attributes

[sg] [xmc] Embedded attributes

[up] [cuu1] Cursor up

[us] [smu1] Underline start

Termcap code Terminfo code Function

UNIX Development
Synergy DBL and the UNIX Terminal Database

2-26 Portability Guide 10.3.3 (5/16)

The Synergy runtime internally defines the entries in angle brackets (< >). They are not standard
termcap codes. Use the internal codes in your termcap file the same way you use the standard
codes.

$SCR_ function Windows function Termcap
code

Termcap
alternates Terminfo code

$SCR_POS(row,col) WD_POS,row,col [cm] [cup]

$SCR_CLR(screen) [cl][cm] [clear][cup]

$SCR_CLR(eol) [ce] [el]

$SCR_CLR(eos) [cd] [ed]

$SCR_CLR(line) <cc>

$SCR_CLR(bol) [cb] [el1]

$SCR_CLR(bos) <CT>

$SCR_MOV(row,col) [up]
[do]
[nd]
[bc]

[ku]
[kd]
[kr]
[kl][bs][le]

[cuu1]
[cud1]
[cuf1]
[cub1]

$SCR_ATT(clear) ATTR_CLR [me] [ue][se] [sgr0]

$SCR_ATT(bold) ATTR_BOLD [md] [so] [bold][smso]

$SCR_ATT(under) ATTR_UNDR [us] [smul]

$SCR_ATT(blink) ATTR_BLNK or
ATTR_ITAL

[mb] [so] [blink][smso]

$SCR_ATT(reverse) ATTR_RVRS [mr] [so] [rev][smso]

$SCR_ATT(save) [sc]

$SCR_ATT(restore) [rc]

$SCR_ATT(gon) [GS] [as]

$SCR_ATT(goff) [GE] [ae]

UNIX Development
Printing

Portability Guide 10.3.3 (5/16) 2-27

Printing
You have two options when printing on UNIX:

 For nonspooled printers, you can open the device directly and write to it. For example:

open(1, o, "/dev/tty02")

However, if more than one person is printing at the same time, the print jobs will be
intermixed.

 For spooled printers, use the LPQUE statement. For example:

open(1, o, "printfile")
.
.
.
close 1
lpque("printfile", lpnum:1, copies:2, delete)

DBLDIR:dblpq
DBLDIR:dblpq is a shell script file. You can customize printing by modifying this file to your own
specifications. The runtime sends LPQUE arguments to this file if system option #22 is set. The
LPQUE statement then executes the arguments in dblpq instead of those in the default printing
program (which is lp on UNIX and lpr on 4.2BSD).

If you don’t have a printer connected but you want to test your programs, you can set the
environment variable PCMD as follows to cause LPQUE to send your output to your terminal:

pcmd=cat

The LPNUM option
LPNUM is the LPQUE statement option that indicates to which spooled unit the file is to be
directed. You can either specify the printer number or the printer name as the argument to LPNUM,
although an alpha printer name specification is not portable to all operating systems. On a UNIX
System V, specifying the number n sends output to a printer named “lpn.” If you use a number on
this system, you must run the UNIX lpadmin program and name your printers “lp1,” “lp2,” and so
forth; lpadmin requires printers to be named, not numbered.

If you do not specify an extension on a filename in your LPQUE statement, Synergy DBL
appends the default extension .ddf.

UNIX Development
Printing

2-28 Portability Guide 10.3.3 (5/16)

For example, the following statement sends a listing to a printer named “lp3”:

lpque("test.lis", lpnum:3)

while the statement below sends a listing to a printer named “laser”:

lpque("test.lis", lpnum:"laser")

On other systems, such as 4.2BSD, specifying the number n sends output to the printer numbered n.
You can’t use alpha printer names on 4.2BSD because the printers are numbered.

UNIX Development
Serial Ports

Portability Guide 10.3.3 (5/16) 2-29

Serial Ports
There are two ways to access a serial port on UNIX systems: uppercase letters (for example,
/dev/tty1A) and lowercase letters (for example, /dev/tty1a). The uppercase form indicates use of
CCITT modem control signal checking and timeouts.

To open a port using the uppercase form, use the /NODELAY qualifier for the OPTIONS qualifier
for OPEN. If you do not specify this qualifier, the OPEN will fail after a time-out period. With
Synergy DBL 5.7.2 (or higher), if you specify the /NODELAY qualifier, you must reset the UNIX
O_NDELAY system flag (which we set to allow the open) on the channel with the TTSTS
subroutine. Doing so will enable subsequent ACCEPT/READS/GETS functions to operate
normally. You must also use the INITPORT subroutine to set the optional modem argument to 1
(modem control, which is the default) so that the “hupcl” and “clocal” STTY settings are correctly
set.

For correct operation of a serial line, including acceptance of all possible character codes, you must
use INITPORT to set up the terminal characteristics. When using INITPORT, make sure it follows
the OPEN statement as soon as possible in case data arrives on the serial port before INITPORT
sets up the port speed in the UART. After a CLOSE, you must once again use INITPORT. (See
INITPORT in the “System-Supplied Subroutines and Functions” chapter of the Synergy DBL
Language Reference Manual for more information.)

When using the lowercase form to access a serial port, set the INITPORT modem argument to 2 (no
modem control). This setting requires “hupcl clocal” STTY settings to operate correctly.

Avoid using single-character GETS/ACCEPT sequences with TTSTS: this combination will
slow down the system. A computer may be noticeably slowed by trying to accept characters
at 9600 baud. Always use GETS with the WAIT and MASK qualifiers for timed I/O to a serial
port. This allows several devices at 9600 baud to be handled simultaneously.

On some versions of UNIX, before the modem connection has been made (before there is a
carrier), you must turn off clocal to issue modem commands. You can do this as follows:

 Set the mode argument of the INITPORT subroutine to 2.

 Issue the dial command.

 Set the modem control back to 1.

UNIX Development
Windowing System

2-30 Portability Guide 10.3.3 (5/16)

Windowing System

Enabling color
Enabling color on UNIX may involve an extra step that is not required by other operating systems.
If TERM is not set to xterm, ansi, or vtxxx (for example, vt100 or any VT-series terminal setting),
you must also add a set of codes to the termcap file entry for the terminal you intend to use. See
WNDC in the “Environment Variables” chapter of Environment Variables & System Options for
more information about these termcap codes.

Enabling hardware scrolling
The termcap/terminfo databases are accessed for the sequences that set scroll up, scroll down, and
the scrolling region. If these sequences are not present, hardware scrolling will not be enabled. See
“Synergy DBL and the UNIX Terminal Database” on page 2-13 for more information.

Synergy does not support color from the terminfo database. If you would like to enable
color in your application, you can do one of two things:

 If TERM is not set to xterm, ansi, or vtxxx but your terminal supports ANSI color, set
the ANSICOLOR environment variable to use the built-in ANSI color sequences in the
Synergy runtime to generate color. (See ANSICOLOR in the “Environment Variables”
chapter of Environment Variables & System Options.)

 Use the termcap runtime, as described above.

(Note that if TERM is set to xterm, ansi, or vtxxx, the runtime defaults to ANSI color
escape sequences.)

UNIX Development
System Options

Portability Guide 10.3.3 (5/16) 2-31

System Options
The following options are either unique to UNIX or function differently in UNIX environments.
Refer to the “System Options” chapter of Environment Variables & System Options for more
information about each system option.

 System option #12, which determines whether or not you’ll be able to customize the size of the
terminal buffer, is only available on UNIX.

 System option #16, which maps the quit character to the interrupt character, is only available
on UNIX and OpenVMS.

 If you set option #22, the runtime will send LPQUE arguments to the script file
DBLDIR:dblpq, which you can change to your own printing specifications. The LPQUE
statement will then execute the arguments in dblpq instead of those in the default printing
program. See “Printing” on page 2-27 for more information on option #22 and LPQUE.

 System option #33 is only available on UNIX.

 A potential problem with setting system option #36, which enables the flushing feature of the
runtime, is that some older UNIX operating systems may not support an fsync() routine. See
system option #36 in the “System Options” chapter of Environment Variables & System
Options for more information.

UNIX Development
Message Facilities

2-32 Portability Guide 10.3.3 (5/16)

Message Facilities
To use the Synergy message manager on UNIX, you must set system option #7 with the DBLOPT
environment variable. If you don’t set option #7, Synergy DBL will use the local message facility
instead of the Synergy message manager for SEND and RECV statements.

3-1

3
OpenVMS Development

This chapter contains information about Synergy DBL that is specific to the OpenVMS operating
system. In this manual, the term “OpenVMS system” refers to any Alpha or I64 machine running
the OpenVMS operating system.

OpenVMS Characteristics 3-3

Discusses shared executable images, RMS file organization, and Synergy DBL stream files.

Installing Multiple Versions of Synergy DBL 3-5

Describes how you can install and invoke multiple versions of Synergy DBL on the same machine.

Limitations on OpenVMS 3-6

Discusses known problems and implementation issues on OpenVMS: CTRL+C and CTRL+Y
trapping, patches from HP, and more.

Synergy DBL Statements 3-7

Describes features that are specific to Synergy DBL statements on OpenVMS and discusses
I/O qualifiers that are available on the OPEN statement for OpenVMS.

Synergy DBL Subroutines and Functions 3-11

Describes the subroutines and functions that are only available on OpenVMS or that work
differently on OpenVMS than on other systems. Also discusses the DBLSTARLET directory.

Record Locking 3-19

Discusses record locking on OpenVMS.

ISAM Utilities 3-20

Discusses the differences and availability of ISAM utilities on OpenVMS.

Terminal Numbers 3-21

Explains how Synergy DBL determines terminal numbers on OpenVMS.

Peripheral Devices 3-22

Lists the options for printing on OpenVMS and discusses how to perform I/O to an LTA device.

OpenVMS Development

3-2 Portability Guide 10.3.3 (5/16)

System Options 3-24

Lists the system options that are specific to or function differently on Synergy DBL on OpenVMS.

Message Facilities 3-25

Describes how to use the Synergy message manager on OpenVMS.

Error Handling 3-26

Discusses error, exit, and exception handling features unique to Synergy DBL on OpenVMS.

Interfacing with Other Languages 3-27

Discusses linking with modules from other languages and calling Synergy DBL subroutines from
non–Synergy DBL main routines.

Porting OpenVMS Code to Windows and UNIX 3-28

Discusses features and limitations for porting OpenVMS code to Windows and UNIX.

Porting Windows and UNIX Code to OpenVMS 3-30

Discusses features and limitations for porting Windows and UNIX code to OpenVMS.

OpenVMS Development
OpenVMS Characteristics

Portability Guide 10.3.3 (5/16) 3-3

OpenVMS Characteristics

Shared images
Synergy DBL for OpenVMS uses a shared executable image for the runtime. Throughout this
manual, when we refer to the runtime, we are referring to this shared executable image.

Some OpenVMS shared images on the Alpha are still translated images (EDTSHR, for example).
Synergy applications cannot directly call these images unless XCALL linkage routines are
compiled with the /tie option, which slows down every XCALL. To counteract this, we have
implemented DBL$EXECUTE_IMAGE_ROUTINE, which activates the image “on the fly” in
JACKET mode so that you can call these images without general performance degradation. If you
use DBL$EXECUTE_IMAGE_ROUTINE and your call to a translated image fails, try linking the
image with the /nonative linker option.

See “Building Shared Images” in the “Building and Running Synergy Applications” chapter of
Synergy Tools for information about building shared images on Synergy DBL for OpenVMS.

File structures supported by Synergy DBL
Within the OpenVMS environment, file and record processing is controlled by the Record
Management Services (RMS). Synergy DBL for OpenVMS supports both RMS file organization
and Synergy DBL stream files.

RMS file organization
The RMS system is a set of services that provides an interface between OpenVMS users and their
data. RMS manages the placement and retrieval of records within files, where a record is a logical
collection of data treated as a single unit. How records are collected within a given file is
determined by the file’s organization. There are three basic types of file organization for RMS files:

 Sequential files

 Relative files

 Indexed Sequential Access Method (ISAM) files

In sequential RMS files, each record in the file is placed after the record that precedes it. Records
can generally only be retrieved from a sequential file in the order that they were written to the file.

In relative files, records are stored and retrieved by referencing their relative record numbers within
the file. The primary purpose of relative files within RMS is to provide efficient random accessing
of records with locking.

OpenVMS Development
OpenVMS Characteristics

3-4 Portability Guide 10.3.3 (5/16)

Indexed RMS files, or ISAM files, have records stored and retrieved according to one or more keys
within the record. Records with duplicate keys are always inserted at the end of the sequence of
duplicated keys.

See your OpenVMS Record Management Services Reference Manual for information on how to use
RMS files.

Synergy DBMS stream files
Synergy DBL stream files are RMS stream files with carriage control set to CR/LF and for which
Synergy DBL provides random-access and locking mechanisms. The advantage of stream files is
that they enable you to randomly access records using a record number.

Synergy DBL stream files have an internal buffer composed of 512-byte blocks. The default buffer
size is 8192 bytes. You can modify this size with the BUFSIZ qualifier on the OPEN statement. As
the program performs various I/O requests, file blocks containing the requested data are shuffled to
and from mass storage as required. The buffer size is also the area locked.

RMS provides locking on a record-by-record basis for relative and indexed files. When a Synergy
program opens a relative or indexed file in update mode on OpenVMS, RMS record locking is
used. Synergy DBL locks stream files independently of RMS using the OpenVMS-supported Lock
Manager. When a record is read from a stream file that has been opened in update mode, all blocks
spanned by that record are locked. If that record is modified, the blocks spanned by that record are
flushed to disk to ensure that the modifications are available to other users.

If stream files are used, you must have the SYSLCK privilege in order for the locks obtained
through the Lock Manager to be “seen” by other users. Using the SYSLCK privilege does not mean
you can lock system-level processes; it merely means that locks can be seen on a system-wide
basis.

OpenVMS Development
Installing Multiple Versions of Synergy DBL

Portability Guide 10.3.3 (5/16) 3-5

Installing Multiple Versions of Synergy DBL
You can install multiple versions of Synergy DBL on the same machine by installing Synergy DBL
into directories other than [SYNERGYDE.DBL]. The primary version of Synergy DBL, enabled
on a system-wide basis at startup time, will still be in [SYNERGYDE.DBL].

To install Synergy DBL to coexist with a previous version of Synergy DBL,

 Use the alternative installation method described in the installation instructions.

 Define SYS$MESSAGE as a search list to include the directory containing DBLMF.EXE as
well as SYS$COMMON:[SYSMSG].

 Make sure that SYS$MESSAGE:DBLMF.EXE is not installed.

Failure to perform these steps (which ensure that the new message file is used) will cause access
violations. If required, the new DBLMF message file can replace the earlier version in
SYS$COMMON:[SYSMSG]. DBLMF is backwards compatible.

The alternative installation procedure also enables the system manager to associate the version of
Synergy DBL being installed with other, perhaps alternative, installations of UI Toolkit, Repository,
and ReportWriter. During an alternative installation, the procedure will prompt for the locations of
each of these. These will default to the standard locations. ACTIVATE_SDE.COM will set up
appropriate logicals to enable the use of UI Toolkit, Repository, and ReportWriter.

The installation program asks you for a command. Whatever the installation type, the procedure
edits DIBOL.CLD to insert the requested command as the verb to invoke the compiler.

Please read your installation instructions thoroughly.

Using the alternative version
You can use the alternative version of Synergy DBL on a process-wide basis by invoking
ACTIVATE_SDE.COM from the appropriate Synergy DBL directory. This command file,
generated at installation time, sets up appropriate logicals in the process table, installs the command
definition file generated at installation time into the process command table, and directs the process
to use the new error message file. To activate Synergy DBL version nnn, use the following:

@[dbldirectory_nnn]ACTIVATE_DBL

To deactivate the alternative version, and revert to the system-wide installation, invoke
ACTIVATE_SDE with a nonblank parameter. For example:

@[dbldirectory_nnn]ACTIVATE_DBL 1

OpenVMS Development
Limitations on OpenVMS

3-6 Portability Guide 10.3.3 (5/16)

Limitations on OpenVMS
The following sections describe known problems and implementation issues on OpenVMS.

CTRL+C and CTRL+Y trapping
If CTRL+C and CTRL+Y trapping is not enabled using the FLAGS subroutine, typing CTRL+C or
CTRL+Y causes an immediate program exit, even from an I/O statement. This OpenVMS limitation
is caused by the way AST routines handle CTRL+C and CTRL+Y.

Shareable DECC runtime components
For performance reasons, the Synergy DBL install and start-up procedures ensure that the
CMA$TIS_SHR.EXE DECC runtime component is installed as shareable. SHRIMGMSG in
SYS$MESSAGE is also accessed.

OpenVMS Development
Synergy DBL Statements

Portability Guide 10.3.3 (5/16) 3-7

Synergy DBL Statements
The following sections describe features that are specific to Synergy DBL statements on
OpenVMS. These statements are described in further detail in the “Synergy DBL Statements” and
“Defining Data” chapters of the Synergy DBL Language Reference Manual.

Creating and opening relative files
If you’re creating a relative file, the RECSIZ I/O qualifier is required. If you’re opening a relative
file for input, the RECSIZ qualifier is not required, but is checked if present, and an “Invalid record
size” error ($ERR_IRCSIZ) occurs if the value does not match the maximum record size defined
for the file. Record_size is the record size for the file being opened. The values 0 and -1 are not
valid.

DISPLAY
The DISPLAY statement is valid only on channels opened to a terminal, Synergy stream or
sequential files opened in output or append mode, and print files opened in output or append mode.

^EOF
OpenVMS does not support the ^EOF qualifier on WRITE statements.

GET, GETS, PUT, PUTS
The GET, GETS, PUT, and PUTS binary I/O statements are only available on channels opened to
Synergy stream files or character-oriented devices such as terminals. They are not available on
channels opened to any other file type.

KEYNUM and key_spec
If you specify both the RFA and KEYNUM qualifiers on the FIND or READ statement, KEYNUM
must specify the primary key as the key of reference (Q_PRIMARY or 0).

If you want to FIND a segmented key that is specified by key_spec, you must first construct that key
by concatenating each segment together. You can use the %KEYVAL intrinsic function to return
the extracted key value from the specified record.

^LAST
OpenVMS supports the ^LAST qualifier on indexed (ISAM) and relative files. ^LAST is not
allowed on the WRITE statement.

OpenVMS Development
Synergy DBL Statements

3-8 Portability Guide 10.3.3 (5/16)

LPQUE
If your program is interactive and you set system option #22, the LPQUE statement will spawn a
PRINT statement to print a specified file, which enables you to add print options after the filename.
If, however, your program is not running from an interactive session or option #22 is not set, the
LPQUE statement uses the $SNDJBC system service to print a specified file. Any switches that
follow the filename are ignored. You cannot use wildcard characters in the file specification.

If the ALIGN option of LPQUE is specified, OpenVMS generates a /hold qualifier on the PRINT
command, which causes the current job to be put in a hold queue. If the LPNUM option of LPQUE
is specified, the resulting queue name must be defined within the running system. If LPNUM is not
specified, the default queue is SYS$PRINT. If LPNUM is specified as an alpha expression, that
expression is used as the queue name. If LPNUM is specified as a numeric expression, the queue
name is DBL$LPn, where n is the specified number. See LPQUE in the “Synergy DBL Statements”
chapter of your Synergy DBL Language Reference Manual for the statement syntax and additional
information.

O:P mode
If you need to edit files created in O:P mode, set system option #38 before running the program that
creates the files. If system option #38 is not set, the files will not look “correct” when you edit
them. Additionally, stream files (files opened in O:S mode with RECTYPE of 4, 5, or 6) will not
look correct when PRINTed or TYPEd. Use O:P mode for files to be PRINTed or TYPEd. Also, if
you use the FLAGS subroutine (with flag 6 set) to disable carriage control, do not try to PRINT or
TYPE the file unless you use O:P mode and set system option #38.

OPEN
OPEN mode O (output) defaults to sequential file type. Use the /stream compiler option to change
the default to stream. This is the default for UI Toolkit applications using U_OPEN.

Because Synergy DBL defaults to sequential submode, the GET, GETS, PUT, and PUTS
statements are not supported on files opened in output mode unless you do one of the following:

 Specify the /stream compiler option when compiling your program.

 Use the /stream qualifier in the OPEN OPTIONS string.

 Specify RECTYPE:4 (or /rectype=4) OPEN qualifier.

The runtime now treats an OPEN of “NL:” the same as “NLA0:”

OpenVMS Development
Synergy DBL Statements

Portability Guide 10.3.3 (5/16) 3-9

OPEN statement qualifiers
The following OPEN statement qualifiers are available only on OpenVMS:

 BKTSIZ

 BLKSIZ

 BUFNUM

 BUFSIZ

 CONTIG

 DEQ

 RECTYPE

The following options on the OPTIONS qualifier are meaningful only on OpenVMS:

 /alloc

 /bufnum

 /bufsiz

 /deq

 /rectype

PURGE
If you purge a channel open to a mailbox, the runtime will no longer write an EOF to the mailbox.
If you CLOSE a mailbox, it will still write EOF to the mailbox (for compatibility with DIBOL).

Q_EOF and Q_LAST
The qualifier POSITION:Q_EOF is the same as ^EOF. The qualifier POSITION:Q_LAST is the
same as ^LAST. See ^EOF and ^LAST on page 3-7.

READ
If you try to READ a record that does not exist in a relative file, the runtime resets the current
context to 0 (or “No context”). The context after such an error is undefined and could differ across
platforms. Reading a record by RFA on an explicit key of reference other than 0 is not allowed.

REVERSE
The DIRECTION:Q_REVERSE qualifier and the REVERSE keyword are supported on both
indexed (ISAM) and relative file types.

OpenVMS Development
Synergy DBL Statements

3-10 Portability Guide 10.3.3 (5/16)

SEND
The maximum message length of the SEND statement is 16383 bytes.

STOP
To use the STOP statement to chain to a DCL command, precede the command with a dollar sign as
follows:

stop "$command [arg1] [arg2] ..."

System option #35
If system option #35 is set, the FORMS(chn, #) statement on a channel opened to a file with
carriage return control will output an extra line feed (for compatibility with VAX DIBOL). If
system option #35 is not set, the FORMS statement will only write the number of line feeds to the
file necessary to advance the paper the correct number of spaces specified in the FORMS statement.

TEMPFILE
The temp_spec argument on the TEMPFILE qualifier is ignored because a new version is used for a
new temporary file of the same name. Be careful of directory version limits when using the
TEMPFILE qualifier.

TT:
If you open TT:, and TT: is redirected to a disk file, each DISPLAY statement creates a separate
record in the file.

When option #39 (or #35) is not set, defining TI or KB as “TT:” is not functionally equivalent to
using TT:. Specifying TT: uses SYS$INPUT and SYS$OUTPUT. Defining TI or KB as “TT:”
causes the translation of TT: to be used, which usually is defined as the physical terminal device.
This is the same as opening TT: when option #39 is set. (Remember that option #35 also sets
option #39.)

OpenVMS Development
Synergy DBL Subroutines and Functions

Portability Guide 10.3.3 (5/16) 3-11

Synergy DBL Subroutines and Functions

OpenVMS-specific routines
The following Synergy DBL routines are available only on OpenVMS. Refer to the
“System-Supplied Subroutines and Functions” chapter of the Synergy DBL Language Reference
Manual for descriptions of these routines.

ASTRST – Restore the contents of work areas used as the result of an AST

ASTSAV – Save the contents of work areas used as the result of an AST

CREMBX – Create a mailbox

DBL$DEVCLT – Get the class and type of a device

DBL$EXECUTE_IMAGE_ROUTINE – Execute a routine contained in a shareable image

DBL$SETKRF – Set the key of reference for the next operation on an ISAM file

DBL$SNDOPR – Send a message to the system operator

DELMBX – Mark a permanent mailbox for deletion

EMPBUF – Write out modified I/O buffers

ENDFL – Position the file pointer after the last record of a file

%FSTAT – Return the value of the last floating point call

FXSUBR – Dispatch to a floating-point function

GETCM – Get data from the process message area

PURGE – Delete previous versions of a file

PUTCM – Store data in the process message area

SETCTL – Modify the operation of control characters

SORT – Provide a callable interface to DBLSORT

%SUCCESS – Determine if low-order bit is on or off

TT_NAME_TO_NUMBER – Convert an OpenVMS terminal name to its equivalent terminal
number

TT_NUMBER_TO_NAME – Convert a terminal number to its equivalent OpenVMS terminal
name

TTBRDCST – Enable a program to trap broadcast messages

TTCHAR – Return type, lines, and width of a file

OpenVMS Development
Synergy DBL Subroutines and Functions

3-12 Portability Guide 10.3.3 (5/16)

TTFLGS – Set OpenVMS-specific terminal processing options (some available on Windows and
UNIX)

TTMBX – Associate a mailbox with a channel opened to a terminal device

VMCMD – Execute a DCL command

VMMSG – Get the text of an OpenVMS system message

^XTRNL – Return the value of a global symbol

In addition, flags 8, 9, and 10 of the DFLAG subroutine are available only on OpenVMS, as are
several of the keywords for the GETFA subroutine.

Routines that work differently on OpenVMS
This section describes Synergy DBL routines that function differently on OpenVMS than on other
operating systems. Refer to the “System-Supplied Subroutines and Functions” chapter of the
Synergy DBL Language Reference Manual for a full description of these routines.

BTOD and DTOB
In addition to integer data and decimal data, the BTOD and DTOB subroutines also convert
quadwords (64 bits) on OpenVMS systems.

CMDLN
The CMDLN subroutine returns the command line in uppercase characters and does not include the
full path name of the Synergy runtime or the program name. To use this subroutine on OpenVMS,
start the program with a foreign symbol. Refer to your OpenVMS User’s Manual for information
about how to define a symbol as a foreign command.

For example, if we set up a foreign symbol as follows for a program called MAIN (where $PATH
was previously set as an environment variable pointing to the directory that contains MAIN.EXE):

prog:==$PATH:MAIN

we could use the CMDLN subroutine in this program as follows:

main MAIN
.define TTCHN ,1
record
 buffer ,a80

proc
 open(TTCHN, o, "tt:")
 xcall cmdln(buffer)
 writes(TTCHN, "Buffer = "+buffer)
endmain

OpenVMS Development
Synergy DBL Subroutines and Functions

Portability Guide 10.3.3 (5/16) 3-13

If we then ran this program with the following command line arguments:

prog arg1 arg2 arg3

the output would be as follows:

Buffer = arg1 arg2 arg3

However, if we ran the program MAIN without arguments, or if we ran this program without a
foreign symbol command, the output would be the following:

Buffer =

DELET
Not only can you use wildcard characters in the filename specification on the DELET subroutine,
but a given file can have more than one version. If the filename specification in DELET does not
explicitly specify the version number, all versions of the file will be deleted.

ERROR and %ERROR
Both the ERROR subroutine and the %ERROR function have an optional fourth argument that
returns the RMS STV value associated with the last RMS system call if it exists. This argument will
not cause an error on UNIX and Windows; it will simply return a 0.

EXEC
The EXEC subroutine uses the DECC execvp function call. You must set the logical VAXC$PATH
to a search list where the program image will be found. EXEC is only available on OpenVMS and
UNIX.

FATAL
The FATAL subroutine uses the translation of the DBL$FATAL_IMAGE logical instead of filename
when system option #3 is specified and as the default program to chain to.

FLAGS
Flag 3 of the FLAGS subroutine works differently with the OPEN statement and RENAM
subroutine on OpenVMS than it does on other systems. Normally, flag 3 protects the runtime from
accidentally overwriting a file by generating a “Cannot supersede existing file” error
($ERR_REPLAC). To generate this error on OpenVMS, you must also specify the output
filename’s version number in RENAM or OPEN. System option #35 will cause this error to be
generated in RENAM if any version of the target file exists.

The default value for flag 4 is the current terminal setting.

Flag 6 changes a file that is open for output to have no record attributes. It also disables carriage
control on O mode files (except stream files).

OpenVMS Development
Synergy DBL Subroutines and Functions

3-14 Portability Guide 10.3.3 (5/16)

GLINE
The GLINE subroutine uses the OpenVMS LIB$GET_INPUT subroutine to get an input line from
the device assigned to the logical name SYS$INPUT.

ISAMC
You can use the ISAMC subroutine to create RMS ISAM files. The PAGE, MULTIPLE, and
STATIC_RFA options in the filename specification are ignored on OpenVMS. Also, records that
contain duplicate keys are always inserted at the end of the list of duplicates, which means that the
NOATEND option in the key specification will generate “Illegal key specified” error
($ERR_BADKEY).

You can specify the following COMPRESS options for RMS ISAM:

[NO]INDEX Compresses the index. The default is INDEX.

[NO]KEY Compresses the key within the data. The default is KEY.

[NO]RECORD Compresses the record within the data. The default is RECORD.

ALL All of the above.

See the ISAMC subroutine in the “System-Supplied Subroutines and Functions” chapter of the
Synergy DBL Language Reference Manual for more information.

For better performance, you should not create files with ISAMC; you should use the FDL editor
and open files in O:I mode with the FDL qualifier.

ISSTS
Positions 22 through 29 of the status argument in the ISSTS subroutine will be filled with
“09999999”.

JBNO
The JBNO subroutine optionally returns the process identification number, the owner PID, and the
group identification number. Any specified ID number should be at least 10 digits wide to prevent
overflow.

KILL
The KILL subroutine terminates the calling process by making a call to the $DELPRC system
service. KILL is equivalent to executing a STOP statement followed by the LOGOUT command. If
the calling Synergy program is running as a subprocess (created by the RUNJB or VMCMD
subroutine), that subprocess will be terminated and control will return to the parent process.

OpenVMS Development
Synergy DBL Subroutines and Functions

Portability Guide 10.3.3 (5/16) 3-15

OPENELB
Synergy DBL on OpenVMS uses shared executable images to implement ELBs. The OPENELB
subroutine adds the referenced shared images to the active list of shared images for subsequent
access through calls to the XSUBR subroutine. OPENELB performs no other action in the
OpenVMS environment.

PARSE
Several of the arguments to the PARSE subroutine are specific to OpenVMS: node, device, and
version. On OpenVMS, PARSE uses the RMS $PARSE facility.

POSRFA
The POSRFA subroutine does not support a non-0 key-of-reference specification.

RENAM
If the new filename specification doesn’t contain an explicit version number on a call to the
RENAM subroutine, and a file already exists with the same name, the file is renamed with the next
higher version number. If the new filename specification does contain an explicit, non-0 version
number, and a file of the same name and version number already exists, RENAM will replace the
existing file (unless flag 3 is set on the FLAGS subroutine). Using system option #35 with RENAM
causes all target files to be deleted before the rename is performed, unless flag 3 is set. Then, if any
target files exist, a “Cannot supersede existing file” error ($ERR_REPLAC) will be generated.

RUNJB
The RUNJB subroutine works differently on different operating systems. For details, see the
RUNJB subroutine in the “System-Supplied Subroutines and Functions” chapter of the Synergy
DBL Language Reference Manual.

SETDFN
The initial default file specifications used by the runtime are different on OpenVMS. For details,
see the SETDFN subroutine in the “System-Supplied Subroutines and Functions” chapter of the
Synergy DBL Language Reference Manual.

SETLOG
If you don’t pass a translation value, SETLOG will delete the specified logical. You can define a
search list logical by separating the elements of the list with commas. To preserve commas in the
translation value, use quotation marks. To preserve quotation marks, use two consecutive quotation
marks.

OpenVMS Development
Synergy DBL Subroutines and Functions

3-16 Portability Guide 10.3.3 (5/16)

SHELL
The SHELL subroutine works differently on each operating system. For details, see the SHELL
subroutine in the “System-Supplied Subroutines and Functions” chapter of the Synergy DBL
Language Reference Manual.

SPAWN
The SPAWN subroutine executes a DCL command string and sends the command string to the
Command Language Interpreter (CLI) as input. SPAWN should be used sparingly on OpenVMS
due to its high CPU overhead.

TFLSH
The TFLSH subroutine is only available on OpenVMS and UNIX. On OpenVMS, it ensures that
the previous asynchronous terminal I/O to the controlling terminal has finished.

TNMBR
The TNMBR subroutine will use the physical device to determine the terminal number for a virtual
terminal if system option #17 is set. If this option is not set, TNMBR will use the VT device
specification to determine the terminal number. See the TNMBR subroutine in the
“System-Supplied Subroutines and Functions” chapter of the Synergy DBL Language Reference
Manual for more information about how terminal numbers are assigned by TNMBR. Also see
“Terminal Numbers” on page 3-21 of this manual for more information.

TTNAME
On OpenVMS, if the program is running as a batch job, the TTNAME subroutine returns the null
device specification: “_NLA0:”.

WAIT and TTSTS
If you are running a detached job and you specify position 2 or 3 in the parameters argument of the
WAIT subroutine, Synergy DBL will return position 2 in the event argument (which indicates that
input is pending). TTSTS will return a value of 1 in its status argument (which also indicates that
input is pending).

These same values are returned from subroutines WAIT and TTSTS if you redirect SYS$INPUT
from a command file and system option #39 is set. (Option #39 sets this behavior; option #35 only
sets #39.)

XSUBR
The XSUBR subroutine does not have direct access to any shared images linked to the program.
You must call OPENELB to access routines in a shared image. If the target routine is not found in
the main program image, LIB$FIND_IMAGE_SYMBOL is used to search the shared image list
created by calls to OPENELB. Only Synergy DBL routines can be invoked by XSUBR.

OpenVMS Development
Synergy DBL Subroutines and Functions

Portability Guide 10.3.3 (5/16) 3-17

Subroutines that have no meaning on OpenVMS
The following subroutines perform no function on OpenVMS and will generate an error if called:

 BREAK

 FORK

 INITPORT

 LM_KCR

 LM_LOGIN

 LM_LOGOUT

 SERIAL

 STTY

 W_CAPTION

AST support in Synergy DBL
Synergy DBL fully supports AST routines written in any of the re-entrant HP OpenVMS
languages. These AST routines must comply with the limitations of the language in which they are
written and with the limitations of OpenVMS in regard to asynchronous processing.

A number of obstacles prevent unhindered use of Synergy DBL at the AST level. Although the
Synergy DBL implementation allows for external asynchronous processing at the language
statement level, the non-re-entrancy of some statement processors prevent it from being allowed at
the system level. What this means is that the Synergy programmer is allowed to do an implied
XCALL or function reference “underneath” a Synergy program between Synergy DBL statements,
but not during some of those statements. Since OpenVMS generates ASTs asynchronously at the
system level, some Synergy DBL statements cannot be supported at the AST level.

The reason for this is that the Synergy runtime makes extensive use (from the C standpoint) of
“static” data. A Synergy DBL routine running at the AST level could corrupt the static data areas
used by the currently active Synergy DBL statement that’s being processed at the non-AST level.

Another problem is that the Synergy runtime is implemented in C, and certain C runtime functions
are not re-entrant for similar reasons.

The following operations should not be performed in Synergy DBL AST routines:

 I/O on any channels that may be in use at the non-AST level

 Message sending and receiving

 SLEEP statements

By noting the above limitations and using the ASTSAV and ASTRST subroutines, AST service
subroutines can be implemented in Synergy DBL.

OpenVMS Development
Synergy DBL Subroutines and Functions

3-18 Portability Guide 10.3.3 (5/16)

DBLSTARLET directory
A subset of the STARLET library, called DBLSTARLET, is available in Synergy DBL for
OpenVMS. We also provide a program called CONVERTER in the DBLSTARLET directory.
CONVERTER enables you to extract any additional modules from STARLET that your
applications requires.

Floating-point arguments
Any routine that passes floating-point arguments by value will not work on either the Alpha or the
I64. This type of routine requires a C wrapper routine.

If you use STARLET offset values as array indices, you must add one to these values; the
offsets are 0-based and Synergy DBL subscripts are 1-based.

OpenVMS Development
Record Locking

Portability Guide 10.3.3 (5/16) 3-19

Record Locking
If you’re migrating from UNIX, be aware that record locks on OpenVMS are channel-based. If the
same program opens the same file on two different channels in update mode, both channels will be
affected by each other’s locks, which may cause unexpected $ERR_LOCKED errors.

OpenVMS Development
ISAM Utilities

3-20 Portability Guide 10.3.3 (5/16)

ISAM Utilities
The following ISAM utilities either work differently or are not available on OpenVMS:

 The status utility always returns 90000000 as the number of records in an RMS ISAM file.
There is no way to find the number of records in an RMS ISAM file unless you read
sequentially through the file.

 The ipar utility, which generates parameter file descriptions of existing ISAM files, is not
available on OpenVMS. Use the ANALYZE/RMS utility to extract file descriptions and check
file integrity. Refer to your Record Management Utilities Reference Manual for more
information.

 The irecovr utility, which converts ISAM files from their previous Synergy DBL version, is
not available on OpenVMS.

 The ismvfy utility, which verifies several aspects of a ISAM file’s structure, is not available on
OpenVMS.

OpenVMS Development
Terminal Numbers

Portability Guide 10.3.3 (5/16) 3-21

Terminal Numbers
Synergy DBL uses terminal numbers in the TNMBR subroutine and in one form of the SEND
statement. Terminal numbers are determined in one of the following ways:

 Synergy DBL uses the environment variable TNMBR in the current process if it is set. With
this method, you can easily give the same terminal number to more than one terminal. For
example, if two people define TNMBR equal to 1 in their login file and both are logged in at
the same time, both of their terminals will have the number 1.

 The TNMBR subroutine returns one of the following values and assigns the corresponding
number:

 0OPA0:

-1The job is running detached, regardless of the terminal device
specification.

-2The process is a network process.

-3The process is a batch process.

numberAll other instances

On OpenVMS, Synergy DBL calculates a unique number for the device name in the form
TTcn, where c is a controller letter and n is a unit number. The device type (for example, TT)
may vary, depending on the type of terminal controller used. Terminal numbers are not
necessarily compatible with other platforms or with DIBOL terminal numbers, and they may
vary from release to release. We recommend that you make no assumptions as to the
correspondence between terminal numbers and terminal names, other than the uniqueness of a
terminal number for a local system.

 For a virtual terminal, the TNMBR subroutine will use the physical device to determine the
terminal number if system option #17 is set. If this option is not set, TNMBR will use the
terminal device name of the virtual terminal to determine the terminal number.

If you want to know the terminal number for a particular device, you can use the
TT_NAME_TO_NUMBER subroutine to convert an OpenVMS terminal name to its
equivalent terminal number. A terminal number can be up to eight digits long.

OpenVMS Development
Peripheral Devices

3-22 Portability Guide 10.3.3 (5/16)

Peripheral Devices

Printer setup
You have the following options when printing on OpenVMS:

 For spooled printers, you can open the device directly. OpenVMS directs the output through
the spooling system so the printer is not locked by one process.

 You can use the LPQUE statement to add a job to the print-batch services queues. If you use
LPQUE, the default condition is to use the $SNDJBC system service, which speeds up
spooling. The drawback to this is that you can’t use wildcard characters in the file
specification, and print switches on filename specifications are ignored.

LPQUE can also be used to submit batch jobs if its queue is a batch queue.

However, if you specify system option #22, Synergy DBL constructs a DCL PRINT command
line and spawns a subprocess to execute the PRINT command line. With this option, you can
use wildcard characters, and valid print switches on a filename will be sent through to
subprocesses as part of the PRINT command line.

If system option #22 is set, printing errors may not be reported to your program.

 For nonspooled printers, you can open the device directly. It is the program’s responsibility to
handle device sharing between processes.

 If you set DFLAG flag 8, the additional parameter SJC$_NOPAGINATE is used, which is
equivalent to using a PRINT/NOFEED DCL command.

Synergy DBL and LTA devices
Synergy DBL does not automatically connect to an outbound LTA device, such as a modem or
printer connected to a terminal server (neither do other OpenVMS languages including DIBOL).
This is due to the varied and specific nature of such requests, which are dependent on the version of
LAT in OpenVMS and the firmware in the terminal server.

If you need to perform I/O to an LTA device, you must perform an “LAT connect QIO” to the
device after the OPEN statement and an “LAT disconnect QIO” before the CLOSE. We have
included an example routine, LAT, in the file LAT.DBL in the DBLSTARLET directory. The LAT
subroutine shows the code required to negotiate different connections and the types of timing
required depending on which device is connected to the terminal server at the other end. For more
information on the code used in LAT.DBL, we suggest you read the OpenVMS I/O User’s
Reference Manual in the OpenVMS documentation set, or call HP for an explanation of
LAT-specific QIO mechanisms.

When using modems we suggest that you only use the latest firmware on all Compaq terminal
servers. For DS300, DS700, and DS90TL, we recommend a minimum of BL45C-14; for DS200,
we recommend version 3.3. Using the latest firmware will solve many potential timing and flow

OpenVMS Development
Peripheral Devices

Portability Guide 10.3.3 (5/16) 3-23

control problems. If you are using an OpenVMS version lower than 6.1, we suggest you contact
your HP support center for up-to-date LAT patches to fix problems in the LTA and LATACP drivers
that could affect your ability to debug. On Alpha 6.1, these patches also fix random protocol
disconnect errors for logged-in users. (The LAT.DBL program assumes that these patches are
installed.)

To help test LAT connections, we provide a LATT.DBL program which is an example of how to
use the LAT subroutine. You can run this program to test the results for an outbound LTA device on
your system.

We also include a LATMSGDEF.DBL file in DBLSTARLET, which was provided by Compaq as
an aid in documenting possible LTA device error codes besides the 19 documented in LATT.DBL.

There are potential problems with using a LAT disconnect with a channel whose output has
not yet been flushed. In some cases, the program will hang in an LEF state forever. You can
alleviate this potential problem by calling the %TTSTS function or the TFLSH subroutine on
the channel to ensure that the runtime’s asynchronous QIO has completed before issuing
the disconnect.

OpenVMS Development
System Options

3-24 Portability Guide 10.3.3 (5/16)

System Options
The following system options are specific to or function differently on OpenVMS. Refer to the
“System Options” chapter of Environment Variables & System Options for more information about
each system option.

 When you define multiple system options with DBLOPT on OpenVMS, make sure you
enclose the options in quotation marks. For example:

define DBLOPT "1,7,16,35"

If you don’t use quotation marks, the runtime will only process the first option specified.

 System option #7, which determines whether the runtime will use the Synergy message
manager or the local message facilities, is on by default. Use system option #47 to disable use
of the Synergy message manager.

 System option #16, which maps the quit character to the interrupt character, is only available
on OpenVMS and UNIX. On OpenVMS, you can restart the program at the point of
interruption by issuing a DCL CONTINUE command if option #16 is not set.

 If you set option #17 on OpenVMS, the TNMBR subroutine will use the physical device to
determine the terminal number for a virtual terminal.

 System option #18, which controls how the in-place MERGE handles the logical end-of-file, is
not available on OpenVMS.

 If you set option #22 and the program is running from an interactive session, the LPQUE
statement will spawn a PRINT statement to print a specified file, which enables you to add
PRINT options after the filename.

 System option #23, which determines where the in-place MERGE places duplicate records, is
not available on OpenVMS.

 Some of the VAX DIBOL-compatible functionality provided by system option #35 is only
available on OpenVMS.

OpenVMS Development
Message Facilities

Portability Guide 10.3.3 (5/16) 3-25

Message Facilities
System option #7, which enables you to use the Synergy message manager, is set by default on
OpenVMS. If you set option #47, Synergy DBL will use the local message facility instead of the
Synergy message manager for SEND and RECV statements.

The maximum message ID length on OpenVMS systems is 39 characters.

Starting the message manager
You can start (or restart or kill) the message manager with the command

$@DBLDIR:dblmsgctlstartup [option]

option

(optional) One of the following options:

START (default) Start the message manager.

RESTART Restart the message manager.

KILL Kill the message manager.

The message manager is started automatically in the SYNERGY_STARTUP.COM file.

OpenVMS Development
Error Handling

3-26 Portability Guide 10.3.3 (5/16)

Error Handling
 Synergy DBL provides an exit handler on OpenVMS: LIB$SIGNAL and LIB$STOP issue

program tracebacks when called from Synergy programs.

 When using LIB$SIGNAL, if you specify an error with a severity of success, warning, or
informational, the exception handler will issue the error message and continue processing after
the LIB$SIGNAL call. If you specify an error with a severity of fatal or error, or if you’re using
LIB$STOP, the exception handler will issue a fatal “Unexpected VMS system error”
(VMSERROR), followed by the signalled error and the Synergy DBL traceback.

 If the compiler encounters a fatal system error when trying to open or access a file, it will
report the associated system error text.

 If an internal, untrapped, unexpected OpenVMS/RMS error occurs in a Synergy program, it
will be loaded into the DCL $status symbol on exit from the program. The actual system error
(not the VMSERROR number) will be loaded into $status. If any other Synergy DBL error
occurs, it will be loaded into $status on exit.

 The Synergy runtime uses asynchronous terminal output for better terminal performance.
Therefore, Synergy DBL will report any I/O error, such as $ERR_DEVOFFLINE, on the next
terminal input or output statement when the wait for previous I/O completion occurs.

 Synergy programs may generate a “Failure during I/O operation” error ($ERR_IOFAIL) with
the SS$_DATAOVERUN system error code if the type-ahead buffer is filled and the terminal is
set “nohostsync.” (This is a normal OpenVMS error condition.) You can avoid this error by
either trapping errors on your ACCEPT statements or ensuring that the terminal is set
“hostsync.” If the terminal cannot be set “hostsync,” you can set the terminal “altype” to
reduce the occurrence of this error.

You are responsible for setting a flag to make sure your exit handler is not re-entrant. If
you don’t, an endless loop may occur if you get a Synergy DBL error in your handler.
The Synergy debugger does not debug exit handlers, and a Synergy DBL exit handler
may be invalid if the runtime exits abnormally. C and MACRO are the best languages
for exit handlers.

LIB$STOP will cause a fatal exit regardless of the severity of the error you specify.

OpenVMS Development
Interfacing with Other Languages

Portability Guide 10.3.3 (5/16) 3-27

Interfacing with Other Languages
You can link any object module with a Synergy program and call it directly from your Synergy
code. You can also call Synergy DBL routines from non–Synergy DBL main routines, and you can
call any OpenVMS library or system function from your Synergy code.

Synergy DBL’s C interface supports various C string and data conversion functions for interfacing
with C language modules. Refer to the file xcallv.h for descriptions of the supported functions.

OpenVMS Development
Porting OpenVMS Code to Windows and UNIX

3-28 Portability Guide 10.3.3 (5/16)

Porting OpenVMS Code to Windows and UNIX
Keep the following in mind as you port OpenVMS code to Windows and UNIX:

 The TTFLGS subroutine only supports flag 4.

 The PURGE subroutine is ignored.

 You must specify the RECSIZ qualifier when you open a relative file containing integer data.

 On OpenVMS, if you don’t specify a record size when you open a relative file, the runtime
determines the record size by looking at the file being opened. If you specify the record size on
the OPEN and it is different from the actual record size in the file, an error is generated.

 On Windows and UNIX, if you don’t specify the record size on the OPEN, the runtime opens
the file with no error. The record size is determined by the first READ from the file. If you pass
a record buffer of a different size than that of the record in the file, an error is generated on the
READ.

 The DBL$PARSE subroutine does not add default extensions; it just parses an existing file
specification as passed.

 The TTSTS subroutine only returns 1 or 0, not the number of characters in the type-ahead
buffer on some UNIX systems. On UNIX, to return the number of characters, TTSTS requires
the POSIX FIONREAD ioctl modifier support in the operating system.

 SEND/RECV names are limited to six characters (instead of 39), and SEND/RECV works
differently when ported to Windows and UNIX. The default maximum message size is 4096,
which can be configured by using the -b option on the synd program. On OpenVMS, the
maximum message size is 16383. See “Messaging” in the “Welcome to Synergy DBL” chapter
of the Synergy DBL Language Reference Manual for more information on operating system
differences when sending and receiving messages.

 Most of system option #35’s functionality does not apply on Windows and UNIX.

 The following OpenVMS-specific subroutines and functions are unavailable when porting to
Windows and UNIX:

ASTRST

ASTSAV

CREMBX

DBL$DEVCLT

DBL$EXECUTE_IMAGE_ROUTINE

DBL$TTCHAR

DELMBX

OpenVMS Development
Porting OpenVMS Code to Windows and UNIX

Portability Guide 10.3.3 (5/16) 3-29

TTBRDCST

VMCMD

VMMSG

^XTRNL

 You cannot use dollar signs ($) in filenames on UNIX systems.

 Some UNIX systems restrict filenames to eight characters and file extensions to three
characters.

 Because there are no file version numbers, “;nnn” extensions are not allowed.

 OpenVMS system services cannot be used.

 Any C subroutines must be changed to access arguments as described in the “Synergy DBL C
Interface” chapter of the Synergy DBL Language Reference Manual.

 Shared images become ELBs. You cannot limit common definitions within an ELB to be
nonvisible externally. This means that common variables must be unique across all ELBs.
Non-unique common variables will cause various and unpredictable runtime results. The linker
does not check for uniqueness.

 You cannot overlay unnamed global/external commons with records on Windows and UNIX.

 Synergy DBL on Windows and UNIX supports alphanumeric (a), decimal (d), and integer (i)
keys on ISAM files.

 The SORT statement does not allow integer keys.

 Flag 4 in the TTFLGS subroutine does not affect the WD_ACCEPT, WD_GETS, and
WD_READS options of the W_DISP subroutine. You must program your own interpretation
of the escape sequences.

OpenVMS Development
Porting Windows and UNIX Code to OpenVMS

3-30 Portability Guide 10.3.3 (5/16)

Porting Windows and UNIX Code to OpenVMS
Keep the following in mind as you port Windows and UNIX code to OpenVMS:

 On OpenVMS, the DCL command parser parses command lines. It does not support the
following batch file syntax:

$dbl
/refresh/object=objfile srcfile
/refresh/object=objfile srcfile
/refresh/object=objfile srcfile

You will need to modify your batch files to include “$dbl” at the beginning of each line, as
follows:

$dbl/refresh/object=objfile srcfile
$dbl/refresh/object=objfile srcfile
$dbl/refresh/object=objfile srcfile

 The SHELL subroutine commands are different on OpenVMS than on Windows and UNIX.

 Do not use the SPAWN subroutine unless it is absolutely necessary; it is very slow on
OpenVMS systems.

 Environment symbols become logical names.

 Filenames can have up to 40 characters for each component (filename, device, and directory
element), up to a maximum of 254 characters.

 Don’t use isload to load files or the ISAMC subroutine to create them. Load files with the
CONVERT/FAST/NOSORT command, and create them from an FDL file created with the
EDIT/FDL command or the OPEN O:I statement.

 To reclaim space occupied by deleted records, you must reorganize files from time to time.

 The overhead of doing single character ACCEPT or DISPLAY statements for I/O is
significantly higher.

 Write disk I/O (STORE/DELETE/OPEN/WRITE/WRITES/FORMS) is not cached on
OpenVMS systems, and excessive use can cause an application to appear much slower than on
UNIX. This performance would be apparent in a multiuser situation on UNIX systems.

 Application start-up time is slower on OpenVMS than UNIX, as OpenVMS pages in the
application and its shared images. To counteract this, either use bound programs, or keep your
applications in shared images activated with the XSUBR and OPENELB subroutines.

 Files have versions on OpenVMS. Opening a file for output will create a new version of the file
and will not overwrite the original unless you always append a version number to the file
specification. TEMP files are implemented as new versions of a file.

 When trapping errors on I/O statements, you should also report the number returned from
%SYSERR. Doing so will help you understand which OpenVMS system error occurred. The
number of errors returned on OpenVMS is much greater than on UNIX systems.

OpenVMS Development
Porting Windows and UNIX Code to OpenVMS

Portability Guide 10.3.3 (5/16) 3-31

 OpenVMS systems only have global message queues.

 The C interface does not exist as such on OpenVMS systems; the interface from Synergy DBL
to other languages is defined in OpenVMS’s architecture reference manual, available from HP.

 OpenVMS ISAM files use RMS. READ REVERSE only works on ISAM files.

 You must use the RECSIZ OPEN statement qualifier when you open a relative file for output.

 The DETACH statement is not implemented.

 The FORK subroutine is not implemented.

4-1

4
.NET Development

This chapter of the Professional Series Portability Guide contains information about Synergy DBL
that is specific to .NET.

Differences for .NET 4-2

Lists differences between Synergy .NET and traditional Synergy.

Unsupported Features in Synergy .NET 4-14

Lists the Synergy routines, statements, options, environment variables, and compiler directives that
are not supported in .NET. Also lists unsupported .NET Framework and Visual Studio features.

Unsupported Features for Universal Windows Platform 4-20

Lists Synergy routines, products, etc., that are not supported for Universal Windows Platform
development.

Unsupported Features for Mono 4-22

Lists the Synergy routines, statements and modifiers, products, and so forth that are not supported
for Mono development.

Unsupported Features for Portable Class Libraries 4-25

Lists the Synergy routines and APIs that are not available when developing portable class libraries.

.NET Development
Differences for .NET

4-2 Portability Guide 10.3.3 (5/16)

Differences for .NET
This section lists the ways Synergy DBL support differs for Synergy .NET development, which
includes development for

 Microsoft .NET on Windows, including Universal Windows Platform (UWP)

 Mono on Android, iOS, and Linux

 portable class libraries, which can target all of the above platforms

For more information, see “Synergy .NET Basics” in the “Developing with Synergy .NET” chapter
of Getting Started with Synergy/DE.

For information on unsupported features, see

 “Unsupported Features in Synergy .NET” on page 4-14

 “Unsupported Features for Mono” on page 4-22

 “Unsupported Features for Portable Class Libraries” on page 4-25

Runtime
Synergy .NET assemblies run under the .NET Framework CLR or the Mono CLR rather than the
Synergy Runtime, but some Synergy runtime functionality is required for Synergy .NET. This is
supplied by runtime libraries that must be referenced in Synergy .NET projects. See “Synergy
runtime libraries” in the “Developing with Synergy .NET” chapter of Getting Started with
Synergy/DE for more information.

Destructors are non-deterministic on .NET. Order and timing are at the discretion of garbage
collection, and they may even execute after a STOP statement.

Building (compiling)
With Synergy .NET, you use Visual Studio build features (MSBuild) to create assemblies from
Synergy projects. (Running the Synergy .NET compiler directly from the command line is not
supported.) Note the following:

 All programs are compiled as if the following compiler options were set in traditional Synergy:
-qalign, -qcheck, -qnet, -qnoargnopt, and -qreentrant. This means, for example, that all
pseudo arrays are converted to real arrays, and subscript ranging and dimension access are
checked to ensure they do not exceed the descriptor of the passed variable.

 There are several defines that enable you to conditionalize code for Synergy .NET in general,
portable class library development, Mono development, and debugging. See “Compile-time
defines” in the “Developing with Synergy .NET” chapter of Getting Started with Synergy/DE.

.NET Development
Differences for .NET

Portability Guide 10.3.3 (5/16) 4-3

 Synergy .NET can use only forward references for external entries in class libraries. All global
symbols must be resolved at the time an assembly (class library or executable) is compiled.
Unlike traditional Synergy, it is not possible for a global record in an .exe file to be referenced
by an external record in a class library. See “Preparing Existing Code for Synergy .NET” in the
“Developing with Synergy .NET” chapter of Getting Started with Synergy/DE for more
information.

 For optimization, all records default to stack records. This means that large data divisions (e.g.,
8000a2000) can cause stack overflow errors or compile errors on Mono (where records cannot
exceed 1 MB) and some web server platforms (such as IIS, which limits the stack to 256K). If
your application does not use multithreading, you can work around this by using STATIC in
front of such records (including records in mainline code, which default to STACK) or by
using a dynamic array. And note that unlike traditional Synergy, stack records do support
initial values in Synergy .NET.

You can use the “Generate warning when stack size exceeds # bytes” option on the Compile
page of Visual Studio Project Designer to detect if the total stack data used by a routine
exceeds a given size. For more information, see the “Compile Page” topic in Synergy/DE
WebDocs.

Debugging
For Windows development, Synergy .NET uses the Visual Studio .NET debugger (rather than the
Synergy debugger), and for Mono development it uses the Xamarin debugger, which opens within
Visual Studio. Debugging is not supported for Mono development for Linux. See “Debugging
Synergy .NET code” in the “Developing with Synergy .NET” chapter of Getting Started with
Synergy/DE for more information on limitations and special features for Synergy .NET.

Data types

Arrays

You cannot declare a real array of a .NET type (e.g., [10]D_ADDR or [10]Int) because with .NET,
D_ADDR is shorthand for System.IntPtr, and Int is shorthand for System.Int32. Instead use either
an array of i4 for D_ADDR on 32-bit, i8 for D_ADDR on 64-bit, or a dynamic array ([#]int or
[#]D_ADDR).

When passing a Synergy real array, the number of ranks must match the argument definition in the
called routine.

Passing a non-array field to a pseudo array argument — i.e., an argument defined with (*) — passes
a single dimension array of one element. With traditional Synergy, you can do this if -qcheck is not
used, and you can subscript beyond the end of the field. This is not possible with Synergy .NET
because of strong bounds checking (which operates as if -qcheck were specified with traditional

.NET Development
Differences for .NET

4-4 Portability Guide 10.3.3 (5/16)

Synergy). And with Synergy .NET, passing ^M(field, data_area) to a pseudo array or real array
argument will result in an array of field whose dimension is determined by the number of these
fields that will fit in the memory area.

Data type identifiers

Handles for ^M should be defined using D_HANDLE. D_ADDR is not supported for use with ^M
or arguments to functions that take a handle.

Decimal

A decimal assignment to an integer or unsigned integer derivative will cause a BIGNUM error if
the decimal value exceeds the maximum for a 64-bit int.

Integer

For optimization, integer fields (which are usually descriptor types) are in many cases converted to
native .NET data types (value types):

 i1 becomes System.Sbyte

 i2 becomes System.Int16

 i4 and int (which are synonymous in traditional Synergy) become System.Int32

 i8 becomes System.Int64

Generally, these conversions are seamless; there’s no need to consider them as you code. They can,
however, cause problems if you rely on automatic boxing or unboxing. For example, the following
code (which works in traditional Synergy) won’t work with .NET because casting ivar as (object)
results in an @int, which can’t be unboxed to an (@i4). (You can’t unbox one type to another.)

record
num ,@object
ivar ,i4
proc
num=(object)ivar ;Results in an @int
ivar=(i4)num ;Attempts to unbox the @int to an (@i4)

To prevent this, force the data type as you box/unbox to ensure you use the same type. For example,
the above would work for both traditional Synergy and Synergy .NET if ivar was explicitly boxed
using (@i4):

num=(@i4)ivar

or unboxed using (int):

ivar=(int)num

.NET Development
Differences for .NET

Portability Guide 10.3.3 (5/16) 4-5

Additionally, note the following:

 Some arithmetic BIGNUM errors don’t occur on integer types because the intermediate result
is generally an Int64.

 Functions that FRETURN an i8 on a 32-bit platform return the i8.

 Functions that return ^VAL on 32-bit don’t generate a BIGNUM error if an i8 whose value is
too large to fit in an i4 is returned.

Literals

Types for literals (and literals cast as object types or passed to parameters of object types) are
changed from Synergy literal types to corresponding .NET literal types. For example, “abc” is type
string, and 10 is int or @int. If you want Synergy literal types, cast the literal as the desired
Synergy type (@a or @i).

Objects and value types

Objects and certain .NET value types (such as IntPtr) in named entities (structures and records) are
automatically aligned on native boundaries for .NET Framework CLR requirements. This causes an
automatic align warning to notify of the implicit alignment of such fields. Use .ALIGN to suppress
this warning. Additionally, structures that contain alignable types are padded to a multiple of the
highest alignment size for use in arrays. A warning is reported when this occurs (WALIGN, “Align
warning: structure padded because of alignment”). To avoid this, add a filler.

Overloading

Overloading by using a BYVAL parameter and a BYREF parameter of the same type is not
supported.

Arguments cannot be overloaded, so passing a d. value to a d argument results in the d argument
accessing a rounded whole value. Use ^D to correctly cast such variables.

.NET Development
Differences for .NET

4-6 Portability Guide 10.3.3 (5/16)

Parameters

Note the following when passing parameters:

 Only descriptor types can be optional.

 Passing a decimal or implied-decimal type into a MISMATCH alpha parameter that is not
marked as IN causes a PASSUR warning. To avoid this warning, either change the parameter to
IN (recommended) or cast the call as ^A(), but make sure your routine can never create an
invalid decimal variable.

 In traditional Synergy, an alpha parameter passed to a MISMATCH n parameter is typed
decimal, whereas in Synergy .NET, the passed alpha parameter remains an alpha type. This can
cause subtle behavioral differences. To avoid unexpected results, use MISMATCH n only

 for routines that pass the parameter as an argument to another routine marked
MISMATCH n.

 when you explicitly use ^DATATYPE and cast with ^A of the argument.

If you do not explicitly use ^DATATYPE and ^A and want to pass an alpha to a routine n
argument, change the call to use ^D() instead of making the routine MISMATCH n.

String

A new String() cannot take an alpha argument in Synergy .NET. Instead use stringvar = “abc”.

Structfields

Numeric types cannot be assigned to structfields. Attempting to do so results in a NETALLOW
error during compilation.

Directives
Some directives are not supported for Synergy .NET. See “Directives” on page 4-14.

.INCLUDE

Repository field names with prefixes (created by the PREFIX qualifier) are not truncated. In
traditional Synergy, a repository field name is truncated if it is longer than 30 characters.

Boxing and unboxing
If you have System.Object=@d, you can unbox the object only to a d, and you must unbox it
explicitly. The object cannot be automatically unboxed because the compiler cannot detect its type.

Boxed types are automatically unboxed under only when a boxed type argument is passed to an
unboxed type parameter or to a boxed type assigned to an unboxed type. The types must match or
must both be integer or numeric, and the boxed variable must be explicitly typed. In all other cases,

.NET Development
Differences for .NET

Portability Guide 10.3.3 (5/16) 4-7

you must explicitly cast the variable to unbox it. (With traditional Synergy, several circumstances
result in automatic unboxing.) For more information, see “Boxing” in the “Understanding Objects
and Classes” chapter of the Synergy DBL Language Reference Manual.

Exception handling
If an exception is thrown by a method called by XSUBR, and the exception is caught in a
TRY-CATCH block in the calling method, the caught method will not have the same type as the
original exception thrown in the called method. Instead, it will have the type
System.Reflection.TargetInvocationException. This type includes the original exception as the
InnerException property and is necessary to preserve stack trace information. (ONERROR
processing is different: with ONERROR, the error number is preserved.)

Note the following:

 ONERROR (and exception handling in general) is slow in .NET. Use I/O error lists instead of
ONERROR or TRY-CATCH.

 CALL-RETURN is not allowed inside a TRY block.

 When a STOP statement is executed in a CATCH block, the FINALLY block will not be
executed. Refer to .NET Framework documentation for further information about how and
when FINALLY blocks are executed.

Memory
Unlike traditional Synergy, Synergy .NET uses garbage collection for non-deterministic destruction
of objects. For information on emulating deterministic destruction of objects, which may be
necessary with resource-intensive objects (e.g., large Synergy arrays and Select objects), see
Microsoft’s documentation on implementing the Dispose pattern.

Structures, records, and fields
If your application uses global commons, global data sections, or public class fields that are
accessed across assemblies, whenever one of those elements changes, you must recompile all
projects that reference the assembly containing the element. We recommend that you use assembly
versioning on your dependent projects as well. (Traditional Synergy does not have this problem
because names are resolved at runtime, not at build time.)

Structures

Synergy .NET supports both Synergy structures and .NET structures. (Synergy structures are
defined using STRUCTURE statements, and .NET structures are defined using CLS STRUCTURE
statements.) Unlike Synergy structures, .NET structures are compatible with C# and other .NET
languages within the public namespace. However, .NET structures cannot contain descriptor types
or have overlays, and they cannot be used with ^M, passed as alpha arguments, or declared as real
arrays (only dynamic arrays).

.NET Development
Differences for .NET

4-8 Portability Guide 10.3.3 (5/16)

You cannot use a local structure to define a structfield in a global data section. With Synergy .NET,
global data sections and commons are true global entities, and only global structures can be used to
define structfields.

Records and fields

Note the following for records and fields:

 Records and fields are not restricted to 65,534 bytes on 32-bit platforms. But for Mono
development, no individual literal, record, common, or global data section can exceed 1 MB.

 Stack records are initialized on routine entry and initial values are allowed.

 Differing record definitions for a global data area are not supported. With Synergy .NET, every
record in a global data declaration that does not include ,INIT must match a record in the
declaration that does include ,INIT. (The ,INIT declaration may have additional records, but
every record in the non-INIT declaration must be in the ,INIT declaration.) A record must
match in name, number of fields, field names, field types and sizes, etc. If you have a record
whose non-INIT and ,INIT declarations do not match, create an overlay in the ,INIT
declaration to match the non-INIT record.

 An external common field cannot differ in size or data type from the corresponding global
common field. With Synergy .NET, external and global common declarations for a field must
match in every respect. If you have a field whose declarations differ, create an overlay in the
global common declaration to match the field in the external common declaration.

 A record cannot overlay a common in Synergy .NET. Attempting this will cause an OLYBD
error.

Statements

TRY-CATCH and ONERROR

An exception from XCALL EXITE or a runtime-signaled error can be caught by TRY-CATCH in
the current or previous routine, or by ONERROR in any prior routine. (With traditional Synergy, an
XCALL EXITE always transfers control to a prior routine and cannot cause a program to stop with
a fatal error.)

ACCEPT, GETS, and READS

Terminal channel (TT:) functionality for ACCEPT, GETS, and READS is supported only for
console applications in Synergy .NET. Additionally, these routines do not accept characters from
applications that use the Synergy Windowing API; you must instead use WD_ACCEPT,
WD_GETS, and WD_READS.

.NET Development
Differences for .NET

Portability Guide 10.3.3 (5/16) 4-9

FOREACH

Note the following when using FOREACH for .NET development:

 The .NET Framework does not allow the current collection to be modified in a FOREACH
statement from within the FOREACH. Attempting this will result in the error
“System.InvalidOperationException: Collection was modified; enumeration operation may not
execute.”

 The loop variable type for a FOREACH statement must match the type for each element in the
statement’s collection or a runtime cast exception will occur. For example, a FOREACH
statement that uses a collection of structfields for a structure made up of alpha fields can have a
loop variable whose type is a (alpha) if you are using traditional Synergy. But this will not
work with Synergy .NET unless you use the [AS type] extension to the FOREACH syntax:

FOREACH loop_var in collection [AS type]

 Executing a FOREACH statement on a collection where the test condition is == ^NULL will
cause a null reference exception on the GetEnumerator call used in the implementation. (With
traditional Synergy, this would result in no operation.)

 The enumerator created implicitly by a FOREACH statement is disposed at the end of the loop.
If the collection implements the dispose pattern and is a new instantiation, the temporary object
created by the new instantiation has its Dispose method called automatically at the end of the
loop.

OPEN

When using devices you must use explicit paths or use SETDFN for a default path. Available
locations and capabilities are device specific.

READ

An optional subroutine argument that is omitted cannot subsequently be used as the key_spec
argument to a READ statement.

RETURN

A call to RETURN behaves as a call to XRETURN if there are no more items on the call stack,
regardless of whether a CALL has occurred. (In traditional Synergy, a RETURN behaves as an
XRETURN if at least one CALL has occurred, and causes a NOCALL runtime error it there has
been no prior CALL.)

STOP chaining

Chaining to a program with the STOP statement is not supported for Mono, but for the .NET
Framework on Windows, there is a delay when the new program is started, and any on-screen data
is cleared and re-created, which may cause flicker. This is a .NET Framework limitation. We do not
recommend using STOP to chain with Synergy .NET.

.NET Development
Differences for .NET

4-10 Portability Guide 10.3.3 (5/16)

USING and CASE

USING and CASE operate as if the -qnoargnopt option were specified in traditional Synergy:
numeric types are honored, string control variables in a USING statement cause string
comparisons, and match labels for USING ranges are not rounded to whole numbers.

Subroutines and functions
With Synergy .NET, subroutines cannot be called as functions. To work around this, convert the
subroutine to a ^VAL function.

^ARG* routines

We strongly recommend against using the ^ARG* routines with declared arguments because of the
high overhead they incur.

^D and ^I

Using ^D or ^I on null alpha literals or intermediate results returned from %ATRIM correctly
generates a NULARG error because these types cannot have a length of 0.

%ERLIN, ERRMOD, %ERROR, and MODNAME

%ERLIN, ERRMOD, %ERROR, and MODNAME do not return line numbers on device platforms
(though line numbers are returned in the textual property for a stack trace) and have limited line
number support on Windows and Unix desktop and server applications. Additionally, the
file_number argument for MODNAME is always returned as 0 with Synergy .NET. See %ERLIN,
ERRMOD, %ERROR, and MODNAME in the “System-Supplied Subroutines and Functions”
chapter of the Synergy DBL Language Reference Manual for more information.

%NUMARGS

%NUMARGS returns the number of the last passed argument, which can be different than the
return value in traditional Synergy if there are optional arguments. For example, if a subroutine
called mysub has three optional arguments, %NUMARGS will return 2 for both traditional
Synergy and Synergy .NET for this example:

xcall mysub(arg1, arg2)

But for the following, it will return 3 for traditional Synergy and 2 for Synergy .NET:

xcall mysub(arg1, arg2,)

And for the following, if mysub has one optional argument, %NUMARGS will return 1 for
traditional Synergy but 0 for Synergy .NET:

xcall mysub()

.NET Development
Differences for .NET

Portability Guide 10.3.3 (5/16) 4-11

OPENELB, %XADDR, and XSUBR

In traditional Synergy, ELBs linked to an executable (.dbr) are automatically loaded when the
executable is run, and ELBs linked to a loaded ELB are automatically loaded. This behavior
enables %XADDR and XSUBR to work. With .NET, however, referencing an assembly does not
cause the assembly to be loaded. And the .NET Framework method Assembly.Load does not
always work with %XADDR or XSUBR. To load an assembly, use either OPENELB or add
method calls to the referenced assembly. Note the following:

 Only public routines (those not marked INTERAL) can be used with %XADDR or XSUBR.

 %XADDR and XSUBR do not perform well in Synergy .NET because they use reflection. Use
direct method calls in critical code paths.

 OPENELB is not supported for portable class libraries, Universal Windows Platform, or iOS.
Although it is available for Android, we strongly recommend against using it for this platform.

 OPENELB and %XADDR do not use the .elb extension in Synergy .NET. They open .NET
assemblies according to the rules for loading assemblies in the .NET Framework. Assemblies
can be loaded using a partial name (e.g., Synergex.SynergyDE.synxml), a fully qualified name
(e.g., Synergex.SynergyDE.synxml, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=114C5DBB1312A8BC), or a full path (e.g.,
C:\Windows\assembly\GAC_MSIL\Synergex.SynergyDE.synxml\2.0.0.0__114c5dbb1312a8b
c\Synergex.SynergyDE.synxml.dll). Microsoft’s recommended practice when loading
assemblies is to use the fully qualified name when possible, to prevent versioning issues.
Additionally, the elb argument for %XADDR is supported only when OPENELB is supported.

 We strongly recommend against using OPENELB, %XADDR, or XSUBR for device
development. For iOS and Universal Windows Platform, if there is no compile-time binding
(that is, an actual resolved method call) for one of these routines, it won’t be included in the
compiled device application. And keep in mind that all assemblies in a device application will
be compiled into one file (which prevents OPENELB and the elb option for %XADDR from
working).

SETDFN

On devices there is no current directory, so we recommend that you use SETDFN to set a default
location for temporary files and for files that do not use environment variables for access. For
information, see “Using Data Files on Devices” in the “Developing with Synergy .NET” chapter of
Getting Started with Synergy/DE.

.NET Development
Differences for .NET

4-12 Portability Guide 10.3.3 (5/16)

%SYN_FREECHN

Do not use %SYN_FREECHN when using multi-threading with Synergy .NET. Instead, pass a
variable set to 0 in the OPEN call. This will cause the Synergy .NET runtime to automatically
generate a channel number. For example, a statement such as the following may result in a
“Channel is in use” error ($ERR_CHNUSE) if two threads attempt to execute the statement
simultaneously:

OPEN(var=%SYN_FREECHN, I, 'mylst')

The following, however, won’t cause this error:

OPEN(var=0, I, 'mylst')

%TNMBR

%TNMBR always returns either the environment variable TNMBR or -1.

XSTAT

XSTAT is for use only with SHELL and SPAWN.

System-supplied classes
For Universal Windows Platform, the Lineno member of SynException is not populated.

APIs

Synergy DLL API

We recommend you use the .NET DllImport attribute instead of %DLL_NETCALL or
%DLL_CALL.

Synergy XML API

To use the XML API, you must add a reference to Synergex.SynergyDE.synxml.dll.

Synergy windowing API

The UNIX-compatible (non-mouse) functionality of the Synergy windowing API is fully supported
for the .NET Framework on Windows. (This API is not supported for Mono development.) You can
set the SYN_RESIZE_SCALE environment variable to 1 to make the application window resizable
and maximizable.

Synergy socket API and HTTP document transport API

You should explicitly close channels and sockets used by these APIs and free global memory
handles. Do not assume that shutting down the program or AppDomain will do this.

These are not available for Mono development or when a project is set to “Enable device licensing”
(a setting on the Compile page of Project Designer).

.NET Development
Differences for .NET

Portability Guide 10.3.3 (5/16) 4-13

Repository subroutine library
To use the Repository subroutine library (the DD_ routines), you must add a reference to
Synergex.SynergyDE.ddlib.dll.

Environment variables and initialization files
Initialization files and some environment variables can be used for .NET development, and in some
cases they can be used for runtime settings. See “Environment variables” in the “Developing with
Synergy .NET” chapter of Getting Started with Synergy/DE for information, and see “Environment
variables” on page 4-17 for a list of unsupported environment variables.

.NET Development
Unsupported Features in Synergy .NET

4-14 Portability Guide 10.3.3 (5/16)

Unsupported Features in Synergy .NET
The features (routines, directives, etc.) listed in this section are not supported for any Synergy .NET
development (Windows, Android, iOS, Linux, or portable class libraries).

Routines that are part of an unsupported API or product are not listed individually.

Data types
The p (packed) and f (float) data types are not supported for .NET development.

Directives
The following preprocessor directives are ignored:

Statements and statement modifiers
The following statements are ignored:

The $SCR functions for the DISPLAY statement are ignored.

The PROTECTED and PRIVATE qualifiers for the ENUM statement are not supported.

The MASK qualifier on the GETS statement is ignored.

The TRUNCATE modifier is ignored for the FUNCTION, MAIN, METHOD, and SUBROUTINE
statements.

.LIST

.NODEBUG

.NOLIST

.NOPROTO-.PROTO

.PAGE

.START

.TITLE

ALLOC
BKTSIZ
BLKSIZ
BUFNUM
BUFSIZ
CONTIG

DEQ
DETACH
RECTYPE
RECV
SEND

.NET Development
Unsupported Features in Synergy .NET

Portability Guide 10.3.3 (5/16) 4-15

Subroutines and functions
Synergy .NET does not support the following routines (along with all routines for APIs listed in
“APIs” on page 4-15). Unsupported routines generally cause compiler errors.

EXEC is supported only for Mono development.

TTSTS is supported only with a program that uses the Windowing routines (W_) for Windows
desktop/server development (i.e., not Universal Windows Platform).

APIs
The following Synergy APIs are not supported for .NET:

Synergy ActiveX API

Synergy floating point API

Synergy routine call block API (partially replaced with ^VARARGARRAY())

Synergy .NET assembly API

Synergy DBL C interface

ACESC
ASTRST
ASTSAV
BREAK
BTOD
CREMBX
CVTIIV
CVTIZV
DAESC
DBL$ subroutines
DELMBX
DTOB
EMPBUF
ENDFL
%ERR_TRACEBACK
FATAL
FORK
FSTAT
%FSTAT
FXSUBR
GETCM
GTPPN
%HTTP_METHOD
%HTTP_SERVER routines

%INIT_SSQL
KILL
%LINE
LOCALIZE
%PACKED
PAINT
%PAINT
^PASSTHRU
PURGE
PUTCM
RCFLG
RCVID
^REF
%RX_DEBUG_INIT
%RX_DEBUG_START
%RX_RMT_ENDIAN
%RX_RMT_INTSIZE
%RX_RMT_OS
%RX_SETRMTFNC
SDMS_SEL
SERIAL
SET_XFPL_TIMEOUT
SETCTL
SORT

%SS_FATALSTTY
%SUCCESS
%SYN_ATEXIT
%SYN_CHARTOSTR
SYN_REPORTEVENT
TFLSH (doesn’t cause error)
TT_NAME_TO_NUMBER
TT_NUMBER_TO_NAME
TTBRDCST
TTCHAR
TTFLGS
TTMBX
%TTNAME
%TTSTS
VMCMD
VMMSG
%VMS
%WAIT
XARGS
XFPL_LOG
XFPL_REGCLEANUP
^XTRNL

.NET Development
Unsupported Features in Synergy .NET

4-16 Portability Guide 10.3.3 (5/16)

The DLL_TYPE_DBLCALL convention for %DLL_CALL is not supported and results in a
runtime error.

The second argument to %DLL_OPEN is not supported and is ignored.

Synergy/DE products
The Synergy/DE ReportWriter external subroutine interface is not supported for Synergy .NET.

A limited version of UI Toolkit is available for Microsoft .NET Framework on Windows for
desktop and server applications, but it has had limited testing and is unsupported. (It is not available
for Universal Windows Platform, Android, iOS, or portable class libraries.) See “Using UI Toolkit
code in Synergy .NET” in the “Welcome to UI Toolkit” chapter of the UI Toolkit Reference
Manual.

xfNetLink .NET Edition and xfNetLink Java Edition are not supported. Some xfNetLink Synergy
API (RX* routines) are supported.

Utilities
The following general utilities are not supported for Synergy .NET:

Synergy UI Toolkit Control Panel

Synergy DBL Profiler

Servstat

Monitor Utility for UNIX

ActiveX Diagnostic Utility

Synergy Prototype Utility

Variable Usage Utility

Gennet Utility

Dbl2xml Utility

.NET Development
Unsupported Features in Synergy .NET

Portability Guide 10.3.3 (5/16) 4-17

Environment variables
Environment variables that are not supported for traditional Synergy on Windows are not supported
for Synergy .NET. Additionally, the following environment variables, which are supported for
traditional Synergy Windows, are ignored for .NET development and deployment on Windows.

ACTIVEX_LIST
ALT_ variables
APP_HEIGHT
APP_SCALE
APP_WIDTH
AXDEBUG
CMPBSIZ
COMBUF
DBG_BUFFER
DBG_HEIGHT
DBG_INIT
DBG_WIDTH
DBG_X
DBG_Y
DBGSRC
DBL$FATAL_IMAGE
DTK_BEEP
DTK_MENU_UP
DTK_THROW_ABORT
DTKDBG
DTKFSWINSIZ
DTKKEYCTLFIL
DTKMAP
DTKMAPFIL
DTKRND
DTKRNDFIL
DTKTERM
DTKTMP

EDIT_SYSMENU
FONT
FONT_ALPHAFLD
FONT_ALTERNATE
FONT_DEBUG
FONT_FOOTER
FONT_GLOBAL
FONT_HEADER
FONT_INFO
FONT_LIST
FONT_NUMFLD
FONT_PROMPT
FONT_TEXT
FONT_WIDTH
KEEP_BORDER
LIBBSIZ
LIBNBUF
LNKBSIZ
LNKNBUF
MAXMEM
MAXMEMMAX
MAXRECURSELEVEL
MEMDBG
OPTIMIZE_REDRAW
PRINT_PREVIEW_BOTTOM
PRINT_PREVIEW_LEFT
PRINT_PREVIEW_SCROLL
PRINT_PREVIEW_TOP

PRINT_PREVIEW_ZOOM
PROFILE_PROCESSOR_TIME
RETAIN_CONTEXT_CHANGE_ON_

SIGNAL
SDMS_AUDIT
SIG_CORE
SYN_3D_TOOLBAR
SYN_TRANSPARENCY_THRESHOLD
SYN_TRANSPARENT_COLOR
SYNBIN
SYNBITSIZE
SYNCENTURY
SYNCMPOPT
SYNCSCOPT
SYNDEFNS
SYNEXPDIR
SYNIMPDIR
SYNNET_DEBUG
TABSET_STYLE
TERM
WBNOINC
WBTAGCOUNT
WBTAGDELAY
WND
XFNLS_LOGFILE
XSHOW

.NET Development
Unsupported Features in Synergy .NET

4-18 Portability Guide 10.3.3 (5/16)

System options
System options that are not supported for traditional Synergy on Windows are not supported for
Synergy .NET. Additionally, the following system options, which are supported on traditional
Synergy on Windows, are ignored for Synergy .NET:

#1 Default SEND queue

#2 Default file specification on STOP

#5 CRT mode

#10 Interrupt character(s)

#11 Rounding vs. truncation

#13 Default SEND queue

#17 Terminal number returned by TNMBR

#21 Interrupt trapping

#22 LPQUE statement

#29 Dimensioned variable

#35 VAX DIBOL–compatible functionality

#37 VAX DIBOL–compatible store

#38 VAX DIBOL–compatible OPEN with O:P

#39 VAX DIBOL–compatible OPEN with TT: and echoing characters

#40 XCALL profiling

#41 Cumulative XCALL profiling

#42 Profiling regardless of compiler options

#43 Stop message

#52 Line profiler

#53 Record defaults to LOCAL record

#54 Relax rules for compiling with -qcheck

.NET Development
Unsupported Features in Synergy .NET

Portability Guide 10.3.3 (5/16) 4-19

.NET Framework features
The following .NET Framework features are not supported by Synergy .NET:

 LINQ syntax

 Dynamic language extensions

 Fixed, Unsafe, Using, Checked, and Unchecked statements/modifiers

 Using (alias declaration)

These unsupported language features will generate errors if contained in C# example code run
through the Code Converter.

Visual Studio features
The following Visual Studio features are not supported:

 Web form projects

 Edit and Continue

 The Autos window, which displays variables for the current statement (Debug > Windows >
Autos)

 Visual Studio Team System features that require additional plug-in support from Synergy

 Refactoring

.NET Development
Unsupported Features for Universal Windows Platform

4-20 Portability Guide 10.3.3 (5/16)

Unsupported Features for Universal Windows Platform
Universal Windows Platform (UWP) is a limited, self-contained environment that represents a
subset of the Microsoft .NET Framework. Therefore any feature listed in “Unsupported Features in
Synergy .NET” on page 4-14 is also unsupported for UWP.

Subroutines and functions
The following are not supported for UWP development. (Routines that are part of an excluded API
or product are not listed individually.)

Additionally, using OPEN for a terminal device (TT:) is not supported.

Although %XADDR and XSUBR are available for UWP, we strongly recommend against using
them for these platforms.

Arrays
No more than three dimensions are supported for arrays (due to .NET Native restrictions).

APIs
The following are not supported for UWP development:

Synergy DLL API

Synergy HTTP document transport API

Synergy windowing API

Synergy Windows printing API

Synergex XML API (Contact Synergex if you need this.)

ACCHR
ASCR5
CMDLN
CPUTIME
DACHR
DATA_DECRYPT
DATA_ENCRYPT
DATA_SALTIV
DFLAG
EXEC
GLINE
INITPORT

JBNAM
%JBNO
MODNAME
MONEY
OPENELB
PARSE
R5ASC
%RVSTR
S_SERVER_THREAD_INIT
S_SERVER_THREAD_SHUTDOWN
%SET_PRIORITY_CLASS
SHELL

%SYN_GETDIR%SYN_GETSTATE
%SYN_SETDIR
%SYN_SETSTATE
%SYN_UNAME
%SYNMSW_GETFILENAME
%SYNMSW_MSGBOX
%SYNMSW_PRINTQUERY
%SYNMSW_PRINTSETUP
%TNMBR
TRACEBACK
XSTAT

.NET Development
Unsupported Features for Universal Windows Platform

Portability Guide 10.3.3 (5/16) 4-21

Synergy/DE products
The following Synergy/DE products are not supported for UWP:

UI Toolkit

Repository (Contact Synergex if you need this.)

ReportWriter

xfODBC

SQL Connection

Licensing Toolkit

xfServerPlus/xfNetLink

Encryption
Encryption is not supported for UWP.

Environment variables and initialization files
There is limited support for environment variables and initialization files for UWP development.
See “Environment variables” in the “Developing with Synergy .NET” chapter of Getting Started
with Synergy/DE for information, and see “Environment variables” on page 4-17 for a list of
environment variables that are not supported for .NET.

System options
System options are not supported for UWP.

.NET Development
Unsupported Features for Mono

4-22 Portability Guide 10.3.3 (5/16)

Unsupported Features for Mono
Mono on Android, iOS, and Linux is a limited, self-contained environment that is a subset of the
Microsoft .NET Framework. Only features that are supported for .NET and for UNIX are supported
for Mono. Therefore, with a few exceptions, any feature listed in “Unsupported Features in Synergy
.NET” on page 4-14 and any feature that is not supported on UNIX is also unsupported for Mono.
This section does not list such features; it lists features supported for .NET and UNIX, but not
Mono.

Routines that are part of an excluded API or product are not listed individually.

Data and ISAM files
Records or structures larger than 1 MB are not supported for Mono development (Android, iOS,
or Linux).

Terabyte files are not supported for devices. In addition to files created with the TBYTE option, the
following are created as terabyte files unless they are created on a device:

 ISAM files created with the TRACK_CHANGES option

 ISAM files that support variable-length records larger than 64K

If you want to use one of these types of file on a device, you must explicitly define the file as a
non-terabyte file—e.g., by using NOTBYTE with bldism or no48 with the address keyword for
XDL).

Statements
The LPQUE statement is not supported for Mono development.

The following are supported for Linux, but not for Android or iOS development:

FORMS

LPQUE

RECV

SEND

STOP

Chaining in STOP is not supported for Mono development.

ACCEPT, GETS, and READS are supported, except for terminal (TT:) functionality. Terminal
functionality is not supported for Mono development.

.NET Development
Unsupported Features for Mono

Portability Guide 10.3.3 (5/16) 4-23

Subroutines and functions
The following are not supported for Mono development:

JBNAM

%SYN_GETSTATE

%SYN_SETSTATE

Additionally, using OPEN for a terminal device (TT:) is not supported for Mono.

The following are supported for Linux, but not Android or iOS:

For Mono development, OPENELB is supported only for Linux. (It is available for Android
development, but is not recommended for that platform.) And %XADDR and XSUBR are
supported for Mono, but are not recommended for device development. See “OPENELB,
%XADDR, and XSUBR” on page 4-11.

APIs
The following are not supported for Mono development:

Licensing Toolkit API

Synergy DLL API

Synergy Windows printing API

Synergy windowing API

Synergy socket API

The following are supported for Linux, but not Android or iOS:

%SS_FATAL

Synergy HTTP document transport API

Synergy XML API, by adding a reference to Synergex.SynergyDE.synxml.dll
(Contact Synergex if you need this for device development.)

Encryption
Encryption is supported for Linux, but not Android or iOS.

ACCHR

ACESC

EXEC

KILL

RUNJB

SPAWN

STOP

STTY

.NET Development
Unsupported Features for Mono

4-24 Portability Guide 10.3.3 (5/16)

Environment variables and initialization files
There is limited support for environment variables and initialization files for Mono development.
See “Environment variables” in the “Developing with Synergy .NET” chapter of Getting Started
with Synergy/DE for information, and see “Environment variables” on page 4-17 for a list of
environment variables that are not supported for .NET.

System options
System options are supported for Linux, but not Android or iOS.

Synergy/DE products
The following Synergy/DE products are not supported for Mono:

UI Toolkit

ReportWriter

xfODBC

SQL Connection

Licensing Toolkit

xfServerPlus/xfNetLink

Repository is supported if you add a reference to Synergex.SynergyDE.ddlib.dll, but it is not
supported for device development. Contact Synergex if you need it for device development.

Utilities
The following utilities are not supported for Mono (though if a Synergy utility is supported on
Unix—e.g., bldism—it can run on a Linux machine outside of the Mono framework):

 Synergy DBMS utilities

 All general Synergy utilities except Synbackup (Synbackup is supported for Mono)

.NET Development
Unsupported Features for Portable Class Libraries

Portability Guide 10.3.3 (5/16) 4-25

Unsupported Features for Portable Class Libraries
Features listed in this section are not supported for portable class libraries. Additionally, features
that are unsupported for Synergy .NET in general, Universal Windows Platform (UWP), and Mono
are unsupported for portable class libraries. See

 “Unsupported Features in Synergy .NET” on page 4-14

 “Unsupported Features for Universal Windows Platform” on page 4-20

 “Unsupported Features for Mono” on page 4-22

Subroutines and functions
The following routines are not supported:

Using OPEN for a terminal device (TT:) is not supported, and the GUIWND qualifier for OPEN is
not supported.

%XADDR and XSUBR are supported for portable class libraries, but are not recommended for
device development. See “OPENELB, %XADDR, and XSUBR” on page 4-11.

Arrays
No more than three dimensions are supported for arrays in portable class libraries.

APIs
The following are not supported for portable class library development:

Synergy HTTP document transport API

The Synergy DLL API

As an alternative to the Synergy DLL API, you can use Platform Invoke (P/Invoke). See Microsoft
documentation on Platform Invoke for information.

ACCHR
ASCR5
CMDLN
CPUTIME
CPUTM
DATA_DECRYPT
DATA_ENCRYPT
DATA_SALTIV
DFLAG
ERTXT

GLINE
INITPORT
%JBNO
MODNAME
MONEY
OPENELB
R5ASC
RUNJB
S_SERVER_THREAD_INIT
S_SERVER_THREAD_SHUTDOWN

SHELL
SPAWN
STOP
%SYN_GETDIR
%SYN_SETDIR
%SYN_UNAME
%TNMBR
TRACEBACK
XSTAT

.NET Development
Unsupported Features for Portable Class Libraries

4-26 Portability Guide 10.3.3 (5/16)

Statements
The following are not supported for portable class library development:

LPQUE

SLEEP

STOP

The WAIT I/O qualifier is also unsupported for portable class libraries.

Portability Guide 10.3.3 (5/16) Index-1

Index

Symbols
$ character, in filenames on UNIX 3-29

A
about box 1-18
ACCEPT statement

OpenVMS 3-30
Synergy .NET 4-8
TTSTS, using with 2-29
UNIX 2-7
Windows 1-7

ACTIVATE_DBL.COM command file 3-5
.ALIGN compiler directive 4-5
/alloc option 3-9
APIs

Mono 4-23
portable class libraries 4-25
Synergy .NET 4-15
UWP 4-20

APP_HEIGHT initialization setting 1-12
See also Environment Variables & System Options

APP_STATE initialization setting 1-20
APP_WIDTH initialization setting 1-12

See also Environment Variables & System Options
application window, initial state 1-20
application, running on Windows 1-4 to 1-5
^ARG* routines and .NET 4-10
array, in Synergy .NET 4-3
AST routines 3-17
ASTRST subroutine 3-11, 3-17

OpenVMS 3-28
ASTSAV subroutine 3-11, 3-17

OpenVMS 3-28

B
big-endian 2-4 to 2-5
BKTSIZ qualifier 2-7, 3-9
BLKSIZ qualifier 2-7, 3-9
.BORDER script command 1-14
border, window 1-14

boxing 4-6
BREAK subroutine 2-9, 3-17
BTOD subroutine 3-12
/bufnum option 1-8, 2-8, 3-9
BUFNUM qualifier 2-7, 3-9
/bufsiz option 1-8, 2-8, 3-9
BUFSIZ qualifier 2-7, 3-9

C
C interface

OpenVMS 3-31
Windows 1-5

C subroutines, porting to UNIX and Windows 3-29
caption, window 1-16
case sensitivity on UNIX 2-4
CASE statement and .NET 4-10
CENTERED qualifier 1-15
chaining in .NET 4-9
channels, closing (.NET) 4-12
checked statements/modifiers (.NET) 4-19
close box 1-21
Close menu entry, enabling 1-20
close method 1-20
cma$tis_shr.exe file 3-6
CMDLN subroutine 3-12
%CNV_IP function 2-5
%CNV_PI function 2-5
color

UNIX 2-30
Windows 1-3, 1-13

.COLUMN script command 1-14
compiler, Synergy .NET differences 4-2
conditionalizing code for .NET 4-2
CONTIG qualifier 2-7, 3-9
CONVERTER program 3-18
CREMBX subroutine 3-11, 3-28
CTRL+C trapping 3-6
CTRL+Y trapping 3-6

D

Index-2 Portability Guide 10.3.3 (5/16)

D
^D and .NET 4-10
D_ALERT option 1-19
D_CAPTION option 1-16
D_CENTER option 1-16
D_CREATE subfunction 1-21
D_ERROR option 1-19
D_EVENT_CLOSE option 1-21
D_EVENT_XXX option 1-20
D_GUI identifier 1-4
D_HEADER option 1-16
D_METH_APPCLOSE option 1-20
D_MONO define 4-2
D_PORTABLE define 4-2
D_RETURNBTN option 1-16
D_RETURNBTN state 1-16
D_RIGHT option 1-16
D_TITLE option 1-16
data types and .NET 4-3 to 4-6
DBG_HEIGHT initialization setting 1-18
DBG_WIDTH initialization setting 1-18
DBG_X initialization setting 1-18
DBG_Y initialization setting 1-18
DBL$DEVCLT subroutine 3-11, 3-28
DBL$EXECUTE_IMAGE_ROUTINE subroutine 3-11,

3-28
dblmf 3-5
DBLNET define 4-2
DBLOPT environment variable 3-24

See also system option
DBL$PARSE subroutine 3-28
dblpq.bat file

UNIX 2-7, 2-27, 2-31
Windows 1-23

DBL$SETKRF subroutine 3-11
DBL$SNDOPR subroutine 3-11
DBLSTARLET directory 3-18
DBL$TTCHAR subroutine 3-28
DBMS utilities 4-24
dbr.tc 2-13
DCL command

chaining to 3-10
parser 3-30

ddlib.dll file 4-13, 4-24
debugger, Toolkit 1-18, 1-20
debugging, Synergy .NET 4-3
DECC runtime components 3-6
decimal assignment in .NET 4-4

DELET subroutine 3-13
DELMBX subroutine 3-11, 3-28
/deq option 1-8, 2-8, 3-9
DEQ qualifier 2-7, 3-9
DETACH statement 2-7, 3-31

Windows 1-7
detached job, WAIT and TTSTS subroutines 3-16
developing on Windows, requirements 1-4
DFLAG subroutine 3-12, 3-22
DIBOL.CLD 3-5
DIBOL-compatible functionality 3-24
DIRECTION:Q_REVERSE qualifier 3-9
directives ignored in .NET 4-14
DISPLAY statement

behavior with TT: 3-10
OpenVMS 3-7, 3-30
Windows 1-7

DLL API 4-16
%DLL_CALL routine and .NET 4-16
%DLL_OPEN routine and .NET 4-16
%DLL_xxx functions 1-9, 2-9
DLLs and the C interface 1-5
drag bar 1-14
DRAGBAR qualifier 1-14
DTK_MENU_UP environment variable 1-17, 1-21
DTKDBG environment variable 1-20
DTOB subroutine 3-12
dynamic language extensions (.NET) 4-19

E
-E compiler option 4-2
E_METHOD routine 1-20
E_SECT subroutine 1-16
E_STATE subroutine 1-16
ECHO terminal setting 2-12
EFKEY_METHOD subroutine 1-16
EMPBUF subroutine 3-11
encryption, UWP 4-21
$ENDFL subroutine 3-11
endian type 1-2, 2-4 to 2-5
.ENTRY script command 1-15
environment symbol 3-30
environment variables

Mono 4-24
Synergy .NET 4-13, 4-17
UWP 4-21

^EOF qualifier 3-7
%ERRLIN and .NET 4-10

F

Portability Guide 10.3.3 (5/16) Index-3

ERRMOD and .NET 4-10
error

handling in Synergy .NET 4-7
handling on OpenVMS 3-26
trapping on OpenVMS 3-30

%ERROR function 3-13, 4-10
ERROR subroutine 3-13
escape sequence, UNIX 2-13
exception handling 3-26
EXEC subroutine 1-10, 3-13
exit handler on OpenVMS 3-26
EXITE routine 4-8

F
f (float) 4-14
F10 key 1-7, 1-9
FATAL subroutine 3-13
.FIELD script command 1-15
fields in .NET 4-8
file

RMS 3-3
stream 3-4
structures supported on OpenVMS 3-3
versions on OpenVMS 3-30
versions on UNIX and Windows 3-29

filename
extensions 2-4
maximums on OpenVMS 3-30
UNIX restrictions 3-29

fill patterns and colors (UI Toolkit) 1-20
FIND statement

RFA and KEYNUM qualifiers 3-7
segmented key 3-7

fixed statements/modifiers (.NET) 4-19
FLAGS subroutine 3-13
floating-point argument 3-18
FONT_DEBUG initialization setting 1-18

See also Environment Variables & System Options
font, setting or retrieving information about 1-20
FOREACH statement in .NET 4-9
FORK subroutine 2-9, 3-17, 3-31
FORMS statement 3-10
%FSTAT function 3-11
functions

Mono 4-23
portable class libraries 4-25
Synergy .NET 4-10, 4-15

FXSUBR subroutine 3-11

G
g_plc_col_args global 1-21
GET statement 3-7, 3-8
GETCM subroutine 3-11
GETFA subroutine 3-12
GETS statement 3-7, 3-8

TTSTS, using with 2-29
GETS statement for .NET 4-8
GLINE subroutine 3-14
global message queue 3-31
global/external common, unnamed 3-29
GTPPN subroutine 1-10, 2-9

H
hardware scrolling, UNIX 2-30
header, window 1-16
Help, invoking 1-20
HTTP document transport API 4-12

I
^I and .NET 4-10
ICANON terminal setting 2-12
icon, defining 1-18
ICRNL terminal setting 2-12
indexed files, RMS 3-4
INIT and .NET 4-8
initialization setting 1-6
INITPORT subroutine

OpenVMS 3-17
UNIX 2-9, 2-29

input processing, Toolkit 1-21
installing multiple versions of Synergy DBL 3-5
integer data file 2-5
integer fields in .NET 4-4
interface, other languages 3-27
Interprocess Communication 2-3
ipar utility 3-20
irecovr utility 3-20
ISAM file

OpenVMS 3-4, 3-20
portability 2-5
RMS 3-4, 3-14

ISAMC subroutine 3-14
isload utility 3-30
ismvfy utility 3-20
ISSTS subroutine 3-14
.ITEM script command 1-15

J

Index-4 Portability Guide 10.3.3 (5/16)

J
JBNO subroutine 1-9, 2-9, 3-14

K
KB, defining as TT 3-10
key mapping 1-21
key_spec on OpenVMS 3-7
KEYNUM qualifier 3-7
KILL subroutine 1-9, 2-9, 3-14

L
L_INPUT subroutine 1-16
L_SECT subroutine 1-16
L_SECTDRAW subroutine 1-17
^LAST qualifier 3-7
LAT disconnect, potential problems with 3-23
LAT.DBL file 3-22
LATMSGDEF.DBL file 3-23
LATT.DBL file 3-23
LIB$SIGNAL 3-26
LIB$STOP 3-26
LINQ 4-19
Linux characteristics 2-6
list

entries 1-22
load method 1-17
processing 1-22
title 1-16

.LISTCLASS script command 1-22
literals in .NET 4-5
little-endian 1-2, 2-4 to 2-5
LLOAD_METHOD subroutine 1-17
LM_KCR subroutine 3-17
LM_LOGIN subroutine 3-17
LM_LOGOUT subroutine 3-17
load method 1-17
locking. See record locking
lpadmin program 2-27
LPQUE statement

and system option #22 2-31, 3-24
LPNUM option 2-27
OpenVMS 3-8, 3-22
UNIX 2-7, 2-27
Windows 1-7, 1-23

LTA device, performing I/O to 3-22

M
^M and .NET 4-4
M_DEFCOL subroutine 1-17, 1-21
M_PROCESS subroutine 1-17
maximize method 1-20
menu

displaying 1-21
invoking 1-17
processing 1-21
reducing flicker 1-21

menu bar, removing 1-18
menu entry, disabled 1-21
message, icon 1-19
method

close 1-20
maximize 1-20
minimize 1-20
registering 1-20
size 1-20

method, load 1-17
minimize method 1-20
MISMATCH modifier 4-6
MODNAME and .NET 4-10
Mono, unsupported features 4-22 to 4-24
mouse, responding to 1-20

N
.NET. See Synergy .NET.
NOCELL qualifier 1-14
NOCELLHBAR option 1-22
NOCELLVBAR option 1-22
nonspooled printer on OpenVMS 3-22
NORESET qualifier 1-15
NOTERM qualifier 1-15
%NUMARGS routine and .NET 4-10

O
O:P mode 3-8
O:S mode 3-8
objects in .NET 4-5
ONERROR statement 4-8
OPEN statement

BKTSIZ qualifier 1-8
BLKSIZ qualifier 1-8
BUFNUM qualifier 1-8
BUFSIZ qualifier 1-8
CONTIG qualifier 1-8
DEQ qualifier 1-8

P

Portability Guide 10.3.3 (5/16) Index-5

NL: and 3-8
O mode 3-8
OpenVMS 2-7, 3-9

porting to UNIX and Windows 3-28
OPTIONS qualifier 1-8, 2-8
RECSIZ qualifier 3-31
RECTYPE qualifier 1-8
Synergy .NET 4-9
UNIX 2-4, 2-7
Windows 1-8
working with FLAGS subroutine 3-13

OPENELB routine 3-15, 4-11
OpenVMS

characteristics 3-3
limitations 3-6
shared images 3-3
system services 3-29

OPTIONS qualifier
OpenVMS 2-8
Windows 1-8

overloading in .NET 4-5

P
p (packed) 4-14
paint character 1-15
PAINT qualifier 1-15
.PAINT script command 1-15
PAINT subroutine, Windows 1-10
parameters, passing in .NET 4-6
PARSE subroutine 3-15
PCMD environment variable 2-27
peripheral device on OpenVMS 3-22
portable class library, unsupported features for 4-25
porting

OpenVMS to Windows and UNIX 3-28 to 3-29
Windows and UNIX to OpenVMS 3-30 to 3-31

POSITION qualifier 3-9
POSRFA subroutine 3-15
PRINT command 3-8, 3-22
PRINT statement, spawning 3-24
PRINT_METHOD environment variable 1-23, 1-25
printer, retrieving information about 1-19
printing

OpenVMS 3-22
UNIX 2-27
Windows 1-23 to 1-25

PURGE subroutine 3-9, 3-11, 3-28
PUT statement 3-7, 3-8

PUTCM subroutine 3-11
PUTS statement 3-7, 3-8

Q
Q_EOF identifier 3-9
Q_LAST identifier 3-9
-qalign compiler option 4-2
-qcheck compiler option 4-2
-qnet compiler option 4-2
-qnoargnopt compiler option 4-2
quick-select character 1-15, 1-21, 1-22

R
READ statement

OpenVMS 3-9
porting to UNIX and Windows 3-28
relative file constraints 3-9
REVERSE 3-31
RFA and KEYNUM qualifiers 3-7
Synergy .NET 4-9

READS statement 1-8
DIRECTION qualifier and REVERSE keyword 3-9
Synergy .NET 4-8

record locking
OpenVMS 3-19
RMS files 3-4
stream files 3-4
SYSLCK privilege 3-4
UNIX 2-10
Windows 1-13

records in .NET 4-8
RECSIZ qualifier 3-7, 3-28, 3-31
/rectype option 1-8, 2-8, 3-9
RECTYPE qualifier 1-8, 2-7, 3-9
RECV statement, system option #7 2-32
registering methods 1-20
relative file 3-3, 3-7
RENAM subroutine 3-15

renaming across logical drives 1-9
Windows 1-9
working with FLAGS subroutine 3-13

rendition 1-19
Repository subroutine library and .NET 4-13, 4-21, 4-24
requirements, Synergy DBL on UNIX 2-3
RETURN statement and .NET 4-9
REVERSE keyword 3-9
RFA qualifier 3-7
RIGHT qualifier 1-15

S

Index-6 Portability Guide 10.3.3 (5/16)

RMS file 3-3 to 3-4
routines

Mono 4-23
portable class libraries 4-25
Synergy .NET 4-15

RUNJB subroutine 1-9, 3-15
running applications on Windows 1-4 to 1-5
runtime

shared executable image, on OpenVMS 3-3
Synergy .NET 4-2

S
S_SELBLD subroutine 1-17
$SCR_ display functions termcap/terminfo codes 2-26
$SCR_ATT 1-7, 2-26
$SCR_CLR 2-26
screen

attributes 2-22
graphics 2-23

scroll bar
application window 1-2
suppressing 1-22

selection processing 1-22
SEND statement

names and 3-28
OpenVMS 3-10
system option #7 2-32
UNIX 2-8

sequential file, RMS 3-3
serial port on UNIX 2-29
SERIAL subroutine 3-17
SETCTL subroutine 3-11
SETDFN subroutine 3-15, 4-11
SETLOG subroutine 1-9

OpenVMS 3-15
UNIX 2-9

shared image 3-3, 3-15, 3-29
SHELL subroutine 1-10, 2-9, 3-16, 3-30
shortcut key 1-21
SHRIMGMSG 3-6
size method 1-20
SLEEP statement 2-8
sockets, closing (.NET) 4-12
SORT statement 3-29
SORT subroutine 3-11
spacing, changing 1-20

SPAWN subroutine
OpenVMS 3-16, 3-30
UNIX 2-9
Windows 1-10

spooled printer on OpenVMS 3-22
statements

Mono 4-22
portable class libraries 4-26
Synergy .NET 4-8, 4-14

STATIC modifier 4-3
status utility 3-20
STOP statement 3-10, 4-9
stream file 3-4, 3-8
/stream option 1-8, 2-8, 3-8
String in .NET 4-6
structfields, in .NET 4-6
structures, in .NET 4-7
STTY subroutine 2-9, 2-12, 2-29, 3-17
subroutines

Mono 4-23
portable class libraries 4-25
Synergy .NET 4-10, 4-15
UWP 4-20

%SUCCESS function 3-11
%SYN_FREECHN routine and .NET 4-12
SYN_RESIZE_SCALE environment variable 4-12
Synergy DBL

C interface. See C interface
interfacing with other languages 3-27
subroutines 1-9 to 1-10

Synergy DLL API 4-12
Synergy message manager 3-25

UNIX 2-32
vs. local message facility 3-24, 3-25

Synergy .NET 4-1 to 4-19
APIs 4-12, 4-15
boxing, unboxing 4-6
compiler differences 4-2
conditionalizing code for 4-2
data types 4-3 to 4-6
debugging 4-3
directives 4-14
environment variables 4-17
error handling 4-7
fields 4-8
initialization settings 4-13
language differences 4-2 to 4-12
moving application to 4-1 to 4-19
records 4-8

T

Portability Guide 10.3.3 (5/16) Index-7

runtime differences 4-2
statements 4-8, 4-14
structures 4-7
subroutine and function differences 4-10
system options 4-18
unsupported features 4-14 to 4-19
unsupported utilities 4-16

Synergy socket API 4-12
Synergy utilities

Mono 4-24
Synergy .NET 4-16

Synergy windowing API and .NET 4-12
Synergy Windows printing API 1-23
Synergy XML API 4-12, 4-20, 4-23
SYNERGY_STARTUP.COM file 3-25
synergy.ini file 4-13
synuser.ini file 4-13
synxml.dll file 4-12, 4-23
SYSLCK privilege 3-4
system option

#7 2-32, 3-24
#12 2-8, 2-31
#16 2-31, 3-24
#17 3-21, 3-24

TNMBR and 3-16
#18 3-24
#22 2-7

OpenVMS 3-8, 3-24
UNIX 2-31
Windows 1-23

#23 3-24
#30 2-13
#33 2-31
#35

defining TI or KB as TT: 3-10
FORMS statement 3-10
UNIX and Windows 3-28
VAX DIBOL-compatibility 3-24

#36 2-31
#38 3-8
#47 3-24
OpenVMS 3-24
UNIX 2-31

system options
Mono 4-24
Synergy .NET 4-18
UWP 4-21

T
T_EDIT subroutine 1-17
T_VIEW subroutine 1-17
%TB_BUTTON function 1-17
%TB_TOOLBAR function 1-18
TBUF environment variable 2-8
TEMPFILE qualifier 3-10
termcap

codes 2-22
entry syntax 2-14
UNIX 2-13

terminal
codes 2-22
database files 2-13
number, determining 2-11, 3-16, 3-21
settings on UNIX 2-12

terminfo
codes 2-22
entry syntax 2-14
UNIX 2-13

TFLSH subroutine
UNIX and OpenVMS 3-16
Windows 1-10
with LAT disconnect 3-23

TI:, defining as TT: 3-10
title

list 1-16
window 1-15

.TITLE script command 1-15
tklib.olb file 1-5
TNMBR environment variable 3-21
TNMBR routine

converting OpenVMS terminal names to
numbers 3-21

OpenVMS 3-16, 3-21
Synergy .NET 4-12
system option #17 3-24
terminal numbers in 2-11, 3-21
UNIX 2-9, 2-11
Windows 1-10

toolbar
buttons 1-17
creating 1-18

Toolkit. See UI Toolkit
traditional Synergy, differences from Synergy

.NET 4-2 to 4-13
TRY-CATCH statement in .NET 4-7, 4-8

U

Index-8 Portability Guide 10.3.3 (5/16)

tstat utility 2-16 to 2-18
sample tstat.tc session 2-18 to 2-21

TT_NAME_TO_NUMBER subroutine 3-11, 3-21
TT_NUMBER_TO_NAME subroutine 3-11
TT: on OpenVMS 3-10
TTBRDCST subroutine 3-11, 3-29
TTCHAR subroutine 3-11
TTFLGS subroutine 3-12, 3-29

OpenVMS 3-28
TTMBX subroutine 3-12
TTNAME subroutine 3-16
TTSTS routine 2-29

LAT disconnect and 3-23
OpenVMS 3-16, 3-28
UNIX 2-9

U
U_ABORT subroutine 1-18
U_ABOUT subroutine 1-18
U_BAR subroutine 1-18
U_CHARSB subroutine 1-18
U_CREATESB subroutine 1-18
U_DEBUG subroutine 1-18, 1-20
U_EDITREND subroutine 1-18
%U_GETFILENAME function 1-18
%U_ICON function 1-18
U_MESSAGE subroutine 1-19
%U_MSGBOX function 1-19
U_POPUP subroutine 1-19
%U_PRINTQUERY function 1-19
%U_PRINTSETUP function 1-19, 1-25
U_REND subroutine 1-19
U_START subroutine 1-19
U_UPDATESB subroutine 1-19
U_WAIT subroutine 1-19
%U_WINHELP function 1-20
%U_WNDEVENTS function 1-20, 1-21
%U_WNDFONT function 1-20
%U_WNDSTYLE function 1-20
UI Toolkit

applications on Windows 1-14 to 1-22
running existing 1-5

debugger 1-18, 1-20
unboxing 4-6
unchecked statements/modifiers (.NET) 4-19

UNIX
characteristics 2-4 to 2-6
machine-specific characteristics 2-4
system requirements 2-3

unsafe statements/modifiers (.NET) 4-19
using (alias declaration) 4-19
USING statement and .NET 4-10

V
value types in .NET 4-5
vertical spacing, changing 1-20
Visual Studio, unsupported features 4-19
VMCMD subroutine 3-12, 3-29
VMIN terminal setting 2-12
VMMSG subroutine 3-12, 3-29

W
W_AREA subroutine 1-10
W_BRDR subroutine 1-10
W_CAPTION subroutine 1-11, 3-17
W_DISP subroutine 1-11, 2-7, 3-29
W_FLDS subroutine 1-12
%W_INFO function 1-12
W_INFO subroutine 1-12
W_INIT subroutine 1-12
W_PROC subroutine 1-13
WAIT subroutine 3-16
what utility 2-13
window border 1-10
Windows Help 1-20
WinHelp, invoking 1-20
WNDC environment variable 1-3
WRITE statement

^EOF qualifier 3-7
^LAST qualifier 3-7

X
%XADDR routine and .NET 4-11
xcallv.h file 3-27
XML API 4-12, 4-20, 4-23
XSTAT routine and .NET 4-12
XSUBR routine 3-16, 4-11
^XTRNL data reference operation 3-12, 3-29

	Professional Series Portability Guide
	Contents
	Preface
	1 Windows Development
	Windows Characteristics
	What your application will look like
	Big-endian and little-endian
	Color

	Requirements
	Requirements for developing Synergy programs
	Requirements for running Synergy programs
	C: interface requirements

	Using Initialization Settings
	Synergy DBL Statements and Routines on Windows
	Synergy DBL statements
	Synergy DBL subroutines and functions
	Synergy windowing API routines
	Record locking

	UI Toolkit on Windows
	Script commands
	UI Toolkit routines
	Other Toolkit differences

	Printing
	Printing with the Synergy Windows printing API
	Printing with LPQUE

	2 UNIX Development
	System Requirements
	UNIX Characteristics
	Case sensitivity
	Big-endian and little-endian
	Machine-specific characteristics

	Synergy DBL Statements
	Synergy DBL Routines
	Record Locking
	Terminal Numbers Used by Synergy DBL
	Terminal Settings Used by Synergy DBL
	Synergy DBL and the UNIX Terminal Database
	Determining which database you should use
	Terminal database file syntax
	The terminal capabilities status program
	Terminal codes used by Synergy DBL
	Screen attributes
	Screen graphics

	Printing
	DBLDIR:dblpq
	The LPNUM option

	Serial Ports
	Windowing System
	Enabling color
	Enabling hardware scrolling

	System Options
	Message Facilities

	3 OpenVMS Development
	OpenVMS Characteristics
	Shared images
	File structures supported by Synergy DBL

	Installing Multiple Versions of Synergy DBL
	Using the alternative version

	Limitations on OpenVMS
	Synergy DBL Statements
	Synergy DBL Subroutines and Functions
	OpenVMS-specific routines
	Routines that work differently on OpenVMS
	Subroutines that have no meaning on OpenVMS
	AST support in Synergy DBL
	DBLSTARLET directory
	Floating-point arguments

	Record Locking
	ISAM Utilities
	Terminal Numbers
	Peripheral Devices
	Printer setup
	Synergy DBL and LTA devices

	System Options
	Message Facilities
	Starting the message manager

	Error Handling
	Interfacing with Other Languages
	Porting OpenVMS Code to Windows and UNIX
	Porting Windows and UNIX Code to OpenVMS

	4 .NET Development
	Differences for .NET
	Runtime
	Building (compiling)
	Debugging
	Data types
	Directives
	Boxing and unboxing
	Exception handling
	Memory
	Structures, records, and fields
	Statements
	Subroutines and functions
	System-supplied classes
	APIs
	Repository subroutine library
	Environment variables and initialization files

	Unsupported Features in Synergy .NET
	Data types
	Directives
	Statements and statement modifiers
	Subroutines and functions
	APIs
	Synergy/DE products
	Utilities
	Environment variables
	System options
	.NET Framework features
	Visual Studio features

	Unsupported Features for Universal Windows Platform
	Subroutines and functions
	Arrays
	APIs
	Synergy/DE products
	Encryption
	Environment variables and initialization files
	System options

	Unsupported Features for Mono
	Data and ISAM files
	Statements
	Subroutines and functions
	APIs
	Encryption
	Environment variables and initialization files
	System options
	Synergy/DE products
	Utilities

	Unsupported Features for Portable Class Libraries
	Subroutines and functions
	Arrays
	APIs
	Statements

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Send us your comments

